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@ Introductory example: Brownian motion

© Convergence of random measures

© Rearrangement of random fields
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@ Introductory example: Brownian motion
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Asymptotic rearrangement of the Brownian motion
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Theorem (Davydov, Zitikis 2004)

X: Brownian motion.
Xn: Piece-wise linear interpolation of X on {0,1/n,...,1}.
¢X,: Convex rearrangement of X,.
Then
1
sup |—

EXn(x) — L(x)| — O,
xef0.1] | VN () (9

L: Lorenz curve.

Other asymptotic convex rearrangements in Davydov & Vershik 1998.
XH: fBm with Hurst parameter H. Then

nf=texH — L.

(L is the limit rearrangement for many Gaussian processes with stationary
increments)
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Convex rearrangement

green: Piecewise linear function f.
Lower part (red): convex rearrangement of f, denoted by C€f.
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Rearrangement of the derivative

It corresponds to rearranging the derivative in a monotone way. If ' is the
derivative of f, and (€f)’ the derivative of €f, we have

Af = (ef)
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The proof can be decomposed in two steps:
1: The probabilistic result:
Consider the image measure

fn = M (n" Y2V X,)7L.

Then p, = 71 ass..

(A1: 1-dim. Lebesgue, v1: Normal distrib., =-: weak convergence.)
2: The measure theory result:

Theorem
If a sequence of convex functions {g, : n > 1} satisfies
Mgy t) =

for some measure v with finite first moment, then g, — g, with g convex

and = Mg L.
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Associated convex body of a 1-dimensional function
Resource distributed to a population of size N.

@ Member labelled k receives ry.
e Cumulative income function: f(n) =", r«.

f is extended to a piece-wise linear function on [0, N].
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The area of the convex body can measure the inequalities over this
particular resource (consider the equality case, where ry is equal for all k)
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© Convergence of random measures
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Gaussian fields

X: Centered Gaussian field, with covariance function

o(z,¢) = EX(2)X(C), z,¢ € [0,1]9.

X,, : Approximations of a Gaussian field X on [0,1]9.

X, is obtained by

interpolation of X on a triangulation 7,.

There are regular simplices T, ..., T, and a discrete group ' of R? such
that 1
Tn={_(v+T):vell<j<k}
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Brownian sheet approximation
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Results
Define

Hn = )\d(an)<n)_1
and

Ufg)(u, v)=o0(z,{)+o(z+u,(+v)—o(z+ u,{) —o(z,{ + v),

the second order local increment of o.

Theorem

Assume the following: For all u,v in RY
(nb,,)2a§z)(n_1u, n_lv) — agiag(u, v)

uniformly in z € [0,1]¢.

Then there is a deterministic measure v such that, for all Borel set B,

B[ Mowercedz = En(B) - ).

v
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examples
Multifractional Brownian field:

o(z,¢) = [lz[|* + [I<1* = lz = ¢[I%, a € (0,2)

, .
o (u, v) = [Ju]|® + V] = [lu— v]|* = 0% (u, v),
b, = no/2-1

Brownian sheet:

o(z,¢) = Hmin(z,-,g,-).

0%y, v) = (I(z),uAv—uA0—vAD),
bn = +/n

with
(z)=(z2...24,2123 ... 2y - ., Z1 - .. Zd—1)-
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wn: Characteristic function of pp,.

Theorem
Let he RY.

E|90n(h)_]E‘Pn(h)|4

< C [ (n/ba)? 3 vol(S)vol(S)o(n

Z7C
S,5'€7,

(u, v are the directions of edges of resp. S and S'.)

Ly, n7ty)|
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For the Multivariate Brownian field and the Brownian sheet, the right
hand member is in O(n~2), whence (Borel-Cantelli),

Hn = [
a.s..
Remarks:
@ 4 is deterministic,
@ the convergence happens on each sample path.

New consistent estimators for parameters o(z, ¢):

@ Regularity parameters (Hurst Index),
@ Directional parameters (Privileged axes)
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© Rearrangement of random fields
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Multidimensional rearrangement

Let f:[0,1]9 — R, differentiable a.e. such that

/ IV £(x)]|dx < +o0.

[0,1]¢

A convex function C is a convex rearrangement of f if
AV =0V

Theorem (Brenier, 91)

Every function f with finite gradient mass has a convex rearrangement &f.
The convex rearrangement is unique up to a constant.
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Asymptotic rearrangement

e f: “irregular function”

o f,: Functions with finite gradient mass, the f, converge to f. Is there

a function C, and positive numbers {b,; n > 1}, such that
b,Cf, — C?
If yes, C is an asymptotic convex rearrangement.

Theorem
{fn; n > 1}: Functions with finite gradient mass,
{bn; n > 1}: Positive numbers.
The following assertions are equivalent
(i) Weak convergence \gV (bnfa)™t = p.
(ii) by€fa(z) — C(z), for z € int([0, 1]%),
(iii) V(b,€f,)~t — VC in the L' sense on every
sub-compact, whence C € ¢f.

In this case: 1= A\gVC™L.
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Asymptotic rearrangement of the Brownian sheet

nY2¢X,(z) — C(z) as., ze(0,1)3

iy
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