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Excursions

o Let f: R? — R a stationary random field (law invariant under
translations).
e For / € R, define

Er=E&(f)={xeR?: f(x)=(}

Figure — Excursions of a shot noise field (Credit : PhD Thesis, Antoine
Lerbet)
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Percolation

We are interested in the following questions :

@ Does & have (a unique) unbounded connected component(s) ?
@ s there a critical value £, 7

© Behaviour of

P(&, crosses large rectangles)

ford =/{cor b £ L7
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Poisson shot noise fields

Let P = {x;; i € N} be a homogeneous Poisson process on R?.
Let g : R?> — R? integrable
Poisson shot noise field with kernel g :

Zg XER2

ieN

Let Y;,i € N iid symmetric integrable variables with law p.
Symmetric Poisson shot noise field with kernel g and mark
distribution p :

f(x) = ZYg(X i) x € R?,
ieN

Well defined in virtue of Campbell formula :

E Z|v,-g<x—x,-)|] = [ gl = 0ldtn() = BVl lgls <

ieN
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Gaussian Random Fields

The same questions have been thouroughly investigated for stationary

continuous centred Gaussian fields, i.e. random functions f : RY — R
such that

® Vxi,...,xp € R? (f(x1),...,f(xn)) is a centred Gaussian vector
@ a.s., x — f(x) is continuous

@ Such a field is uniquely determined by its covariance function
E(f(x)f(y)) = C(x —y).
@ Reciprocally, to each SDP function C, i.e. such that
Za,—ajC(x,- — XJ) > 0
i=1

forall x1,...,x, € Rd,al, ...,ap € R, one can associate a unique
centred stationary Gaussian field.
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White noise construction

Most fields can actually be seen as the convolution of a kernel g € L(RY)
with a white noise W

Flx) = g+ W(x) i= /g(x — Y)dW(y)

¢ ¥V : random signed measure satisfying for A, B disjoint
e W(A) and W(B) are independent
e W(AUB) =W(A)+W(B)
o Var(W(A)) = L9(A)
e Poisson shot noise fields : Wp(A) := #P N A ~ Poiss(LI(A))
e Gaussian fields : Wg(A) ~ N(0, £L4(A))
e In dimension 1, the Gaussian white noise can be built from a Brownian
motion {B;; t € R},

Ws([a, b]) := Bp — B..

e Similar constructions exist in all dimensions with-Brownian sheets
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Covariance property
e For A, B with finite measure,

Cov(W(A), W(B)) = ,Cd(A NB) = <1{A}7 1{B}>L2(Rd)

e For all g1, € L?(RY)

(/1dW /de> g1, 82) = /glgz.

e In particular, the covariance function of f satisfies

C(x —y) = Cov(f(x),f(y)) =(g(x =), gly —-),)
= /g(x —y)g(x —y —2)dz
=gxg(x —y)

e Some SDP functions with singular spectral measures cannot be built this
way (e.g. Gaussian Random Planar Wave with C =Bessel Function)
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Percolation of Gaussian excursions

Figure — Credit : D. Beliaev

By

Es

Figure 1. A simulation of the excursion set £ of the Bargmann-Fock field
restricted to a large square (in grey) at (i) the zero level £ = 0 (left figure),
at (ii) the level £ = 0.1 (right figure), with the connected component of greatest
area distinguished (in black). The Bargmann-Fock field is the stationary, centred
Caussian field with covariance kernel (z) = e~'*/2, Credit: Dmitry Beliaev.
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Assumptions (Gaussian case)

] Assumption \ Field f \ Kernel g
Regularity c3 3
T
Symmetry (Axis reflectio?s,%—rotations) D 4
Positive for A,B increasing events
> >
Association P(AN B) > P(A)P(B) g=0
Asymptotic for A, B “far away” for some 3>2 -
~ < B8
Independence P(AN B) =~ P(A)P(B) | g(x) < c(1 + [|x]])

e Increasing event A = A(f) :1iar)y < Lya) for f < g

Example : A(f) = {&(f) crosses Q} for some Q C R?

e Symmetry f @ —f entails self-duality

(d)

& =& (up to the boundary)

= It is natural to expect /. = 0.
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Bernoulli-like percolation (Gaussian case)

Theorem (Sharp phase transition (Beffara & Gayet, Vanneuville
Muirhead, Ribera))

Under the previous assumptions, {&;,¢ € R} behaves like Bernoulli
percolation around the critical value : for @ a rectangle

Q (<0 :& has a unique unbounded component a.s. and
P(&E crosses rQ) >1—Ce ", r >0

@ /> 0: & has bounded components a.s.
© (=0: & has bounded components and

IBSIm
P(&y crosses from 0B(0,r) to 0B(0,R)) < ¢ (é) ,r>0.

0< mf P(&y crosses rQ) < supIP’(Eo crosses rQ) <
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Early works

@ Molchanov and Stepanov '83 : give conditions for /. < oo for some
positive shot noise fields

o Alexander ’96 : For a stationary C! random field on R?, ergodic and
positively associated, the level lines are a.s. bounded.

Broman and Meester '17 : Conditions for £, < 00
Beffara Gayet '17 : Bounded components for ¢ sufficiently large
Ribera Vanneuville '19 : Bounded components for £ > 0

Muirhead Vanneuville 19 : Optimal condition 8 > 2 on decay of g,
sharp phase transition

@ Muirhead, Rivera, Vanneuville 20 : Results without positive
association and fast decay outside the critical level
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Assumptions (Symmetric Poisson case )

Regularity c3 c3
T
Symmetry (Axis reflectio?s,%—rotations) D*
Positive for A,B increasing events
> >
Association P(AN B) > F(A)P(B) g=0
. “ " for some 3>3, for |k|<3
Asymptotlc for A, B “far away B s>
~ < B—|k|
Independence P(AN B) =~ P(A)P(B) g(x) < c(1+|x|)
Self-Duality g @es v, @y,
: V£(0 g(x)=cexp(—[Ix¥), «€(0,1)
DenSlty has bo(un(de)d joi(nt)ziensity or g(x):c(1+Hx||)_g, B8>d
Concentration 4+ | Use of OSSS inequality Law of Y} log-concave

Theorem (Lr,Muirhead 2022)

Under these assumptions, there is Bernoulli-like percolation for Poisson

shot noise fields.

— = — = = =’
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Non-symmetric case

olet A >0, Py @
A. We consider

A~1/4P a Poisson homogeneous process with intensity

A(x) =g *xWp,(x) = > &ly —x).

YEPA

e Under mild assumptions, there is a finite critical density
Lc(f\) = sup{l : P(&; has unbounded component) > 0} < oo

e Asymptotic regime A\ — oo? Elementary Central Limit Theorem

A(x) = A(x) —E(R(X) G(x) with {E(f)\(x)) =g,

Var(f(x)) Var(fy(x)) = A [g*

e Multivariate CLT (Heinrich, Schmidt '85) : Convergence of FDD
e G(x) is Gaussian centred with same covariance gxg
e Question :

0e(R) — €(G) =07
Y



Assumptions (Non-symmetric Poisson case )

] Assumption \ Field f \ Kernel g
Regularity c* c*
Isotropy
Symmetry (invariance to rotations) Isotropy
Positive for A,B increasing events
> >
Association P(AN B) > F(A)F(B) g20
: “ 4 for some 3>2, for |k|<3
Asymptotlc for A, B “far away P 8
~ < B
Independence P(AN B) = P(A)P(B) 9%g(x) < c(1+|Ix])
: £(0),VA/(0 g(x)=cexp(—[[x][*¥), «€(0,1)
Density has é(gugded)\(ge&)sity or g(x)=c(1+|x[)~7%, B>d
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Critical value approximation

Theorem (Lr,Muirhead 21+)
Recall

te(B) = A V20 — A /g)

Assume the previous hypotheses, except positive association. Then
@ without positive association,

fc(f,\) — 0

@ with positive association (g > 0),

le(h) = O(A" 2 log(1)*/?)
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Strong Invariance principles

e Proof based on the construction of a coupling (f), g), for each A > 0.
e Historical result : Komlos, Major, Tusnady 85', coupling of X, i.i.d
Rademacher variables with i.i.d Gaussian variables Gy, ..., G, such that

sup|ZX ZG\ cin(n) +t) < Ce

0<k<n i—1

and the order In(n) is optimal.
e “Random measure” point of view

k n
in :(Z 5X,‘)(1[1,...,k])7 1<k<n
i=1 i=1

Similarly fy(k) =Wp, (g(k — ),k € Z2¢
G(k) =Wg(g(k — ),k € 29
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Strong invariance principle for shot noise fields

Theorem (Lr,Muirhead 21+)

1@( sup  |A(x) — G(x)| > A—1/2|n(A)1/2t> < CRYNC exp(—ct)
x€B(0,R)

e Optimal up to the power of In(\) (see also Berry-Esseen inequality)
e Based on Koltchinski 94’ : There is a coupling of Py and Wg such that

for any k € Z¢,
P(|A (k) — G(k)| = tA™Y2In(\)) < Ce™ <

e For x € R9\ Z9, approximate f(x) by f([x]) + V(&) - (x — [x]).
e There is a coupling of N ~ Pois(\) and Z ~ N(0, 1) such that

PN =X —VAZ| > t) < Ce™ <t
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Elements of proof for the
symmetric case
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@ Box crossing estimates (RSW) stem from the work of Tassion '16
because we have :
» Positive association of the discretised field (FKG inequality on a finite
space)
» & is invariant in law under reflections and rotation by 7/2
» Spatial asymptotic independence (of f, hence of &)
@ One arm decay stems from
» Positive association of the discretised field (FKG inequality on a finite
space)
» Asymptotic independence
» Box crossing estimates (RSW)
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Proof of sharp phase transition (bounded Mills ratio case)

© First prove that P(Crossy(2R, R)) — 0 and then use bootstraping
argument

@ Proof based on a differential inequality of

0 : h— P(f>" € Crossi(2R, R))

where 7" is obtained from f° by adding h to all the marks. We prove

) o(h)(1 — o(h))
%Q(h) > Cinf2r<p<R/2{2P/R + P(fe € Army(2r, p))}

© Use of the OSSS inequality applied to randomized algorithms; after
the ideas of Duminil-Copin, Tassion, Raoufi.
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Sharp phase transition

Theorem (Lr & Muirhead 19+)
For ¢ > 0 there is ¢ > 0 such that

P(Cross(2R, R)) <1 — exp(—cR),R >0

It implies the main result :
@ For £ > 0, & has only bounded connected components a.s..
@ For £ < 0, & has a unique unbounded component a.s..

Proof : ¢/ > 0: P(Armp(1, R)) — 0.
o/ < 0 : Borel-Cantelli lemma with

Z(l — P(Crossg (2571, 2%))) < 0o = (Crossy(2€+1, 2%)) occurs for k > kg
k>1

and arrange the rectangles so that the connected components overlap.
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OSSS inequality (O'Donnell, Saks, Schramm, Servedio '05)

For an event A on a product probability space (E”, 1) and a random
algorithm determining A, (6 := P(A))

Var(l{A}) = (9 1-— Zd” .A)IM

where
o 0%(A) : Probability that coordinate i is revealed by the algorithm

o Influence of coordinate i : If(A) = P(1 ay # 1;a}) where Alis
obtained by resampling coordinate /

For percolation events, typically :

@ A is a progressive uncovering of all the connected components
touching a random crossing line (in a rectangle) / circle (in a disc)

o 0%(A) is the probability that a point i is “close” to one of these
connected components (one-arm decay is useful here)

o [/'(A) is related to df(h) for h ~ 0
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Key point

@ First remark that crossing events are monotonous in the marks

(higher mark = more chances to percolate). Hence for each i there is

a.s. a random level y; such that there is percolation for Y; > y;.

@ Assume for f¢ that mark Yj is replaced by Y; + h; for some parameter

h; € R. Then

P(Cross¢(2R, R)) :%IF’(Y + hi = yi) = uy, (vi — hi)

0
Oh;
b= P(Lay # 1ay) =P(Yi + by > yi, Y+ b < Y))
+P(Yi+hi <y, Yi+hi =)
L2P(Y; = yi — hy)

Mills
g Cuﬂac(yf - hl)

@ We end up with

Z 1;0; 0555 9(1 —0)
i >c

8h,- i 0 sup; d;

1
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