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Introduction

L’objet central de mon travail, et d’une grande partie de la géométrie stochastique,
est l’étude de grands système spatiaux désordonnés et homogènes. Donnons quelques
exemples de tels systèmes pour aiguiller l’intuition :

• Un ensemble dénombrable et aléatoire de points isolés pouvant représenter les par-
ticules d’un gaz, les étoiles de l’univers, ou les antennes d’un réseau de télécommu-
nications. On appelle processus ponctuel ce type d’objet, voir les figures 3 et 4. Les
processus ponctuels poissoniens en sont un exemple éminemment étudié, et sont un
objet majeur en géométrie stochastique et dans mes travaux, voir toute la Partie
I et le Chapitre 8.

• Un ensemble aléatoire constitué de deux composantes, aussi appelées phases , que
l’on peut imaginer coloriées en noir et blanc. Le blanc peut par exemple représenter
la partie vide au sein d’une mousse, ou d’une éponge, ou un des fluides dans un
mélange de deux fluides non miscibles, voir la figure 1, et les chapitres 6 et 9.

• Dans l’exemple précédent, le blanc peut aussi représenter les terres émergées dans
une partie du globe (et le noir l’océan). Cet ensemble aléatoire s’obtient en seuillant
la fonction altitude au niveau 0, c’est un ensemble de niveau supérieur de cette fonc-
tion, ou une excursionmulti-dimensionnelle, voir la figure 5. Cette fonction peut être
modélisée par un champ aléatoire sur R2 ou sur la sphère unité de R3. Les excursions
aléatoires interviennent dans tout problème impliquant des données récoltées après
seuillage d’un champ au-dessus ou au-dessous d’une certaine valeur, on les retrouve
en cosmologie dans l’étude du champ diffus cosmologique, en neuro-biologie dans
l’étude de l’activité électrique du cerveau, et dans bien d’autres domaines. Voir les
chapitres 4.1 et 7.

• Une mosaïque, c’est-à-dire une partition du plan par des ensembles bornés, les
cellules, habituellement convexes, ou de manière duale le réseau de segments qui
délimitent ces cellules, voir la figure 2. Ces objets peuvent modéliser des réseaux
d’infrastructure, ou l’organisation de cellules dans un tissu. En dimension d > 3, le
réseau dual est constitué de polygones de dimension d − 1. Voir la figure 2, et les
chapitres 4.4 et 10.

Le caractère homogène est modélisé par la propriété de stationarité, c’est-à-dire l’in-
variance de la loi du modèle sous l’effet d’un groupe de transformations. Un paradigme
très fréquent est d’observer le modèle sur une grande fenêtre, et le comportement asymp-
totiques de certaines observables lorsque la fenêtre tend vers l’espace tout entier. Parfois
c’est la fenêtre qui est fixée et l’ensemble observé devient de plus en plus dense, voir la
figure 3 et l’exemples des enveloppes convexes aléatoires. Les exemples de statistiques les
plus immédiatement calculable sont le nombre de points, la mesure de la surface couverte,

7
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Figure 1 – Excursions au niveau 0 de plusieurs champs aléatoires gaussiens présentant
différents niveaux de régularité [Lan02]

Figure 2 – Gauche : une mosaïque poissonienne d’hyperplans en trois dimensions.
Droite : Mosaïque de Poisson-Voronoï en dimension 2

ou la longueur totale des arêtes visibles, mais on peut largement complexifier ces obser-
vables : nombre de composantes connexes bornées, nombre d’amas de trois points dans
une boule de volume 1, etc... J’ai décomposé mes travaux en deux axes de recherche.

Première partie : Théorèmes limites en géométrie aléa-
toire

On s’attache à définir, pour certains modèles et certaines fonctionnelles géométriques
comme ci-dessus, des conditions sous lesquelles on a un comportement asymptotique nor-
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mal, après renormalisation par la variance (théorème central limite). En particulier, on
tente de donner une vitesse de convergence optimale vers la loi gaussienne pour une dis-
tance donnée, souvent pour la distance de Kolmogorov, qui est adaptée à l’établissement
d’intervalles de confiance.

Commençons par donner un exemple d’un tel résultat, obtenu dans [LSY19], qui a
permis d’améliorer l’état de l’art. Soit ξn = {X1, . . . , Xn} des points indépendants et
uniformément distribués dans la boule unité B(0, 1) de Rd, et C(ξn) l’enveloppe convexe
de ξn (voir la figure 3). On considère une fonctionnelle F (C(ξn)) =: Gn de nature additive,
par exemple :

• nombre de facettes de C(ξn),

• volume Ld(C(ξn)), où Ld est la mesure de Lebesgue d-dimensionnelle,

• surface Hd−1(∂C(ξn)), où Hd−1 est la mesure de Hausdorff,

voir [LSY19] pour la description des fonctionnelles additives admissibles.

Figure 3 – Enveloppe convexe de 50 points indépendants tirés uniformément dans la
boule unité

Il a été montré dans Reitzner [Rei05] qu’il existe c+ > c− > 0 telles que la variance
de Gn vérifie

c− <
Var(Gn)

n
d−1
d+1

< c+

pour n suffisamment grand. Reitzner a également montré le théorème central limite

G̃n :=
Gn −E(Gn)√

Var(Gn)

(law)−−−−→
n→∞

N,

où N est une variable gaussienne standard. En utilisant le résultat établi conjointement
avec Peccati [LP17], nous avons établi avec Shulte et Yukich [LSY19] la vitesse de conver-
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gence suivante : il existe C > 0 tel que

sup
t∈R

∣∣∣P(G̃n > t)−P(N > t)
∣∣∣ 6 Cn−

d−1
2(d+1) , n ∈ N.

Ces ordres de gandeur de variance et de vitesse de convergence sont habituels pour des
fonctionnelles de type surface order scaling, c’est-à-dire lorsque la valeur de Gn est es-
sentiellement déterminée par les Xi qui sont proches de la frontière d’un ensemble dé-
terministe de frontière lisse, ici la boule unité. Autrement dit, si l’on efface les points
qui tombent à une distance n−1/d log(n) de la sphère unité, il y a peu de chances que
la valeur de Gn change. On donne dans [LSY19] d’autres exemples de fonctionnelles de
ce type, comme l’approximation Voronoi d’un ensemble, ou l’étude des points maximaux
relatifs à un cône. Nous retrouvons également le même ordre de grandeur pour la vitesse
de convergence vers une loi gaussienne, ce qui laisse à penser que cet ordre de grandeur est
le meilleur possible, même si l’optimalité est difficile à montrer dans ce genre de problème.

Nous donnons en fait dans [LSY19] un résultat plus général valide pour les fonction-
nelles dite stabilisantes, c’est-à-dire où chaque Xi apporte une contribution qui ne dépend
que des autres points aléatoires avoisinant. Autrement dit, la contribution d’un point Xi

ne change pas si l’on efface les points aléatoires qui tombent à une distance de Xi supé-
rieure à n−1/d log(n). Dans l’exemple du nombre de sommets de l’enveloppe convexe, la
contribution d’un point est de 1 s’il est extrêmal, et 0 sinon, et le caractère extrêmal d’un
point ne dépend effectivement que des points alentour. Le principe de stabilisation a une
portée bien plus grande que les fonctionnelles de type surface order scaling. Un exemple
classique également développé dans [LSY19] est la longueur L(ξn) du graphe des plus
proche voisins basé sur ξn, construit en reliant par une arête chaque point Xi au point Xj

le plus proche, avec j 6= i (voir la figure 4, où cette fois les points Xi ont été tirés unifor-
mément dans un carré). Cette fonctionnelle est de type volume order scaling, c’est-à-dire
que, hormis des effets de bord négligeables, les points donnent tous des contributions du
même ordre. Autrement dit on ne peut présumer la contribution du point Xi en se ba-
sant uniquement sur son emplacement, contrairement au cas de l’enveloppe convexe. Ces
graphes ont trouvé de nombreuses applications, notamment récemment dans le cadre de
l’analyse de données en grandes dimension [LB05], et on donne dans [LSY19] des vitesses
de convergence vraisemblablement optimales vers la loi gaussienne (après renormalisa-
tion), pour de nombreuses statistiques basées sur les graphes des plus proches voisins.

Donnons désormais un bref historique récent du sujet. Giovanni Peccati, Ivan Nourdin,
David Nualart et leurs co-auteurs ont développé une approche combinant la méthode de
Stein et le calcul de Malliavin pour obtenir des théorèmes limites, et en particulier des
résultats de normalité asymptotique, pour des variables aléatoires dont l’aléa vient d’un
processus gaussien [NP12]. En utilisant une approche similaire, Peccati, Solé, Utzet et
Taqqu [Pec+10], dans le cadre ou l’aléa est une mesure poissonienne, ont écrit une inégalité
générale du type Berry-Esseen, c’est-à-dire donnant la distance entre une fonctionnelle
poissonienne et une variable gaussienne, en vue de quantifier le théorème de la limite
centrale dans ce contexte. Cette inégalité exploite une décomposition orthogonale dont
jouissent toutes les variables de carré intégrable mesurables par rapport à un processus
poissonien : la décomposition de Wiener-Itô, et fait appel aux opérateurs de Malliavin
que l’on peut définir sur l’espace de Hilbert induit par cette décomposition.

Concomitamment à mon arrivée en post-doctorat à l’Université de Luxembourg en
2011, Matthias Schulte, et son directeur de thèse Matthias Reitzner, ont exploité le résul-
tat de [Pec+10], et les travaux de Last et Penrose [LP11] sur la décomposition de Wiener-
Itô, pour montrer des théorèmes centraux limites pour un certain type de fonctionnelles
géométriques ayant une décomposition finie : les U-statistiques [RS13]. Ce travail a été
le point de départ de nos travaux avec Giovanni Peccati [LP13a ; LP13b], ainsi que de
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Figure 4 – Graphe des plus proches voisins de 100 points indépendants tirés uniformé-
ment dans [0, 1]2.

nombreux autres travaux sur les théorèmes limites utilisant la méthode Stein-Malliavin en
géométrie stochastique. Nous avons étudié des U-statistiques géométriques à différentes
échelles, en utilisant notamment les contractions des noyaux de leur décomposition, et
avons appliqué ces résultats à l’étude générale de graphes géométriques. Nous avons uti-
lisé cette approche pour établir un 4th moment theorem, qui montre que sous certaines
conditions, une combinaison linéaire de variables ayant une décomposition finie converge
vers une variables gaussienne dès lors que ses 4 premiers moments convergent vers ceux
de la variable gaussienne. Ces travaux se limitent aux variables ayant une décomposition
finie car l’inégalité fait apparaître des constantes difficiles à contrôler pour les termes
d’ordre supérieur.

Par la suite, Last, Peccati et Schulte [LPS16] ont développé une autre inégalité de type
Berry-Esseen, mais cette fois ne faisant apparaître que les dérivées de Malliavin d’ordre
1 et 2, et donc ne demandant pas de contrôler les chaos d’ordre supérieur ; ce type d’in-
égalité a été baptisé Inégalité de Poincaré d’ordre 2. Cela leur a permis d’améliorer des
résultats de normalité asymptotique pour des fonctionnelles en rapport avec le graphe
des plus proches voisins, ou la mosaïque Poisson-Voronoï. J’ai utilisé cette inégalité dans
[Lac19] pour établir des résultats de normalité asymptotique en rapport avec les excur-
sions de champs shot-noise, ou d’autres fonctionnelles plus générales qui n’admettent pas
de rayon de stabilisation. A cette occasion, j’ai développé un outil spécifique pour mon-
trer des bornes inférieures de variance pour fonctionnelles poissoniennes stationnaires ; un
problème en général disjoint, mais nécessaire à la preuve de la normalité asymptotique.
En parallèle, et en nous appuyant sur des travaux de Chatterjee [Cha08], avec Giovanni
Peccati nous avons établi le même type d’inégalité que [LPS16] mais dans le cadre bi-
nomial [LP17], c’est-à-dire quand le processus poissonien est remplacé par un ensemble
de variables i.i.d. de même intensité (voir figure 3). Nous avons appliqué ce résultat à
l’approximation Voronoï d’un ensemble, ou la couverture d’un domaine par un modèle
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booléen. Avec Matthias Schulte et Joe Yukich [LSY19], nous avons ensuite rapproché ces
deux résultats (poissonien et binomial) dans un cadre général de géométrie aléatoire, pour
améliorer ou établir les vitesses de convergence de fonctionnelles stabilisantes. Cela nous
a permis notamment de donner la vitesse de convergence (ou de l’améliorer) dans les pro-
blèmes d’enveloppe convexe aléatoire de grands échantillons dans un ensemble convexe,
comme décrit quelques pages plus haut.

Plan
Dans l’introduction de la première partie, on introduit diverses notations relatives aux
mesures ponctuelles marquées qui vont constituer l’aléa des variables que l’on étudie.
Dans le Chapitre 1, on expose la méthode de Stein et les opérateurs de Malliavin dans
le cadre poissonien, et ses applications aux U-statistiques. On donne dans le Chapitre 2
des méthodes pour borner inférieurement la variance. Dans le chapitre 3, on donne les
inégalités de Poincaré d’ordre 2 dans les cadres poissonien et binomial, et leur applica-
tion aux fonctionnelles stabilisantes. Le chapitre 4 est dédié aux applications que mes
co-auteurs et moi-même avons déduites des résultats pré-cités, sur les mosaïques de Vo-
ronoï, les enveloppes convexes de points aléatoires, les excursions de champ shot-noise,
et d’autres problèmes. Enfin, le chapitre 5 contient des théorèmes limites obtenus par
d’autres méthodes.

Seconde partie : Mesures marginales pour champs aléa-
toires et processus ponctuels

Cette partie traite des propriétés mathématiques des marginales des modèles de géométrie
aléatoires, qui peuvent être vues comme les projections fini-dimensionnelles de la loi de
ces modèles. Par exemple, pour un ensemble aléatoire F, la fonction

`kF : (x1, . . . , xk) 7→ P(x1, . . . , xk ∈ F),

est une marginale d’ordre k. Pour un processus ponctuel η, la marginale d’ordre k est une
mesure définie informellement pour des xi distincts par

µkη : (x1, . . . , xk) 7→ P(dx1 ∈ η, . . . , dxk ∈ η).

La marginales d’ordre 2 est souvent désignée par le terme covariance, ou corrélation, en
fonction de la renormalisation et du recentrage appliqués, quel que soit le type de modèle.
Elle fournit une description mathématique très incomplète, mais elle est tout de même
souvent utilisée dans les applications comme outil exhaustif de description des propriétés
statistiques du modèle. Elle renseigne en particulier sur la régularité et les propriétés de
dépendance à grande distance.

Mon travail sur les marginales de mesures aléatoires a commencé à la fin de ma thèse
en 2010, lors d’un séjour à l’Université de Bern en compagnie d’Ilya Molchanov. Celui-ci
m’a soumis le problème dit S2 de réalisabilité pour ensembles aléatoires : étant donné une
fonction `2(x, y), existe-t-il un ensemble aléatoire F dont `2 est la marginale d’ordre 2, i.e.
`2 = `2F ? Au même moment, Kuna, Lebowitz et Speer [KLS11] ont développé une méthode
abstraite pour traiter de problèmes de réalisabilité dans le cadre des processus ponctuels,
avec des vues en mécanique statistique. Nous avons pu reprendre leur argument pour
donner dans [LM15] une autre réponse au problème général de réalisabilité. Reprenons le
problème S2 pour expliquer notre approche.

Pour répondre à ce problème, il faut donc construire une mesure de probabilité µ,
sur la classe des ensembles mesurables, dont `2 est la marginale d’ordre 2. Les propriétés
d’additivité que µ doit satisfaire imposent d’importantes restriction algébriques sur `2,
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comme la nécessité d’être de type positif. La σ-additivité de µ concerne en général des
propriétés liées à la régularité, ou la continuité de `2, mais est difficile à désimbriquer du
problème global de réalisabilité. C’est ce travail que nous avons réalisé avec Ilya Molcha-
nov : pour découpler le problème de réalisabilité, il peut être nécessaire de l’accompagner
d’une condition supplémentaire de régularité, comme la non-concentration des points du
processus ponctuel, ou la finitude du périmètre de l’ensemble aléatoire. Cela nous a permis
de donner une réponse satisfaisante au problème de réalisabilité pour processus ponctuels.
Ce n’est qu’après mon recrutement à l’Université Paris Descartes que j’ai pu apporter avec
Bruno Galerne [GL15] une réponse similaire dans le cadres des ensembles aléatoires. Il
s’est avéré que le bon cadre de travail était celui des ensembles mesurables aléatoires, que
l’on a donc développé, et que la bonne condition de régularité était celle du périmètre va-
riationnel fini. J’ai également travaillé sur la question purement algébrique du problème,
et sur un algorithme permettant de disqualifier rapidement des marginales candidates à
la réalisabilité [Lac15]. Le problème dual, qui est de valider la réalisabilité d’une margi-
nale candidate, semble être insoluble en temps fini si l’on ne dispose complètement d’une
mesure aléatoire qui la réalise [DL97].

Dans un second temps, à partir de 2015, j’ai travaillé sur les liens entre la marginale
d’ordre 3 d’un ensemble aléatoire de R2, et sa topologie [Lac18b]. J’ai en particulier
montré que pour un ensemble F borné de frontière C 1,1, pour ε > 0 suffisamment petit,
sa caractéristique d’Euler χ(F) s’écrit

χ(F) = ε−2

∫
R2

[P(x ∈ F, x+ εu1 /∈ F, x+ εu2 /∈ F)

−P(x /∈ F, x− εu1 ∈ F, x− εu2 ∈ F)]dx

(la fonction (x, y, z) 7→ P(x ∈ F, y /∈ F, z /∈ F ) est une marginale d’ordre 3 au même titre
que `3F, et s’écrit explicitement comme combinaison linéaire des `kF, 0 6 k 6 3). Ce travail
fait largement écho, dans le cadre continu, à des pratiques de morphologie mathématique
et d’analyse d’image dans un cadre d’approximation discrète (voir [Ser82]). J’ai appliqué
ces résultats à l’excursion d’un champ aléatoire f dans [Lac18a], c’est-à-dire l’ensemble
aléatoire

Fu = {x ∈ R2 : f(x) > u}, u ∈ R.

Pour échanger espérance et intégrale sur R2, il a fallu contrôler le nombre de composantes
connexes N(Fu) via la formule

N(Fu) 6 max(Lip(f),Lip(∂if), 1 6 i 6 d)d
∫
Rd

Ld(dx)

max(|f(x)|, |∂if(x)|)d
,

où Lip(·) désigne la constante de Lipschitz d’une application entre deux espaces métriques.
Ces résultat ont permis de relâcher légèrement les hypothèses habituelles de densités et de
régularité pour l’expression de la caractéristique d’Euler moyenne d’excursions aléatoires.

Plan
On présente au chapitre 6 les travaux sur la topologie des ensembles aléatoires lisses,

et au chapitre 7 ses applications pour excursions de champs aléatoires, et en particulier
gaussiens.

Le chapitre 8 introduit le problème de réalisabilité, et la réponse que nous y avons
apporté avec Ilya Molchanov, d’abord dans un cadre général, puis pour les processus



14 TABLE DES MATIÈRES

Figure 5 – Fonction multidimensionnelle, et une de ses excursions. A,B et C représentent
les composantes connexes de l’excursion. [AT07]

ponctuels répulsifs. Enfin on explique au chapitre 9 le traitement du problème S2 de
réalisabilité pour ensembles aléatoires en utilisant ce résultat.

Le chapitre 13, de nature plus statistique, concerne un travail différent [MCRLRMB],
celui d’estimer la marginale d’ordre 1 d’un processus ponctuel à l’aide de sa mosaïque de
Voronoï.
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Notation et cadre général

Dans tout le mémoire, (Ω,O,P) est une espace probabilisé, où vivent tous les objets
aléatoires considérés.

On introduit un espace sous-jacent X, qui est souvent un sous ensemble d’un espace
euclidien. Si X est muni d’une topologie, il sera équippé de la tribu borélienne X = B(X),
et éventuellement d’une mesure µ. Si X ⊆ Rd, il sera implicitement équippé de la mesure
de Lebesgue d-dimensionnelle µ = Ld.
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Première partie

Théorèmes limites en géométrie
aléatoire
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Introduction and notation

The binomial process consists in n independent points uniformly distributed in some
measurable domain of Rd with finite Lebesgue measure, where n ∈ N. It is perhaps the
most natural and basic model of a random set of points. For a large random set of points,
it might be more natural to consider that the number of points itself is also unknown,
hence random. In this case, it is more appropriate to use a Poisson process. Furthermore,
when the number of points goes to infinity, after proper rescaling, the binomial process
locally converges to the Poisson process. The Poisson process, allowed to have an infinite
number of points, is a cornerstone of theoretical and applied probability.

Counting measures

Let us introduce some notation related to point processes. The reader is referred to
[DV88a] for a detailed exposition of this topic.

Formally, a point process in the underlying measurable space (X,X ) is a counting
measure, i.e. a measure on X taking only integer values. When a counting measure ζ is
simple, i.e. ζ({x}) ∈ {0, 1} for all x ∈ X, ζ is unambiguously associated with its support
set {x : ζ({x}) = 1}. We will formally treat ζ as a set rather than a measure, even if
some concepts applied to it, such as integration, refer to the associated measure. Call
N = N(X) the space of counting measures (viewed as point configurations), which basic
elements are the Dirac masses δx, x ∈ X. Endow N with the σ-algebra B(N) generated
by the counting functionals

ϕA : ζ ∈ N 7→ |ζ ∩A| ∈ N ∪ {∞}, A ∈X .

For λ > 0, denote by P(λ) the Poisson law with parameter λ on N ∪ {∞}, allowing
for the degenerate cases λ = 0 or λ = ∞. Let µ be a σ-finite measure on (X,X ). The
Poisson process with intensity measure µ is the unique point process η of (N,B(N)) such
that

• for every A ∈X , η(A)
(d)
= P(µ(A))

• For disjoint A1, . . . , Am of X , η(A1), . . . , η(Am) are independent.

For existence and further properties, see [PR16]. The law of η is denoted by P(µ).

Marked processes

In many applications, the carrier space can be decomposed as X = Xg × M where
(Xg,Xg, µg), the ground space, represents the spatial or geometric part, and (M,M , ν)
is the marks space, representing additional parameters of the points. X is endowed with
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the product σ-algebra B(X) = Xg ⊗M , the product measure µ = µg ⊗ ν, and the cor-
responding space of configurations (N(X),B(N(X))). The reader not familiar with such
functionals can simply consider the case where M is a singleton, and ignore all mark
related notation and considerations.

In the marked setup, spatial operations can still be performed on ξ ∈ B(X), these
operations being implicitly applied to the spatial components of elements of ξ:

aξ ={(ax,m) : (x,m) ∈ ξ}, a > 0, if X ⊂ Rd,
ξ + y ={(x+ y,m) : (x,m) ∈ ξ}, y ∈ Rd, if X ⊂ Rd,
ξ ∩A =ξ ∩ (A×M) for A ⊂ Xg.

If Xg is endowed with a semi-metric d, also denote, for x = (y,m), x′ = (y′,m′) ∈ X,
d̄(x, x′) = d(y, y′), and Bd̄(x, r) = Bd(y, r) ×M, where Bd(y, r) is the ball with center y
and radius r in (Xg, d).



Chapter 1

The Stein-Malliavin method in
the Poisson framework: a brief
introduction

Stein’s method is a general principle aimed at proving and quantifying a limit theorem
towards a random variable with a given law ν. The basic ingredient on the real line is to
find a class of functions F : R → R and a differential operator L such that a variable U
has law ν iff for every f ∈ F

E(Lf(U)) = 0. (1.1)

For instance, let γ(dx) = (2π)−1/2 exp(−x2/2)dx be the the standard Gaussian distribu-
tion on R. Then F = C 1

c (R) and Lf(x) = f(x) − xf ′(x) characterize γ in the sense of
(1.1). The general principle of the method is to quantify the assertion that, for some real
variable V , the more the quantity E[Lf(V )] is close to 0 for many f ∈ F , the more the
law of V is close to ν.

To that end, choose another class of functions H where for h ∈ H , one can control
the solution fh of the differential equation Lfh = h−

∫
R h(u)ν(du) and its derivatives at a

sufficiently high order. It is immediate that, if H is sufficiently rich so that dH (U, V ) :=
suph∈H |Eh(U) − Eh(V )| is a distance between the laws of random variables U and V ,
then for V with law ν,

dH (U, V ) = sup
h∈H

|ELfh(U)|. (1.2)

The rest of the method consists in bounding the right hand term by appropriate tools,
quite often involving the chain rule and integration by parts on an appropriate space.
These tools shall greatly depend on the type of random input in U (a Gaussian measure,
a Poisson process, n i.i.d variables), and rely on differential operators introduced on
the space where lives the input process. The novelty of the approach developed in the
Gaussian realm by Nourdin, Peccati, Nualart, and their co-authors has been to introduce
this differential structure via Malliavin calculus.

The distances we will investigate here consist in the Wasserstein distance, for which
HW is the set of 1-Lipschitz functions R → R, and the Kolmogorov distance, for which
HK = {It; t ∈ R} where It(x) = 1{x6t}, x ∈ R. In other words, given two random
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variables U, V , (we note for simplicity dW = dHW
, dK = dHK

)

dW (U, V ) = sup
h 1-Lipschitz

(E[h(U)]−E[h(V )])

dK(U, V ) = sup
t∈R
|P(U 6 t)−P(V 6 t)| .

To illustrate the method, let us a give Stein’s lemma in the context of normal approx-
imation with Kolmogorov distance:

Lemma 1 ([LP17]). Let N ∼ N (0, 1). Then for any random variable U ,

dK(U,N) 6 sup
f
|ELf(U)|,

where the supremum runs over functions f which are continuous on R, differentiable on
R \ {t} for some t ∈ R, with ‖f ′(x)‖ 6 1, x ∈ R \ {t}, and satisfy some sort of second
order inequality: for all x, y ∈ R,

|f(x+ y)− f(x)− yf ′(x)| 6y
2

2

(
|x|+

√
2π

4

)
+ |y|

(
1{t∈[x,x+y)} + 1{t∈[x+y,x)}

)︸ ︷︷ ︸
=y(1{t∈[x,x+y)}−1{t∈[x+y,x)})

,

with the convention f ′(t) = tf(t) + 1−P(N 6 t).

This result is the consequence of (1.2) and the fact that for t ∈ R, the differential
equation

Lf(x) := f ′(x)− xf(x) = It(x)−P(N 6 t), x ∈ R,

admits a solution ft which is like in Lemma 1.
This lemma is used in Section 3 to derive normal approximation for binomial func-

tionals. Stein’s method efficiency essentially resides in the fact that the derivatives of the
ODE solution ft are bounded.

1.1 Functionals

For N′ ⊂ N(X), let F (N′) be the space of functionals N′ → R∪{±∞}. Call Nf ⊂ N the
space of finite subsets of X. When the random input is a binomial process, the number
of points is a.s. finite and any functional defined on Nf can be applied to a binomial
process.

A Poisson measure η might have infinitely many points with probability 1, hence it
is not clear what functionals are properly defined on η a.s. A typical example is the
functional

F (ζ) =
∑
x∈ζ

sin(‖x‖)
1 + ‖x‖d+1

, ζ ⊂ Rd.

F is not properly defined on all N(Rd), but F (η) is well defined a.s. for η ∼ P(Ld).
Similar considerations affect the definition of shot noise fields at Section 4.1.

Definition 2. A couple (F,NF ) is said to be η-admissible if NF ∈ B(N(X)) is such that
P(η ∈ NF ) = 1, NF is stable under the union with a finite set, and F is a mapping from
N to R ∪ {±∞}.

In many works, NF is implicitly defined as the subspace of N(X) over which F is well
defined.
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1.2 Stochastic integrals and Malliavin operators

The results presented in this section are proved, developed and further commented upon
in [Pec+10; PR16]. Let η ∼ P(µ) on (X,X ), where µ is a Radon measure without
atoms. The natural stochastic integral on a random Poisson measure η is defined a.s. for
f ∈ L 1(µ) by

η(f) =
∑
x∈η

f(x).

Denote by L 2(µq) := L 2(Xq, µq) the space of square-integrable functions with respect
to µq. Higher order integrals are defined by, for f ∈ L 1(µq), q > 1,

ηq(f) =
∑

(x1,...,xq)∈ηq
f(x1, . . . , xq). (1.3)

Such integrals are also called U -statistics and arise naturally in many problems. If they
can be considered as the polynomials of L 2(η), the class of square integrable variables
measurable with respect to η, then we explicit below a natural orthogonal basis of this
class of polynomials. It will constitute the core of the Malliavin calculus performed on
L 2 Poisson functionals.

The multiple Wiener-Itô integrals are the multiple integrals with respect to η̂ := η−µ
the compensated version of η, after removing diagonal points: for q > 1, f ∈ L 2(µq)

Iq(f) =

∫
X(q)

f(x1, . . . , xq)dη̂
q(x1, . . . , xq),

where X(q) is the set of q-tuples of distinct points of X. The centering of the measure and
the Campbell-Mecke formula confer the following orthogonal structure: for q,m > 1, f ∈
L 2(µq), g ∈ L 2(µm),

E(Iq(f)Im(g)) = q!δm=q〈f, g〉µq ,

where 〈·, ·〉µq is the standard scalar product on L 2(µq). Then every F ∈ L 2(η) admits
the decomposition in the L 2 sense

F =
∑
q>0

Iq(fq) (1.4)

for some kernels fq ∈ L2
s(µ

q). We explicit below each fq up to a µq-negligible set.
Let us now explain how the structure induced by this decomposition adapts naturally

to Malliavin calculus on the Poisson space. Given (F,NF ) η-admissible and ζ ∈ NF , the
first-order Malliavin derivative of F is defined by

DxF (ζ) = F (ζ ∪ {x})− F (ζ), x ∈ X.

This operator transforms random variables into random functions. Higher order derivat-
ives are defined by iterating this operator: for x1, . . . , xq ∈ X, q > 1

Dqx1,...,xqF (ζ) = Dxq (D
q−1
x1,...,xq−1

F )(ζ). (1.5)

This operator is symmetric : the result remains unchanged if the order of the xi is
modified. The second-order derivative D2

x,yF will play a special role in Chapter 3 as a
measure of the influence between x and y for the functional F .
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Not every L 2 functional admits a derivative. In the sequel, denote by D(η) the class of
functionals F ∈ L 2(η) such that

∫
X E(DxF

2)µ(dx) <∞. In terms of the decomposition
(1.4), this condition is equivalently expressed as

∑
q>1 q · q!‖fq‖2L 2(µq) < ∞. Reasoning

chaos by chaos, it is easy to prove that for F ∈ D(η)

DxF =
∑
q>1

qIq−1(fq(x, ·)), x ∈ X, (1.6)

where fq(x, ·) is the element of L 2(µq−1) which to x1, . . . , xq−1 associates f(x, x1, . . . , xq−1).
Iterating this principle, one can prove that for F ∈ L 2(η), for µq-a.e. x1, . . . , xq ∈ X

fq(x1, . . . , xq) =
1

q!
E(Dqx1,...,xqF (η)). (1.7)

In particular, we have the variance decomposition and lower bounds

Var(F ) =
∑
q>0

Var(Iq(fq)) =
∑
q>0

q!‖fq‖2L 2(µq) > ‖f1‖2 =

∫
(E[DxF ])2µ(dx). (1.8)

See (2.2) for an analogue bound with binomial processes. This inequality provides in some
cases a sharp lower bound for the variance magnitude, see [Sch16]. It can be compared
to the upper bound provided by the first order Poincaré inequality

Var(F ) 6
∫
X
E(DxF

2)µ(dx).

In the following, we seek to establish an operator I that satisfies the integration by parts
formula:

E(FG) = E
[
〈DF, IG〉L 2(µ2)

]
, F ∈ D(η), G ∈ L 2(η). (1.9)

The Ornstein-Uhlenbeck operator L and its inverse, named in analogy with their hom-
onymous in the Gaussian realm, allow for such a formula. L is an operator defined for
functionals F such that

∑
q>1 q

2q!‖fq‖2L 2(µq) <∞ via

LF = −
∑
q>1

qIq(fq).

Note that this is a centred variable. Its inverse L−1F is defined on the space of centred
square-integrable variables by

L−1F = −
∑
q>1

1

q
Iq(fq).

Using (1.6), these chaotic representations allow to prove that (1.9) is in order with

IF := −DL−1F.

Things get interesting when the operator L−1 can be interpreted with the help of a
dynamics on the random input η, using the concept of thinning: for s ∈ [0, 1], attach
to the points of η independent Bernoulli variables Bx, x ∈ η with parameter s, and let
ηs = {x ∈ η : Bx = 0}. In other words, ηs is obtained from η by independently removing
the points of η with probability s; ηs is called a (1−s)-thinning of η. It allows in particular
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to couple the ηs, s > 0 on the same probability space. Let then (η′s)s>0 be an independent
copy of (ηs)s>0. Define the semi-group

PsF (η) = E[ηs ∪ η′1−s | η], s ∈ [0, 1].

Reasoning chaos by chaos and doing an infinite L 2 summation, it is possible to show
that the operator L−1 and its derivative admit the dynamic representation

L−1F = −
∫ 1

0

s−1PsDFds (1.10)

−IF = DL−1F =−
∫ 1

0

PsDFds. (1.11)

This result is known as Mehler’s formula, it has been established by Privault [Pri09] and
by Last, Peccati and Schulte [LPS16] to establish second order Poincaré inequalities, see
Chapter 3.

1.3 Bounds on the distance with the Gaussian law

By combining Stein’s lemma with the integration by parts formula 1.9, Peccati, Solé,
Utzet and Taqqu have obtained the following abstract bound for Poisson functionals:

Theorem 3 (Th. 3.1 in [Pec+10]). Let F be a centred variable from D(η), N ∼ N (0, 1).
Then

dW (F,N) 6

√
E
[(

1− 〈DF,−DL−1F 〉L 2(µ)

)2]
+

∫
X
E
[
|DzF |2|DzL−1F |

]
µ(dz). (1.12)

The Stein lemma used to obtain this expression is simpler than Lemma 1, as the latter
is tailored to deal with Kolmogorov distance, which conveys more terms than Stein’s
lemma for Wasserstein distance.

The explicit chaotic expressions of the Malliavin operators allow to apply this formula
to the building blocks of L 2(η), i.e. the multiple integrals, also called Poisson chaoses,
and the U -statistics, see below. For functionals who don’t admit a finite expansion, that
might turn out to be more difficult. In [HLS16], Hug, Last and Schulte use Steiner’s
formula and this decomposition to prove central limit theorems for intrinsic volumes of
Boolean models. These results are hard to reproduce in a general context, as it is difficult
to efficiently estimate those kernels without other tools or assumptions at our disposal.
See Chapter 3 to overcome this difficulty in a different way.

1.3.1 Contractions and 4th moment theorem

One way to exploit this formula is to write all the Malliavin operators in terms of how they
act on the kernels in the Wiener-Itô decomposition (1.4), and plug back these expressions
in (1.12). Then one has to compute the chaotic decomposition of products of multiple
integrals and estimate the scalar products involved. This can be done with the help of
the product formula: for f ∈ L 2

s (µp), g ∈ L 2
s (µq),

Ip(f)Iq(g) =

min(p,q)∑
r=0

r!CrpC
r
q

r∑
l=0

ClrIq+p−r−l(f̃ ?
l
r g)
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where (f, g) 7→ f ?lr g is a bi-linear operator called contraction of f and g of indexes r and
l. It is formally defined on Xp+q−r−l by

f ?lr g(x1, . . . , xr−l, y1, . . . , yp−r, z1, . . . , zq−r)

=

∫
Xl
f(t1, . . . , tl, x1, . . . , xr−l, y1, . . . , yp−r)g(t1, . . . , tl, x1, . . . , xr−l, z1, . . . , zq−r)dt1 . . . dtl,

but this expression does not always make sense, see the technical requirements in [Pec+10]
or [LP13a]. The operation f̃?lr is a symmetrization of f?lr with respect to its p+ q− r− l
arguments.

A first way to exploit contractions is the following result, focusing on variables with a
finite decomposition and non-negative kernels, which states that asymptotic normality is
essentially equivalent to the convergence of the first four moments to those of a Gaussian
variable.

Theorem 4 ([LP13a], Th. 3.12). Fix k > 1. Let Fn =
∑k
i=1 Iqi(fi,n) where the qi > 1

are strictly increasing and fi,n ∈ L2
s(µ

qi) and fi,n > 0. Assume also that (F 4
n)n>1 is

uniformly integrable. Then Fn → N in law as n→∞ iff E(F 4
n)− 3Var(Fn)2 → 0.

This type of results is called a 4th moment theorem, it considerably simplifies the
method of moments, where it must be checked that all the moments converge to that of
a Gaussian. It has been since then much improved by Dobbler and Peccati [DP18], in
particular they relaxed the non-negativity assumption on the kernel.

1.3.2 U-statistics

Denote by η 6=k the set of distinct k-tuples of points of X. Let h ∈ L 1(µq) symmetric and

Fh(η) :=
∑

x=(x1,...,xk)∈η 6=k

h(x).

A variable of this form is called a U -statistic. It arises for instance in statistics related to
the Gilbert graph on η: with h(x, y) = 1{d(x,y)61}, Fh(η) counts the number of edges in
the graph which vertex set is η and an edge is formed by any two points at distance less
than 1. It applies in numerous other instances, such as the count of k-flats intersecting a
given convex body, other statistics related to the Gilbert graph, intersection processes, or
estimation of the Sylvester constant in the random convex hull problem; see [RS13],[LR16]
and references therein.

The efficiency of the Stein-Malliavin method in stochastic geometry has been re-
vealed by the work of Reitzner and Schulte [RS13], where the asymptotic behaviour
of U -statistics of geometric nature has been studied for two classes of U -statistics, called
local U -statistics and geometric U -statistics.

A nice feature of U -statistics is that their Wiener-Itô decomposition can be easily
deduced from the binomial formula ηq = (η̂ + µ)q =

∑q
k=0 C

k
q η̂

kµq−k: provided Fh(η) is
square-integrable, the kernel fq of the Wiener-Itô decomposition (1.4) is given by

fq(x1, . . . , xq) = 1{q6k}

(
q

k

)∫
Xk−q

h(x1, . . . , xq, xq+1, . . . , xk)dµk−q(xq+1, . . . , xk).

(1.13)

One can then explicit the values of the Malliavin operators DFh,DL−1Fh and inject them
into 1.12 to obtain a distance estimate with the standard Gaussian law.
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In the work [LP13b], we study a general U -statistic model on X = Rd of the form

Fλ(η) =
∑

x=(x1,...,xk)∈(η∩λ1/dQ)k6=

h(αλx), λ > 0,

where η is a homogeneous Poisson point process with intensity 1, Q is a subset of Rd,
αλ > 0 is a rescaling factor, h is an integrable function on (Rd)k. One can also consider a
marked kernel h ∈ L 1((Rd ⊗M)k) for some marks space M. The asymptotic behaviour
of αλ as λ→∞ determines the regime of the asymptotic behaviour of F̃λ(η) := (Fλ(η)−
E(Fλ(η)))Var(Fλ(η))−1/2. Say that h has rapidly decaying projections if it is spatially
stationary and the projections

hq(x1, . . . , xq) =

∫
(Rd×M)k−q

|h(x1, . . . , xk)|dµk−q(xq+1, . . . , xk), x1, . . . , xq ∈ Rd ×M,

decay sufficiently fast away from the diagonal, see [LP13b] for a precise statement.
The quantity vλ = α−dλ gives the average number of points interacting with a typical

point of η through the kernel h.

Theorem 5. Let the previous notation prevail. Let h be a stationary symmetric kernel
with rapidly decaying projections. Then if the kernels f0, fq are not identically equal to 0,
for some C1, C2, C3 > 0, for λ sufficiently large,

C1 6
Var(Fλ(η))

λv2k−2
λ max(1, v−k+1

λ )
6 C2

and

max(dK(F̃λ, N), dW (F̃λ, N)) 6 C3λ
−1/2 max(1, vλ − k + 1)1/2.

Depending on the asymptotic behavior of vλ, we can identify four different regimes.
The n-th chaos refers to the n-th term in the decomposition (1.4). Remark that for a
U -statistics of order k, in virtue of (1.13), the kernels of order > k vanish.

1. Long interactions: vλ → ∞, CLT at speed λ−1/2, the first chaos dominates the
variance (geometric U -statistics).

2. Constant size interactions: vλ → c > 0, CLT at speed λ−1/2, all chaoses have
the same order of magnitude (local U -statistics).

3. Small interactions: vλ → 0, v−k+1
λ → ∞, CLT at speed (λv−k+1

λ )−1/2, higher
order chaoses dominate. In the case of random graphs (k = 2), the corresponding
bound in (λvλ)−1/2 has been obtained in [LP13b].

4. Rare interactions: λv−k+1
λ → c < ∞, the bound does not converge to 0. In the

case k = 2, it has been shown in [LP13b] that there is no CLT but a Poisson limit
in the case c > 0 (see Chapter 6 in [PR16] for more on Poisson limits).
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Chapter 2

Variance bounds

Before establishing a limit law for a sequence of random variables, one has to know the
right order of magnitude of the variance, if any. Giving upper and lower bounds are in
general two different tasks. While the upper bound is often settled through integrability
or summability of the reduced covariance function, the lower bound usually requires an
ad-hoc method, where the specific geometric work might be more involved.

In the geometric framework, we refer the reader to [PY01, Theorem 2.1] for a general
method to prove variance lower bounds for stabilising functionals. We present below
two other methods, one in the Poisson framework, adapted to stationary functionals not
necessarily admitting a stabilisation radius, and another one in the binomial framework,
based on the Hoeffding decomposition.

2.1 Lower bound with orthogonal decompositions

A L 2 Poisson functional has the variance lower bound (1.8), provided by the Wiener-
Itô orthogonal decomposition. We provide here an analogous orthogonal decomposition
and variance lower bound for binomial functionals. Let n > 1, ξn = {X1, . . . , Xn} i.i.d.
variables with law µ on X, and F (ξn) a L 2 variable. The classical theory of Hoeffding
decompositions for functions of independent random variables (see e.g. [15, 29]) implies
that F (ξn) admits a unique decomposition of the type

F (ξn) = E(F (ξn)) +
∑

16i1<···<ik6n

ϕi1,...,ik(Xi1 , . . . , Xik) (2.1)

where E[ϕi1,...,ik(Xi1 , . . . , Xik) | Xj1 , . . . , Xjm ] = 0 for any strict subset {j1, . . . , jm} ⊂
{i1, . . . , ik}. Define the difference operator for 1 6 i 6 n,

∆iF (x, x′) = F ({x1, . . . , xn})− F ({x1, . . . , x
′
i, . . . , xn}), x = (x1, . . . , xn) ∈ Xn, x′ = (x′1, . . . , x

′
,n) ∈ Xn.

It turns out [LP17, Theorem 2.2] that the ϕi1,...,ik admit a representation via an inde-
pendent copy ξ′n = {X ′1, . . . , X ′n} of ξn and the ∆i:

ϕi1,...,ik(Xi1 , . . . , Xik) = E [∆i1 . . .∆ikF (ξ′n, ξn) | ξn] .

This relation bears a strong similarity with (1.7), hence (2.1) can be seen as the analogue
in the binomial context of the Wiener-Itô decomposition (1.4), and its terms are indeed

31
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orthogonal. Hence we have the variance lower bound

Var(F ) >
n∑
i=1

E
[
(E[∆iF (ξ′n, ξn) | ξn])

2
]

=

∫
X

(E [F (ξn)− F ({x,X2, . . . , Xn})])2
ndµ(x),

(2.2)

analogue to (1.8). Here again it can be compared to a Poincaré-like inequality, the Efron-
Stein inequality:

Var(F ) 6
1

2

∫
X
E
[
(F (ξn)− F ({x,X2, . . . , Xn}))2

]
ndµ.

This lower bound is sharp (in magnitude) in the asymptotic study of binomial Voronoï
set approximation, see [LP17].

2.2 Variance asymptotics for stationary functionals

In this section we give upper and lower bounds for a special class of functionals enjoying
some additivity and stationarity on Xg = Rd. We consider an auxiliary marks space
(M,M , ν), with X = Xg ×M (see Section ), the purely geometric framework X = Xg
is equivalent to taking M as a singleton. We start from a couple (F0,N0) that is η-
admissible. We further assume that N0 is invariant under translation and multiplication
by a scalar, and F0 is stationary, i.e. invariant under translations of its spatial arguments.
Define Q̃a = [−a/2, a/2)d, a > 0. We then consider the functional, for W ⊂ Zd, and
W̃ = ∪k∈W (k + Q̃1),

FW̃ (ζ) =
∑
k∈W

F0(ζ − k), ζ ∈ N0. (2.3)

This model applies for instance to the classical framework of functionals written as sum
of score contributions, as in Section 3.2, or to intrinsic volumes of Poisson shot-noise
excursions, see Section 4.1. We won’t state results for score functionals here, but it is
explained in [Lac19] how to adapt the current results to the score functionals setup.

Observation window
Another functional of interest is

F ′
W̃

(ζ) = FW̃ (ζ ∩ W̃ ), ζ ∈ N0,

where the input is restricted to the observation window. The truncation might loosen the
assumptions needed, but the induced edge effects also bring some additional complexity
in the shape of hypotheses in the subsequent theorems. We won’t investigate F ′

W̃
(ζ) here

either, but again refer the reader to [Lac19] for specific variance and asymptotic normality
results in this setup.

In many works (e.g. [PY01],[KM10, Chapter 4]), the observation windows consist in
a growing family of subsets Bn, n > 1 of Rd, that satisfy the Van’Hoff condition: for all
r > 0,

`d(∂B⊕rn )/`d(Bn)→ 0, (2.4)

as n → ∞, where B⊕r = {x ∈ Rd : d(x,B) 6 r} for B ⊂ Rd. We rather consider in this
paper, like for instance in [SY01], a family W of bounded subsets of Zd satisfying the
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regularity condition

lim sup
W∈W

|∂ZdW |
|W |

= 0, (2.5)

where ∂ZdW is the set of points ofW at distance 1 fromW c, and consider a point process
over W̃ . In the large window asymptotics, condition (2.5) imposes the same type of
restrictions as (2.4), and using subsets of the integer lattice eases certain estimates and
is not fundamentally different.

Stabilisation hypothesis
To control the asymptotic behaviour, we must assume that a local contribution is not
affected too strongly when the input is modified far away. For technical reasons, we also
need that this property holds if two deterministic points or less are added to the input.
In all the section, α is a real number such that α > 5d/2.

Assumption 6. Let x1, x2 ∈ Rd, ζ ⊂ {x1, x2}, η′ := η ∪ ζ. Assume there is C0 not
depending on x1, x2 such that

E
[
|F0(η′)− F0(η′ ∩B(0, r))|4

]
6 C0(1 + r)−α, r > 0. (2.6)

Non-degeneracy of the variance
It is a well known fact that for a functional of the form (2.3), if the summands have
a low dependency for distant values of k’s (materialized by condition (2.6)), then the
variance is typically expected to behave in |W | as W ↑ Zd under condition (2.4). This
outcome also requires of course that the functional is not trivial or degenerate in some
sense. To state the corresponding condition, introduce the notation for 0 6 a 6 b 6 +∞,
ηba = η ∩ Q̃b ∩ Q̃ca, ηb = ηb0.

A condition that seems necessary for the variance to be non-degenerate is that at least
on a finite input and a bounded window, the functional is not trivial: for some δ > ρ > 0,
P(FQ̃δ(η

ρ) 6= FQ̃δ(∅)) > 0. We actually need it to hold uniformly if points are added far
away from ηρ:

Assumption 7. There is γ > ρ > 0, c > 0, p > 0 such that for δ > γ arbitrarily large

P
(∣∣∣FQ̃δ(ηγ)− FQ̃δ(η

ρ ∪ ηγ)
∣∣∣ > c

)
> p.

We can now give variance estimates. The constant κ might vary from line to line and
only depends on α and the dimension d.

Theorem 8. Assume that Assumptions 6 (with ζ = ∅ and α > d) and Assumption 7
hold. Then there is κ > 0 depending on α and d such that

Cov(F0(η), F0(η − k)) 6κC2
0 (1 + ‖k‖)−α, k ∈ Zd, (2.7)

0 < σ2
∞ : =

∑
k∈Zd

Cov(F0, Fk) <∞.

For W ⊂ Zd bounded and non-empty,∣∣|W−1|Var(FW (η))− σ2
∞
∣∣ 6 κC2

0 (|∂ZdW |/|W |)1−d/α. (2.8)

If furthermore α > 2d, we have an estimate on the 4-th moment

E (FW (η)−EFW (η))
4 6 κC0(E(F0(η)4)3/4|W |2. (2.9)
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The last bound is used in Section 3 to establish a speed of convergence to the normal
law.

Recent similar results can be found in the literature, but the assumptions are of
different nature, either dealing with different qualitative long range behaviour (i.e. strong
stabilization in [PY01],[LSY19], see the comments after Theorem 13), or different non-
degeneracy statements [LPS16], whereas Assumption 7 is a mixture of non-triviality and
continuity of the functional on large inputs. Penrose and Yukich [PY01] give a condition
under which the asymptotic variance is strictly positive in Theorem 2.1. The condition
is that the functional is strongly stabilising, and that the variable

∆(∞) := lim
δ→∞

[FQδ(η ∪ {0})− FQδ(η)]

is non-trivial. It roughly means that for δ sufficiently large, and ρ sufficiently small,

Var(|FQ̃δ(ηρ ∪ η
ρ)− FQ̃δ(ηρ) | |η

ρ| = 1 ) > 0,

and this is quite close to Assumption 7 in the particular case ρ = γ. This particular case
seems more delicate to deal with that when γ is much larger than ρ, because in the latter
case the interaction between ηρ and ηγ hopefully becomes small.

Similar results where the input consists of mn iid variables uniformly distributed in
W̃n, with mn = |Wn|, should be within reach by applying the results of [LP17], following
a route similar to [LSY19].



Chapter 3

Second order Poincaré
inequalities

Let F be a functional, and ζ a point configuration. One can see the first order derivative
DxF (ζ) = F (ζ ∪ {x}) − F (ζ) as the contribution of a point x ∈ X to the functional F
within a point configuration ζ. Recall that the second order derivative is formally defined
by

D2
x,yF (ζ) = Dx(DyF )(ζ) = DyF (ζ ∪ {x})−DyF (ζ).

Hence it can be seen as the measure of how the presence of x influences the contribution
of y. Since the roles of x and y are symmetric, we can talk about a measure of the
interaction between x and y. If D2

x,yF (ζ) is small in some sense for x, y far away in the
appropriate metric, it might imply that the contributions to F (η) of all the points of η
are weakly dependent from one another, and hence the global behaviour is expected to
be asymptotically normal for large random process ζ.

The idea that a second order difference operator controls the asymptotic normality
has been materialized by Chatterjee [Cha09]. He proved that given a Gaussian vector
ξ = (X1, . . . , Xn) with covariance matrix Σ, and a L 2 variable F = g(X1, . . . , Xn) with
g of class C 2, we have the total variation distance

dTV (F,N) 6
C‖Σ‖3/2(E(‖∇g(ξ)‖4))1/4(E(‖Hg(ξ))‖4))1/4

Var(F )
,

where Hg(ξ) is the Hessian matrix of g at some point ξ, and C is a universal constant.

In the Poisson framework, by plugging the Mehler formula (1.11) into the abstract
bound (1.12), Last, Peccati and Schulte [LPS16] have derived the following inequality:
for centred F ∈ L 2(η) with Var(F ) = 1, dW (F,N) 6

∑6
i=1Bi where the Bi only involve

35
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the moments of DF and D2F up to the order 4:

B1 =4

[∫
X3

[
E(Dx1F )2(Dx2F )2

]1/2 [
E(D2

x1,x3
F )2(Dx2,x3F )2

]1/2
µ3(dx1, dx2, dx3)

]
B2 =

[∫
X3

E(D2
x1,x3

F )2E(D2
x2,x3

F )2µ3(dx1, dx2, dx3)

]1/2

B3 =

∫
X
E |DxF |3 µ(dx)

B4 =
1

2

[
EF 4

]1/4 ∫
X

[
E((DxF )4)

]3/4
µ(dx)

B5 =

[∫
X
E(DxF )4µ(dx)

]1/2

B6 =

[∫
X

6
[
E(Dx1

F )4
]1/2 [

E(D2
x1,x2

F )4
]

+ 3E(D2
x1,x2

F )4µ2(dx1, dx2)

]1/2

As anticipated, the distance between F and N is small if for distant points x, y ∈ X,
E(D2

x,yF )4 is small.
We will use such inequalities in Section 4 to give Central Limit Theorems with what we

believe to be optimal speed of convergence for some geometric functionals. Previous ideas
relied mainly upon dependency graph techniques. Penrose, Yukich and their co-authors
were also able to derive central limit for stabilising geometric functionals under weaker
conditions, using a CLT for martingale differences, but with no bound on the speed of
convergence. See the survey [KM10, Chapter 4] and references therein.

3.1 Difference operators for binomial input

Let ξn = (X1, . . . , Xn) be iid variables with law µ, and F be a real functional on Nf

the class of finite subsets of X. For notational purpose, we instead consider F as a
symmetric functional in any number of arguments, through the abuse of notation F (ξn) =

F ({X1, . . . , Xn}). Let ξ în = (Xk)k 6=i, and introduce the difference operator by

DiF (ξn) = F (ξ în)− F (ξn).

We can iterate this definition by

D2
i,jF (ξn) = F ((Xk)k 6=i,k 6=j)− F (ξ în)− F (ξĵn) + F (ξn).

Let ξjn = (Xj
1 , . . . , X

j
n), 1 6 j 6 3, be independent copies of ξn. We shall use the following

terminology: a random vector ζ = (Z1, ..., Zn) is a recombination of {ξ1
n, ξ

2
n, ξ

3
n}, if for

every 1 6 i 6 n there is j such that P(Zi = Xj
i ) = 1.

The next statement provides a bound for the normal approximation of geometric
functionals that is amenable to geometric analysis, and can be heuristically regarded as
the binomial counterpart to the second order Poincaré inequalities on the Poisson space
(in the Kolmogorov distance), proved in [LPS16], see the introduction.

Theorem 9. Assume that F (ξn) is centred, and σ2 = Var(F (ξn)) < ∞. Let N ∼
N (0, 1). Define

Bn := sup
(ζ1,ζ2,ζ3)

E
[
1{D2

1,2F (ζ1) 6=0}D1F (ζ2)2D2F (ζ3)2
]
,

B′n := sup
(ζ1,ζ2,ζ3,ζ4)

E
[
1{D2

1,2F (ζ2) 6=0,D2
1,3F (ζ2) 6=0}D2F (ζ3)2D3F (ζ4)2

]
,
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where the suprema run over tuples of vectors ζi that are recombinations of {ξ1
n, ξ

2
n, ξ

3
n}.

Then,

dK(σ−1W,N) 6 κ
[
n1/2

σ2

(√
nBn +

√
n2B′n +

√
ED1F (ξn)4

)
(3.1)

+
n

σ4
sup
A⊆[n]

E|F (ξn)D1F (ξAn )3|+
( n
σ3

E|D1F (ξn)3|
)]

where ξAn is the vector obtained from ξn by replacing Xi by X1
i for i ∈ A, and κ does not

depend on n or on F.

In the context of Poisson stabilisation, this bound and the Poisson analogue give very
similar results, see Theorem 10.

3.2 Stabilisation radius on a metric space: Poisson and
binomial input

We consider the marked framework (M,M , ν) where X = Xg ×M for some ground space
(Xg,Xg, µg). Let ηs be a Poisson measure with intensity sµg ⊗ ν, and ξn a set of n
iid variables in X with law µg ⊗ ν, if µg is a probability distribution. Let Ss, s > 1 be
score functions, i.e. measurable functions from X ×N(X) → R, and the corresponding
functionals

Fs =
∑
x∈ηs

Ss(x, ηs), s > 1, F ′n =

n∑
i=1

Sn(x, ξn), n ∈ N. (3.2)

Assuming finite second moment, consider the renormalized versions F̃s = (Fs−E(Fs))Var(Fs)−1/2,
F̃ ′n = (Fn −E(Fn))Var(Fn)−1/2.

Assume Xg is equipped with a semi-metric d such that for some κ, γ > 0,

lim sup
ε→0

µ(Bd(x, r + ε))− µ(Bd(x, r))

ε
≤ κγrγ−1, r ≥ 0, x ∈ Xg, (3.3)

where Bd(x, r) is the ball with center x and radius r in the metric d.
Two examples for ground spaces (Xg,Xg, µg) and semi-metrics d satisfying the as-

sumption (3.3) are the following:

• Let Xg be a full-dimensional subset of Rd equipped with the induced Borel σ-
field Xg and the usual Euclidean distance d, assume that µg is a measure on Xg
with a density g with respect to the Lebesgue measure, and put γ := d. Then
condition (3.3) reduces to the standard assumption that g is bounded. Indeed, if
‖g‖∞ := supx∈X |g(x)| < ∞, then (3.3) is obviously satisfied with κ := ‖g‖∞κd,
where κd := πd/2/Γ(d/2 + 1) is the volume of the d-dimensional unit ball in Rd.

• Let Xg ⊆ Rd be a smooth m-dimensional subset of Rd, m ≤ d, equipped with a
semi-metric d, and a measure µg on Xg with a bounded density g with respect to
the uniform surface measure Volm on Xg. We assume that the Volm−1 measure
of the sphere ∂(Bd(x, r)) is bounded by the surface area of the Euclidean sphere
Sm−1(0, r) of the same radius, that is to say

Volm−1(∂Bd(x, r)) ≤ mκmrm−1, x ∈ Xg, r > 0. (3.4)
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When Xg is an m-dimensional affine space and d is the usual Euclidean metric
on Rd, (3.4) holds with equality, naturally. However (3.4) holds in more general
situations. For example, by Bishop’s comparison theorem (Theorem 1.2 of [SY94],
along with (1.15) there), (3.4) holds for Riemannian manifolds Xg with non-negative
Ricci curvature, with d the geodesic distance. Given the bound (3.4), one obtains
(3.3) with κ = ‖g‖∞κm and γ = m. This example includes the case Xg = Sm, the
unit sphere in Rm+1 equipped with the geodesic distance.

To derive central limit theorems for Fs and F ′n, we impose several conditions on the
scores. For s ≥ 1 a measurable map Rs : X×N(X)→ R is called a radius of stabilization
for Ss if for all x ∈ X, ζ ∈ N(X) and finite A ⊂ X with |A| ≤ 7 we have

Ss(x, (ζ ∪ {x} ∪ A) ∩Bd̄(x,Rs(x, ζ ∪ {x}))) = Ss(x, ζ ∪ {x} ∪ A), (3.5)

recall that Bd̄(x, r) := Bd(y, r)×M for x = (y,m) ∈ X and r > 0.
For a given point x ∈ Xg we denote by Mx the corresponding random mark, which

is distributed according to ν and is independent of everything else. Say that (Ss)s≥1

(resp. (Sn)n∈N) are exponentially stabilizing if there are radii of stabilization (Rs)s≥1

(resp. (Rn)n∈N) and constants Cstab, cstab, αstab ∈ (0,∞) such that, for x ∈ Xg, r ≥ 0 and
s ≥ 1,

P(Rs((x,Mx), ηs ∪ {(x,Mx)}) ≥ r) ≤ Cstab exp(−cstab(s1/γr)αstab), (3.6)

resp. for x ∈ Xg, r ≥ 0 and n ≥ 9,

P(Rn((x,Mx), ξn−8 ∪ {(x,Mx)}) ≥ r) ≤ Cstab exp(−cstab(n1/γr)αstab), (3.7)

where γ is the constant from (3.3).
For a finite set A ⊂ Xg we denote by (A,MA) the random set obtained by equipping

each point of A with a random mark distributed according to ν and independent of
everything else. Given p ∈ [0,∞), say that (Ss)s≥1 or (Sn)n∈N satisfy a (4+p)th moment
condition if there is a constant Cp ∈ (0,∞) such that for all A ⊂ X with |A| ≤ 7,

sup
s∈[1,∞)

sup
x∈Xg

E|Ss((x,Mx), ηs ∪ {(x,Mx)} ∪ (A,MA))|4+p ≤ Cp (3.8)

or
sup

n∈N,n≥9
sup
x∈Xg

E|Sn((x,Mx), ξn−8 ∪ {(x,Mx)} ∪ (A,MA))|4+p ≤ Cp. (3.9)

We introduce a further notion relevant for functionals whose variances exhibit surface
area order scaling. Let K be a measurable subset of Xg such that the map X 3 z 7→
d(z,K) := infy∈K d(z, y) is measurable. Here, d(z,K) is the distance between a point
z ∈ X and K. If there is a sequence in K that is dense with respect to d, the measurability
assumption is always satisfied. Moreover, we use the abbreviation ds(·, ·) := s1/γd(·, ·),
s ≥ 1. Say that (Ss)s≥1, resp. (Sn)n∈N, decay exponentially fast with the distance to K if
there are constants CK , cK , αK ∈ (0,∞) such that for all A ⊂ Xg with |A| ≤ 7 we have

P(Ss((x,Mx), ηs ∪ {(x,Mx)} ∪ (A,MA)) 6= 0) ≤ CK exp(−cKds(x,K)αK ) (3.10)

for x ∈ Xg and s ≥ 1 resp.

P(Sn((x,Mx), ξn−8 ∪ {(x,Mx)} ∪ (A,MA)) 6= 0) ≤ CK exp(−cKdn(x,K)αK ) (3.11)

for x ∈ Xg and n ≥ 9. Moreover, let α := min{αstab, αK} and

IK,s := s

∫
Xg

exp

(
− min{cstab, cK}pds(x,K)α

36 · 4α+1

)
µg(dx), s ≥ 1. (3.12)
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To prove central limit theorems, we will have to show that
√
IK,s/VarFs → 0 as s→∞

and
√
IK,n/VarF ′n → 0 as n→∞, respectively. In the sequel we always assume that IK,s

is finite. This is only a restriction for the Poisson case, where µ(X) =∞ is allowed. Then,
IK,s < ∞ and (3.10) imply that the number of points of ηs with non-vanishing scores is
finite almost surely. Now let us discuss some prominent choices for K. If there is a set A
such that µ(A) <∞ and the scores of points outside of A vanish almost surely, we make
the choice K = A, for which (3.10) and (3.11) are obviously satisfied with CK = 1 and
arbitrary cK , αK ∈ (0,∞). This approach should work for functionals whose variances
have volume order. If Xg is Rd or a compact convex subset of Rd such as the unit cube,
one sometimes has to choose K to be a (d − 1)-dimensional subset of Rd to ensure that√
IK,s/VarFs and

√
IK,n/VarF ′n vanish. This situation arises, for example, in statistics

of convex hulls of random samples and Voronoï set approximation. Problems with surface
order scaling of the variance are typically of this form.

The following general theorem provides rates of normal convergence for Fs and F ′n in
terms of the Kolmogorov distance. This theorem is a consequence of general theorems
from [LPS16] and [LP17] giving Malliavin-Stein bounds for functionals of Poisson and
binomial point processes (see the introduction and Theorem 9 above). Throughout this
paper N always denotes a standard Gaussian random variable.

Theorem 10 ([LSY19]). (a) Assume that the score functions (Ss)s≥1 are exponentially
stabilizing (3.6), satisfy the moment condition (3.8) for some p ∈ (0, 1], and decay expo-
nentially fast with the distance to a measurable set K ⊆ Xg, as at (3.10). Then there is
a constant C̃ ∈ (0,∞) only depending on the constants in (3.3), (3.6), (3.8) and (3.10)
such that

dK

(
Fs −EFs√

VarFs
, N

)
≤ C̃

(√
IK,s

VarFs
+

IK,s
(VarFs)3/2

+
I

5/4
K,s + I

3/2
K,s

(VarFs)2

)
, s ≥ 1. (3.13)

(b) Assume that the score functions (Sn)n∈N are exponentially stabilizing (3.7), satisfy
the moment condition (3.9) for some p ∈ (0, 1], and decay exponentially fast with the
distance to a measurable set K ⊆ Xg, as at (3.11). Let (IK,n)n∈N be as in (3.12). Then
there is a constant C̃ ∈ (0,∞) only depending on the constants in (3.3), (3.7), (3.9) and
(3.11) such that

dK

(
F ′n −EF ′n√

VarF ′n
, N

)
≤ C̃

(√
IK,n

VarF ′n
+

IK,n
(VarF ′n)3/2

+
IK,n + I

3/2
K,n

(VarF ′n)2

)
, n ≥ 9. (3.14)

Notice that if K = Xg, we have

IX,s = sµ(X), s ≥ 1, and IX,n = nµ(X), n ∈ N. (3.15)

Assuming growth bounds on IK,s/VarFs and IK,n/VarF ′n, the rates (3.13) and (3.14)
nicely simplify into presumably optimal rates, ready for off-the-shelf use in applications.

Corollary 11. (a) Let the conditions of Theorem 10(a) prevail. Assume further that
there is a C ∈ (0,∞) such that sups≥1 IK,s/VarFs ≤ C. Then there is a C̃ ′ ∈ (0,∞) only
depending on C and the constants in (3.3), (3.6), (3.8) and (3.10) such that

dK

(
Fs −EFs√

VarFs
, N

)
≤ C̃ ′√

VarFs
, s ≥ 1. (3.16)

(b) Let the conditions of Theorem 10(b) prevail. If there is a C ∈ (0,∞) such that
supn≥1 IK,n/VarF ′n ≤ C, then there is a C̃ ′ ∈ (0,∞) only depending on C and the
constants in (3.3), (3.7), (3.9) and (3.11) such that

dK

(
F ′n −EF ′n√

VarF ′n
, N

)
≤ C̃ ′√

VarF ′n
, n ≥ 9. (3.17)
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This corollary is applied in the context of the convex hull of a random sample of points
in a smooth convex set in Subsection 4.5. In this case, the variance is of order s

d−1
d+1 (n

d−1
d+1

in the binomial setting), and we obtain rates of normal convergence of order (VarFs)−1/2 =
Θ(s−(d−1)/(2(d+1))) (resp. (VarF ′n)−1/2 = Θ(n−(d−1)/(2(d+1)))), which improves upon rates
obtained via other methods.

In the setting Xg ⊆ Rd, our results admit further simplification, which goes as follows.
For K ⊆ Xg ⊆ Rd and r ∈ (0,∞), let Kr := {y ∈ Rd : d(y,K) ≤ r} denote the r-parallel
set of K. Recall that the (d− 1)-dimensional upper Minkowski content of K is given by

Md−1
(K) := lim sup

r→0

Vold(Kr)

2r
. (3.18)

If K is a closed (d − 1)-rectifiable set in Rd (i.e., the Lipschitz image of a bounded set
in Rd−1), then Md−1

(K) exists and coincides with a scalar multiple of Hd−1(K), the
(d − 1)-dimensional Hausdorff measure of K. Given an unbounded set I ⊂ (0,∞) and
two families of real numbers (ai)i∈I , (bi)i∈I , we use the Landau notation ai = O(bi) to
indicate that lim supi∈I,i→∞ |ai|/|bi| < ∞. If bi = O(ai) we write ai = Ω(bi), whereas if
ai = O(bi) and bi = O(ai) we write ai = Θ(bi).

Theorem 12. Let Xg ⊆ Rd be full-dimensional, let µ have a bounded density with respect
to Lebesgue measure and let the conditions of Theorem 10 prevail with γ := d.

(a) Let K be a full-dimensional compact subset of Xg withMd−1
(∂K) <∞. If VarFs =

Ω(s), resp. VarF ′n = Ω(n), then there is a constant c ∈ (0,∞) such that

dK

(
Fs −EFs√

VarFs
, N

)
≤ c√

s
, resp. dK

(
F ′n −EF ′n√

VarF ′n
, N

)
≤ c√

n
(3.19)

for s ≥ 1, resp. n ≥ 9.
(b) Let K be a (d−1)-dimensional compact subset of Xg withM

d−1
(K) <∞. If VarFs =

Ω(s(d−1)/d), resp. VarF ′n = Ω(n(d−1)/d), then there is a constant c ∈ (0,∞) such that

dK

(
Fs −EFs√

VarFs
, N

)
≤ c

s
1
2−

1
2d

, resp. dK

(
F ′n −EF ′n√

VarF ′n
, N

)
≤ c

n
1
2−

1
2d

(3.20)

for s ≥ 1, resp. n ≥ 9.
The constants c ∈ (0,∞) in (a) and (b) depend on the constants in (3.3) and (3.6)–(3.11),
the set K and the behavior of the variances VarFs and VarF ′n.

Remarks. (i) Comparing (3.19) with existing results. The results at (3.19) are applicable
in the setting of volume order scaling of the variances, i.e., when the variances of Fs and
F ′n exhibit scaling proportional to s and n. The rate for Poisson input in (3.19) improves
upon the rate given by Theorem 2.1 of [PY05] (see also Lemma 4.4 of [Pen07]), Corollary
3.1 of [BX06], and Theorem 2.3 in [PR08], which all contain extraneous logarithmic factors
and which rely on dependency graph methods. The rate in (3.19) for binomial input is
new, as up to now there are no explicit general rates of normal convergence for sums of
stabilizing score functions Sn of binomial input.

(ii) Comparing (3.20) with existing results. The rates at (3.20) are relevant for statistics
with surface area rescaling of the variances, i.e., when the variance of Fs (resp. F ′n)
exhibits scaling proportional to s1−1/d (resp. n1−1/d), when the scores are properly
renormalized. These rates both improve and extend upon the rates given in the main
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result (Theorem 1.3) in [Yuk15]. First, in the case of Poisson input, the rates remove the
logarithmic factors present in Theorem 1.3 of [Yuk15]. Second, we obtain rates of normal
convergence for binomial input, whereas [Yuk15] does not treat this situation.

(iii) Unspecified constants. The bounds for normal approximation all involve unspecified
constants C̃, C̃ ′, and c. While one could explicitly determine these constants in terms of
the constants in (3.3), (3.6)-(3.11) by following our proofs, we have decided for the sake
of readability to not take this approach.

(iv) Normal approximation via re-scaling. Let η be a homogenous Poisson point process
of intensity one on Rd. Applications often involve showing normal approximation for∑
x∈η∩Ws

ξ(x, η ∩ Q̃s), where ξ is a stabilizing score function and Q̃s := [− 1
2s

1/d, 1
2s

1/d]d.
To see that our main results treat this situation, it suffices to put Xg to be W1, µ Le-
besgue measure on K := Q̃1, ηs a Poisson point process of intensity sµ, and Ss(x, ζ) :=
ξ(s1/dx, s1/dζ). One may likewise deduce central limit theorems for

∑
x∈η∩Q̃s ξ(x, η) by

taking Xg to be Rd, µ Lebesgue measure on Rd, ηs a Poisson point process of intensity
sµ, K := Q̃1, and Ss(x, ζ) := ξ(s1/dx, s1/dζ) when x ∈ Q̃1 and zero otherwise. In this
situation we have IK,x = Θ(s).

(v) Extensions to random measures. Up to a constant factor, the rates of normal con-
vergence in Theorem 10, Corollary 11, and Theorem 12 hold for the non-linear statistics
Fs(f) =

∑
x∈ηs f(x)Ss(x, ηs) and F ′n(f) =

∑
x∈Xn f(x)Sn(x,Xn), obtained by integrating

the random measures
∑
x∈ηs Ss(x, ηs)δx and

∑
x∈Xn Sn(x,Xn)δx with a bounded meas-

urable test function f on Xg. For example, if the assumptions of Theorem 12(a) are
satisfied with K = Xg, Var(Fs(f)) = Ω(s), and Var(F ′n(f)) = Ω(n), then there is a
constant c ∈ (0,∞) such that

dK

(
Fs(f)−EFs(f)√

VarFs(f)
, N

)
≤ c√

s
, s ≥ 1, (3.21)

and

dK

(
F ′n(f)−EF ′n(f)√

VarF ′n(f)
, N

)
≤ c√

n
, n ≥ 9. (3.22)

Here, the constant c ∈ (0,∞) depends on the constants in (3.3) and (3.6)–(3.9), the set K
and the behavior of the variances Var(Fs(f)) and Var(F ′n(f)). The rate (3.21) improves
upon the main result (Theorem 2.1) of [PY05] whereas the rate (3.22) is new.

(vi) Extensions to the Wasserstein distance. All quantitative bounds presented in this
section also hold for the Wasserstein distance (see also the discussion at the end of Section
4 in [LSY19]). Recall that the Wasserstein distance between random variables Y and Z
with E|Y |,E|Z| <∞ is given by

dW (Y,Z) := sup
h∈Lip(1)

|Eh(Y )−Eh(Z)|, (3.23)

where Lip(1) stands for the set of all functions h : R→ R whose Lipschitz constant is at
most one. Since we believe that the Kolmogorov distance dK is more prominent than the
Wasserstein distance, the applications in Section 4 are formulated only for dK .

(vii) Subsets without influence. Assume that there is a measurable set X̃g ⊂ Xg such that
the scores satisfy

Ss(x, ζ) = 1{x∈X̃}Ss(x, ζ ∩ X̃g), ζ ∈ N(X), x ∈ ζ, s ≥ 1,
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where ζ ∩ X̃g stands for the restriction of the point configuration ζ to X̃g. In other
words, the sum of scores

∑
x∈ζ Ss(x, ζ) only depends on the points of ζ which spatial

location belongs to X̃g. In this case our previous results are still valid if the assumptions
(3.3)-(3.11) hold for all x ∈ X̃g.

(viii) Null sets. In our assumptions (3.3)-(3.11) we require, for simplicity, that some
inequalities are satisfied for all x ∈ X. In case that these only hold for µ-a.e. x ∈ X, our
results are still true. This also applies to comment (vii).

3.3 Functionals without a stabilisation radius

This section is about functionals who don’t admit a radius of stabilisation per se, but
satisfy stabilisation in a weaker sense. Very distant points will have an influence in the
sense that if one point far away from 0 is removed, the contributions of points around 0 are
modified, but this modification should be very small. Second-order Poincare inequalities
are actually powerful because they can treat such functionals. Note that the underlying
space is still under the form Rd ×M as in Section 2.2, but Xg = Rd in all the section.
The notation of Section 2.2 should prevail. For simplicity, we don’t state the result for
the truncated input, i.e. with F ′

W̃
instead of FW̃ , but refer the reader to [Lac19].

Theorem 13. Let W ⊂ Zd bounded. Let FW̃ as defined in (2.3), and let M,M ′ ∼ ν
independent. Assume that for some C0 > 0, α > 5d/2, Assumption 6 holds. Then,
σ2 := Var(FW̃ ) <∞. If furthermore σ > 0, with F̃W̃ = σ−1(FW̃ −EFW̃ ),

dW (F̃W̃ , N) 6κ
(
C2

0σ
−2
√
|W |+ C3

0σ
−3|W |

)(
1 +

(
|∂ZdW |
|W |

)2(α/d−2)
)
. (3.24)

Let v := supW (FW̃ −EFW̃ )4|W |−2 ∈ R+ ∪ {∞}, then

dK(F̃W , N) 6κ
(
C2

0σ
−2
√
|W |+ C3

0σ
−3|W |+ v1/4C3

0σ
−4|W |3/2

)(
1 +

(
|∂ZdW |
|W |

)a)
.

(3.25)

Recall that in virtue of Theorem 8, if furthermore the non-degeneracy Assumption 7
is satisfied, (2.8) holds and in particular we have σ > κσ∞|W | > 0 in the result above.
Also, if α > 2d, v <∞
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Applications

By appropriately choosing the measure space (X,X , µ), and either the functional F0

(Sections 2.2,3.3) or the scores (Ss)s≥1 and (Sn)n∈N, and the set K ⊂ Xg (Section
3.2), we may use Theorem 8,Theorem 10, Corollary 11, Theorem 12 and Theorem 13
to deduce presumably optimal rates of normal convergence for statistics in geometric
probability. For example, in the setting X = Rd, we expect that all of the statistics Fs
and F ′n described in [BY05; Pen07; PY01; PY03; PY05] consist of sums of scores Ss and
Sn satisfying the conditions of Theorem 12, showing that the statistics in these papers
enjoy rates of normal convergence (in the Kolmogorov distance) given by the reciprocal
of the standard deviation of Fs and F ′n, respectively. Previously, the rates in these papers
either contained extraneous logarithmic factors, as in the case of Poisson input, or the
rates were sometimes non-existent, as in the case of binomial input. In the following
we do this in detail for some prominent statistics featuring in the stochastic geometry
literature, including the k-face and intrinsic volume functionals of convex hulls of random
samples. Our selection of statistics is illustrative rather than exhaustive and is intended to
demonstrate the wide applicability of Theorem 10 and the relative simplicity of Corollary
11 and Theorem 12. In some instances the rates of convergence are subject to variance
lower bounds, a separate problem addressed in Chapter 2.

We believe that one could use our approach to also deduce presumably optimal rates of
normal convergence for statistics of random sequential packing problems as in [SPY07],
set approximation via Delaunay triangulations as in [JY11], generalized spacings as in
[BPY09], and general proximity graphs as in [GJL18].

We start this section by presenting application to the excursion sets of random Poisson
shot noise fields.

4.1 Shot noise excursions

Let (M,M , ν) be some probability space and {gm;m ∈ M} be a set of measurable func-
tions Rd → R not containing the function g ≡ 0. For ζ ∈ N(X), introduce the shot noise
field

fζ(y) =
∑

(x,m)∈ζ

gm(y − x), y ∈ Rd. (4.1)

If η is a marked Poisson process with intensity measure Ld ⊗ ν on X = Rd ×M, fη is the
homogeneous Poisson shot noise field with impulse distribution ν. We give later conditions
under which this field is well defined. A shot noise field is the result of random functions
translated at random locations in the space. It has been introduced by Campbell to

43
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model thermionic noise [Cam09], and has been used since then under different names in
many fields such as pharmacology, mathematical morphology [Lan02, Section 14.1], image
analysis [Gal+12], or telecommunication networks [BB83; BB10]. Biermé and Desolneux
[BD12; BD16a; BD16b] have computed the mean values for some geometric properties
of excursions. More generally, the activity about asymptotic properties of random fields
excursions has recently increased, with the notable recent contribution of Estrade and
Léon [EL16], who derived a central limit theorem for the Euler characteristic of excursions
of stationary Euclidean Gaussian fields. Bulinski, Spodarev and Timmerman [BST12] give
general conditions for asymptotic normality of the excursion volume for quasi-associated
random fields. Their results apply to shot-noise fields, under conditions of non-negativity
and uniformly bounded marginal density. We give here the asymptotic variance and
central limit theorems for volume and perimeter of excursions under weak assumptions
on the density. Our results allow to treat fields with singularities, such as those observed
in astrophysics or telecommunications, see [BB83].

Given some threshold u ∈ R, we consider the excursion set {fζ > u} = {x ∈ Rd :

fζ(x) > u} and the functionals ζ 7→ Ld({fζ > u} ∩ W̃ ), ζ 7→ Per({fζ > u}; W̃ ), where
for A,B ⊂ Rd;Per(A;B) denotes the amount of perimeter of A contained in B in the
variational sense, see Section 4.1.2. The total curvature, related to the Euler characteristic
is also studied in Section 4.1.3 for a specific form of the kernels.

The results apply mainly to some smooth shot noise fields, but also to processes that
can be written under the form

fζ(x) =
∑
i>1

Li1{x−xi∈Ai}, x ∈ Rd, (4.2)

where the (Li, Ai), i > 1 are iid couples of R×Bd, endowed with the product σ-algebra
and a probability measure, see Section 4.1.3. Such models are called dilution functions
or random token models in mathematical morphology, see for instance [Lan02, Section
14.1], where they are used to simulate random functions with a prescribed covariance.

To the best of our knowledge, the results about the perimeter or the Euler character-
istic are the first of their kind for shot noise models, and the results about the volume
improve existing results, see the beginning of Section 4.1.1 for more details. Let the nota-
tion of the introduction prevail. For the process fη (see (4.1)) to be well defined, assume
throughout the section that for some τ > 0,∫

M

∫
B(0,τ)c

|gm(x)|dxν(dm) <∞, (4.3)

and let Nν be the class of locally finite ζ such that
∑

(x,m)∈ζ |gm(x)| ∈ R∪ {±∞} is well
defined for L-a.a. x ∈ Rd. The fact that η ∈ Nν a.s. follows from the Campbell-Mecke
formula.

We study in this section the behaviour of functionals of the excursion set {fη > u}, u >
0. We use the general framework of random measurable sets. A random measurable set
is a random variable taking values in the space Bd of measurable subsets of Rd, endowed
with the Borel σ-algebra B(Bd) induced by the local convergence in measure, see Section
9.2. Regarding the more familiar setup of random closed sets, in virtue of Theorem 93, a
random measurable set which realisations are a.s. closed can be assimilated to a random
closed set.

4.1.1 Volume of excursions

For u ∈ R fixed,W ⊂ Zd, ζ ∈ Nν , define

FW (ζ) = Ld({fζ∩W̃ > u} ∩ W̃ ), F ′W (ζ) = Ld({fζ > u} ∩ W̃ ).
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A central limit theorem for the volume of non-negative shot noise excursions has been
derived in [BST12], under the assumption that fη(0) has a uniformly bounded density and∫
|gm(x)|ν(dm) decreases sufficiently fast as ‖x‖ → ∞, using the associativity properties

of non-negative shot-noise fields. In some specific cases, the bounded density can be
checked manually with computations involving the Fourier transform. In this section, we
refine this result in several ways:

• A general model of random function is treated, it can in particular take negative
values, allowing for compensation mechanisms (see [Lan02]). For u > 0, to avoid
trivial cases we assume

ν({m ∈M : gm > 0}) 6= 0. (4.4)

• The precise variance asymptotics are derived.

• Weaker conditions are required for the results to hold, in particular bounded density
is not needed.

• The likely optimal rate of convergence in Kolmogorov distance towards the normal
is given.

• Boundary effects under finite input are considered, in the sense that only points
falling in a bounded window (growing to infinity) contribute to the field. The case
of infinite input is also treated.

We give examples of fields with no marginal density to which the results apply, such
as sums of indicator functions, or kernels with a singularity in 0. Controlling the density
of shot-noise fields is in general crucial for deriving results on fixed-level excursions. The
case of indicator kernels is treated in Section 4.1.3.

Assumption 14. Let fη be of the form

fη(x) =
∑
y∈η

g(‖y − x‖), x ∈ Rd, (4.5)

with g non-increasing R+ → (0,∞) such that |g(x)| 6 c‖x‖−λ, ‖x‖ > 1 for some λ >
11d, c > 0. Assume that there is ε > 0, c > 0 such that∫ r

0

ρ−2 ∧ ρ2(d−1)

−g′(ρ)
dρ 6 c exp(crd−ε), r > 0. (4.6)

[Lac19, Lemma 4.2] yields that if fη satisfies this assumption, we can somehow control
its density: for a ∈ (0, 1) there is ca > 0 such that

sup
v∈R,δ>0

P(fη(0) ∈ (v − δ, v + δ)) 6 caδ
a. (4.7)

This result might be of independent interest. Here are examples of functions fulfilling
Assumption 14 (and hence satisfying (4.7)), note that nothing prevents g from having a
singularity in 0.

Example 15. Theorem 16 below applies in any dimension to g(ρ) = Cρ−ν1{ρ61} +

g1(ρ)1{ρ>1}, ρ > 0 and g1(ρ) is for instance of the form exp(−aργ) or ρ−λ, with a, ν >
0, λ > 11d, γ < d,C > 0. Such fields don’t necessarily have a finite first-order moment,
and are used for instance in [BB83] to approximate stable fields, or for modeling telecom-
munication networks.
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To give results in the case where boundary effects are considered, we need an additional
hypothesis on the geometry of the underlying family of windows W = {Wn;n > 1}. For
θ > 0, let Cθ be the family of cones C ⊂ Rd with apex 0 and aperture θ, i.e. such that
Hd−1(C ∩ Sd−1) > θ. Let Cθ,R = {C ∩ B(0, R) : C ∈ Cθ} for R > 0. Say that W has
aperture θ > 0 if for all W ∈ W with diameter r > 0, W has aperture θ : for x ∈ W̃ ,
there is C ∈ Cθ,ln(r)1/2d such that (x+ C) ⊂ W̃ .

Theorem 16. Let u > 0. Let GW = F ′W , or GW = FW if W is assumed to have aperture
θ > 0. Assume that Assumption 14 holds. Then as |∂ZdW |/|W | → 0, Var(GW ) ∼ σ2

0 |W |,
(GW −EGW )(σ0

√
|W |)−1 satisfies the result of Theorems 8,13 with

σ2
∞ =

∫
Rd

[
P(fη(0) > u, fη(x) > u)−P(fη(0) > u)2

]
dx > 0. (4.8)

In particular GW follows a central limit theorem with convergence rate (3.24) in Kolmogorov
distance.

This result requires f to be under the form (4.5) mainly because of the density estim-
ates implied by Assumption 14, but under general density assumptions, it could apply to
more general models of the form (4.1).

4.1.2 Perimeter
We use in this section the variational definition of perimeter, following Ambrosio, Fusco
and Pallara [AFP00]. Define the perimeter of a measurable set A ⊂ Rd within U ⊂ Rd
as the total variation of its indicator function

Per(A;U) := sup
ϕ∈C 1

c (U,Rd):‖ϕ‖∞61

∫
Rd

1A(x)divϕ(x)dx,

where C 1
c (U,Rd) is the set of continuously differentiable functions with compact support

in U . Note that for regular sets, such as C 1 manifolds, or convex sets with non-empty
interior, this notion meets the classical notion of (d − 1)-dimensional Hausdorff surface
measure [AFP00, Exercise 3.10], even though the term perimeter is traditionally used for
2-dimensional objects. It is a possibly infinite quantity, that might also have counterin-
tuitive features for pathological sets ([AFP00, Example 3.53]). The main difference with
the traditional perimeter is that the variational one obviously cannot detect the points
of the boundary whose neighborhoods don’t charge the volume of the set, such as in line
segments for instance. See Section 9.2.2 for a more detailed account of the variational
perimeter.

For any measurable function f : Rd → R and level u ∈ R, the perimeter of the
excursion Per({f > u};U) within U is a well-defined quantity. To be able to compute
it efficiently, we must make additional assumptions on the regularity of f . Following
[BD16b], we assume that f belongs to the space BV (U) of functions with bounded vari-
ations, i.e. f ∈ L 1(U) and its variation above U is finite:

V (f, U) := sup
ϕ∈C1c (U,Rd):‖ϕ‖61

∫
U

f(x)divϕ(x)dx <∞.

The original (equivalent) definition states that f ∈ L 1(U) is in BV (U) if and only if the
following holds ([AFP00, Proposition 3.6]): there exists signed Radon measures Dif on
U, 1 6 i 6 d, called directional derivatives of f , such that for all ϕ ∈ C∞c (Rd),∫

U

f(x)divϕ(x)dx = −
d∑
i=1

∫
U

ϕi(x)Dif(dx).
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Then there is a finite Radon measure ‖Df‖ on U , called total variation measure, and
a Sd−1-valued function νf (x), x ∈ U , such that

∑
iDif = ‖Df‖νf . According to the

Radon-Nikodym theorem, the total variation can be decomposed as

‖Df‖ = ∇fLd + Djf + Dcf (4.9)

where ∇f is the density of the continuous part of ‖Df‖ with respect to Ld, Dcf +Djf is
the singular part of ‖Df‖ with respect to Lebesgue measure, decomposed in the Cantor
part Dcf , and the jump part Djf , that we specify below, following [AFP00, Section 3.7].

For x ∈ U, denote by Hx the affine hyperplane containing x with outer normal vector
νf (x). For r > 0, denote by B+(x, r) and B−(x, r) the two components of B(x, r) \Hx,
with νf (x) pointing towards B+(x, r). Say that x is a regular point if there are two values
f+(x) > f−(x) such that

lim
r→0

r−d
∫

B+(x,r)

|f+(x)− f(y)|dy = lim
r→0

r−d
∫

B−(x,r)

|f(y)− f−(x)|dy = 0. (4.10)

It turns out that the set of non-regular points has Hd−1-measure 0 ([AFP00, Th. 3.77]),
and the set Jf of points where f+(x) > f−(x), called jump points, has Lebesgue measure
0 ([AFP00, Th. 3.83]). Then, the jump measure of f is represented by

Djf(dx) = 1{x∈Jf}(f
+(x)− f−(x))Hd−1(dx),

where Hd−1 stands for the (d− 1)-dimensional Hausdorff measure.
In the classical case where f is continuously differentiable on U , Df = ∇fLd, νf (x) =

‖∇f(x)‖−1∇f(x) (and takes an irrelevant arbitrary value if ∇f(x) = 0), and V (f ;U) =∫
U
‖∇f(x)‖dx. If f = 1{A} for some C 1 compact manifold A, νf (x) is the outer normal

to A for x ∈ ∂A, ∇f = 0,Dcf = 0, and Djf = 1{∂A}Hd−1.
Denote by SBV (U) the functions f ∈ BV (U) such that Dcf = 0. Assume here that

for m ∈M, gm ∈ SBV (Rd), and that∫
M

[∫
Rd

(|gm(t)|+ ‖∇gm(t)‖)dt+

∫
Jgm

|g+
m(t)− g−m(t)|Hd−1(dt)

]
ν(dm) <∞.

Let N′ν be the class of configurations ζ ∈ Nν such that the corresponding shot noise field
fζ is of class SBV (U) on every bounded set U , finite a.e. on Rd, its gradient density
defined by (4.9) is a vector-valued shot-noise field, defined a.s. and Ld-a.e. by

∇fζ(t) =
∑

(x,m)∈ζ

∇gm(t− x),

and its jump set Jf is the union of the translates of the impulse jump sets: Jf =
∪(x,m)∈ζ(x+ Jgm), and the jumps of f are

f+ζ (y)− f−ζ (y) =
∑

(x,m)∈ζ

1{y∈x+Jgm}(g
+
m(y − x)− g−m(y − x)), y ∈ Jf .

[BD16b, Theorem 2] and the previous assumption yield that η ∈ N′ν a.s.. Let h be a test
function, i.e. a function h : R→ R of class C 1 with compact support. LetH be a primitive
function of h. Biermé and Desolneux [BD16b, Theorem 1] give for W ⊂ Zd, ζ ∈ N,

Fh,PerW (ζ) :=

∫
R
h(u)Per({fζ > u}; W̃ )du = Fh,contW (ζ) + Fh,jumpW (ζ),
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where

Fh,contW (ζ) =

∫
W̃

h(fζ(x))‖∇fζ(x)‖dx,

Fh,jumpW (ζ) =

∫
Jf∩W̃

(H(f+ζ (x))−H(f−ζ (x)))Hd−1(dx).

Their expectations under η are computed in [BD16b, Section 3] :

E[Fh,contW (η)] = |W |E [h(fη(0))‖∇fη(0)‖]

E[Fh,jumpW (η)] = |W |
∫
M

∫
Jgm

(∫ g+m(y)

g−m(y)

E[h(s+ fη(0))]ds

)
Hd−1(dy)ν(dm).

Let us now give their second order behaviour. It is difficult to give sharp necessary
conditions for non-degeneracy of the variance if the function h changes signs, so we treat
the case h > 0, but the result can likely be extended in that direction.

Theorem 17. Let W = {Wn;n > 1} satisfying (2.5). Assume that (4.4) holds and that
P(Fh,PerW (η) 6= Fh,PerW (∅)) > 0 for some W ⊂ Zd. Assume that for some α > 5d/2, c > 0,

(E|gM (x)|4)1/4 6 c(1 + ‖x‖)−d−α, (4.11)

(E‖∇gM (x)‖4)1/4 6 c(1 + ‖x‖)−d−α, (4.12)E

 ∫
JgM∩(x+[0,1)d)

(1 ∨ |g+
M (t)− g−M (t)|)Hd−1(dt)


4

1/4

6 c(1 + ‖x‖)−d−α. (4.13)

Then the conclusions of Theorems 8,13 hold for F0 := Fh,Per
{0} . In particular, Fh,Per

W has
a variance proportional to |W | and follows a CLT as |∂ZdW |/|W | → 0.

Example 18. Assume M = R is endowed with a probability measure ν with finite 4-th
moment. Let the field be a function of the form

fζ(x) =
∑

(y,m)∈ζ

mg(‖x− y‖)

with g ∈ SBV (R). Conditions (4.11) and (4.12) hold if |g(r)| 6 C(1 + r)−d−α and
|g′(r)| 6 C(1 + r)−d−α, r > 0. Then (4.13) holds if Jg is countable and for some C > 0,
for every r > 0 ∑

t∈Jg∩[r,r+1)

(1 ∨ |g+(t)− g−(t)|) 6 C(1 + r)−d−α.

4.1.3 Fixed level perimeter and Euler characteristic
Let B be a subset of Bd, and let the marks space be M = (R \ {0}) × B, endowed
with the product σ-algebra and some probability measure ν. This section is restricted to
shot-noise fields of the form

fζ(x) =
∑

(y,(L,A))∈ζ

L1{x−y∈A}, ζ ⊂ Rd ×M, x ∈ Rd. (4.14)

Such fields are used in image analysis [BD16a; BD16b], or in mathematical morphology
[Lan02], sometimes with L = const., and their marginals might not have a density. The
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article [Bie+18] uses the asymptotic normality result below for the Euler characteristic
when B is the class of closed discs in R2 (Example 21).

The current framework allows to give general results for a fixed level u ∈ R, for a large
class of additive functionals, including the perimeter or the total curvature, related to the
Euler characteristic. For the latter, the main difficulty is to properly define it properly on
a typical excursion of the shot noise field, as it is obtained by locally adding and removing
sets from B. The general result only involves the marginal distribution νB(·) := ν(R×·).

We call B′ the class of excursion sets generated by shot noise fields of the form
(4.14) where all but finitely many points of ζ in general position have been removed.
Formally, given a measurable subclass B′ ⊂ Bd, a function V : B′ → R such that V (A)
only depends on A ∩ Q̃1, and a function |V | : B → (0,∞), say that (B,B′, V, |V |)
is admissible if for A1, . . . , Aq ∈ B, for a.a. y1, . . . , yq ∈ Rd, any set A obtained by
sequentially removing, adding or intersecting the Ai + yi, i = 1, . . . , q, belongs to B′, and
|V (A)| 6

∑q
i=1 |V |(Ai). We consider below the functionals, for W ⊂ Zd, ζ ∈ N,

FW (ζ) =
∑
k∈W

V ({fζ∩W̃ > u} − k), F ′W (ζ) =
∑
k∈W

V ({fζ > u} − k).

Example 19 (Volume). The simplest example is the class B = Bd of measurable sub-
sets of Rd, endowed with Lebesgue measure V (A) = Ld(A ∩ Q̃1). We have FW (η) :=
Ld({fη∩W̃ > u} ∩ W̃ ) a.s.. This example has been treated in a different framework at
Section 4.1.1.

Example 20 (Perimeter). Let B be the class of A ∈ Bd such that Hd−1(∂A) <
∞. Define V (A) = Hd−1(∂A ∩ Q̃1), we prove at [Lac19][Section 4.3] that FW (η) =
Hd−1({fη∩W̃ > u}∩W̃ ) a.s.. Assume for the moment condition that

∫
BH

d−1(∂A)8νB(dA) <
∞.
Example 21 (Total curvature). Let d = 2, B be the class of non-trivial closed discs
of R2. A set A ⊂ R2 is an elementary set in the terminology of Biermé & Desolneux
[BD16a] if ∂A can be decomposed as a finite union of C 2 open curves Cj , j = 1, . . . , p
with respective constant curvatures κj > 0, separated by corners xi ∈ ∂A, i = 1, . . . , q,
(with 0 6 q 6 p) with angle α(xi, A) ∈ (−π, π). The total curvature of A within some
open set U is defined by

TC(A;U) :=

p∑
j=1

κjH1(Cj ∩ U) +

q∑
i=1

1{xi∈U}α(xi, A).

Therefore we define V (A) = TC(A; Q̃1). Via the Gauss-Bonnet theorem, for W ⊂ Zd,
TC(A; int(W̃ )) is strongly related to the Euler characteristic of A ∩ W̃ , in the sense that
they coincide if A ⊂ int(W̃ ), and otherwise they only differ by boundary terms, see
[BD16a]. We have FW (η) = TC({fη∩W̃ > u}; int(W̃ )) a.s. (see [Lac19][Section 4.3]).
Assume also that the typical radius has a finite moment of order 8d.

Proposition 22. In the three previous examples, assume that for some λ > 28d,C > 0,

νB({A : (x+A) ∩ Q̃1 6= ∅}) 6 C(1 + ‖x‖)−λ, x ∈ Rd,

and that P(fη(0) > cu) /∈ {0, 1} for some c > 0. Then the functionals FW , F ′W satisfy the
conclusions of theorems 8 and 13, in particular, they have variance of volume order and
undergo a central limit theorem as |∂ZdW |/|W | → 0.

Remark that nothing prevents the typical grain of B to be unbounded with positive
νB-probability.

With a similar route, the previous example can likely be generalised to more general
classes of sets B in higher dimensions, such as the polyconvex ring, provided one can
estimate properly the curvature or the Euler characteristic on sets from B′.
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4.2 Nearest neighbors graphs and statistics of high-
dimensional data sets

a. Total edge length of nearest neighbors graphs. Let (X,X , µ) be equipped with a semi-
metric d such that (3.3) is satisfied for some γ and κ. We equip X with a fixed linear
order, which is possible by the well-ordering principle. Given ζ ∈ N, k ∈ N, and x ∈ ζ,
let Vk(x, ζ) be the set of k nearest neighbors of x, i.e., the k closest points of x in ζ \ {x}.
In case that that these k points are not unique, we break the tie via the fixed linear
order on X. The (undirected) nearest neighbor graph NG1(ζ) is the graph with vertex
set ζ obtained by including an edge {x, y} if y ∈ V1(x, ζ) and/or x ∈ V1(y, ζ). More
generally, the (undirected) k-nearest neighbors graph NGk(ζ) is the graph with vertex
set ζ obtained by including an edge {x, y} if y ∈ Vk(x, ζ) and/or x ∈ Vk(y, ζ). For all
q ≥ 0 define

S(q)(x, ζ) :=
∑

y∈Vk(x,ζ)

ρ(q)(x, y), (4.15)

where ρ(q)(x, y) := d(x, y)q/2 if x and y are mutual k-nearest neighbors, i.e., x ∈ Vk(y, ζ)
and y ∈ Vk(x, ζ), and otherwise ρ(q)(x, y) := d(x, y)q. The total edge length of the
undirected k-nearest neighbors graph on X with qth power weighted edges is

F
(q)
NGk

(ζ) =
∑
x∈X

S(q)(x, ζ).

As usual ηs is a Poisson point process on X with intensity measure sµ and ξn is a binomial
point process of n points in X distributed according to µ. We assume in the following
that (X,X , µ) satisfies (3.3) and

inf
x∈X

µ(B(x, r)) ≥ crγ , r ∈ [0,Diam(X)], (4.16)

where γ is the constant from (3.3), Diam(X) stands for the diameter of X and c > 0.

Theorem 23. If q ≥ 0 and Var(F (q)
NGk

(ηs)) = Ω(s1−2q/γ), then there is a C̃ ∈ (0,∞)
such that

dK

F (q)
NGk

(ηs)−EF
(q)
NGk

(ηs)√
VarF (q)

NGk
(ηs)

, N

 ≤ C̃√
s
, s ≥ 1, (4.17)

whereas if Var(F (q)
NGk

(ξn)) = Ω(n1−2q/γ), then

dK

F (q)
NGk

(ξn)−EF
(q)
NGk

(ξn)√
VarF (q)

NGk
(ξn)

, N

 ≤ C̃√
n
, n ≥ 9. (4.18)

Remarks. (i) Comparison with previous work. Research has focused on central limit
theorems for F (q)

NGk
(ηs), s → ∞, and F

(q)
NGk

(ξn), n → ∞, when X is a full-dimensional
subset of Rd and where d is the usual Euclidean distance. This includes the seminal work
[BB83], the paper [AB93] and the more recent works [PR08; PY01; PY05]. When X is a
sub-manifold of Rd equipped with the Euclidean metric on Rd, the paper [PY13] develops
the limit theory for F (q)

NGk
(ηs), s → ∞, and F

(q)
NGk

(ξn), n → ∞. When X is a compact
convex subset of Rd, the paper [LPS16] establishes the presumably optimal O(s−1/2) rate
of normal convergence for F (q)

NGk
(ηs).
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The rate for binomial input (4.18) improves upon the rate of convergence in the
Wasserstein distance dW given by

dW

F (q)
NGk

(ξn)−EF
(q)
NGk

(ξn)√
VarF (q)

NGk
(ξn)

, N

 = O

(
k4γ̃

2/p
p

n(p−8)/2p
+

k3γ̃
3/p
p

n(p−6)/2p

)
, (4.19)

as in Theorem 3.4 of [Cha08] as well as the same rate in the Kolmogorov distance as in
Section 6.3 of [LP17]. Here γ̃p := E|nq/γS(q)(X1, ξn)|p and p > 8. For all ε > 0 we have
P(nq/γS(q)(X1, ξn) > ε) = (1 − Cεγ/n)n and it follows that γ̃1/p

p ↑ ∞ as p → ∞. Thus
by letting p → ∞, we do not recover the O(n−1/2) rate in (4.19), but only achieve the
rate O(n−1/2(log n)τ ) with some τ > 0.

However, the discussed papers neither provide the presumably optimal O(n−1/2) rate
of normal convergence for F (q)

NGk
(ξn) in the dK distance, nor do they consider input on

arbitrary metric spaces. Theorem 23 rectifies this.
(ii) Variance bounds. When X is a full-dimensional compact convex subset of Rd, then
γ = d, Var(F (q)

NGk
(ηs)) = Θ(s1−2q/γ), and Var(FNGk(ξn)) = Θ(n1−2q/γ), which follows

from Theorem 2.1 and Lemma 6.3 of [PY01] (these results treat the case q = 1 but
the proofs easily extend to arbitrary q ∈ (0,∞)). Thus we obtain the required variance
lower bounds of Theorem 23. If Var(F (q)

NGk
(ηs)) = Ω(s1−2q/γ) does not hold, then the

convergence rate in (4.17) is replaced by (3.13) with IK,s set to s, with a similar statement
if Var(FNGk(ξn)) = Ω(n1−2q/γ) does not hold.
(iii) Extension of Theorem 23. The directed k-nearest neighbors graph, denoted NG′k(ζ),
is the directed graph with vertex set X obtained by including a directed edge from each
point to each of its k nearest neighbors. The total edge length of the directed k-nearest
neighbors graph on ζ with qth power-weighted edges is

F
(q)
NG′k

(ζ) =
∑
x∈ζ

S̃(q)(x, ζ)

where
S̃(q)(x, ζ) :=

∑
y∈Vk(x,ζ)

d(x, y)q.

The proof of Theorem 23 given below shows that the analogs of (4.17) and (4.18) hold
for F (q)

NG′k
(ηs) and F (q)

NG′k
(ξn) as well.

b. Statistics of high-dimensional data sets. In the case that X is an m-dimensional C 1-
submanifold of Rd, with d the Euclidean distance in Rd, the directed nearest neighbors
graph version of Theorem 23 (cf. Remark (iii) above) may be refined to give rates of
normal convergence for statistics of high-dimensional non-linear data sets. This goes as
follows. Recall that high-dimensional non-linear data sets are typically modeled as the
realization of ξn := {X1, ..., Xn}, with Xi, 1 ≤ i ≤ n, i.i.d. copies of a random variable
X having support on an unknown (non-linear) manifold X embedded in Rd. Typically
the coordinate representation of Xi is unknown, but the interpoint distances are known.
Given this information, the goal is to establish estimators of global characteristics of
X, including intrinsic dimension, as well as global properties of the distribution of X,
such as Rényi entropy. Recall that if the distribution of the random variable X has a
Radon-Nikodym derivative fX with respect to the uniform measure on X, then given
ρ ∈ (0,∞), ρ 6= 1, the Rényi ρ-entropy of X is

Fρ(fX) := (1− ρ)−1 log

∫
X
fX(x)ρ dx.



52 CHAPTER 4. APPLICATIONS

Let X be an m-dimensional subset of Rd, m ≤ d, equipped with the Euclidean metric
d on Rd. Henceforth, assume X is an m-dimensional C 1-submanifold-with-boundary (see
Section 2.1 of [PY13] for details and precise definitions). Let µ be a measure on X with a
bounded density fX with respect to the uniform surface measure on X such that condition
(3.3) is satisfied with γ := m. Note that Example 2 (Section 2) provides conditions which
guarantee that (3.3) holds. Assume fX is bounded away from zero and infinity, and

inf
x
µ(B(x, r)) ≥ crm, r ∈ [0, diam(X)],

with some constant c ∈ (0,∞). The latter condition is called the ‘locally conic’ condition
in [PY13] (cf. (2.3) in [PY13]).

Under the above conditions and given Poisson input ηs with intensity sfX , the main
results of [PY13] establish rates of normal convergence for estimators of intrinsic di-
mension, estimators of Rényi entropy, and for Vietoris-Rips clique counts (see Section
2 of [PY13] for precise statements). However these rates contain extraneous logarithmic
factors and [PY13] also stops short of establishing rates of normal convergence when Pois-
son input is replaced by binomial input. In what follows we rectify this for estimators of
Rényi entropy. The methods potentially apply to yield rates of normal convergence for
estimators of Shannon entropy and intrinsic dimension, but this lies beyond the scope of
this paper.

When fX satisfies the assumptions stated above and is also continuous on X, then
nq/m−1F

(q)
NG′1

(ξn) is a consistent estimator of a multiple of
∫
X fX(x)1−q/m dx, as shown in

Theorem 2.2 of [PY13]. The following result establishes a rate of normal convergence for
F

(q)
NG′k

(ξn) and, in particular, for the estimator nq/m−1F
(q)
NG′1

(ξn).

Theorem 24. If k ∈ N and q ∈ (0,∞), then there is a constant c ∈ (0,∞) such that

dK

F (q)
NG′k

(ξn)−EF
(q)
NG′k

(ξn)√
VarF (q)

NG′k
(ξn)

, N

 ≤ c√
n
, n ≥ 9. (4.20)

A similar result holds if the binomial input ξn is replaced by Poisson input.

Remarks. (i) We have to exclude the case q = 0 since F (0)
NG′1

(ξn) = kn if n > k. For
the Poisson case a central limit theorem still holds, but becomes trivial since we have
F

(0)
NG′1

(ηs) = k|ηs| if |ηs| ≥ k + 1.
(ii) In the same vein as described in Remark (i) following Theorem 23, Theorem 3.4 of
[Cha08] yields a rate of normal convergence for F (q)

NG′1
(ξn) in the Wasserstein distance

dW given by the right-hand side of (4.19). However, the bound (4.20) is superior and is
moreover expressed in the Kolmogorov distance dK . When the input ξn is replaced by
Poisson input ηs, we obtain the rate of normal convergence O(s−1/2), improving upon
the rates of [PY05; PY13].

4.3 Maximal points

Consider the cone Co = (R+)d with apex at the origin of Rd, d ≥ 2. Given ζ ∈ N, x ∈ ζ is
called maximal if (Co⊕x)∩ζ = {x}. In other words, a point x = (x1, ..., xd) ∈ ζ is maximal
if there is no other point (z1, ..., zd) ∈ ζ with zi ≥ xi for all 1 ≤ i ≤ d. The maximal layer
mCo(ζ) is the collection of maximal points in ζ. Let FCo(ζ) := card(mCo(ζ)). Maximal
points are of broad interest in computational geometry and economics; see [CHH03; PS85;
Sho83].
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Put
X := {x ∈ [0,∞)d : F (x) ≤ 1}

where F : [0,∞)d → R+ is a strictly increasing function of each coordinate variable,
satisfies F (0) < 1, is continuously differentiable, and has continuous partials Fi, 1 ≤ i ≤ d,
bounded away from zero and infinity. Let µ be a measure on X with Radon-Nikodym
derivative g with respect to Lebesgue measure on X, with g bounded away from zero and
infinity. As usual, ηs is the Poisson point process with intensity sµ and ξn is a binomial
point process of n i.i.d. points distributed according to µ.

Theorem 25. There is a constant c ∈ (0,∞) such that

dK

(
FCo(ηs)−EFCo(ηs)√

VarFCo(ηs)
, N

)
≤ cs− 1

2 + 1
2d , s ≥ 1. (4.21)

Assuming VarFCo(ξn) = Ω(n(d−1)/d), the binomial counterpart to (4.21) holds, with ηs
replaced by ξn.

Remarks. (i) Existing results. The rates of normal convergence given by Theorem 25
improve upon those given in [BX01] for Poisson and binomial input for the bounded
Wasserstein distance and in [BX06] and [Yuk15] for Poisson input for the Kolmogorov
distance. While these findings are also proved via the Stein method, the local depend-
ency methods employed there all incorporate extraneous logarithmic factors. Likewise,
when d = 2, the paper [BHT03] provides rates of normal convergence in the Kolmogorov
distance for binomial input, but aside from the special case that F is linear, the rates in-
corporate extraneous logarithmic factors. The precise approximation bounds of Theorem
25 remove the logarithmic factors in [BHT03; BX01; BX06; Yuk15].

(ii) We have taken Co = (R+)d to simplify the presentation, but the results extend to
general cones which are subsets of (R+)d and which have apex at the origin.

4.4 Set approximation via Voronoï tessellations

Throughout this subsection let X := [−1/2, 1/2]d, d ≥ 2, and let A ⊂ int(X) be a full-
dimensional subset of Rd. Let µ be the uniform measure on X. For ζ ∈ N and x ∈ ζ
the Voronoï cell C(x, ζ) is the set of all z ∈ X such that the distance between z and x is
at most equal to the distance between z and any other point of ζ. The collection of all
C(x, ζ) with x ∈ ζ is called the Voronoï tessellation of ζ. The Voronoï approximation of
A with respect to ζ is the union of all Voronoï cells C(x, ζ), x ∈ ζ, with x ∈ A, i.e.,

A(ζ) :=
⋃

x∈ζ∩A

C(x, ζ).

In the following we let ζ be either a Poisson point process ηs, s ≥ 1, with intensity
measure sµ or a binomial point process ξn of n ∈ N points distributed according to µ.
We are now interested in the behavior of the random approximations

As := A(ηs), s ≥ 1, and A′n := A(ξn), n ∈ N,

of A. Note that As is also called the Poisson-Voronoï approximation.
Typically A is an unknown set having unknown geometric characteristics such as

volume and surface area. Notice that As and A′n are random polyhedral approximations
of A, with volumes closely approximating that of A as s and n become large. There is a
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large literature devoted to quantifying this approximation and we refer to [LP17],[Yuk15]
for further discussion and references. One might also expect that Hd−1(∂As) closely
approximates a scalar multiple of Hd−1(∂A), provided the latter quantity exists and is
finite. This has been shown in [Yuk15]. Using Theorem 12(b) we deduce rates of normal
convergence for the volume and surface area statistics of As and A′n as well as Vol(As∆A)
and Vol(A′n∆A). Here and elsewhere in this section we abbreviate Vold by Vol. The
symmetric difference U∆V of two sets U, V ⊂ Rd is given by U∆V := (U \ V )∪ (V \U).

Theorem 26. (a) Let A ⊂ (−1/2, 1/2)d be closed and such that ∂A satisfiesMd−1
(∂A) <

∞ and contains a (d−1)-dimensional C2-submanifold and let F ∈ {Vol,Vol(·∆A),Hd−1(∂·)}.
Then there is a constant C̃ ∈ (0,∞) such that

dK

(
F (As)−EF (As)√

VarF (As)
, N

)
≤ C̃s−

(d−1)
2d , s ≥ 1, (4.22)

and

dK

(
F (A′n)−EF (A′n)√

VarF (A′n)
, N

)
≤ C̃n−

(d−1)
2d , n ≥ 9, (4.23)

as well as

dK

(
Vol(As)−Vol(A)√

VarVol(As)
, N

)
≤ C̃s−

(d−1)
2d , s ≥ 1, (4.24)

and

dK

(
Vol(A′n)−Vol(A)√

VarVol(A′n)
, N

)
≤ C̃n−

(d−1)
2d , n ≥ 9. (4.25)

(b) If F = Vol and A ⊂ (−1/2, 1/2)d is compact and convex, then all of the above
inequalities are in force.

Remarks. (i) The bound (4.22) provides a rate of convergence for the main result of
[Sch16] (see Theorem 1.1 there), which establishes asymptotic normality for Vol(As), A
convex. The bound (4.22) also improves upon Corollary 2.1 of [Yuk15] which shows

dK

(
Vol(As)−EVol(As)√

VarVol(As)
, N

)
= O

(
(log s)3d+1s−

(d−1)
2d

)
.

Recall that the normal convergence of Hd−1(∂As) is given in Remark (i) after Theorem
2.4 of [Yuk15] and the bound (4.22) for F = Hd−1(∂·) provides a rate for this normal
convergence.
(ii) The bound (4.25) improves upon the bound of Theorem 6.1 of [LP17], which contains
extra logarithmic factors, and, thus, addresses an open problem raised in Remark 6.9 of
[LP17].
(iii) We may likewise deduce identical rates of normal convergence for other geometric
statistics of As, including the total number of k-dimensional faces of As, k ∈ {0, 1, ..., d−
1}, as well as the k-dimensional Hausdorff measure of the union of the k-dimensional faces
of As (thus when k = d− 1, this gives Hd−1(∂As)). Second order asymptotics, including
the requisite variance lower bounds for these statistics, are established in [TY06]. In the
case of geometric statistics of A′n, we expect similar variance lower bounds and central
limit theorems.
(iv) Lower bounds for VarF (As) and VarF (A′n) are essential to showing (4.22)-(4.25). We
expect the order of these bounds to be unchanged if µ has a density bounded away from
zero and infinity. We thus expect Theorem 27 to remain valid in this context because all
other arguments in our proof hold for such µ.
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4.5 Statistics of convex hulls of random point samples

In the following let A be a compact convex subset of Rd with non-empty interior, C2-
boundary and positive Gaussian curvature. By µ we denote the uniform measure on A.
Let ηs, s ≥ 1, be a Poisson point process with intensity measure sµ and let ξn, n ∈ N, be
a binomial point process of n independent points distributed according to µ. From now
on Conv(ζ) stands for the convex hull of a set ζ ⊂ Rd. The aim of this subsection is to
establish rates of normal convergence for statistics of the random polytopes Conv(ηs) and
Conv(ξn). We denote the number of k-faces of a polytope P by fk(P ), k ∈ {0, . . . , d−1},
and its intrinsic volumes by Vi(P ), i ∈ {1, . . . , d}.

Theorem 27. For any V ∈ {f0, . . . , fd−1, V1, . . . , Vd}, there is a constant CV ∈ (0,∞)
also depending on A such that

dK

(
V (Conv(ηs))−EV (Conv(ηs))√

VarV (Conv(ηs))
, N

)
≤ CV s−

d−1
2(d+1) , s ≥ 1, (4.26)

and

dK

(
V (Conv(ξn))−EV (Conv(ξn))√

VarV (Conv(ξn))
, N

)
≤ CV n−

d−1
2(d+1) , n ≥ max{9, d+ 2}. (4.27)

Remarks. (i) Previous work. The asymptotic study of the statistics C(Conv(ηs)) and
V (Conv(ξn)), V ∈ {f0, . . . , fd−1, V1, . . . , Vd}, has a long and rich history, starting with the
seminal work [RS63]. The breakthrough paper [Rei05], which relies on dependency graph
methods and Voronoï cells, establishes rates of normal convergence for Poisson input and
V ∈ {f0, . . . , fd−1, Vd} of the order s−

d−1
2(d+1) times some power of log(s) (see Theorems 1

and 2). Still in the setting V ∈ {f0, . . . , fd−1, Vd}, but with binomial input Theorem 1.2
and Theorem 1.3 of [Vu06] provide the rates of convergence n−1/(d+1)+o(1) for d ≥ 3 and
n−1/6+o(1) for d = 2, which improved previous bounds in [Rei05] for the binomial case,
but is still weaker than (4.27). When V ∈ {f0, . . . , fd−1, V1, . . . , Vd} and A is the unit ball,
Theorem 7.1 of [CSY13] gives a central limit theorem for V (Conv(ηs)), with convergence
rates involving extra logarithmic factors. Central limit theorems for intrinsic volume
functionals over binomial input were derived recently (in parallel and independently of
us) in [TTW18]. There, the rate of convergence is only for the Wasserstein distance and
contains the additional factor (log n)3+2/(d+1) compared to (4.27).
(ii) Extensions. Lower bounds for VarV (Conv(ηs)) and VarV (Conv(ξn)) are essential
to showing (4.26) and (4.27). We expect the order of these bounds to be unchanged if
µ has a density bounded away from zero and infinity. Consequently we anticipate that
Theorem 27 remains valid in this context because all other arguments in our proof below
also work for such a density.

Let us indicate the main steps of the proof. Details can be found in [LrSY19]. In the
following we may assume without loss of generality that 0 is in the interior of A. We
introduce a specific metric adapted to the problem, where balls are more flat close to ∂A.
We denote by dmax the metric

dmax(x, y) := max{‖x− y‖,
√
|d(x,Ac)− d(y,Ac)|}, x, y ∈ A,

and define for x ∈ A and r > 0,

Bdmax(x, r) := {y ∈ A : dmax(x, y) ≤ r}.

The following lemma, which proof is at [LSY19][p.958], ensures that the space (A,B(A), µ)
and the metric dmax satisfy condition (3.3) for x ∈ A−%, with γ = d+ 1.
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Lemma 28. There is a constant κ > 0 such that for all x ∈ A−% and r > 0

lim sup
ε→0

µ(Bdmax(x, r + ε))− µ(Bdmax(x, r))

ε
≤ κ(d+ 1)rd. (4.28)

For k ∈ {0, . . . , d− 1} and ζ ∈ N let Fk(Conv(ζ)) be the set of k-dimensional faces of
Conv(ζ). To cast fk(Conv(ζ)) in the form of (3.2), we define

Sk(x, ζ) :=
1

k + 1

∑
F∈Fk(Conv(ζ))

1{x∈F}, x ∈ ζ.

Note that fk(Conv(ζ)) =
∑
x∈ζ Sk(x, ζ).

To cast the intrinsic volumes Vj(Conv(ζ)), j ∈ {1, . . . , d− 1}, in the form of (3.2), we
need some more notation. Given the convex set A and a linear subspace E, denote by
A|E the orthogonal projection of A onto E. For x ∈ Rd\{0}, let L(x) the line spanned by
x. Given a line N ⊂ Rd through the origin, and for 1 ≤ j ≤ d, let G(N, j) be the set of j-
dimensional linear subspaces of Rd containing N . Let then νNj (·) be the Haar probability
measure on G(N, j). Let M ⊂ A be convex. For j ∈ {0, . . . , d − 1}, x ∈ Rd \ {0}, and
L ∈ G(L(x), j) define

fL(x) := 1{x∈(A|L)\(M |L)}

and, as in [CSY13], define the projection avoidance function θA,Mj : Rd \ {0} 7→ [0, 1] by

θA,Mj (x) :=

∫
G(L(x),j)

fL(x) ν
L(x)
j (dL).

The following result generalizes [CSY13, (2.7)] to non-spherical compact sets, with argu-
ments similar to Lemma A1 from [GT18]. The proof is in the appendix of [LSY19].

Lemma 29. Let M ⊂ A be a convex subset of Rd. For all j ∈ {0, . . . , d − 1} there is a
constant κd,j depending on d, j such that

Vj(A)− Vj(M) = κd,j
∫
A\M

θA,Mj (x)‖x‖−(d−j) dx. (4.29)

For ζ ∈ N and F ∈ Fd−1(Conv(ζ)) put cone(F ) := {ry : y ∈ F, r > 0}. Define for
j ∈ {1, ..., d− 1}

Sj,s(x, ζ) =
sκd,j
d

∑
F∈Fd−1(Conv(ζ))

1{x∈F}

∫
Cone(F )∩(A\Conv(ζ))

‖x‖−(d−j)θ
A,Conv(ζ)
j (x) dx

for x ∈ ζ, s ≥ 1. Lemma 29 yields

s(Vj(A)− Vj(Conv(ζ))) =
∑
x∈ζ

Sj,s(x, ζ) (4.30)

if 0 is in the interior of Conv(ζ) and if all points of ζ are in general position. For x ∈ ζ
and s ≥ 1 define

Sd,s(x, ζ) :=
s

d

∑
F∈Fd−1(Conv(ζ))

1{x∈F}

∫
Cone(F )∩(A\Conv(ζ))

dx.

If 0 is in the interior of Conv(ζ) and all points of ζ are in general position, we have as
well

sVd(A \ Conv(ζ)) =
∑
x∈X

Sd,s(x, ζ).
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The definitions of the scores and ‖θA,Conv(ζ)
j ‖∞ ≤ 1 show that for ζ ∈ N, x ∈ X, s ≥ 1

and j ∈ {0, ..., d− 1}

Sj,s(x, ζ) ≤ κd,jr(Conv(ζ))−(d−j)Sd,s(x, ζ), (4.31)

where r(Conv(ζ)) is the radius of the largest ball centered at 0 and contained in Conv(ζ).
Since 0 ∈ int(A), we can choose ρ0 ∈ (0, %̃) such that B(0, 2ρ0) ⊂ A. For a score S we

denote by S̃ the modified score

S̃(x, ζ) := 1{x∈A−ρ0}S(x, (ζ ∩A−ρ0) ∪ {0})

for ζ ∈ N and x ∈ ζ. Our strategy of proof for Theorem 27 is to apply in a first step
Corollary 11 in connection with Remark (vii) after Theorem 12 to these modified scores,
putting X := A and X̃ := A−ρ0 and K set to ∂A. Thereafter we show that the result
remains true without truncating and without adding the origin as an additional point.

For a score S and ζ ∈ N we define

ΣS(ζ) :=
∑
x∈ζ

S(x, ζ).

Lemma 30 ([LSY19], Lemma 3.9). For any Ss ∈ {S0, . . . , Sd−1, S1,s, . . . , Sd,s} there are
constants C0, c0 ∈ (0,∞) such that

max{P(ΣSs(ηs) 6= ΣS̃s(ηs)),P(Bd(0, ρ0) 6⊂ Conv(Ps)),

|EΣSs(ηs)−EΣS̃s(ηs)|, |VarΣSs(ηs)−VarΣS̃s(ηs)|}
≤ C0 exp(−c0s)

for s ≥ 1 and

max{P(ΣSn(ξn) 6= ΣS̃n(ξn)),P(Bd(0, ρ0) 6⊂ Conv(ξn)),

|EΣSn(ξn)−EΣS̃n(ξn)|, |VarΣSn(ξn)−VarΣS̃n(ξn)|}
≤ C0 exp(−c0n)

for n ≥ 1.

The results of [Rei05] show that for Ss ∈ {S0, . . . , Sd−1, Sd,s} one has

VarΣSs(ηs) = Θ(s
d−1
d+1 ) and VarΣSn(ξn) = Θ(n

d−1
d+1 ). (4.32)

For Ss ∈ {S1,s, . . . , Sd−1,s} and taking into account scaling (4.30), we know from Corollary
7.1 of [CSY13] and from Theorem 2 of [BFV10] that

VarΣSs(ηs) = Θ(s
d−1
d+1 ) and VarΣSn(ξn) = Θ(n

d−1
d+1 ). (4.33)

Hence, Lemma 30 implies that for Ss ∈ {S0, . . . , Sd−1, S1,s, . . . , Sd,s}

VarΣS̃s(ηs) = Θ(s
d−1
d+1 ) and VarΣS̃n(ξn) = Θ(n

d−1
d+1 ). (4.34)

We define the map R : A×N→ R which sends (x,X) to

R(x,X ∪ {x}) :={
cmax inf{r ≥ 0 : X ∩A−ρ0 ∩Ax,r ∩ Fx,i 6= ∅ for i ∈ {1, . . . , 2d−1}}, x ∈ A−ρ0
0, x /∈ A−ρ0 .

The next lemma shows that all S̃s ∈ {S̃0, . . . , S̃d−1, S̃1,s, . . . , S̃d,s} satisfy (3.6) and (3.7)
with αstab = d+ 1.
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Lemma 31 ([LSY19], Lemma 3.11). R is a radius of stabilization for any S̃s ∈ {S̃0, . . . , S̃d−1, S̃1,s, . . . , S̃d,s}
and there are constants C, c ∈ (0,∞) such that for r ≥ 0, x ∈ A

P(R(x, ηs ∪ {x}) ≥ r) ≤ C exp(−csrd+1), s ≥ 1,

whereas
P(R(x, Sn−8 ∪ {x}) ≥ r) ≤ C exp(−cnrd+1), n ≥ 9.

The next lemma shows that all S̃s ∈ {S̃0, . . . , S̃d−1, S̃1,s, . . . , S̃d,s} satisfy (3.10) and
(3.11) with α∂A = d+ 1.

Lemma 32. For any S̃s ∈ {S̃0, . . . , S̃d−1, S̃1,s, . . . , S̃d,s} there are constants Cb, cb ∈
(0,∞) such that for x ∈ A, A ⊂ A with |A| ≤ 7

P(S̃s(x, ηs ∪ {x} ∪ A) 6= 0) ≤ Cb exp(−cbsdmax(x,Ac)d+1), s ≥ 1,

whereas

P(S̃n(x, Sn−8 ∪ {x} ∪A) 6= 0) ≤ Cb exp(−cbndmax(x,Ac)d+1), n ≥ 9.

Proof. For x ∈ A−ρ0 , X ∈ N and A ⊂ A with |A| ≤ 7 we have that S̃s(x,X∪{x}∪A) = 0

if R(x,X ∪ {x}) ≤
√
d(x,Ac) = dmax(x,Ac). Thus, the assertions follow from Lemma

31.

Lemma 33. For any q ≥ 1 and S̃s ∈ {S̃0, . . . , S̃d−1, S̃1,s, . . . , S̃d,s} there is a constant
Cq ∈ (0,∞) such that for all A ⊂ A with |A| ≤ 7,

sup
s≥1

sup
x∈A

E|S̃s(x, ηs ∪ {x} ∪ A)|q ≤ Cq

and
sup

n∈N,n≥9
sup
x∈A

E|S̃n(x, Sn−8 ∪ {x} ∪ A)|q ≤ Cq.

We finally obtain:

Lemma 34. For any S̃s ∈ {S̃0, . . . , S̃d−1, S̃1,s, . . . , S̃d,s} there is a constant C̃ ∈ (0,∞)
such that

dK

(
ΣS̃s(ηs)−EΣS̃s(ηs)√

VarΣS̃s(ηs)
, N

)
≤ C̃s−

d−1
2(d+1) , s ≥ 1,

and

dK

(
ΣS̃n(ξn)−EΣS̃n(ξn)√

VarΣS̃n(ξn)
, N

)
≤ C̃n−

d−1
2(d+1) , n ≥ 9.

Proof. By Lemmas 28, 31, 32, and 33 all conditions of Corollary 11 in connection with
Remark (vii) after Theorem 12 are satisfied with X := A, X̃ := A−ρ0 and K := ∂A. Note
that I∂A,s = O(s(d−1)/(d+1)), which completes the proof.

Proof of Theorem 27. For any pair (X, X̃) of square integrable random variables satisfy-
ing VarX,VarX̃ > 0, a straightforward computation shows that

dK

(
X −EX√

VarX
,N

)
≤ dK

(
X̃ −EX√

VarX
,N

)
+ P(X 6= X̃)
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= dK

(
X̃ −EX̃√

VarX̃
,N

(
EX −EX̃√

VarX̃
,
VarX
VarX̃

))
+ P(X 6= X̃)

≤ dK

(
X̃ −EX̃√

VarX̃
,N

)
+ dK

(
N,N

(
EX −EX̃√

VarX̃
,
VarX
VarX̃

))
+ P(X 6= X̃)

≤ dK

(
X̃ −EX̃√

VarX̃
,N

)
+
|EX −EX̃|√

VarX̃
+ C

∣∣∣∣VarXVarX̃
− 1

∣∣∣∣+ P(X 6= X̃),

where N(µ, σ2) stands for a Gaussian random variable with mean µ and variance σ2

and C ∈ (0,∞) is some universal constant. Applying this to the pairs (X, X̃) :=
(ΣSs(ηs),ΣS̃s(ηs)) and (X, X̃) := (ΣSn(ξn),ΣS̃n(ξn)), respectively, together with Lemma
30, Lemma 34, (4.32), (4.33), and (4.34) completes the proof.

4.6 Clique counts in generalized random geometric graphs

Let (Xg,Xg, µg) be equipped with a semi-metric d such that (3.3) is satisfied for some
γ and κ. Moreover, let M = [0,∞) be equipped with the Borel sigma algebra M :=
B([0,∞)) and a probability measure ν on (M,M ). By µ we denote the product measure
of µg and ν. In the following let ηs be a marked Poisson point process with intensity
measure sµ, s ≥ 1, and let ξn be a marked binomial point process of n ∈ N points
distributed according to µ.

Given ζ ∈ N, recall thatN is the set of point configurations in X, and a scale parameter
β ∈ (0,∞), consider the graph G(ζ, β) on X with (x1,mx1

) ∈ ζ and (x2,mx2
) ∈ ζ joined

with an edge iff d(x1, x2) ≤ βmin(mx1
,mx2

). When mx = 1 for all x ∈ ζ, we obtain the
familiar geometric graph with parameter β. Alternatively, we could use the connection
rule that (x1,mx1) and (x2,mx2) are joined with an edge iff d(x1, x2) ≤ βmax(mx1 ,mx2).
A scale-free random graph based on this connection rule with an underlying marked
Poisson point process is studied in [Hir17]. The number of cliques of order k + 1 in
G(ζ, β), here denoted Ck(ζ, β), is a well-studied statistic in random geometric graphs.
Recall that k + 1 vertices of a graph form a clique of order k + 1 if each pair of them is
connected by an edge.

The clique count Ck(ζ, β) is also a central statistic in topological data analysis. Con-
sider the simplicial complex Rβ(X) whose k-simplices correspond to unordered (k + 1)-
tuples of points of X such that any constituent pair of points (x1,mx1

) and (x2,mx2
)

satisfies d(x1, x2) ≤ βmin(mx1
,mx2

). When mx = 1 for all x ∈ X then Rβ(X) coincides
with the Vietoris-Rips complex with scale parameter β and Ck(ζ, β) counts the number
of k-simplices in Rβ(X).

When µ is the uniform measure on a compact set Xg ⊂ Rd with Vol(Xg) > 0 and
γ = d, the ungainly quantity Ck(ηs, βs

−1/γ) studied below is equivalent to the more
natural clique count Ck(η1 ∩ s1/dXg, β), where η1 is a rate one stationary Poisson point
process in Rd and η1 ∩ s1/dXg is its restriction to s1/dXg.

Theorem 35. Let k ∈ N and β ∈ (0,∞) and assume there are constants c1 ∈ (0,∞)
and c2 ∈ (0,∞) such that

P(Mx ≥ r) ≤ c1 exp(−r
c2

c1
), x ∈ Xg, r ∈ (0,∞). (4.35)

If infs≥1 VarCk(ηs, βs
−1/γ)/s > 0, then there is a constant C̃ ∈ (0,∞) such that

dK

(
Ck(ηs, βs

−1/γ)−ECk(ηs, βs
−1/γ)√

VarCk(ηs, βs−1/γ)
, N

)
≤ C̃√

s
, s ≥ 1. (4.36)
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Likewise if infn≥9 VarCk(ξn, βn
−1/γ)/n > 0, then there is a constant C̃ ∈ (0,∞) such that

dK

(
Ck(ξn, βn

−1/γ)−ECk(ξn, βn
−1/γ)√

VarCk(ξn, βn−1/γ)
, N

)
≤ C̃√

n
, n ≥ 9. (4.37)

Remarks. (i) When Xg is a full-dimensional subset of Rd and when Mx ≡ 1 for all
x ∈ Xg, i.e., ν is the Dirac measure concentrated at one, a central limit theorem for the
Poisson case is shown in [Pen03, Theorem 3.10]. Although the result in [Pen03] is non-
quantitative, the method of proof should yield a rate of convergence for the Kolmogorov
distance. Rates of normal convergence with respect to the Wasserstein distance dW are
given in [Dec+14].
(ii) The contributions of this theorem are three-fold. First, X may be an arbitrary metric
space, not necessarily a subset of Rd. Second, the graphs G(ηs, βs

−1/γ) and G(ξn, βn
−1/γ)

are more general than the standard random geometric graph, as they consist of edges
having arbitrary (exponentially decaying) lengths. Third, by applying our general findings
we obtain presumably optimal rates of convergence for the Poisson and the binomial case
at the same time.
(iii) The random variable Ck(ηs, βs

−1/γ) is a so-called Poisson U-statistic. Bounds for
the normal approximation of such random variables were deduced, for example, in [RS13]
and [LP17] for the Wasserstein distance and in [Sch12] and [ET14] for the Kolmogorov
distance. These results should also yield bounds similar to those in (4.36).
(iv) The assumption infs≥1 VarCk(ηs, βs

−1/γ)/s > 0 is satisfied if X ⊂ Rd is a full d-
dimensional set and g is a bounded probability density, as noted in the proof of Theorem
2.5 in Section 6 of [PY13]. If this assumption is not satisfied then we would have instead

dK

(
Ck(ηs, βs

−1/γ)−ECk(ηs, βs
−1/γ)√

VarCk(ηs, βs−1/γ)
, N

)

≤ C̃
( √

s

VarCk(ηs, βs−1/γ)
+

s

(VarCk(ηs, βs−1/γ))3/2
+

s3/2

(VarCk(ηs, βs−1/γ))2

)
for s ≥ 1. A similar comment applies for an underlying binomial point process in the
situation where infn≥9 VarCk(ξn, βn

−1/γ)/n > 0 does not hold.

Proof. To deduce Theorem 35 from Corollary 11, we express Ck(ζ, βs−1/γ) as a sum of
stabilizing score functions, which goes as follows. Fix γ, s, β ∈ (0,∞). For ζ ∈ N and
x ∈ ζ let ϕ(β)

k,s(x, ζ) be the number of (k + 1)-cliques containing x in G(ζ, βs−1/γ) and
such that x is the point with the largest mark. This gives the desired identification

Ck(ζ, βs−1/γ) =
∑
x∈Xg

ϕ
(β)
k,s(x, ζ).

Now we are ready to deduce (4.36) and (4.37) from Corollary 11 with the scores Ss and
Sn set to ϕ(β)

k,s and ϕ(β)
k,n, respectively, and with K set to Xg. Notice that IK,s = Θ(s), as

noted in (3.15). It is enough to show that ϕ(β)
k,s and ϕ(β)

k,n satisfy all conditions of Corollary
11. Stabilization (3.6) is satisfied with αstab = a, with the radius of stabilization

Rs((x,Mx), ηs ∪ {(x,Mx)}) = βs−1/γMx,

because Mx has exponentially decaying tails as in (4.35). For any p > 0 we have

E|ϕ(β)
k,s((x,Mx), ηs ∪ {(x,Mx) ∪ (A,MA)})|4+p

≤ E|card{ηs ∩B(x, βs−1/γMx)}+ 7|(4+p)k ≤ C(β, p, γ) <∞
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for all x ∈ X, s ≥ 1 and A ⊂ X with |A| ≤ 7 and so the (4 + p)th moment condition (3.8)
holds for p ∈ (0,∞). The conclusion (4.36) follows from (3.16). The proof of (4.37) is
similar.

4.7 Proximity graphs

[GJL18] Abstract: In a proximity region graph G in Rd, two distinct points x, y of a
point process ζ are connected when the ‘forbidden region’ S(x, y), determined according to
a pre-established rule, has empty intersection with ζ. The Gabriel graph, where S(x, y) is
the open disk with diameter the line segment connecting x and y, the Voronoï tessellation
graph, or the oriented nearest neighbour graph, are canonical examples. When ζ is a
Poisson or binomial process, under broad conditions on the regions S(x, y), bounds on
the Kolmogorov and Wasserstein distances to the normal are produced for functionals of
G, including the total number of edges and the total length. Variance lower bounds, not
requiring strong stabilization, are also proven to hold for a class of such functionals.
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Chapter 5

Further limit theorems

5.1 Large deviations for U-statistics [LR16]

Abstract: A U-statistic of order k with kernel f : Xk → Rd over a Poisson process
η, defined at Section 1.3.2, can also be expressed as

∑
(x1,...,xk) f(x1, . . . , xk), where the

summation is over k-tuples of distinct points of η, under appropriate integrability as-
sumptions on f . U-statistics play an important role in stochastic geometry since many
interesting functionals can be written as U-statistics, like intrinsic volumes of intersection
processes, characteristics of random geometric graphs, volumes of random simplices, and
many others. A central limit theorem and Berry-Esseen bounds can be derived from the
previous section for Poisson and binomial input.

There are only few investigations concerning concentration inequalities for Poisson U-
statistics. Most results concern U -statistics of order 1, i.e. linear functionals of the Poisson
measure, and require a nice bound on supη∈Ns(X), z∈XDzF (η) < ∞. For U-statistics of
order ≥ 2 this condition is usually not satisfied, even if the kernel f is bounded. For U-
statistics of order 1, this holds if ‖f‖∞ <∞. In [LR16] we give concentration inequalities
for U-statistics of order 1 and for higher order local U-statistics as well.

5.2 Power variation for stationary increments Lévy driven
moving averages [BLP17]

Abstract: In this paper, we present some new limit theorems for power variation of
k-th order increments of stationary increments Lévy driven moving averages. In the
infill asymptotic setting, where the sampling frequency converges to zero while the time
span remains fixed, the asymptotic theory gives novel results, which (partially) have
no counterpart in the theory of discrete moving averages. More specifically, we show
that the first-order limit theory and the mode of convergence strongly depend on the
interplay between the given order of the increments k > 1, the considered power p >
0, the Blumenthal-Getoor index β ∈ [0, 2) of the driving pure jump Lévy process L
and the behaviour of the kernel function g at 0 determined by the power α. First-
order asymptotic theory essentially comprises three cases: stable convergence towards a
certain infinitely divisible distribution, an ergodic type limit theorem and convergence in
probability towards an integrated random process. We also prove a second-order limit
theorem connected to the ergodic type result. When the driving Lévy process L is a
symmetric β-stable process, we obtain two different limits: a central limit theorem and
convergence in distribution towards a (k−α)β-stable totally right skewed random variable.
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5.3 Convergence fine de l’approximation Voronoï vers
un ensemble fractal [LV17]

Abstract: In the paper [LV17], we study the inner and outer boundary densities of some
sets with self-similar boundary having Minkowski dimension s > d − 1 in Rd. These
quantities turn out to be crucial in some problems of set estimation, as we show here for
the Voronoï approximation of the set with a random input constituted by n iid points in
some larger bounded domain ( The Voronoï approximation of a set is defined at Section
4.4). We prove that some classes of such sets have positive inner and outer boundary
density, and therefore satisfy Berry-Esseen bounds in n−s/2d for Kolmogorov distance.
The Von Koch flake serves as an example, and a set with Cantor boundary as a counter-
example. We also give the almost sure rate of convergence of Hausdorff distance between
the set and its approximation.

5.4 Mixing properties for STIT tessellations [Lac11]

The so-called STIT tessellations form the class of homogeneous (spatially stationary)
tessellations of Rd which are stable under the nesting/iteration operation. In this paper,
we establish the mixing property for these tessellations and give a precise form of the
decay of

P(A ∩M = ∅, ThB ∩M = ∅)
P(A ∩M = ∅)P(B ∩M = ∅)

− 1 (5.1)

for A and B both compact connected sets, h a vector of Rd, Th the corresponding trans-
lation operator and M a stationary STIT tessellation.

5.5 Convex rearrangements of Gaussian fields [LD11]

Abstract: The monotone rearrangement of a univariate function is the non-decreasing
function which yields the same image of the Lebesgue measure than the original one.
The convex rearrangement of a smooth function is obtained by integrating the monotone
rearrangement of its derivative. Both operators can be generalized to higher dimensions,
where a monotone function is the gradient of a convex function. We define here the
rearrangement of an irregular function as the limit of rearrangements of approximations,
and give a consistency theorem.

In this paper, we investigate the asymptotic rearrangements for approximations of
random fields. Stronger results are given for Gaussian fields, and the examples of the
Levy field and the Brownian sheet are derived.



Deuxième partie

Mesures marginales pour champs
aléatoires et processus ponctuels
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Introduction

For k > 1, the k-th order marginal of a random signed measure ζ on (X,X ) can be
defined as

νkζ (A1 × · · · ×Ak) = E(ζ(A1) . . . ζ(Ak)), A1,∈, Ak ∈X .

We leave aside the question of the right axiomatic framework for random measures, as
we will exclusively consider random fields and point processes here, the reader is referred
to [Kal86] for a formal presentation.

If for instance f(t), t ∈ Rd, is a real random field with uniformly bounded first moment,
and ζ(A) =

∫
A
f(t)dt, A ∈ Bd bounded,

νkζ (A1 × · · · ×Ak) = E

[∫
A1×···×Ak

f(t1) . . . f(tk)dt1 . . . dtk

]
is continuous with respect to (Ld)k by Fubini’s theorem. We call `kf (t1, . . . , tk) its density,
given by the Radon-Nikodym theorem for signed measures, using the σ-finiteness of Ld.

For random measures which are typically not continuous with respect to Lebesgue
measure, such as point processes, these marginal measures are usually not continuous
with respect to Lebesgue measure either. Let for instance η be a random homogeneous
Poisson measure on Rd and k = 2, we have for bounded measurable A ⊂ Rd

ν2
η({(x, x) : x ∈ A}) = Ld(A).

For this reason we introduce the factorial moment measure ν[k] for k > 1:

ν[k]
η (Ak) = ν(A)(ν(A)− 1) . . . (ν(A)− k + 1),

which can be equivalently characterised by

ν[k](A1 × · · · ×Ak) = E(η(A1) . . . η(Ak))

for disjoint A1, . . . , Ak ∈ Bd. We have for instance

ν[k]
η (Ak) = (Ld(A))k.

We consider in this second part two problems related to marginals of point processes,
random fields, or random sets (which are viewed as {0, 1}-valued random fields) on some
carrier space X, most often X ⊆ Rd. In the first part, we consider the topological charac-
teristics of the excursion set Eu := {x ∈ Rd : f(x) > u} for u ∈ R and f a random field on
Rd. In particular, we show that under a C 1,1 regularity hypothesis on f, the mean Euler
characteristic of Eu ∩W , for a polygonal bounded window W ⊂ Rd, can be computed
linearly from the third order marginal `3f in triplets of arbitrarily close points. This result
is the random set counterpart of an identity between the Euler characteristic of a C 1,1
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manifold and its bi-covariogram. We also give in any dimension an upper bound on the
number of connected components of Eu∩W that allows to pass this topological identity to
expectations, without requiring the triple (f(0), ∂1f(0), ∂2f(0)) to have a bounded density
in R3.

In the second chapter, we address the realisability problem of second order marginals
: Given a function `(x, y) (resp. a measure ν(dx, dy)) on X2, is there a random set
X (resp. a point process η), such that ` = `21X (resp. ν

[2]
η = ν)? This problem has

deep combinatorial implications, very hard to resolve, and one success of the method is
to uncouple the realisability condition in two conditions: one being the combinatorial
requirement, while the other is simply about the regularity of the candidate marginal.



Chapter 6

Euler characteristic of random
sets

Introduction

Physicists and biologists are always in search of numerical indicators reflecting the micro-
scopic and macroscopic behaviour of tissue, foams, fluids, or other spatial structures. The
Euler characteristic, also called Euler-Poincaré characteristic, is a favored topological in-
dex because its additivity properties make it more manageable than connectivity indexes
or Betti numbers. Given a set A ⊂ R2, let G (A) be the class of its bounded arc-wise
connected components. We say that a set A is admissible if G (A) and G (Ac) are finite,
and in this case its Euler characteristic is defined by

χ(A) = #G (A)−#G (Ac),

where # denotes the cardinality of a set. Denote by A (R2) the class of admissible sets.
It is more generally an indicator of the topological integrity of the set, as an irregular
structure is more likely to be shredded in many small pieces, or pierced by many holes,
which results in a large value for |χ(A)|.

As an integer-valued quantity, the Euler characteristic can be easily measured and used
in estimation and modelisation procedures. It is an important indicator of the porosity
of a random media [Arn+05; Sch+12; Hil02], it is used in brain imagery [KF10; TW08],
astronomy, [Mel90; Sch+99; Mar16], and many other disciplines. See also [Adl+10] for a
general review of applied algebraic topology. In the study of parametric random media
or graphs, a small value of |Eχ(A)| indicates the proximity of the percolation threshold,
when that makes sense. See [Oku90], or [Bla+06] in the discrete setting.

The mathematical additivity property is expressed, for suitable sets A and B, by the
formula

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B) (6.1)

. Additivity implies that the Euler characteristic of a set can be obtained by summing
infinitesimally small contributions, meaning that the Euler characteristic is intrinsically a
local quantity, which global value can hence be obtained via integration agains the proper
measure (called the curvature measure in R2). The Gauss-Bonnet theorem formalises this
idea for C 2 compact manifolds of R2, stating that the Euler characteristic of a smooth set
is the integral along the boundary of its Gaussian curvature. Exploiting the local nature
of the Euler characteristic in applications seems to be a geometric challenge, in the sense
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that it is not always clear how to express the mean Euler characteristic of a random set
F under the form

Eχ(F ) = lim
ε→0

∫
R2

Eϕε(x, F )dx (6.2)

where ϕε(x, F ) only depends on B(x, ε) ∩ F , where B(x, ε) is the ball with center x
and radius ε. We propose in this chapter a new formula of the form above, based on
variographic tools, and valid beyond the C 2 realm, and then apply it in a random setting.

Approach

In stochastic geometry and stereology, an important body of literature is concerned with
providing formulas for computing the Euler characteristic of random sets, see for instance
[HLW04; SW08; KSS06; NOP00] and references therein. Defined to be 1 for every convex
body, it is extended by iterating formula (6.1)

χ(∪iCi) = −
∑

I⊆[m],I 6=∅

(−1)#I1{∩i∈ICi 6=∅}

for finite unions of such sets. Even though this formula seems highly non-local, it is
possible to express it as a sum over local contributions using the Steiner formula, see (2.3)
in [KSS06], but it is difficult to apply it under this form. There has also been an intensive
research around the Euler characteristic of random fields excursions [AS15; AB13; Mar16;
EL16; AW08; TW08], based upon the works of Adler, Taylor, Sammorodnitsky, Worsley,
and their co-authors, see the central monograph [AT07]. We discuss in the next chapter,
based on [Lac18a], the application of the present results to level sets of random fields.

In this work, we give a relation between the Euler characteristic of a bounded subset
F of R2 and some variographic quantities related to F : given any two orthogonal unit
vectors u1,u2, for ε sufficiently small, we have

χ(F ) = ε−2
[
Vol(F ∩ (F − εu1)c ∩ (F − εu2)c) (6.3)

−Vol(F c ∩ (F + εu1) ∩ (F + εu2))
]
,

where Vol = L2 is the 2-dimensional Lebesgue measure. This formula is valid under the
assumption that F is C 1,1, i.e. that ∂F is a C 1 submanifold of R2 with Lipschitz normal
and finitely many connected components. See Example 43 for the application of this
formula to the unit disc.

In the context of a random closed set F, call Rε the right-hand member of (6.3). If
E
[
sup06ε61Rε

]
is finite, the value of Eχ(F) can be obtained as limε→0 ERε. The main

asset of this formulation regarding classical approaches is that, to compute the mean
Euler characteristic, one only needs to know the third-order marginal of F , i.e. the value
of

(x, y, z) 7→ P(x, y, z ∈ F),

for x, y, z arbitrarily close. We also give similar results for the intersection F ∩W , where
F is a random regular closed set and W is a rectangular (or poly-rectangular) observation
window. This step is necessary to apply the results to a stationary set sampled on a
bounded portion of the plane.

In the present chapter, we apply the principles underlying these formulas to obtain
the mean Euler characteristic for level sets of moving averages, also called shot noise
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processes, where the kernels are the indicator functions of random sets which geometry is
adapted to the lattice approximation. Even though the geometry of moving averages level
sets attracted interest in the recent literature [AST13; BD16b], no such result seemed to
exist 1. As a by-product, the mean Euler characteristic of the associated boolean model
is also obtained.

These formulas are successfully applied to excursions of smooth random fields in the
next chapter, based upon [Lac18a]. For instance, in the context of Gaussian fields ex-
cursions, one can pass (6.3) to expectations under the requirement that the underlying
field is C 1,1, i.e. in the context of bivariate functions C 1 with Lipschitz derivatives, plus
additional moment conditions. This improves upon the classical theory [AT07] where
fields have to be of class C 2 and satisfy a.s. Morse hypotheses. Here again, the resulting
formulas only require the knowledge of the field’s third order marginals for arbitrarily
close arguments, even if this marginal is unbounded.

The theoretical results of Adler and Taylor [AT07] regarding the Euler characteristic of
random excursions require second order differentiability of the underlying field f , but
the expression of the mean Euler characteristic only involves the first-order derivatives,
suggesting that second order derivatives do not matter in the computation of the Euler
characteristic.

Discussion

Equality (6.3) gives in fact a direct relation between the Euler characteristic, also known
as the Minkowski functional of order 0, and the function (x, y) 7→ Vol(F∩(F+x)∩(F+y)).
We call the latter function bicovariogram of F , or variogram of order 2, in reference to
the covariogram of F , defined by x 7→ Vol(F ∩ (F + x)) (see [Lan02; Gal11] or [Ser82]
for more on covariograms). Let σ be the normalized Haar measure on the 1-dimensional
circle S1. The formula

Per(F ) = lim
ε→0

∫
S1
ε−1 (Vol(F )−Vol(F ∩ (F + εu)))σ(du),

developed in the context of random sets by Galerne [Gal11], and originating from the the-
ory of functions of bounded variations [AFP00], gives a direct relation between the first
order variogram, and the perimeter of a measurable set F , which is also the Minkowski
functional of order 1 in the vocabulary of convex geometry. Completing the picture with
the fact that Vol(F ) is at the same time the second-order Minkowski functional and the
variogram of order 0, it seems that covariograms and Minkowski functionals are intrinsic-
ally linked. This unveils a new field of exploration, and raises the questions of extension
to higher dimensions, with higher order variograms, and all Minkowski functionals.

Another motivation of the present work is that the question of the amount of inform-
ation that can be retrieved from the variogram of a set is a central topic in the field of
stereology, see for instance the recent work [AB09] completing the confirmation of Math-
eron’s conjecture. Through relation (6.3), the data of the bicovariogram function with
arguments arbitrarily close to 0 is sufficient to derive its Euler characteristic, and once
again the extension to higher dimensions is a natural interrogation.

Plan
The chapter is organized as follows. We give in Section 6.1 some tools of image analysis,
and the framework for stating our main result, Theorem 41, which proves in particular
(6.3). These results are used to derive the mean Euler characteristic of shot noise level

1A more general result has now been derived by Biermé and Desolneux [BD16a]
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sets and boolean model with polyrectangular grain. We then provide in Theorem 46
a uniform bound for the number of connected components of a digitalized set, useful
for applying Lebesgue’s dominated convergence Theorem. In Section 6.2, we introduce
random closed sets and the conditions under which the previous results give a convenient
expression for the mean Euler characteristic. Theorem 49 states hypotheses and results
for homogeneous random models.

Some notation For x ∈ R2, call x[1], x[2] its components in the canonical basis. Also
denote, for x, y ∈ Rd, d > 1, by [x, y] the segment delimited by x, y, and (x, y) = [x, y] \
{x, y}.

6.1 Euler characteristic and image analysis

The present chapter is restricted to the dimension 2, we therefore will not go further
in the algebraic topology and homology theory underlying the definition of the Euler
characteristic. The aim of this section is to provide a lattice approximation Aε of A for
which χ(Aε) has a tractable expression, and explore under what hypotheses on A we have
χ(Aε)→ χ(A) as ε→ 0.

Practitioners compute the Euler characteristic of a set F ⊂ Rd from a digital lattice
approximation F ε, where ε is close to 0. The computation of χ(F ε) is based on a linear
filtering with a patch containing 2d pixels. Determining wether χ(F ε) ≈ χ(F ) is a problem
with a long history in image analysis and stochastic geometry.

For ε > 0, call Zε = εZ2 the square lattice with mesh ε, and say that two points of Zε
are neighbours if they are at distance ε (with the additional convention that a point is its
own neighbour). Say that two points are connected if there is a finite path of connected
points between them. If the context is ambiguous, we use the terms grid-neighbour,grid-
connected, to not mistake it with the general R2 connectivity. Call G ε(M) the class of
finite (grid-)connected components of a set M ⊆ Zε. We define in analogy with the
continuous case, for M ⊆ Zε bounded such that G ε(M),G ε(M c) are finite,

χε(M) = #G ε(M)−#G ε(M c),

where M c = Zε \M . Remark in particular that two connected components touching
exclusively through a corner are not grid-connected.

Call u = {u1,u2} the two canonical unit vectors or R2, and define for A ⊆ R2, x ∈
R2, ε > 0,

Φεout(x;A) = 1{x∈A,x+εu1 /∈A,x+εu2 /∈A},

Φεin(x;A) = 1{x/∈A,x−εu1∈A,x−εu2∈A},

ΦεX(x;A) = 1{x∈A;x+εu1 /∈A,x+εu2 /∈A,x+ε(u1+u2)∈A}.

Seeing also these functionals as discrete measures, define

Φεout(A) =
∑
x∈Zε

Φεout(x;A),

Φεin(A) =
∑
x∈Zε

Φεin(x;A),

ΦεX(A) =
∑
x∈Zε

ΦεX(x;A).
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The subscripts in and out refer to the fact that Φεout(A) counts the number of vertices
of A ∩ Zε pointing outwards towards North-East, and Φεin(A) is the number of vertices
pointing inwards towards South-West. Define for A ⊆ R2

χε(x;A) = Φεout(x;A)− Φεin(x;A).

The functional ΦεX(A) is intended to count the number of X-configurations. Such
configurations are a nuisance for obtaining the Euler characteristic by summing local
contributions. Call Aε the class of bounded M ⊆ Zε such that ΦεX(M) = ΦεX(M c) = 0,
with M c = Zε \M .

Lemma 36. For M ∈ Aε,

χε(M) =
∑
x∈Zε

χε(x;M). (6.4)

Proof. It is well known that, viewing M as a subgraph of Z2, the Euler characteristic of
M can be computed as χ(M) = V − E + F where V is the number of vertices of M , E
is its number of edges, and F is the number of facets, i.e. of points x ∈ M such that
x+ εu1, x+ εu2, x+ ε(u1 + u2) ∈M . We therefore have

χε(M) =
∑
x∈Z2

[
1{x∈M} −

2∑
i=1

1{{x,x+εui} is an edge of M} + 1{x is the bottom left corner of a facet}

]
.

For each x, the summand is in {−1, 0, 1} and can be computed in function of the config-
uration
(1{x∈M},1{x+εu1∈M},1{x+εu2∈M},1{x+ε(u1+u2)∈M}) ∈ {0, 1}4. Enumerating all the pos-
sible configurations and noting that the configurations (1, 0, 0, 1) and (0, 1, 1, 0) do not oc-
cur due to the assumptionM ∈ Aε, it yields that indeed only the configurations (1, 0, 0, 0)
give +1 and only the configurations (1, 1, 1, 0) give −1, which gives the conclusion.

This formula amounts to a linear filtering of the set by a 2× 2 discrete patch, and is
already known and used in image analysis and in physics on discrete images. Analogues of
this formula [Arn+01; NOP00] exist also in higher dimensional grids, but the dimension
2 seems to be the only one where an anisotropic form is valid, see [Sva15] for a discussion
on this topic. The anisotropy is not indispensable to the results discussed in this chapter,
but gives more generality and simplifies certain formulas. An isotropic formula can be
obtained by averaging over the 4 directions.

Given a subset A of R2 and ε > 0, we are interested here in the topological properties
of the Gauss digitalisation of A, defined by [A]ε := A ∩ Zε. Define P = ε[− 1

2 ,
1
2 )2, and

Aε =
⋃

x∈[A]ε

(x+ P)

is the Gauss reconstruction of A based on Zε. In some unambiguous cases, the notation
is simplified to [A] = [A]ε. In this chapter, we refer to a pixel as a set P + x, for x ∈ R2

not necessarily in Zε.

Notation We also use the notation, for x, y ∈ Zε, Jx, yK = [x, y] ∩ Zε, Lx, yM = Jx, yK \
{x, y}.

Properties 1. For A ⊆ R2, Aε is connected in R2 if [A]ε is grid-connected in Z2.
The converse might not be true because of pixels touching through a corner, but this
subtlety does not play any role in this chapter, because sets with X-configurations are



74 CHAPTER 6. EULER CHARACTERISTIC OF RANDOM SETS

systematically discarded. We also have χε([A]) = χ(Aε) if [A] ∈ Aε because connected
components of A (resp. Ac) can be uniquely associated to grid-connected components of
[A] (resp. [Ac]).

Most set operations commute with the operators (.)ε, [·]ε. For any A,B ⊆ R2, [A ∪
B]ε = [A]ε ∪ [B]ε, [A ∩ B]ε = [A]ε ∩ [B]ε, [R2 \ A]ε = Zε \ [A]ε, and those properties are
followed by the reconstructions (A∪B)ε = Aε∪Bε, (A∩B)ε = Aε∩Bε, (A\B)ε = Aε\Bε.

6.1.1 Variographic quantities

The question raised in the next section is wether, for A ⊂ R2, χε([A]ε) = χ(A) for ε
sufficiently small, and the result depends crucially on the regularity of A’s boundary. A
remarkable asset of formula (6.4) is its nice transcription in terms of variographic tools.
Let us introduce the related notation. For x1, . . . , xq, y1, . . . , ym ∈ R2, A a measurable
subset of R2, define the polyvariogram of order (q,m),

δy1,...,ymx1,...,xq (A) := Vol((A+ x1) ∩ · · · ∩ (A+ xq) ∩ (A+ y1)c ∩ · · · ∩ (A+ ym)c).

The variogram of order (2, 0) is known as the covariogram of A (see [Lan02, Chap. 3.1]),
and we designate here by bicovariogram of A the polyvariogram of order (3, 0). A poly-
variogram of order (q,m) can be written as a linear combination of variograms with orders
(qi, 0) for appropriate numbers qi 6 q. For instance for x, y ∈ R2, A ⊂ R2 measurable
with finite volume, we have

δx,y0 (A) = δ0(A)− δ0,x(A)− δ0,y(A) + δ0,x,y(A).

A similar notion can be defined on Zε endowed with the counting measure: for M ⊆
Zε, x1, . . . , xq, y1, . . . , ym ∈ Zε,

δ̃y1,...,ymx1,...,xq (M) := #((M + x1) ∩ · · · ∩ (M + xq) ∩ (M + y1)c ∩ · · · ∩ (M + ym)c).

Lemma 36 directly yields for M ∈ Aε,

χε(M) = δ̃−εu1,−εu2

0 (M)− δ̃0
εu1,εu2

(M).

We will see in the next section that for a sufficiently regular set F ⊆ R2, the analogue
equality χ(F ) = δ−εu1,−εu2

0 (F )− δ0
εu1,εu2

(F ) holds for ε small.

6.1.2 Euler characteristic of ρ-regular sets

It is known in image morphology that the digital approximation of the Euler character-
istic is in general badly behaved when the set F ∈ A (R2) possesses some inwards or
outwards sharp angles, i.e. we don’t have χε([F ]ε)→ χ(F ) as ε→ 0, the boolean model
being the typical example of such a failure, see [Ser82, Chap. XIII - B.6] or [Sva14]. Sets
nicely behaved with respect to digitalisation are called morphologically open and closed
(MOC), or ρ-regular, see [Ser82, Chap.V-C],[Sva15].

Before giving the characterization of such sets, let us introduce some morphological
concepts, see for instance [Lan02; Ser82] for a more detailed account of mathematical
morphology. We state below results in Rd because the arguments are based on purely
metric considerations that apply identically in any dimension.

Notation The ball with centre x and radius r in the ∞-metric ‖ · ‖∞ of Rd is noted
B[x, r]. The Euclidean ball with centre x and radius r is noted B(x, r). For r > 0, A ⊆ Rd,



6.1. EULER CHARACTERISTIC AND IMAGE ANALYSIS 75

define

A⊕r : = {x+ y : x ∈ A, y ∈ B(0, r)}.
A	r : = {x ∈ A : B(x, r) ⊆ A} = ((Ac)⊕r)c.

We also note ∂A, cl(A), int(A) for resp. the topological boundary, closure, and interior of
a set A.

Say that a closed set F has an inside rolling ball if for each x ∈ F , there is a closed
Euclidean ball B of radius r contained in F such that x ∈ B, and say that F has an
outside rolling ball if cl(F c) has an inside rolling ball.

A set F has reach at least r > 0 if for each point x at distance 6 r from F , there is
a unique point y ∈ F such that d(x, y) = d(x, F ). We note in this case y = πF (x). Call
reach of F the supremum of the r > 0 such that F has reach at least r. The proposition
below gathers some elementary facts about sets satisfying those rolling ball properties,
the proof is left to the reader.

Proposition 37. Let ρ > 0 and F be a closed set of Rd with an inside and an outside
rolling ball of radius ρ. Then there is an outwards normal vector nF (x) in each x ∈ ∂F .
For r 6 ρ, Bx := B(x − rnF (x), r), resp. B′x := B(x + rnF (x), r) is the unique inside,
resp. outside rolling ball in x. Also, int(B′x) ⊆ F c. Furthermore, ∂F, F and F c have
reach at least r for each r < ρ.

We reproduce here partially the synthetic formulation of Blashke’s theorem byWalther
[Wal99], which gives a connection between rolling ball properties and the regularity of
the set.

Theorem 38 (Blashke). Let F be a compact and connected subset of Rd. Then for ρ > 0
the following assertions are equivalent.

(i) ∂F is a compact (d− 1)-dimensional C 1 submanifold of R2 such that the mapping
nF (·), which associates to x ∈ ∂F its outward normal vector to F , nF (x), is ρ−1-
Lipschitz,

(ii) F has inside and outside rolling ball of radius ρ,

(iii) (F	r)⊕r = (F⊕r)	r = F , r < ρ.

Definition 39. Let F be a compact set of Rd. Assume that F has finitely many connected
components and satisfies either (i),(ii) or (iii) for some ρ0 > 0. Since the connected
components of F are at pairwise positive distance, each of them satisfies (i),(ii), and (iii),
and therefore the whole set F satisfies (i),(ii) and (iii) for some ρ > 0, which might be
smaller than ρ0. Such a set is said to belong to Serra’s regular class, see the monograph
of Serra [Ser82]. We will say that such a set is ρ-regular, or simply regular.

Coming back to the Euler characteristic of smooth sets of R2, the following assump-
tion needs to be in order for the restriction of a ρ-regular set to a polyrectangle to be
topologically well behaved.

Assumption 40. Let F be a ρ-regular set, and W ∈ W . Assume that ∂F ∩corners(W ) =
∅ and that for x ∈ ∂F ∩ ∂W , nF (x) is not collinear with nW (x).

If a ρ-regular set F and a polyrectangle W do not satisfy this assumption, F ∩W
might have an infinity of connected components, which makes the Euler characteristic not
properly defined. Let us prove that the digitalisation is consistent if this assumption is
in order.
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Theorem 41. Let F be a ρ-regular set of R2, W ∈ W satisfying Assumption 40 such that
F ∩W is bounded. Then F ∩W ∈ A and there is ε(F,W ) > 0 such that for ε < ε(F,W ),

χ(F ∩W ) = χε([F ∩W ]ε)

=
∑
x∈εZ2

χε(x;F ∩W ) (6.5)

= ε−2

∫
R2

χε(x;F ∩W )dx

= ε−2
(
δ−εu1,−εu2

0 (F ∩W )− δ0
εu1,εu2

(F ∩W )
)
. (6.6)

Also, ε(F,W ) = ε(F + x,W + x) for x ∈ R2.

The proof is at [Lac18b], Section 3.2.

Remark 42. (i) The apparent anisotropy of (6.5)-(6.6) can be removed by averaging
over all pairs {u1,u2} of orthogonal unit vectors of R2. Even though (6.6) does not
involve the discrete approximation, a direct proof not exploiting lattice approxima-
tion is not available, and such a proof might shed light on the nature of the relation
between covariograms and Minkowski functionals.

(ii) The fact that the Euler characteristic of a regular set digitalisation converges to the
right value is already known, see [Sva15, Section 6] and references therein, but it is
reproved in [Lac18b], under a slightly stronger form. One of the difficulties of the
proof of Theorem 41 is to deal with the intersection points of ∂W and ∂F .

(iii) It is proved in Svane [Sva15] that in higher dimensions, Euler characteristic and
Minkowski functionals of order d − 2 can be approximated through isotropic ana-
logues of formula (6.4). The arguments are purely metric and should be general-
izable to higher dimensions. On the other hand, dealing with boundary effects in
higher dimensions might be a headache.

(iv) It is clear throughout the proof that the value ε(F,W ) above for which (6.5)-(6.6) is
valid is a continuous function of ρ, the distances between the connected components
F ∩W , the distances between the points of (∂W ∩∂F )∪ (corners(W )∩F ), and the
angles between nW (x) and nF (x) at points x ∈ ∂F ∩ ∂W .

Example 43. Before giving the proof, let us give an elementary graphical illustration of
(6.6) with F = B(0, 1) in R2. Let ε > 0. We note Γ+ = F ∩ (F + εu1)c ∩ (F + εu2)c and
Γ− = F c ∩ (F + εu1) ∩ (F + εu2). We should have for ε small

1 = χ(F ) = ε−2
[
δ−εu1,−εu2

0 (F )− δ0
εu1,εu2

(F )
]
,

Vol(Γ−) = δ0
εu1,εu2

(F ), and Vol(Γ+) = δεu1,εu2

0 (F ) = δ−εu1,−εu2

0 (F ). The notation
a, b, c, d, e, f designate six distinct subsets (see Figure 6.1, below) such that Γ− = a ∪
b ∪ c,Γ+ = d ∪ e ∪ f . Symmetry arguments yield that Vol(a) = Vol(f),Vol(a ∪ b) =
Vol(c),Vol(f) = Vol(d ∪ e), whence

Vol(Γ+)−Vol(Γ−) = Vol(a) + Vol(b) + Vol(c)−Vol(d)−Vol(e)−Vol(f)

= 2(Vol(f) + Vol(b))−Vol(d)−Vol(e)−Vol(f)

= Vol(f)−Vol(d) + 2Vol(b)−Vol(e)
= 2Vol(b).

The shape of b is very close to that of a cube with diagonal length ε, i.e. with side length
2−1/2ε. Therefore Vol(b) ≈ ε2/2, which confirms 1 = χ(F ) = ε−2

[
δ−εu1,−εu2

0 (F )− δ0
εu1,εu2

(F )
]
.
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εu2
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b
c

d
e
f

Figure 6.1 – Bicovariograms of the unit disc

Remark 44. (i) Theorem 41 still holds if ∂F intersects the outwards corner of W . In
particular, we can drop the corner-related part of Assumption 40 ifW is a rectangle.
This subtlety makes the proof slightly more complicated, and such generality is not
necessary in this chapter.

(ii) It should be possible to show that under the conditions of Theorem 41, F ∩W and
(F∩W )ε are homeomorphic, but we are only interested in the Euler characteristic in
this chapter.

Remark 45. It seems difficult to deal with C 1 manifolds that don’t have a Lipschitz
boundary, in a general setting. Consider for instance in R2

A =

∞⋃
n=2

B((1/n, 0), 1/n2).

Then ∂A is a C∞ embedded sub manifold of R2, but it has infinitely many connected
components, which puts A off the class A (R2) of sets that we consider admissible for
computing the Euler characteristic.

To have the convergence of Euler characteristic’s expectation for random regular sets,
we need the domination provided by Theorem 46 in the next section.

6.1.3 Bounding the number of components

Taking the expectation in formula (6.5) and switching with the limit ε → 0 requires a
uniform upper bound in ε on the right hand side. For ε small, (6.5) consists of a lot
of positive and negative terms that cancel out. Since grouping them manually is quite
intricate, this formula is not suitable for obtaining a general upper bound on |χ(F ε)|.
The most efficient way consists in bounding the number of components of F ε and (F c)ε

in terms of the regularity of the set.
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Figure 6.2 – Entanglement point In this example, {x, y} ∈ Nε(F ) because the two con-
nected components of P ′x,y, in lighter grey, are connected through γ ⊆ (F ∩ Px,y). We
don’t have {x, y} ∈ Nε(F

′).

The result derived below is intended to be applied to ρ-regular sets, but we cannot
make any assumption on the value of the regularity radius ρ, because the bound must be
valid for every realization. We therefore give an upper bound on #G (F ε) and #G ((F ε)c)
valid for any measurable set F .

The formula provides bounds on the number of connected components, which is a
global quantity, in terms of occurrences of local configurations of the set, that we call
entanglement points. Roughly, an entanglement occurs if two points of F c are close
but separated by a tight portion of F , see Figure 6.2. This might create disconnected
components of F ε in this region although F is locally connected.

To formalise this notion, let x, y ∈ Zε grid neighbours. Introduce Px,y ⊆ R2 the
closed square with side length ε such that x and y are the midpoints of two opposite
sides. Denote P ′x,y = ∂Px,y \ {x, y}, which has two connected components. Then {x, y}
is an entanglement pair of points of F if x, y /∈ F and (P ′x,y ∪ F )∩ Px,y is connected. We
call Nε(F ) the family of such pairs of points.

For the boundary version, given W ∈ W , we also consider grid points x, y ∈ [W ∩ F ],
on the same line or column of Zε, such that

• x, y are within distance ε from one of the edges of W (the same edge for x and y)

• Lx, yM 6= ∅

• Lx, yM ⊆ [F c ∩ F⊕ε].

The family of such pairs of points {x, y} is noted N ′
ε (F ;W ) .

Even though Nε(F ) and N ′
ε (F ;W ) are not points but pairs of points of Zε, for

A ⊆ R2, we extend the notation Nε(F ) ⊆ A, (resp. Nε(F ) ∩ A), to indicate that the
points of the pairs of Nε(F ) are contained in A (resp. the collection of pairs of points
from Nε(F ) where both points are contained in A), and idem for N ′

ε (F,W ).
For {x, y} ∈ Nε(F ), [x, y] ∩ F 6= ∅ and x, y ∈ F c. Therefore Nε(F ) ⊆ ∂F⊕ε. We have

also Nε(F,W ) ⊆ (∂F⊕ε ∩ ∂W⊕ε).

Theorem 46. Let F be a bounded measurable set. Then

#G (F ε) 6 2#Nε(F ) + #G (F ) (6.7)

and for any W ∈ W ,

#G ((F ∩W )ε) 6 2#Nε(F ) ∩W⊕ε + 2#N ′
ε (F,W ) + #G (F ∩W ) + 2#corners(W ).

(6.8)
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The proof is at [Lac18b], Section 3.3.

Remark 47. Properties 1 and (6.8) entail

#G (((F ∩W )ε)c) = #G (((F ∩W )c)ε) = #G (((F c ∩W ) ∪W c)ε)

= #G ((F c ∩W )ε ∪ (W c)ε) 6 #G ((F c ∩W )ε) + #G ((W c)ε)

because adding a connected set B to a given set A can only decrease its number of
bounded connected components, or increase it by 1 if B is bounded. It is easy to see that
#G ((W c)ε) 6 #corners(W ) for ε sufficiently small. It follows that

|χ((F ∩W )ε)| 6max(#G ((F ∩W )ε),#G ((F ∩W )ε)c)

63#corners(W ) + 2 max(#Nε(F ) ∩W⊕ε,#Nε(F
c) ∩W⊕ε) (6.9)

+ 2 max(#N ′
ε (F,W ),#N ′

ε (F c,W )) + max(#G (F c ∩W ),#G (F ∩W )).

Remark 48. The boundary of a ρ-regular set A is a C 1 manifold, and can therefore be
written under the form ∂A = f−1({0}), and cl(A) = {f 6 0} for some C 1 function f
such that ∇f 6= 0 on ∂A and ‖∇f‖−1∇f is ρ−1-Lipschitz on ∂A. Such a function is said
to be of class C 1,1. One can bound the right hand members of (6.7)-(6.8) by quantities
depending solely on f . For instance, it is proved in the next chapter that in the context
of Gaussian fields, E and limε can be switched in (6.5) if the derivatives of f are Lipschitz
and their Lipschitz constants have a finite moment of sufficiently high order.

6.2 Random sets

Let (Ω,A ,P) be a complete probability space. Call F the class of closed sets of R2,
endowed with the σ-algebra B(F ) generated by events {G ∩ F 6= ∅, F ∈ F}, for G open.
A B(F )-measurable mapping A : Ω → F is called a Random Closed Set (RACS). See
[Mol05] for a more detailed account on RACS. The functional χ is not properly defined,
and therefore not measurable, on F . We introduce the subclass R of regular closed sets
as defined in Definition 39, and endow R with the trace topology and Borel σ-algebra, a
random regular set being a RACS a.s. in R. Taking the limit in ε → 0 in formula (6.5)
entails that χ is measurable R → R (the functionals F 7→ #G (F ) and F 7→ #G (F c)
are also measurable). If a random regular set F satisfies a.s. Assumption 40 with some
W ∈ W , then #G (F ∩W ),#G ((F ∩W )c) and χ(F ∩W ) are also measurable quantities.

Introduce the support supp(A) of a RACS A as the smallest closed set K such that
P(A ⊆ K) = 1. Mostly for simplification purpose, we will assume whenever relevant that
supp(A) is bounded.

It is easy to derive a result giving the mean Euler characteristic as the limit of the
right hand side expectation in (6.5) by combining Theorems 41 and 46. We treat below
the example of stationary random sets, i.e. which law is invariant under the action of
the translation group. A non-trivial stationary RACS F is a.s. unbounded, therefore we
must consider the restriction of F to a bounded window W . The main issue is to handle
boundary terms stemming from the intersection. They involve the perimeter ofW and the
specific perimeter of F . We introduce the square perimeter Per∞ of a measurable set A
with finite Lebesgue measure by the following. Note C 1

c the class of compactly supported
functions of class C 1 on R2, and define Per∞(A) = Peru1(A) + Peru2(A), where

Peru(A) = sup
ϕ∈C 1

c :|ϕ(x)|61

∫
A

〈∇ϕ(x),u〉dx = Per−u(A), u ∈ S1,
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so that we also have the expression

Per∞(A) = sup
ϕ∈C 1

c :‖ϕ(x)‖∞61

∫
A

div(ϕ)(x)dx.

The classical variational perimeter is defined by

Per(A) =
1

4

∫
S1
Peru(A)σ(du),

with the renormalized Haar measure σ on the unit circle, it satisfies Per(A) 6 Per∞(A) 6√
2Per(A). We have for instance for the square W = [0, a]2, Per∞(W ) = 4a and for a

ball B with unit diameter in R2, Per∞(B) = 4. See Section 9.2.2 for more on anisotropic
perimeters.

It is proved in [Gal11, (1)] that for any bounded measurable set A,

Peru(A) = 2 lim
ε→0

ε−1δεu0 (A) = 2 lim
ε→0

ε−1δ−εu0 (A)

and in [Gal14, Proposition 16-(8)] that for any RACS F with compact support

EPer∞(F ) = 2

2∑
i=1

lim
ε→0

ε−1Eδεui0 (A) = 2

2∑
i=1

lim
ε→0

ε−1Eδ−εui0 (A)

= 2

2∑
i=1

lim
ε→0

ε−1

∫
R2

P(x ∈ A, x+ εui /∈ A)dx. (6.10)

An important feature of this formula is that the mean perimeter can be deduced from
the second order marginal distribution (x, y) 7→ P(x, y ∈ F ) in a neighbourhood of the
diagonal {(x, x);x ∈ R2}. The formulas above provide a strong connection between the
perimeter, called first-order Minkowski functional in the realm of convex geometry, the
covariogram, and the second order marginal of a random set.

The results in the present section emphasize the connection between the Euler char-
acteristic, Minkowski functional of order 0, and the bicovariogram, a functional that can
be expressed in function of the third order marginal of a random set, in a neighbourhood
of the diagonal {(x, x, x);x ∈ R2}.

The results below have been designed to provide an application in the context of
random functions excursions, a field which has been been the subject of intense research
recently, see the references in the introduction. We show in the next chapter that the
quantities in (6.11) can be bounded by finite quantities under some regularity assumptions
on the underlying field, and give explicit mean Euler characteristic for some stationary
Gaussian fields.

Say that a closed set F is locally regular if for any compact set W , there is a ρ-regular
set F ′ such that F ∩W = F ′ ∩W .

Proposition 49. Let F be a stationary random closed set, a.s. locally regular, and
W ∈ W bounded. Assume that the following local expectations are finite:

E

[
sup

06ε61
#Nε(F ) ∩W

]
, E

[
sup

06ε61
#Nε(F

c) ∩W
]
,E

[
sup

06ε61
N ′
ε (F,W )

]
, E

[
sup

06ε61
N ′
ε (F c,W )

]
.

(6.11)

Then E [#G (F ∩W )] <∞, E [#G ((F ∩W )c)] <∞, and the following limits are finite

χ(F ) : = lim
ε→0

ε−2 [P(0 ∈ F, εu1 /∈ F, εu2 /∈ F )−P(0 /∈ F,−εu1 ∈ F,−εu2 ∈ F )] ,

Perui(F ) : = 2 lim
ε→0

ε−1P(0 ∈ F, εui /∈ F ), i = 1, 2,

Vol(F ) : = P(0 ∈ F ).
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We also have, with Per∞(F ) =
∑2
i=1 Perui(F ),

Eχ(F ∩W ) = Vol(W )χ(F ) +
1

4

(
Peru2

(W )Peru1
(F ) (6.12)

+ Peru1
(W )Peru2

(F )
)

+ χ(W )Vol(F )

EPer∞(F ∩W ) = Vol(W )Per∞(F ) + Per(W )Vol(F ) (6.13)

EVol(F ∩W ) = Vol(W )Vol(F ). (6.14)
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Chapter 7

Euler characteristic of random
fields excursions

Let f be a C 1 bivariate function with Lipschitz derivatives, and F = {x ∈ R2 : f(x) > λ}
an upper level set of f , with λ ∈ R. We present an identity giving the Euler charac-
teristic of F in terms of its three-points indicator functions. A bound on the number of
connected components of F in terms of the values of f and its gradient, valid in higher
dimensions, is also derived. In dimension 2, if f is a random field, this bound allows to
pass the former identity to expectations if f ’s partial derivatives have Lipschitz constants
with finite moments of sufficiently high order, without requiring bounded conditional
densities. This approach provides an expression of the mean Euler characteristic in terms
of the field’s third order marginal. Sufficient conditions and explicit formulas are given
for Gaussian fields, relaxing the usual C 2 Morse hypothesis.

7.1 Introduction

The geometry of random fields excursion sets has been a subject of intense research
over the last two decades. Many authors are concerned with the computation of the
mean [AS15; AST13; AT03; AB13] or variance [EL16; Mar16] of the Euler characteristic,
denoted by χ here.

Most of the available works on random fields use the results gathered in the celebrated
monograph [AT07], or similar variants. In this case, theoretical computations of the Euler
characteristic emanate from Morse theory, where the focus is on the local extrema of the
underlying field instead of the set itself. For the theory to be applicable, the functions
must be C 2 and satisfy the Morse hypotheses, which conveys some restrictions on the set
itself.

The expected Euler characteristic also turned out to be a widely used approximation
of the distribution function of the maximum of a Morse random field, and attracted much
interest in this direction, see [AS15; AB13; AW08; TW08]. Indeed, for large r > 0, a
well-behaved field rarely exceeds r, and if it does, it is likely to have a single highest
peak, which yields that the level set of f at level r, when not empty, is most often simply
connected, and has Euler characteristic 1. Thereby, Eχ({f > r}) ≈ P(sup f > r), which
provides an additional motivation to compute the mean Euler characteristic of random
fields.

Even though [AST13] provides an asymptotic expression for some classes of infinitely
divisible fields, most of the tractable formulae concern Gaussian fields. One of the ambi-
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tions of this chapter is to provide a formula that is tractable in a rather general setting,
and also works in the Gaussian realm. There seems to be no particular obstacle to extend
these ideas to higher dimensions in a future work.

Approach and main result

Our results exploit the findings of [Lac18b] connecting smooth sets Euler character-
istic and variographic tools. For some λ ∈ R and a bi-variate function f , define for
x ∈ R2 the event

δη(x, f, λ) = 1{f(x)>λ,f(x+ηu1)<λ,f(x+ηu2)<λ}, η ∈ R,

where (u1,u2) denotes the canonical basis of R2, assuming f is defined in these points.
For f a random field, let δ̄η(x, f, λ) denote the event {δη(x, f, λ) = 1}. Let us write a

corollary of our main result here, a more general statement can be found in [Lac18a]Section
7.3. Denote by Vol2 the Lebesgue measure on R2. For W ⊂ R2 and a function f : W →
R2, introduce the mapping R2 → R2,

f[W ](x) =

{
−∞ if x /∈W
f(x) otherwise,

so that the intersections of level sets of f with W are the level sets of f[W ].

Theorem 50. Let W = [0, a]× [0, b] for some a, b > 0, f be a C 1 real random field on R2

with locally Lipschitz partial derivatives ∂1f, ∂2f, λ ∈ R, and let F = {x ∈ W : f(x) > λ}.
Assume furthermore that the following conditions are satisfied:

(i) For some κ > 0, for x ∈ R2, the random vector (f(x), ∂1f(x), ∂2f(x)) has a density
bounded by κ from above on R3.

(ii) There is p > 6 such that

E[Lip(f,W )p] <∞, E[Lip(∂if,W )p] <∞, i = 1, 2,

where Lip(g,W ) denotes the Lipschitz constant of a vector-valued function g on W .

Then E[#G (F)] <∞,E[#G (Fc)] <∞, and

E[χ(F)] = lim
ε→0

∑
x∈εZ2

[P(δ̄ε(x, f[W ], λ))−P(δ̄−ε(x,−f[W ],−λ))] (7.1)

= lim
ε→0

ε−2

∫
R2

[
P(δ̄ε(x, f[W ], λ))−P(δ̄−ε(x,−f[W ],−λ))

]
dx. (7.2)

If f is furthermore stationary, we have

E[χ(F)] = χ(f, λ)Vol2(W ) + Per(f, λ)Per(W ) + Vol2(f, λ)χ(W )

where the volumic Euler characteristic, perimeter and volume χ, Per,Vol2 are defined in
Theorem 58, they only depend on the behaviour of f around the origin.

The right hand side of (7.2) is related to the bicovariogram of the set F, defined by

δx,y0 (F) = Vol2(F ∩ (F + x)c ∩ (F + y)c), x, y ∈ R2, (7.3)



7.1. INTRODUCTION 85

in that (7.2) can be reformulated as

Eχ(F) = lim
ε→0

ε−2(E[δ−εu1,−εu2

0 (F)]−E[δεu1,εu2

0 (Fc)]).

This approach highlights the fact that under suitable conditions, the mean Euler charac-
teristic of random level sets is linear in the field’s third order marginal.

We also give in Theorem 52 a bound on the number of connected components of the
excursion of f, valid in any dimension, which is finer than just bounding by the number of
critical points; we could not locate an equivalent result in the literature. This topological
estimate is interesting in its own and also applies uniformly to the number of components
of 2D-pixel approximations of the excursions of f. We therefore use it here as a majoring
bound in the application of Lebesgue’s theorem to obtain (7.1)-(7.2).

It is likely that the results concerning the planar Euler characteristic could be extended
to higher dimensions. See for instance [Sva14], that paves the way to an extension of
the results of [Lac18b] to random fields on spaces with arbitrary dimension. Also, the
uniform bounded density hypothesis is relaxed and allows for the density of the (d+ 1)-
tuple (f(x), ∂1f(x), . . . , ∂df(x)) to be arbitrarily large in the neighbourhood of (λ, 0, . . . , 0).
Theorem 56 features a result where f is defined on the whole space and the level sets are
observed through a bounded windowW , as is typically the case for level sets of non-trivial
stationary fields, but the intersection with ∂W requires additional notation and care. See
Theorem 58 for a result tailored to deal with excursions of stationary fields.

Theorem 60 features the case where f is a Gaussian field assuming only C 1,1 regularity
(classical literature about random excursions require C 2 Morse fields in dimension d > 2).
Under the additional hypothesis that f is stationary and isotropic, we retrieve in Theorem
62 the classical results of [AT07].

Let us explore other consequences of our results. Let h : R→ R be a C 1 test function
with compact support, and F as in Theorem 7.1. Using the results of the current chapter,
it is shown in the follow-up article [Lac18a] that for any deterministic C 2 Morse function
f on R2,∫
R
χ(F)h(λ)dλ = −

2∑
i=1

∫
W

1{∇f(x)∈Qi}[h
′(f(x))∂if(x)2 + h(f(x))∂iif(x)]dx+ boundary terms

(7.4)

where

Q1 = {(x, y) ∈ R2 : y < x < 0}, Q2 = {(x, y) ∈ R2 : x < y < 0},

yielding applications for instance to shot-noise processes. In the context of random func-
tions, no marginal density hypothesis is required to take the expectation, at the contrary
of analogous results, including those from the current chapter. Biermé & Desolneux
[BD16a, Section 4.1] later gave another interpretation of (7.4), showing that if it is ex-
tended to a random isotropic stationary field which gradient does not vanish a.e. a.s., it
can be rewritten as a simpler expression, after appropriate integration by parts, namely

E

[∫
U

χ({f > λ};U)h(λ)dλ

]
= Vol2(U)E

[
h(f(0))[−∂11f(0) + 4∂12f(0)∂1f(0)∂2f(0)‖∇f(0)‖−2]

]
,

where U is an appropriate open set, and χ({f > λ;U}) is the total curvature of the level
set {f > λ} within U , generalizing the Euler characteristic. They obtained this result by
totally different means, via an approach involving Gauss-Bonnet theorem, without any
requirement on f apart from being C 2.
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7.2 Topological approximation

Let f be a function of class C 1 over some window W ⊂ Rd, and λ ∈ R. Define

F := Fλ(f) = {x ∈W : f(x) > λ}, Fλ+(f) = {x ∈W : f(x) > λ}.

Remark that Fλ+(f) = (F−λ(−f))c. If we assume that ∇f does not vanish on f−1({λ}),
then ∂Fλ(f) = ∂Fλ+(f) = f−1({λ}), and this set is furthermore Lebesgue-negligible, as
a (d− 1)-dimensional manifold.

According to [Fed59, p. 4.20], ∂Fλ(f) is regular in the sense that its boundary is
C 1 with Lipschitz normal, if ∇f is locally Lipschitz and does not vanish on ∂Fλ(f).
This condition is necessary to prevent F from having locally infinitely many connected
components, which would make Euler characteristic not properly defined in dimension 2,
see [Lac18b, Remark 2.11]. We call C 1,1 function a differentiable function whose gradient
is a locally Lipschitz mapping. Those functions have been mainly used in optimization
problems, and as solutions of some PDEs. They can also be characterized as the functions
which are locally semiconvex and semiconcave, see [CS04].

The results of [Lac18b] also yield that the Lipschitzness of ∇f is sufficient for the
digital approximation of χ({f > λ}) to be valid. It seems therefore that the C 1,1 as-
sumption is the minimal one ensuring the Euler characteristic to be computable in this
fashion.

7.2.1 Observation window

An aim of the present chapter is to advocate the power of variographic tools for computing
intrinsic volumes of random fields excursions. Since many applications are concerned
with stationary random fields on the whole plane, we have to study the intersection of
excursions with bounded windows, and assess the quality of the approximation.

To this end, call rectangle of Rd any set W = I1 × · · · × Id where the Ik are possibly
infinite closed intervals of R with non-empty interiors, and let corners(W ), which number
is between 0 and 2d, be the points having extremities of the Ii as coordinates. Then
call polyrectangle a finite union W = ∪iWi where each Wi is a rectangle, and for i 6=
j, corners(Wi) ∩ corners(Wj) = ∅. Call Wd the class of polyrectangles.

For W ∈ Wd and x ∈ W , let Ix(W ) = {1, . . . , d} if x ∈ int(W ), and otherwise let
Ix(W ) ⊂ {1, . . . , d} be the set of indices i such that x+ εui ∈ ∂W and x− εui ∈ ∂W for
arbitrarily small ε > 0, where ui is the i-th canonical vector of Rd. Say then that x is a
k-dimensional point ofW if |Ix(W )| = k. Denote by ∂kW the set of k-dimensional points,
and call k−dimensional facets the connected components of ∂kW . Remark that Ix(W ) is
constant over a given facet. Note that ∂dW = int(W ) and ∂W = ∪d−1

k=0∂kW . We extend
the notation corners(W ) = ∂0W. An alternative definition is that a subset F ⊂ W is a
facet of W if it is a maximal relatively open subset of an affine subspace of Rd.

Definition 51. LetW ∈ Wd, and f : W → R be of class C 1,1. Say that f is regular within
W at some level λ ∈ R if for 0 6 k 6 d, {x ∈ ∂kW : f(x) = λ, ∂if(x) = 0, i ∈ Ix(W )} = ∅,
or equivalently if for every k-dimensional facet G of W , the k-dimensional gradient of the
restriction of f to G does not vanish on f−1({λ}) ∩G.

For such a function f in dimension 2, it is shown in the previous chapter that the
Euler characteristic of its excursion set F = Fλ(f)∩W can be expressed by means of its
bicovariograms, defined in (7.3): for ε > 0 sufficiently small

χ(F ) = ε−2[δ−εu1,−εu2

0 (F )− δεu1,εu2

0 (F c)]. (7.5)
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The proof is based on the Gauss approximation of F :

F ε =
⋃

x∈εZ2∩F

(
x+ ε[−1/2, 1/2)2

)
.

According to [Lac18b, Theorem 2.7], for ε sufficiently small,

χ(F ) = χ(F ε)

=
∑
x∈εZ2

(δε(x, f[W ], λ)− δ−ε(x,−f[W ],−λ))

= ε−2

∫
R2

(δε(x, f[W ], λ)− δ−ε(x,−f[W ],−λ))dx.

If f is a random field, the difficulty to pass the result to expectations is to majorize the
right hand side uniformly in ε by an integrable quantity, and this goes through bounding
the number of connected components of F and its approximation F ε. This is the object
of the next section.

7.2.2 Topological estimates
The next result, valid in dimension d > 1, does not concern directly the Euler charac-
teristic. Its purpose is to bound the number of connected components of Fλ(f) ∩ W
by an expression depending on f and its partial derivatives. It turns out that a similar
bound holds for the excursion approximation (Fλ(f) ∩W )ε in dimension 2, uniformly in
ε, enabling the application of Lebesgue’s theorem to the point-wise convergence (7.5).

Traditionally, see for instance [EL16, Prop. 1.3], the number of connected components
of the excursion set, or its Euler characteristic, is bounded by using the number of critical
points, or by the number of points on the level set where f ’s gradient points towards
a predetermined direction. Here, we use another method based on the idea that in a
small connected component, a critical point is necessarily close to the boundary, where
f − λ vanishes. It yields the expression (7.6) as a bound on the number of connected
components. It also allows in Section 7.3, devoted to random fields, to relax the usual
uniform density assumption on the marginals of the (d + 1)-tuple (f, ∂if, i = 1, . . . , d),
leaving the possibility that the density is unbounded around (λ, 0, . . . , 0).

Denote by Lip(g;A) ∈ R+ ∪ {∞}, or just Lip(g), the Lipschitz constant of a mapping
g going from a metric space A to another metric space. LetW ∈ Wd, g : W → R, C 1 with
Lipschitz derivatives. Denote by Hkd the k-dimensional Hausdorff measure in Rd. Define
the possibly infinite quantity, for 1 6 k 6 d,

Ik(g;W ) : = max(Lip(g),Lip(∂ig), 1 6 i 6 d)k
∫
∂kW

Hkd(dx)

max (|g(x)|, |∂ig(x)|, i ∈ Ix(W ))
k
,

and I0(g;W ) := #corners(W ). Put Ik(g;W ) = 0 if Lip(g) = 0 and g vanishes, 1 6 k 6 d.

Theorem 52. Let W ∈ Wd, and f : W → R be a C 1,1 function. Let F = Fλ(f) or
F = Fλ+(f) for some λ ∈ R. Assume that f is regular at level λ in W .

(i) For d > 1,

#G (F ∩W ) 6
d∑
k=0

2kκ−1
k Ik(f − λ;W ), (7.6)

where κk is the volume of the k-dimensional unit ball.
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(ii) If d = 2,

#G ((F ∩W )ε) 6 C

2∑
k=0

Ik(f − λ;W ) (7.7)

for some C > 0 not depending on f, λ, or ε.

The proof is given in [Lac18a].

Remark 53. Theorem 56 gives conditions on the marginal densities of a bivariate random
field ensuring that the term on the right hand side has finite expectation.

Remark 54. Similar results hold if partial derivatives of f are only assumed to be Hölder-
continuous, i.e. if there is δ > 0 and Hi > 0, i = 1, . . . , d, such that ‖∂if(x)− ∂if(y)‖ 6
Hi‖x−y‖δ for x, y such that [x, y] ⊂W . Namely, we have to change constants and replace
the exponent k in the max by an exponent kδ. We do not treat such cases here because,
as noted at the beginning of Section 7.2, if the partial derivatives are not Lipschitz,
the upper level set is not regular enough to compute the Euler characteristic from the
bicovariogram, but the proof would be similar to the C 1,1 case.

Remark 55. Calling B the right hand term of (7.7) and noticing that Fλ+(f)c is an
upper level set of −f , an easy reasoning yields (see [Lac18b, Remark 2.13])

|χ((Fλ(f) ∩W )ε)| 6 2B.

7.3 Mean Euler characteristic of random excursions

We call here C 1 random field over a set Ω ⊆ Rd a separable random field (f(x);x ∈ Ω),
such that in each point x ∈ Ω, the limits

∂if(x) := lim
s→0

f(x+ sui)− f(x)

s
, i = 1, 2,

exist a.s., and the fields (∂if(x), x ∈ Ω), i = 1, . . . , d, are a.s. separable with continuous
sample paths. See [Adl81; AT07] for a discussion on the regularity properties of random
fields. Say that the random field is C 1,1 if the partial derivatives are a.s. locally Lipschitz.

Many sets of conditions allowing to take the expectation in (7.5) can be derived from
Theorem 52. We give below a compromise between optimality and compactness.

Theorem 56. Let W ∈ Wd bounded, and let f be a C 1,1 random field on W , λ ∈
R,F = {x ∈W : f(x) > λ}. Assume that the following conditions are satisfied:

(i) For some κ > 0, α > 1, for 1 6 k 6 d, x ∈ ∂kW, I ⊂ Ik, the random (k + 1)-tuple
(f(x)− λ, ∂if(x), i ∈ I) satisfies

P(|f(x)− λ| 6 ε, |∂if(x)| 6 ε, i ∈ I) 6 κεαk, ε > 0,

(ii) for some p > dα(α− 1)−1,

E[Lip(f)p] <∞, E[Lip(∂if)
p] <∞, i = 1, . . . , d.

Then E[#G (F)] < ∞,E[#G (Fc)] < ∞ and f is a.s. regular within W at level λ. In the
context d = 2, (7.1)-(7.2) give the mean Euler characteristic.
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Remark 57. In the case where the Lip(f),Lip(∂if), i = 1, . . . , d have a finite moment of
order > d(d + 1), the hypotheses are satisfied if for instance (f(x) − λ, ∂if(x), 1 6 i 6 d)
has a uniformly bounded multivariate density, in which case α = (d+ 1)/d is suitable. If
α < (d+ 1)/d, higher moments for the Lipschitz constants are required.

We give an explicit expression in the case where f is stationary. Boundary terms
involve the perimeter of F.

Theorem 58. Let f be a C 1,1 stationary random field on R2, λ ∈ R, W ∈ W2 bounded
F = Fλ(f). Assume that (f(0), ∂1f(0), ∂2f(0)) has a bounded density, and that there is
p > 6 such that

E
[
Lip(f;W )p

]
<∞, E

[
Lip(∂if;W )p

]
<∞, i = 1, 2.

Then the following limits exist:

χ(f, λ) := lim
ε→0

ε−2
[
P(δ̄ε(0, f, λ))−P(δ̄−ε(0,−f,−λ))

]
,

Perui(f, λ) := lim
ε→0

ε−1P(f(0) > λ, f(εui) < λ), i = 1, 2,

Vol2(f, λ) := P(f(0) > λ),

and we have, with Per∞ = Peru1
+ Peru2

,

E[χ(F ∩W )] = Vol2(W )χ(f, λ) +
1

4
(Peru2

(W )Peru1
(f, λ) + Peru1

(W )Peru2
(f, λ))

+ χ(W )Vol2(f, λ) (7.8)

E[Per∞(F ∩W )] = Vol2(W )Per∞(f, λ) + Per∞(W )Vol2(f, λ) (7.9)

E[Vol2(F ∩W )] = Vol2(W )Vol2(f, λ). (7.10)

7.4 Gaussian level sets

Let (f(x), x ∈ W ) be a centred Gaussian field on some W ∈ Wd. Let the covariance
function be defined by

σ(x, y) = E[f(x)f(y)], x, y ∈W.

Say that some real function h satisfies the Dudley condition on D ⊂W if for some α > 0,
|h(x)− h(y)| 6 | log(‖x− y‖)|−1−α for x, y ∈ D. We will make the following assumption
on σ:

Assumption 59. Assume that x ∈W 7→ ∂2σ(x, x)/∂xi∂yi exists and satisfies the Dudley
condition for i = 1, . . . , d, that the partial derivatives ∂4σ(x, x)/∂xi∂xj∂yi∂yj , x ∈ W ,
1 6 i, j 6 d, exist and that for some finite partition {Dk} of W they satisfy the Dudley
condition over each Dk.

Theorem 60. Let W ∈ Wd bounded. Assume that σ satisfies Assumption 59 and that
for x ∈ W , (f(x), ∂if(x), i = 1, . . . , d) is non-degenerate. Then for any λ ∈ R, F = Fλ(f)
satisfies the conclusions of Theorem 56.

Example 61. Random fields that are C 1,1 and not C 2 naturally arise in the context of
smooth interpolation. Let E = {xi; i ∈ Z} be a countable set of points of R, such that
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xi < xi+1, i ∈ Z. Let (W (x), x ∈ E) be a random field on E, and Ax, Bx, x ∈ E be
random variables on the same probability space. Define

g(y) =
∑
i∈Z

1{y∈[xi,xi+1)}

[
Axi

(
y − xi

xi+1 − xi

)2

+Bxi
y − xi

xi+1 − xi
+W (xi)

]
.

Straightforward computations yield that, with ∆x = W (xi+2)− 2W (xi+1) +W (xi), if

• Axi+1
= ∆xi −Axi , i ∈ Z,

• Bxi = W (xi+1)−W (xi)−Ax, i ∈ Z,

then with probability 1, g is a C 1,1 and in general not twice differentiable field on
(limi→−∞ xi, limi→∞ xi) such that g(xi) = W (xi), i ∈ Z. If for some i0 ∈ Z, (Axi0 ;W (xi), i ∈
Z) is a Gaussian process, g is furthermore a Gaussian process also.

Given a random field (g(k); k ∈ Zd), it should be possible to carry out a similar
approximation scheme in Rd by defining g =

∑
k∈Zd 1{x∈(k+[0,1)d)}gk where gk is a bicubic

polynomial interpolation of Gaussian variables W (j), j ∈ (k + {0, 1}d) on k + [0, 1)d.
A possible follow-up of this work could be to investigate the asymptotic properties of
topological characteristics of g when it is the smooth interpolation of an irregular Gaussian
field as the grid mesh converges to 0.

Let us give the mean Euler characteristic in dimension 2 under the simplifying as-
sumptions that the law of f is invariant under translations and rotations of R2. This
implies for instance that in every x ∈ R2, f(x), ∂1f(x) and ∂2f(x) are independent, see
for instance [AT07] Section 5.6 and (5.7.3). Assumption 59 is simpler to state in this
context: x 7→ ∂2σ(x, x)/∂xi∂yi and x 7→ ∂4σ(x, x)/∂xi∂xj∂yi∂yj should exist and satisfy
Dudley’s condition in 0. It actually yields that f has C 2 sample paths, and it is not clear
whether this is equivalent to C 1,1 regularity in this framework. For this reason we state
the result with the abstract conditions of Theorem 58 .

Theorem 62. Let f = (f(x);x ∈ R2) be a C 1,1 stationary isotropic centred Gaussian
field on R2 with E[Lip(∂if)

p] < ∞, for some p > 6. Let λ ∈ R, F = {x : f(x) > λ}, and
let W ∈ W2 bounded. Let µ = E[∂1f(0)2], and Φ(λ) = 1√

2π

∫∞
λ

exp(−t2/2)dt. Then

E[Vol2(F ∩W )] = Vol2(W )Φ(λ), (7.11)

E[Per∞(F ∩W )] = Vol2(W )2

√
µ

π
exp(−λ2/2) + Per∞(W )Φ(λ), (7.12)

E[χ(F ∩W )] =

(
Vol2(W )

µλ

(2π)3/2
+ Per∞(W )

√
µ

4π

)
e−λ

2/2 +
1√
2π

Φ(λ)χ(W ).

(7.13)

Remark 63. If W is a square, the relation (7.13) coincides with [AT07, (11.7.14)].



Chapter 8

Realisability as the positive
extension of linear operators

The realisability problem is an old general inverse problem about marginals: given some
set of parameters ν, is there a random process X which set of marginal parameters is
indeed ν? An elementary example is the following: given a, b ∈ R, is there a random
variable X for which a and b are the two first moments? The answer is yes iff a2 6 b.
Slightly more complicated, a matrix C of size n×n is the covariance matrix of a random
vector of size n iff it is symmetric semi-definite positive. Similarly, a function σ(x, y) on
Rd is the covariance of a random field if it is a semi-definite positive function. In this
chapter, we are interested in the question whether σ(x, y) is the correlation function of a
point process, or if it is the covariance of a random set, which can be seen a {0, 1}-valued
random process.

In general, giving tractable necessary and sufficient condition is out of reach. One
of the aims of this section is to uncouple the condition in a combinatorial condition and
a regularity condition. To illustrate this fact, let us give the example of a continuous
random field on Rd. Is a given function σ(x, y), x, y ∈ Rd, the covariance of a continuous
random field? The answer is yes if for any finite set {x1, . . . , xq} ⊂ Rd and scalar numbers
h1, . . . , hq, ∑

i

σ(xi, xj)hihj > 0

and if the Dudley criterion is respected: for some C,α, η > 0,

|σ(x, x) + σ(y, y)− 2σ(x, y)| 6 C| log ‖x− y‖|−1−α, x, y ∈ Rd, ‖x− y‖ < η.

The latter condition is not necessary though, but is enough to provide the existence of a
(Gaussian) field satisfying these conditions. The problem of checking wether σ is “real-
izable” has been split in two: the semi-positivity, which is of algebraic, or combinatorial
nature, and Dudley’s criterion, which is about the regularity of σ, and essentially ori-
ginates from the desired regularity of the field. The general answer we give in the first
chapter is a similar abstract uncoupling of the realisability problem.

We will see that such problems are well-posed in terms of the existence of positive
extensions of a linear operator on a functional space. It will be applied to give an answer
to the realisability problem in the context of point processes in the first chapter. In the
second chapter, the same ideas will be used to give answers in the context of random sets.

The remainder of the chapter addresses the existence issue for a rather general ran-
dom element whose distribution is only partially specified. The technique relies on the

91
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existence of a positive extension for linear functionals accompanied by additional condi-
tions that ensure the regularity of the extension needed for interpreting it as a probability
measure. It is shown in which case the extension can be chosen to possess some invariance
properties.

The results are applied to obtain existence results for point processes with given
correlation measure and random closed sets with given two-point covering function (in
the next chapter). The regularity conditions ensure that the obtained point processes are
indeed locally finite and random sets have regular realisations.

8.1 Introduction

Defining the distribution of a random element ξ in a topological space S is equivalent to
specializing the expected values for all bounded continuous functions g(ξ). These expec-
ted values define a linear functional Φ(g) = Eg(ξ) on the space of bounded continuous
functions g : S 7→ R. It is well known that a functional Φ indeed corresponds to a ran-
dom element if and only if Φ is positive (i.e. Φ(g) ≥ 0 if g is non-negative) and upper
semicontinuous (i.e. Φ(gn) ↓ 0 if gn ↓ 0), see e.g. [Whi92].

Below we consider the case of functional Φ defined only on some functions on S and
address the realisability of Φ, i.e. the mere existence of a random element ξ such that
Φ(g) = Eg(ξ) for g from the chosen family G of functions. The uniqueness is not on the
agenda, since typically the family G will not suffice to uniquely specify the distribution
of ξ. A classical example of this setting is the existence of a probability distribution with
given marginals, see [Kel64]. The present chapter focuses on some geometric instances of
the problem. We will see that in most cases the answer to the existence problem consists
of the two main steps.

1. (Positivity) Checking the positivity condition on Φ — in most cases this requires
checking a system of inequalities, which is a serious (but unavoidable) computational
burden.

2. (Regularity) Ensuring that the extended functional is regular (namely, upper semi-
continuous) and so defines a σ-additive measure.

The first step ensures that it is possible to extend functional Φ positively from a certain
family of functions to a wider family. In this work we put the emphasis on the latter step
— checking the regularity condition, leaving aside the computational difficulties arising
from validating the positivity assumption.

The use of positive extension techniques (that go back to L.V. Kantorovitch) in the
framework of stochastic geometry was pioneered by T. Kuna, J. Lebowitz and E.R. Speer
[KLS11] in application to point processes, which greatly inspired the current work. In
this chapter we establish the general nature of an idea proposed in [KLS11] and show how
it leads to various further realisability results. The new idea is to introduce an additional
function, what we call the regularity modulus, and to formulate sufficient and necessary
conditions in terms of a positive extension of a functional onto the linear space containing
the regularity modulus and requiring only a priori integrability of the regularity modulus.

We concentrate on two basic examples of the realisability problem: the existence of
point processes with given correlation (factorial moment) measure and the existence of
a random closed set with given two-point coverage probabilities or contact distribution
functions. The introduction to the realisability issue for point processes is available in
several papers by T. Kuna, J. Lebowitz and E.R. Speer [KLS07; KLS11], see also Section
8.3 of this chapter. The realisability problem for random closed sets has been widely
studied in physics and material science literature, see [JST07; Mar98; Tor99; Tor06;
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TS82] and in particular the comprehensive monograph by S. Torquato [Tor02] and a
recent survey by J. Quintanilla [Qui08]. If X is a random closed set in a locally compact
Hausdorff second countable space X, its one-point covering functions is defined by

px = P{x ∈ X}, x ∈ X .

It is easy to characterize all one-point covering functions of random closed sets as follows.

Theorem 64. A function px, x ∈ X, with values in [0, 1] is the one-point covering
function of a random closed set if and only if p is upper semicontinuous.

The upper-semi continuity of the one-point covering function of a random closed set
ξ is a straightforward consequence of the upper semicontinuity property of the capacity
functional of a random closed set, see [Mol05, Sec. 1.1.2]. Conversely, the function p from
the theorem is realized (for instance) as the one-point covering function of the random
set ξ = {x : px ≥ v} where v is a uniformly distributed variable (the details are left to
the reader).

It is considerably more complicated to characterize two-point covering functions

px,y = P{x, y ∈ X} , x, y ∈ X .

In view of applications to modeling of random media it is often assumed that X is a
stationary set in Rd, so that the one-point covering function is constant and the two-
point covering function px,y depends only on x − y. Since a random closed set can be
considered as an upper semicontinuous indicator function, the realisability problem for
the two-point covering function can be rephrased as follows.

Characterize covariance functions of (stationary) upper semicontinuous ran-
dom functions with values in {0, 1}.

These covariances are obviously a subfamily of positive semi-definite functions. Without
the upper semicontinuity requirement, this problem, of combinatorial nature, was solved
by B. McMillan [McM55] and L. Shepp [She63; She67] using the extension argument from
[Kel64]. More exactly, they normalized indicators by letting them take values +1 or −1
and assumed that the mean is zero. Their result does not rely on the topological structure
of the underlying space and so does not necessarily lead to an upper semicontinuous
indicator function.

Example 65. Let px,y = 1
4 and let px = 1

2 for all x, y ∈ R. While this two-point covering
function corresponds, e.g., to the indicator field with independent values, it cannot be
obtained as the two-point covering function of a random closed set.

Even leaving aside the upper semicontinuity property, the McMillan–Shepp condition
involves a family of corner-positive matrices, which is poorly understood (see [DL97]).
As a result, its practical use to check the realisability for random media is rather lim-
ited. A number of authors have attempted to come up with simpler (but only necessary)
conditions, see, e.g., [JST07; Mat93; Qui08; Tor06]. Another set of conditions for joint
distributions of binary random variables is formulated in [SI02] in terms of the corres-
ponding copulas.

The realisability problem can be also posed for point processes in terms of their mo-
ment measures. In case of moment measures of arbitrary order it has been solved by
A. Lenard [len75a; len75b]. The case of moment measures up to the second order has
been studied by T. Kuna, J. Lebowitz and E.R. Speer [KLS07], whose recent chapter
[KLS11] contains (among other results) a complete solution of this realisability problem
for point processes with finite third-order moments and hard-core type conditions with
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fixed exclusion distance. The results of [KLS11] can be extended to higher order moment
measures, as was explicitly indicated there. Again, the positivity condition of [KLS11] is
extremely difficult to verify, even more complicated than the original condition for point
processes because of new polynomial functionals involved in the positivity condition.

The chapter is organised as follows. Section 8.2 presents a series of general results on
regular extensions and also invariant extensions (relevant for the existence of stationary
random elements). These results form the theoretical backbone of our study, and are new
even in the abstract setting of extending general positive linear functionals.

Section 8.3 presents a number of realisability conditions for correlation measures of
point processes that considerably extend the results of [KLS11] by relaxing the moment
and hardcore conditions. One of our most important results is Theorem 78 that shows
how to split the positivity and regularity conditions, so that the latter can be efficiently
checked. The importance of the packing number in relation to realisability conditions for
hard-core point processes is also explained.

8.2 Extending positive functionals

Fundamental results about the extension of positive operators form the heart of our
main results, and are necessary to understand the machinery of the proofs. Nevertheless,
the results of the subsequent sections can be understood without Section 8.2, with the
exception of Definition 70.

8.2.1 General extension theorems

Consider a vector lattice E , i.e. a linear space with a partial order and such that for any
v1, v2 ∈ E , there is an element v1 ∨ v2 ∈ E , called maximum of v1 and v2, larger to both
v1 and v2 and such that any other element larger to both is also larger than v1 ∨ v2. The
absolute value |v| of v is defined as the sum of v ∨ 0 and (−v) ∨ 0.

Let G be a vector subspace of E , which is not necessarily a lattice itself, i.e. G may be
not closed with respect to the maximum operation. We say that G majorises E if each
v ∈ E satisfies |v| ≤ g for some g ∈ G . A real-valued functional Φ defined on E (resp. G )
is said to be positive if Φ(v) ≥ 0 whenever v ≥ 0 and v ∈ E (resp. v ∈ G ). A functional
defined on E is said to be an extension of Φ : G 7→ R if it coincides with Φ on G . The
extended Φ is always denoted by the same letter. The following result about extension
of positive functionals goes back to L.V. Kantorovich.

Theorem 66 (see [AB06], Th. 8.12 and [Vul67], Th. X.3.1). Assume that G is a ma-
jorising vector subspace of a vector lattice E . Then each positive linear functional on G
admits a positive extension on the whole E .

If G is a lattice itself, then it is possible to gain much more control over the extension
of Φ, e.g. a continuous functional admits a continuous extension, see [Vul67, Sec. X.5].
On the contrary, very little is known about regularity properties of the extension if G is
not a lattice.

In the following we assume that G and E are families of functions on a certain space S.
If G contains constant functions, the positivity of Φ over G can be equivalently formulated
as

Φ(g) ≥ inf
x∈S

g(X). (8.1)

This equivalence is a particular case of the following result for χ = 0 (replace g with −g
in (8.2)).
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Proposition 67. Assume that a vector space G contains constant functions and denote
by G \ R the family of non-constant functions from G . If χ is any non-negative function
on S, then a linear functional Φ on G admits a positive extension on G + Rχ satisfying
Φ(χ) = r if and only if

r = sup
g∈G , g≤χ

Φ(g) = sup
g∈G\R

inf
x∈S

[χ(x)− g(x)] + Φ(g) <∞ . (8.2)

Proof. Since every element of G can be written c + g with g ∈ G \ R and c ∈ R, the
left-hand side of (8.2) equals

r = sup
g∈G\R

sup
c∈R: c+g≤χ

c+ Φ(g) = sup
g∈G

cg + Φ(g) ,

where cg = infX∈S(χ−g)(x) is the largest c such that c+g ≤ χ, which yields the equality
in (8.2).

The necessity of (8.2) is straightforward because r ≤ Φ(χ) < ∞. For the sufficiency,
assume that (8.2) holds. The proof consists in checking that assigning the value Φ(χ) = r
yields a positive extension on G +Rχ. Let us first prove that Φ is positive on G . If some
g ≤ 0 satisfies Φ(g) > 0, then Φ(tg) ↑ ∞ as t → ∞ whereas tg ≤ χ, which contradicts
(8.2).

Let g+λχ ≥ 0 for λ 6= 0 and g ∈ G . If λ > 0, then −λ−1g ≤ χ, whence Φ(−λ−1g) ≤ r
and Φ(g + λχ) ≥ −λr + λΦ(χ) = 0. If λ < 0, −λ−1g ≥ χ whence −λ−1g is larger than
any g′ ≤ χ, and

Φ(−λ−1g) ≥ sup
g′∈G ,g′≤χ

Φ(g′) = r

by monotonicity of Φ on G . Hence Φ(g + λχ) ≥ −λr + λΦ(χ) = 0.

The advantage of the latter condition in (8.2) consists in the explicit reference to the
space S where random elements lie instead of checking the inequality g ≤ χ.

8.2.2 Regularity conditions and distributions of random elements
Let E be a certain family of functions v : S 7→ R defined on a space S with lattice
operation being the pointwise maximum and the corresponding partial order.

Theorem 68 (Daniell, see Sec. 4.5 [dud02] and Th. 14.1 [Kön97]). Let a vector lattice
E consist of real-valued functions on S and let E contain constants. If Φ is a positive
functional on E such that Φ(vn) ↓ 0 for each sequence vn ↓ 0 and Φ(1) = 1, then there
exists a unique random element ξ in S, measurable with respect to the σ-algebra generated
by all functions from E , such that Φ(v) = Ev(ξ) for all v ∈ E .

In view of the positivity of Φ, the condition imposed on Φ is equivalent to its upper
semicontinuity on E . In this chapter, we start with a functional Φ defined on a vector sub-
space G ⊂ E and discuss the existence of a random element ξ ∈ S such that Φ(g) = Eg(ξ)
for all g ∈ G . In this case Φ is said to be realisable as a probability distribution on S.

Assumption 69. The vector space G of functions on S contains constants and, for each
g1, g2 ∈ G , there exists a g ∈ G such that (g1 ∨ g2) ≤ g.

From now on assume that S is a completely regular topological space, i.e. each closed
set and each singleton disjoint from it can be separated by a continuous function.

Definition 70. Given a vector space G of functions on S, a regularity modulus on S is a
lower semicontinuous function χ : S 7→ [0,∞] such that

Hg = {x ∈ S : χ(x) ≤ g(x)} (8.3)
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is relatively compact for each g ∈ G (if all g ∈ G are bounded, χ is a regularity modulus
if and only if it has compact level sets).

Examples of regularity moduli are given in Sections 8.3 and Chapter 9. A measurable
function v : S 7→ R is said to be χ-regular if v is continuous on Hg for each g in G .
Each continuous function is trivially χ-regular. The proof of the following central result
is based on the ideas from the proof of [KLS11, Th. 3.14]. It should be noted that our
result entails not only the realisability, but also provides a bound for the expected value
of the regularity modulus.

Theorem 71. Consider a vector space G of functions on S satisfying Assumption 69
and such that each g from G is χ-regular for a regularity modulus χ. Let Φ be a linear
functional on G with Φ(1) = 1. Then, for any given r ≥ 0, there exists a Borel random
element ξ in S such that {

Eg(ξ) = Φ(g) for all g ∈ G ,

Eχ(ξ) ≤ r,
(8.4)

if and only if
sup

g∈G , g≤χ
Φ(g) ≤ r . (8.5)

Proof. Condition (8.5) is necessary because g ≤ χ implies Φ(g) = Eg(ξ) ≤ Eχ(ξ) ≤ r.
Sufficiency. Let E be the family of all χ-regular functions v that satisfy v ≤ g for

some g ∈ G . Each function v ∈ E is Borel measurable. Note that E contains all bounded
continuous functions that generate the Baire σ-algebra on S being in general a sub-σ-
algebra of the Borel one. For each v1, v2 ∈ E , the function v1 ∨ v2 is χ-regular and
is majorised by g1 ∨ g2, where g1, g2 ∈ G majorise v1 and v2 respectively. In view of
Assumption 69, E is a lattice.

Without loss of generality assume that the supremum in (8.5) equals r. By Proposi-
tion 67, Φ is positive on G and can be positively extended onto G + Rχ with Φ(χ) = r,
and further on to E + Rχ by Theorem 66. It remains to prove that the obtained exten-
sion satisfies conditions of Theorem 68. For that, we use an argument similar to that
of [KLS11]. First restrict the obtained functional Φ onto E . Assume that χ is strictly
positive. Consider a sequence {vn, n ≥ 1} ⊂ E such that vn ↓ 0. For each n, let gn be a
function of G such that vn ≤ gn. Take ε > 0. Then Kn = {x : vn(x) ≥ εχ(x)} is a subset
of relatively compact Hgn/ε, since χ is a regularity modulus. Since vn is continuous on
Hgn/ε, the set Kn is closed and therefore compact. The pointwise convergence vn ↓ 0
yields that ∩nKn = ∅ (recall that χ is strictly positive). Since {Kn} is a decreasing
sequence of compact sets, Kn0 = ∅ for some n0, whence vn(x) < εχ(x) for sufficiently
large n. The positivity of Φ on E + Rχ implies Φ(vn) ≤ εΦ(χ) = εr, whence Φ(vn) ↓ 0.
Theorem 68 yields the existence of a random element ξ in S such that Φ(v) = Ev(ξ) for
all v ∈ E .

Since χ is lower semicontinuous and S is completely regular, it can be pointwisely
approximated from below by a sequence {vn} of non-negative continuous functions, see
[Bou66, Ch. 9]. Then ṽn = min(n, vn) belongs to E and also approximates χ from below,
so that Eṽn(ξ) = Φ(ṽn) ≤ Φ(χ) = r, while the monotone convergence theorem yields

Eχ(ξ) = lim
n→∞

Eṽn(ξ) ≤ r .

If χ is not strictly positive, it suffices to apply the above argument to χ′ = 1 +χ and use
the linearity of Φ.
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Condition (8.5), equivalent to (8.2), is expressed solely in terms of the values taken
by Φ on G , and therefore yields a self-contained solution of the realisability problem.
It is not easy to check in general, but if χ can be approximated by functions χn ∈ G ,
n ≥ 1, then it is possible to “split” (8.5) into the positivity condition on Φ and the
uniform boundedness of Φ(χn), n ≥ 1. This idea is used successfully in several different
frameworks, which justify the abstract setting of Theorem 71: in Section 8.3 for point
processes (see Theorem 76), in Chapter9 for random closed sets (see Theorem 101).

The realisability problem is particularly simple if S is compact and G consists of
continuous functions. Then, for identically vanishing χ, Theorem 71 yields the following
result, which is similar to the Riesz–Markov theorem, see [Kön97].

Corollary 72. Let S be a compact space with its Borel σ-algebra. Consider a vector
space G containing constants such that each g ∈ G is continuous and a map Φ : G 7→ R
such that Φ(1) = 1. Then there exists a random element ξ in S such that Eg(ξ) = Φ(g)
for all g ∈ G if and only if Φ is a linear positive functional on G .

8.2.3 Passing to the limit
The following result shows that the family of all random elements that realise Φ in the
sense of (8.4) is weakly compact.

Theorem 73. Assume that G satisfies Assumption 69 and consists of continuous func-
tions on a Polish space S with regularity modulus χ. Let Φ be a linear positive functional
on G . Then the family M of all Borel random elements ξ that satisfy (8.4) for any given
r ≥ 0 is compact in the weak topology.

Proof. Since χ is a regularity modulus, the set Hr/ε is compact. By Markov’s inequality,

P{ξ /∈ Hr/ε} = P{χ(ξ) > r/ε} ≤ ε ,

for all ξ ∈M , so that M is tight.
Let {ξn, n ≥ 1} be random elements from M . Assume that ξn converges weakly to

some ξ. Without loss of generality assume that the ξn’s are defined on the same probability
space and converge almost surely to ξ. Since χ is non-negative, Fatou’s lemma yields

r ≥ lim inf Eχ(ξn) ≥ E lim inf χ(ξn) ≥ Eχ(lim ξn) = Eχ(ξ) ,

where the lower semicontinuity of χ also has been used.
Take an arbitrary g ∈ G and define Hλg as in (8.3). Let g+(x) = max(g(x), 0) be the

positive part of g. Then, for λ > 0,

Eg+(ξn) = Eg+(ξn) 1Iξn /∈Hλg + Eg+(ξn) 1Iξn∈Hλg .

Since g is continuous, Hλg is closed (and compact), so that if ξn ∈ Hλg for infinitely many
n, then also ξ ∈ Hλg. Furthermore, λg and also g itself, are continuous and bounded on
Hλg, so that Fatou’s lemma yields

lim supEg+(ξn) 1Iξn∈Hλg ≤ E lim sup(g+(ξn) 1Iξn∈Hλg)

≤ Eg+(ξ) 1Iξ∈Hλg ≤ Eg+(ξ) .

Thus
lim supEg+(ξn) ≤ E

χ(ξn)

λ
+ Eg+(ξ) ≤ r

λ
+ Eg+(ξ) .

Since λ is arbitrary,
lim supEg+(ξn) ≤ Eg+(ξ) .
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Since g+ is non-negative, Fatou’s lemma yields that Eg+(ξn) → Eg+(ξ). By applying
the same argument to the function (−g), limEg(ξn) = Eg(ξ), so that Eg(ξ) = Φ(g) for
all g ∈ G . Therefore, ξ ∈M .

The following result concerns realisability of pointwise limits of linear functionals.
Special conditions of this type for correlation measures of point processes are given in
[KLS11, Sec. 3.4].

Theorem 74. Let {Φn, n ≥ 1} be a sequence of linear positive functionals on a space G
that satisfies the assumptions of Theorem 73. Assume that

lim inf
n

sup
g∈G , g≤χ

Φn(g) <∞ . (8.6)

If Φn(g)→ Φ(g) for all g ∈ G , then Φ is realisable as a random element ξ satisfying (8.4)
and such that ξ is the weak limit of random elements realising Φnk for a subsequence nk.

Proof. By passing to a subsequence, it suffices to assume that (8.6) holds for the limit
instead of the lower limit. Let ξn be a random element that realises Φn. If r is larger
than the limit of (8.6), then P{ξn /∈ Hr/ε} ≤ ε, so that {ξn} is a tight sequence. Without
loss of generality assume that ξn weakly converges to a random element ξ.

The pointwise convergence of Φn yields that Eg(ξn) → Φ(g) for all g ∈ G . Now the
arguments from the proof of Theorem 73 can be used to show that Eg(ξn) → Eg(ξ), so
that Eg(ξ) = Φ(g) for all g ∈ G , i.e. ξ indeed satisfies (8.4).

8.2.4 Invariant extension
Consider an abelian group Θ of continuous transformations acting on S. For a function
v on S, define

(θv)(x) = v(θx), θ ∈ Θ, x ∈ S .

A functional Φ is said to be Θ-invariant if, for each θ ∈ Θ and v from the domain of
definition of Φ, Φ(θv) is defined and equal to Φ(v).

A Borel random element ξ in S is said to be Θ-stationary if, for each θ ∈ Θ, θξ has
the same distribution as ξ. A variant of the following result for correlation measures of
point processes is given in [KLS11, Th. 4.3].

Theorem 75. Assume that G is a Θ-invariant space satisfying Assumption 69 and con-
sisting of χ-regular functions. Furthermore, assume that at least one of the following
conditions holds:

(i) G consists of continuous functions and χ is pointwisely approximated from below by
a monotone sequence of functions gn ∈ G , n ≥ 1.

(ii) χ is Θ-invariant.

Let Φ be a Θ-invariant functional on G . Then, for every given r ≥ 0, there exists a
Θ-stationary random element ξ in S satisfying (8.4) if and only if (8.5) holds.

Proof. (i) As in [KLS11, Prop. 4.1], the proof consists in checking hypotheses of the
Markov–Kakutani fixed point theorem. Let M be the family of random elements ξ that
realise Φ on G , and satisfy Eχ(θξ) ≤ r for every θ ∈ Θ. The family M is easily seen
to be convex with respect to addition of measures, it is compact by Theorem 73, and
Θ-invariant, since Φ is Θ-invariant on G . It remains to prove that M is not empty.

In view of (8.5), it is possible to extend Φ positively onto G +Rχ, so that Eχ(ξ) ≤ r.
The Θ-invariance of Φ on G together with the monotone convergence theorem imply that
Eχ(θξ) = Eχ(ξ) ≤ r, whence ξ ∈M .
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(ii) By Proposition 67, we can extend Φ positively onto the Θ-invariant vector space
V = G + Rχ. Since Φ is Θ-invariant on G , we have Φ(θ(g + tχ)) = Φ(θg) + tΦ(θχ) =
Φ(g + tχ) for g + tχ in V , whence Φ is Θ-invariant on V . According to [Sil56, Th. 3], Φ
admits a positive Θ-invariant extension to the space E + Rχ, defined like in the proof of
Theorem 71. The restriction of the obtained functional onto E corresponds to a random
element ξ in S that verifies (8.4) and satisfies E(θv)(ξ) = Φ(θv) = Φ(v) = Ev(ξ), θ ∈ Θ,
for v in E . Since E contains all bounded continuous functions on S, θξ and ξ are identically
distributed for all θ ∈ Θ.

8.3 Correlation measures of point processes

8.3.1 Framework and main results
Let N be the family of locally finite counting measures on a locally compact separable
metric space X. We denote the support of ζ ∈ N by the same letter ζ, so that x ∈ ζ
means ζ({x}) ≥ 1.

Equip N with the vague topology, see [DV88a]. A random element ξ in N with the
corresponding Borel σ-algebra is called a point process. Denote by Ns the family of simple
counting measures, i.e. those which do not attach mass 2 or more to any given point. If
ξ is simple, i.e. ξ ∈ Ns a.s., then ξ can be identified with a locally finite random set in X,
which is also denoted by ξ.

For a real function h on X2 and counting measure ζ =
∑
i δxi given by the sum of

Dirac measures, define
gh(ζ) =

∑
xi,xj∈ζ, i 6=j

h(xi, xj) ,

whenever the series absolutely converges, the empty sum being 0. Note that the sum in
the right-hand side is taken over all pairs of distinct points from the support of ζ, where
multiple points appear several times according to their multiplicities. The value gh(ζ) is
necessarily finite if h is bounded and has a bounded support. The value gh(ζ) is termed
in [KLS11] the quadratic polynomial of ζ, while polynomials of order n ≥ 1 are sums of
functions of n points of the process, and are constants if n = 0.

Let G be the vector space formed by constants and functions gh for h from the space
Cc of symmetric continuous functions with compact support. Note that G satisfies As-
sumption 69, since

(c1 + gh1) ∨ (c2 + gh2) ≤ c1 ∨ c2 + gh1∨h2 ∈ G

for all c1, c2 ∈ R and h1, h2 ∈ Cc. Furthermore, each gh is continuous in the vague
topology, and so is χ-regular for any regularity modulus χ.

Assume that ξ has locally finite second moment, i.e. Eξ(A)2 is finite for each bounded
A. The correlation measure ρ (also called the second factorial moment measure) of a
point process ξ is a measure on X× X that satisfies∫

X×X
h(x, y)ρ(dxdy) = Egh(ξ) (8.7)

for each h ∈ Cc, see [DV88a, Sec. 5.4] and [SKM95, Sec. 4.3]. The left-hand side defines
a linear functional Φ(gh) on gh ∈ G .

Let N0 be a subset of N, which may be N itself. Given a symmetric locally finite
measure ρ on X×X, the realisability problem amounts to the existence of a point process
ξ with realisations from N0 and with correlation measure ρ, so that Φ(gh) = Egh(ξ) for
all h ∈ Cc.
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By (8.1), the positivity of Φ means

Φ(gh) ≥ inf
Y ∈N0

gh(Y ) (8.8)

for all h ∈ Cc. Then it is clear that the positivity of Φ is necessary for its realisability. If
N is compact in the vague topology, then Corollary 72 applies and the positivity condition
(8.8) is necessary and sufficient for the realisability of ρ.

However, in general the positivity condition alone is not sufficient for the realisability,
see [KLS07, Ex. 3.12]. In the following we find another condition that is not directly
related to the positivity, but, together with the positivity, is necessary and sufficient for
the realisability.

As an introduction, let us present our results for X being a subset of the Euclidean
space Rd. For ε ≥ 0, define

χε(ζ) =
∑

x,y∈ζ, x 6=y

‖x− y‖−d−ε, ζ ∈ N ,

which is later acknowledged as being a regularity modulus (see Definition 70) if ε 6= 0.
Note that χε(ζ) is infinite if ζ has multiple points. The tools developed in this chapter
enable us to resolve the original realisability problem with a supplementary regularity
condition involving χε.

Theorem 76. (i) Let X be a compact subset of Rd without isolated points. A symmetric
finite measure ρ(dxdy) on X2 is the correlation measure of a simple point process ξ ⊂ X
such that Eχ0(ξ) <∞ if and only if Φ given by the left-hand side of (8.7) is positive and∫

X2

‖x− y‖−dρ(dxdy) <∞ .

(ii) Let ρ be a symmetric locally finite measure on Rd×Rd such that ρ((A+x)×(B+x)) =
ρ(A × B) for all x ∈ Rd and measurable sets A and B. Then there exists a simple
stationary point process ξ with correlation measure ρ, such that

Eχ0(ξ ∩ C) <∞

for every compact C ⊂ Rd, if and only if Φ defined by (8.7) is positive and∫
B×B

‖x− y‖−dρ(dxdy) <∞ (8.9)

for some open set B.

The proof can be found in [LM15]. The first statement follows from Theorem 80 using
the fact that the packing number Pt of X is bounded by ct−d for all sufficiently small
t. For (ii), apply Theorem 84(ii) noticing that the imposed condition is equivalent to
(8.24).

In the following subsections, one can find a quantification of this result (i.e. how the
left hand member of (8.9) controls the value of Eχ0(X ∩ C)) as well as generalisations
for general metric spaces. The main argument used is a splitting method based on The-
orem 71, the details are made clear in the proof of Theorem 78. Note that the packing
number of the metric space appears as a crucial quantity to uncouple in this way the
realisability problem, see Lemma 77.
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8.3.2 Moment conditions
The family Nk of all counting measures with total mass at most k on a compact space
X is compact. Thus, a measure ρ on X2 is realisable as a point process with at most k
points if (8.8) holds with N = Nk.

Assume that ζ is a finite counting measure. For α > 2 define

χα(ζ) = ζ(X)α, ζ ∈ N .

The finiteness of Eχα(ξ) amounts to the finiteness of the moment of order α for the total
mass of ξ. Since h ∈ Cc is bounded by a constant c′ and α > 2, the family

{ζ ∈ N : χα(ζ) ≤ c+ gh(ζ)} ⊂ {ζ ∈ N : ζ(X)α ≤ c+ c′ζ(X)2}

consists of counting measures with total masses bounded by a certain constant and there-
fore is compact in the space N. Hence χα is a regularity modulus and so Theorem 71
yields the realisability condition

sup
g∈G , g≤χα

Φ(g) <∞ (8.10)

of ρ by a point process ξ whose total number of points has finite moment of order α.
Note that [KLS11, Th. 3.14] provides a variant of this result assuming the existence of
the third factorial moment of the cardinality of ξ (i.e. with α = 3) and for the joint
realisability of the intensity and the correlation measures. The condition of [KLS11,
Th. 3.14] (reformulated for the correlation measure only) reads in our notation as c +
Φ(gh) + br ≥ 0 whenever c + gh + bχ3 is non-negative on N. Noticing that b ≥ 0, this
is equivalent to the fact that c + Φ(gh) ≤ r whenever c + gh ≤ χ3, being exactly (8.10).
If Θ is a group of continuous transformations acting on X and ρ is Θ-invariant, then the
point process ξ can be chosen Θ-stationary by Theorem 75(ii).

In order to handle possibly non-finite point processes ξ define

χα,β(ζ) =

∑
x∈ζ

β(x)

α

, ζ ∈ N ,

for a lower semicontinuous strictly positive function β : X 7→ R and α > 2. By approx-
imating β from below with compactly supported functions, it is easy to see that χα,β is
a regularity modulus. By Theorem 71 and (8.2), for any given r ≥ 0, there is a point
process ξ with correlation measure ρ such that Eχα,β(ξ) ≤ r if and only if ρ satisfies

inf
ζ∈N

[χα,β(ζ)− gh(ζ)] +

∫
X2

h(x, y)ρ(dxdy) ≤ r , h ∈ Cc . (8.11)

For α = 3, condition (8.11) is a reformulation of [KLS11, Th. 3.17] meaning the
positivity of Φ on a family of positive polynomials that involve symmetric functions of
the support points up to the third order. The realisability condition for Θ-stationary
random elements can be obtained by applying Theorem 75.

8.3.3 Hardcore point processes on a compact space
Assume that X is a compact metric space with metric d. Let Nε be the family of ε-hard-
core point sets in X (including the empty set), i.e. each ζ ∈ Nε attaches unit masses
to distinct points with pairwise distances at least ε with a fixed ε > 0. In this case no
multiple points are allowed, i.e. Nε ⊂ Ns.
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According to [HS78; KK06], a subset N of simple counting measures Ns is relatively
compact if and only if sup{ζ(K) : ζ ∈ N} is finite and the infimum over ζ ∈ N of the
minimal distance between two points in ζ ∩ K is strictly positive for each compact set
K ⊂ X. The hard-core condition yields that the number of points in any compact set is
uniformly bounded, and so Nε is indeed compact. By Corollary 72, ρ is realisable as the
correlation measure of an ε-hard-core point process with given ε > 0 if and only if

Φ(gh) ≥ inf
ζ∈Nε

gh(ζ) (8.12)

for all h ∈ Cc. This result is formulated in [KLS11, Th. 3.4], which essentially reduces to
the positivity of Φ over the family c+ gh (in our setting).

In this chapter we assume that the hardcore distance is not predetermined and the
point process takes realisations from ∪ε>0Nε, which coincides with Ns in case of compact
N. Note that (8.12) is stronger than the positivity of Φ on functions gh defined on the
whole family Ns and formulated as

Φ(gh) ≥ inf
ζ∈Ns

gh(ζ) , h ∈ Cc. (8.13)

If X does not have isolated points, then the infimum in (8.13) can be taken over N. This
is seen by approximating a multiple atom with a sequence of simple counting measures
supported by points converging to the atom’s location.

In the following we use the (hard-core) regularity modulus of the form

χhc
ψ (ζ) =

∑
xi,xj∈ζ, i 6=j

ψ(d(xi, xj)), ζ ∈ Ns ,

where ψ : (0,∞) 7→ [0,∞] is a monotone decreasing right-continuous function, such that
ψ(t) →∞ as t ↓ 0. The compactness of X and the lower semicontinuity of ψ imply that
χhc
ψ is lower semicontinuous on Ns. As shown below χhc

ψ is a regularity modulus if ψ
grows sufficiently fast at zero.

Let Pt be the packing number of X, i.e. the maximum number of points in X with
pairwise distances exceeding t, see [Mat95, p. 78]. It is convenient to define the packing
number at t = 0 as P0 = ∞ if X is infinite and otherwise let P0 be the cardinality of X.
The following lemma is proved in [LM15]:

Lemma 77. Function χhc
ψ is a regularity modulus on Ns if

ψ(t)/Pt →∞ as t ↓ 0 . (8.14)

The following theorem shows that the realisability condition can be split into the
positivity condition (8.13) on the linear functional Φ and the regularity condition (8.15)
on the correlation measure, so that the latter can be easily checked. Such a split is possible
because the regularity modulus χhc

ψ can be approximated by functions from G .

Theorem 78. A locally finite measure ρ on X2 is the correlation measure of a simple
point process ξ such that Eχhc

ψ (ξ) ≤ r for some r ≥ 0 with ψ satisfying (8.14) if and only
if (8.13) holds and ∫

X2

ψ(d(x, y))ρ(dxdy) ≤ r . (8.15)

The following result is obtained by letting ψ be infinite on [0, ε) and otherwise setting
it to zero.

Corollary 79. A measure ρ on X2 is the correlation measure of a point process ξ with
ξ ∈ Nε a.s. if and only if (8.13) holds and ρ({(x, y) : d(x, y) < ε}) = 0.
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The following result yields a direct realisability condition for ρ without mentioning a
regularity modulus.

Theorem 80. Let ρ be a locally finite measure on X2, and fix any r ≥ 0. Then there
exists, for every r′ > r, a simple point process ξ with correlation measure ρ, such that

E
∑

xi,xj∈ξ, i 6=j

Pd(xi,xj) ≤ r
′ , (8.16)

if and only if (8.13) holds and ∫
X2

Pd(x,y)ρ(dxdy) ≤ r. (8.17)

Remark 81. Let Θ be a group of continuous transformations on X that leave ρ invariant,
i.e. ρ(θA×θB) = ρ(A×B) for all θ ∈ Θ and Borel A,B. Since the regularity modulus χhc

ψ

can be approximated from below by a sequence of functions from G , Theorem 75(i) is ap-
plicable and so the corresponding point process ξ in Theorems 78, 80 and Corollary 79 can
be chosen Θ-stationary. If Θ consists of isometric transformations, then Theorem 75(ii)
is also applicable.

8.3.4 Non-compact case and stationarity

Assume that X = Rd and d(x, y) = ‖x− y‖ is the Euclidean metric. Let ψ be a positive
right-continuous monotone function on R+ such that ψ(t)td → ∞ as t → 0. Denote by
Bn the open ball of radius n centred at 0. Given a known bound for the packing number
in the Euclidean space [Mat95, p. 78], Lemma 77 implies that χhc

ψ is a regularity modulus
on every Bn, n ≥ 1. Define

χhc
βψ(Y ) =

∑
xi,xj∈Y, i6=j

β(xi, xj)ψ(‖xi − xj‖) (8.18)

for a bounded lower semicontinuous strictly positive on Rd × Rd function β.

Theorem 82. Let ρ be a locally finite measure on Rd × Rd.

(i) The measure ρ is realisable as the correlation measure of a point process ξ that
satisfies Eχhc

βψ(ξ) ≤ r if and only if (8.13) holds and∫
Rd×Rd

β(x, y)ψ(‖x− y‖)ρ(dxdy) ≤ r. (8.19)

(ii) Fix r ≥ 0, let

rn =

∫
Bn×Bn

‖x− y‖−dρ(dxdy), n ≥ 1, (8.20)

and let {βn, n ≥ 1} be a sequence of non-increasing numbers converging to 0. Then
the following assertions are equivalent.

(a) (8.13) holds and ∑
n≥1

βn(rn+1 − rn) ≤ r <∞, (8.21)

in particular every rn, n ≥ 1, is finite.
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(b) For every r′ > r there exists ξ with correlation measure ρ and such that∑
n≥1

(βn − βn+1)E
∑

xi,xj∈Bn, i 6=j

‖xi − xj‖−d ≤ r′ . (8.22)

Remark 83. Remark for point (ii) that if each rn, n ≥ 1, is finite, there always exists
a sequence {βn} of sufficiently small numbers such that the right-hand side of (8.21) is
finite.

If the distribution of point process ξ is invariant with respect to the group Θ of
translations of Rd, then ξ is called stationary. Its correlation measure ρ is translation
invariant, i.e. ρ((A+ x)× (B + x)) = ρ(A×B) for all x ∈ Rd and so

ρ(A×B) = λ2

∫
A

∫
Rd

1Ix+y∈B ρ̄(dy)dx , (8.23)

where λ is the intensity of ξ and ρ̄ is a measure on Rd called the reduced correlation
measure, see [SW08, p. 76].

Theorem 84. Let ρ̄ be a locally finite measure on Rd, let β be a bounded lower semicon-
tinuous strictly positive function on Rd satisfying

β̄(y) =

∫
Rd
β(x, x+ y)dx <∞ , y ∈ Rd ,

and let ψ be a monotone decreasing non-negative function such that tdψ(t)→∞.

(i) ρ̄ is the reduced correlation measure of a stationary point process ξ that satisfies
Eχhc

βψ(ξ) ≤ r if and only if (8.13) holds and∫
Rd
β̄(y)ψ(‖y‖)ρ̄(dy) ≤ r .

(ii) ρ̄ is realisable as the reduced correlation measure of a stationary point process ξ that
satisfies (8.22) for some sequence {βn, n ≥ 1} if and only if∫

B

‖y‖−dρ̄(dy) <∞ (8.24)

for some open ball B containing the origin. If
∫
Rd ‖y‖

−dρ̄(dy) is finite, it is possible
to let βn = n−d−δ, n ≥ 1, for any fixed δ > 0.

Proof. It suffices to use (8.23) to confirm the conditions imposed in Theorem 82, see also
Remark 83. In order to show that ξ can be chosen stationary, note that χhc

βψ can be
pointwisely approximated from below by a monotone sequence of functions from G , so
Theorem 75(i) applies.

8.3.5 Joint realisability of the intensity and correlation
Recall that the intensity measure ρ1 of a point process ξ is defined from

E
∑
xi∈ξ

h(xi) =

∫
h(x)ρ1(dx) , h ∈ C 1

c ,

where C 1
c is the family of continuous functions on X with compact support. A pair (ρ1, ρ)

of locally finite non-negative measures on X and X2 respectively is said to be jointly
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realisable if there exists a point process ξ with intensity measure ρ1 and correlation
measure ρ.

Let G1 be the vector space formed by constants and functions

gh1,h(Y ) =
∑
x∈Y

h(x) + gh(Y ), Y ∈ N ,

for h1 ∈ C 1
c and h ∈ Cc. It is easy to see that Assumption 69 is verified in this case. The

pair (ρ1, ρ) yields a linear functional

Φ(gh1,h) =

∫
X
h1(x)ρ1(dx) +

∫
X2

h(x, y)ρ(dxdy) . (8.25)

The realisability of Φ by a point process ξ means that Φ(gh1,h) = Egh1,h(ξ). Functional
Φ is positive on G1 if and only if

Φ(gh1,h) ≥ inf
Y ∈N

gh1,h(Y ), h1 ∈ C 1
c , h ∈ Cc . (8.26)

Similar arguments as before apply and yield the joint realisability conditions. Consider
the special case of stationary processes in X = Rd with the reduced correlation measure
ρ̄ (see (8.23)) and intensity ρ1(dx) = λdx proportional to the Lebesgue measure.

Theorem 85. Let λ be a constant, and let ρ̄ be a locally finite measure of Rd. Then
there is a stationary point process ξ with intensity ρ1(dx) = λdx and reduced correlation
measure ρ̄ if Φ given by (8.25) satisfies (8.26) with N = Ns and∫

B

‖z‖−dρ̄(dz) <∞

for some open set B containing the origin.

Proof. It suffices to note that gh1,h is dominated by cgh for a constant c and follow the
proof of (ii) in Theorem 82. The condition on ρ̄ follows from (8.20) and (8.23).
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Chapter 9

Realisability of random sets

We provide a characterization of realisable set covariograms, bringing a rigorous yet ab-
stract solution to the S2 problem in materials science. Our method is based on the
covariogram functional for random measurable sets (RAMS) and on a result about the
representation of positive operators on a non-compact space. RAMS are an alternative
to the classical random closed sets in stochastic geometry and geostatistics, they provide
a weaker framework allowing to manipulate more irregular functionals, such as the peri-
meter. We therefore use the illustration provided by the S2 problem to advocate the use
of RAMS for solving theoretical problems of geometric nature. Along the way, we extend
the theory of random measurable sets, and in particular the local approximation of the
perimeter by local covariograms.

9.1 Framework and main results

9.1.1 Introduction
An old and difficult problem in materials science is the S2 problem, often posed in the
following terms: Given a real function S2 : Rd → [0, 1], is there a stationary random set
X ⊂ Rd whose standard two point correlation function is S2, that is, such that

P(x, y ∈ X) = S2(x− y), x, y ∈ Rd ? (9.1)

The S2 problem is a realisability problem concerned with the existence of a (translation
invariant) probability measure satisfying some prescribed marginal conditions.

This question is the stationary version of the problem of characterizing functions
S(x, y) satisfying

S(x, y) = P(x, y ∈ X) = E1X(x)1X(y).

The right-hand term is the second order moment of the random indicator field x 7→
1X(x), which justifies the term of realisability problems, concerned with the existence of a
positive measure satisfying some prescribed moment conditions. See Section 8.1 for more
background on this problem.

One can see the S2 problem as a truncated version of the general moment problem
that deals with the existence of a process for which all moments are prescribed. The
main difficulty in only considering the moments up to some finite order is that this
sequence of moments does not uniquely determine the possible solution. The appearance
of second order realisability problems for random sets goes back to the 1950’s, see for
instance [McM55] in the field of telecommunications. There are applications in materials
science and geostatistics, and marginal problems in general are present under different

107
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occurrences in fields as various as quantum mechanics, computer science, or game theory,
see the recent work [FC13] and references therein.

Reconstruction of heterogeneous materials from a knowledge of limited microstruc-
tural information (a set of lower-order correlation functions) is a crucial issue in many
applications. Finding a constructive solution to the realisability problem described above
should allow one to test whether an estimated covariance indeed corresponds to a ran-
dom structure, and propose an adapted reconstruction procedure. Studying this problem
can serve many other purposes, especially in spatial modelling, where one needs to know
necessary admissibility conditions to propose new covariance models. A series of works
by Torquato and his coauthors in the field of materials science gathers known necessary
conditions and illustrate them for many 2D and 3D theoretical models, along with recon-
struction procedures (see [JST07] and the survey [Tor02] and references therein). This
question was developed alongside in the field of geostatistics, where some authors do not
tackle directly this issue, but address the realisability problem within some particular
classes of models, e.g. Gaussian, mosaic, or Boolean model (see [Mas72; CD99; Lan02;
Eme10]).

A related question concerns the specific covariogram of a stationary random set X,
defined for all non empty bounded open sets U ⊂ Rd by

γsX(y) =
EL(X ∩ (y + X) ∩ U)

L(U)
= EL(X ∩ (y + X) ∩ (0, 1)d), (9.2)

where L denotes the Lebesgue measure on Rd. The associated realisability problem,
which consists in determining whether there exists a stationary random set X whose
specific covariogram is a given function, is the (specific) covariogram realisability problem.
Note that a straightforward Fubini argument gives that for any stationary random closed
set X

γsX(y) =

∫
(0,1)d

P(x ∈ X, x− y ∈ X)dx = S2(−y) = S2(y), (9.3)

and thus the S2 realisability problem and the specific covariogram problem are funda-
mentally the same.

Our main result provides an abstract and fully rigorous characterization of this prob-
lem for random measurable sets (RAMS) having locally finite mean perimeter. Further-
more, in the restrictive one-dimensional case (d = 1), results can be passed on to the
classical framework of random closed sets. It will become clear in this chapter why the
covariogram approach in the framework of random measurable sets is more adapted to
a rigorous mathematical study. Random measurable sets are an alternative to the clas-
sical random closed sets in stochastic geometry and geostatistics, they provide a weaker
framework allowing to manipulate more irregular functionals, such as the perimeter. We
therefore use the illustration provided by the S2 problem to advocate the use of RAMS
for solving theoretical problems of geometric nature. Along the way, we extend the theory
of random measurable sets, and in particular the local approximation of the perimeter by
local covariograms. Let us remark that the framework of RAMS is related to the one of
“random sets of finite perimeter” proposed recently by Rataj [Rat14]. However it is less
restrictive since RAMS do not necessarily have finite perimeter.

Our main result uses a fundamental relation between the Lipschitz property of the
covariogram function of a random set, and the finiteness of its mean variational perimeter,
unveiled in [Gal11]. Like in the previous chapter about point processes, we prove that
the realisability of a given function S2 : Rd → R can be characterized by two independent
conditions : a positivity condition, and a regularity condition, namely the Lipschitz
property of S2. The positivity condition deals with the positivity of a linear operator
extending S2 on an appropriate space, and is of combinatorial nature. The proof of this
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main result relies on a theorem dealing with positive operators on a non-compact space
recently derived in [LM15] to treat realisability problems for point processes. This general
method therefore proves here its versatility by being applied in the framework of random
sets in a very similar manner.

Checking whether S2 satisfies the positivity condition is completely distinct from the
concerns of this chapter. It is a difficult problem that has a long history. It is more or
less implicit in many articles, and has been, to the best of the authors’ knowledge, first
addressed directly by Shepp [She63], later on by Matheron [Mat93], and more recently
in [Qui08],[Lac18b]. It is equivalent to the study of the correlation polytope in the discrete
geometry literature, see for instance the works of Deza and Laurent [DL97]. Still, a deep
mathematical understanding of the problem remains out of reach.

The plan of the chapter is as follows. We give in the subsections below a quick
overview of the mathematical objects involved here, namely random measurable sets,
positivity, perimeter, and realisability problems, and we also state the main result of the
chapter dealing with the specific covariogram realisability problem for stationary random
measurable sets with finite specific perimeter. In Section 9.2, we develop the theory of
random measurable sets, define different notions of perimeter, and explore the relations
with random closed sets. In Section 9.3, we give the precise statement and the proof
of the main result. We also show that our main result extends to the framework of
one-dimensional stationary RACS.

9.1.2 Random measurable sets and variational perimeter

Details about random measurable sets are presented in Section 9.2, and we give here the
essential notation for stating the results. Call Bd the class of Lebesgue measurable sets
of Rd. A random measurable set (RAMS) X is a random variable taking values in Bd

endowed with the Borel σ-algebra induced by the local convergence in measure (which
corresponds to the L 1

loc(Rd)-topology for the indicator functions, see Section 9.2.1 for
details). Remark that under this topology, one is bound to identify two sets A and B
lying within the same Lebesgue class (that is, such that their symmetric difference A∆B
is Lebesgue-negligible), and we indeed perform this identification on Bd. Say furthermore
that a RAMS is stationary if its law is invariant under translations of Rd.

One geometric notion that can be extended to RAMS is that of perimeter. For a
deterministic measurable set A, the perimeter of A in an open set U ⊂ Rd is defined as
the variation of the indicator function 1A in U , that is,

Per(A;U) = sup

{∫
U

1A(x) divϕ(x)dx : ϕ ∈ C 1
c (U,Rd), ‖ϕ(x)‖2 ≤ 1 for all x

}
, (9.4)

where C 1
c

(
U,Rd

)
denotes the set of continuously differentiable functions ϕ : U → Rd

with compact support and ‖ · ‖2 is the Euclidean norm [AFP00] (See Section 9.2.2 for
a discussion and some properties of variational perimeters). If X is a RAMS then for
all open sets U ⊂ Rd, Per(X;U) is a well-defined random variable (since the map A 7→
Per(A;U) is lower semi-continuous for the local convergence in measure in Rd [AFP00,
Proposition 3.38]). Besides, if X is stationary then U 7→ E(Per(X;U)) extends into a
measure invariant by translation, and thus proportional to the Lebesgue measure. One
calls specific perimeter or (specific variation [Gal14]) of X the constant of proportionality
that will be denoted by Per(X) and that is given by Per(X) = EPer(X; (0, 1)d). We refer
to [Gal11] for the computation of the specific perimeter of some classical random set
models (Boolean models and Gaussian level sets).
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9.1.3 Covariogram realisability problems
For a deterministic set A, one calls local covariogram of A the map

Rd ×W → R
(y;W ) 7→ δy;W (A) := L(A ∩ (y +A) ∩W )

(9.5)

where W denotes the set of observation windows defined by

W =
{
W ⊂ Rd bounded open set such that L(∂W ) = 0

}
.

Given a RAMS X, we denote by γX(y;W ) = Eδy;W (X) the (mean) local covariogram of X.
If X is stationary, then the map W 7→ γX(y;W ) is translation invariant and extends into
a measure proportional to the Lebesgue measure. Hence, one calls specific covariogram
of X and denotes by y 7→ γsX(y), the map such that γX(y;W ) = Eδy;W (X) = γsX(y)L(W ).
Note that one simply has γsX(y) = γX(y, (0, 1)d).

We are interested in this chapter in the specific covariogram realisability problem:
Given a function S2 : Rd → R, does there exists a stationary random measurable set
X ∈ Bd such that S2(y) = γsX(y) for all y ∈ Rd ?

The specific covariogram candidate S2 has to verify some structural necessary condi-
tion to be realisable.

Definition 86 (Covariogram admissible functions). A function γ : Rd ×W → R is said
to be Bd-local covariogram admissible, or just admissible, if for all 5-tuples (q ≥ 1, (ai) ∈
Rq, (yi) ∈ (Rd)q, (Wi) ∈ W q, c ∈ R),[

∀A ∈ Bd, c+

q∑
i=1

aiδyi;Wi
(A) ≥ 0

]
⇒ c+

q∑
i=1

aiγ(yi;Wi) ≥ 0.

A function S2 : Rd → R is said to be Bd-specific covariogram admissible, or just admiss-
ible, if the function (y;W ) 7→ S2(y)L(W ) is Bd-local covariogram admissible.

It is an immediate consequence of the positivity and linearity of the mathematical
expectation that a realisable S2 function is necessarily admissible. Checking whether a
given S2 is admissible, a problem of combinatorial nature, is difficult. It will not be
addressed here, but as emphasized in (9.3), it is directly related to the positivity problem
for two-point covering functions, which is studied in numerous works (see [DL97; She63;
Mat93; Qui08],[Lac15], and references therein). Let us remark that being admissible is a
strong constraint on S2 that conveys the usual properties of covariogram functions, and
in particular, S2(y) ≥ 0 for all y ∈ Rd (since for all y ∈ Rd, W ∈ W and A ∈ Bd,
δy;W (A) ≥ 0).

In general, the admissibility of S2 is not sufficient for S2 to be realisable. Consider
the linear operator Φ

Φ

(
c+

q∑
i=1

aiδyi;Wi

)
= c+

q∑
i=1

aiS2(yi)L(Wi) (9.6)

on the subspace of functionals on Bd generated by the constant functions and the co-
variogram evaluations A 7→ δy;W (A), y ∈ Rd, W ∈ W . The realisability of S2 corres-
ponds to the existence of a probability measure µ on Bd representing Φ, i.e. such that
Φ(g) =

∫
Bd

gdµ for g in the aforementioned subspace. In a non-compact space such as
Bd, the positivity of Φ, i.e. the admissibility of S2, is not sufficient to represent it by a
probability measure, as the σ-additivity is also needed. See the previous chapter for a
discussion and study of the realisability problem in an abstract framework.
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It has been shown in [LM15] that in such non-compact frameworks, the realisability
problem should better be accompanied with an additional condition involved with the
regularity of the set in some sense. This condition is carried on by a companion function,
called a regularity modulus, depending on the functions of interest in our realisability
problem. Without entering into details (see Section 9.3), the perimeter function fulfils this
role here, mostly because it can be approximated by linear combinations of covariograms,
and has compact level sets within the space of measurable subsets of Rd. The well-posed
realisability problem with regularity condition we consider here deals with the existence
of a stationary random measurable set X ∈ Bd such that{

S2(y) = γsX(y), y ∈ Rd,
Per(X) = EPer(X; (0, 1)d) <∞.

The main result of this chapter is the following.

Theorem 87. Let S2 : Rd 7→ R be a function. Then S2 is the specific covariogram of
a stationary random measurable set X ∈ Bd such that Per(X) < ∞ if and only if S2 is
admissible and Lipschitz at 0 along the d canonical directions.

This result is analogous to the one obtained in [LM15] for point processes, since the
realisability condition is shown to be a positivity condition plus a regularity condition,
namely the Lipschitz property of S2. As already discussed, a realisable function S2 is
necessarily admissible. Besides, extending results from [Gal11], we show that a station-
ary RAMS X has a finite specific perimeter if and only if its specific covariogram γsX is
Lipschitz, and we obtain an explicit relation between the Lipschitz constant of S2 and
the specific perimeter. Hence the direct implication of Theorem 87 is somewhat straight-
forward. The real difficulty consists in proving the converse implication. To do so we
adapt the techniques of [LM15] to our context which involves several technicalities re-
garding the approximation of the perimeter by linear combination of local covariogram
functional. We first establish the counterpart of Theorem 87 for the realisability of local
covariogram function γ : Rd ×W → R (see Theorem 98) and we then extend this result
to the case of specific covariogram of stationary RAMS (see Theorem 101).

In addition, we study the links between RAMS and the more usual framework of
random closed sets (RACS), which in fine enables us to obtain a result analogous to
Theorem 87 for RACS of the real line (see Theorem 104), such a result was out of reach
with previously developped methods.

9.2 Random measurable sets

9.2.1 Definition of random measurable sets

Random measurable sets (RAMS) are defined as random variables taking value in the set
Bd of Lebesgue (classes of) sets of Rd endowed with the Borel σ-algebra B(Bd) induced
by the natural topology, the so-called local convergence in measure. We recall that a
sequence of measurable sets (An)n∈N locally converges in measure to a measurable set A
if for all bounded open sets U ⊂ Rd, the sequence L ((An∆A) ∩ U) tends to 0, where ∆
denotes the symmetric difference. The local convergence in measure simply corresponds
to the convergence of the indicator functions 1An towards 1A in the space of locally
integrable functions L 1

loc(Rd), and consequently Bd is a complete metrizable space 1.

1 This is a consequence of the facts that L 1
loc(R

d) is a complete metrizable space and that the set of
indicator functions is closed in L 1

loc(R
d).
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Definition 88 (Random measurable sets). A random measurable set (RAMS) X is a
measurable map X : ω 7→ X(ω) from (Ω,O) to (Bd,B(Bd)), where B(Bd) denotes the
Borel σ-algebra induced by the local convergence in measure.

Note that if X is a RAMS, then ω 7→ 1X(ω) is a random integrable function. This
concept of random measurable (class of) set(s) is not standard. As mentioned in [Mol05],
measurable random subsets of the interval [0, 1] are defined following this definition
in [SS87].

In the remaining part of this section, we will discuss the link between RAMS and
other classical random objects, namely random Radon measures, measurable subsets of
Ω× Rd, and random closed sets.

Random Radon measures associated with random measurable sets Follow-
ing the usual construction of random objects, a random Radon measure is defined as
a measurable function from a probability space (Ω,O,P) to the space M+ of positive
Radon measures on Rd equipped with the smallest σ-algebra for which the evaluation
maps µ 7→ µ(B), B ∈ Bd relatively compact, are measurable (see e.g [DV88b; Kal86;
SW08]). Any RAMS X ⊂ Rd canonically defines a random Radon measure that is the
restriction to X of the Lebesgue measure, that is, B 7→ L(X ∩ B) for Borel set B ∈ Bd.
The measurability of this restriction results from the observation that, for all B ∈ Bd,
the map f 7→

∫
B
f(x)dx is measurable for the L 1

loc-topology.

Existence of a measurable graph representative For a RAMS X : Ω → Bd, one
can study the measurability properties of the graph Y = {(ω, x) : x ∈ X(ω)} ⊂ Ω× Rd.

Definition 89 (Measurable graph representatives). A subset Y ⊂ Ω×Rd is a measurable
graph representative of a RAMS X if

1. Y is a measurable subset of Ω×Rd (i.e. Y belongs to the product σ-algebra O⊗Bd),

2. For a.a. ω ∈ Ω, the ω-section Y(ω) = {x ∈ Rd, (ω, x) ∈ Y} is equivalent in measure
to X(ω) (i.e. L(Y(ω)∆X(ω)) = 0).

Proposition 90. Any measurable set Y ∈ O ⊗Bd canonically defines a RAMS by con-
sidering the Lebesgue class of its ω-sections:

ω 7→ Y(ω) = {x ∈ Rd, (ω, x) ∈ Y}.

Conversely, any RAMS X admits measurable graph representatives Y ∈ O ⊗Bd.

Proof. The first point is trivial. Let us prove the second point. Consider the random
Radon measure µ associated to X, that is

µ(ω,B) = L(X(ω) ∩B) =

∫
B

1X(ω)(x)dx.

By construction this random Radon measure is absolutely continuous with respect to the
Lebesgue measure. Then according to Radon-Nikodym theorem for random measures (see
the Appendix in [GL15]), there exists a jointly measurable map g : (Ω×Rd,O⊗Bd)→ R
such that for all ω ∈ Ω,

µ(ω,B) =

∫
B

g(ω, x)dx, B ∈ Bd.

Hence for all ω ∈ Ω, 1X(ω)(·) and g(ω, ·) are both Radon-Nikodym derivative of µ(ω, ·)
and thus are equal almost everywhere. In particular, for a.a. x ∈ Rd, g(ω, x) ∈ {0, 1}.
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Consequently, the function (ω, x) 7→ 1(g(ω, x) = 1) is also jointly measurable and is a
Radon-Nikodym derivative of µ(ω, ·) for all ω ∈ Ω, and thus the set

Y = {(ω, x) ∈ Ω× Rd, g(ω, x) = 1}

is a measurable graph representative of X.

Remark 91. Given a measurable graph representative Y of a RAMS X, one can consider
measurable events of Ω related to Y. However, only a subset of these events belongs to
the sub-σ-algebra σ(X) of B(Bd) induced by X. For example, for a given x ∈ Rd, Fubini
theorem ensures that the x-section set {ω ∈ Ω, (ω, x) ∈ Y} is a measurable subset of Ω,
but it depends on the Lebesgue representative chosen for X (e.g. Y \ (Ω×{x}) is another
measurable representative for which the x-section set is always empty). However, events
such as {ω ∈ Ω, L(Y(ω, ·) ∩ B) ≥ a}, for some B ∈ Bd and a > 0, are events of σ(X)
since they are invariant by a change of Lebesgue representative.

Random measurable sets and random closed sets Recall that (Ω,O,P) denotes
our probability space. Let F = F

(
Rd
)
be the set of all closed subsets of Rd. Follow-

ing [Mol05, Definition 1.1] a random closed set is defined as follows.

Definition 92 (Random closed sets). A map Z : Ω → F is called a random closed set
(RACS) if for every compact set K ⊂ Rd, {ω : Z(ω) ∩K 6= ∅} ∈ O.

The framework of random closed sets is standard in stochastic geometry [Mat75;
Mol05]. Let us now reproduce a result of C.J. Himmelberg that allows to link the different
notions of random sets (see [Mol05, Theorem 2.3] or the original chapter [Him75] for the
complete theorem).

Theorem 93 (Himmelberg). Let (Ω,O,P) be a probability space and Z : Ω→ Z(ω) ∈ F
be a map taking values into the set of closed subsets of Rd. Consider the two following
assertions:

(i) {ω : Z ∩ F 6= ∅} ∈ O for every closed set F ⊂ Rd,

(ii) The graph of Z, i.e. the set {(ω, x) ∈ Ω × Rd : x ∈ Z(ω)}, belongs to the product
σ-algebra O ⊗Bd,

Then the implication (i) ⇒ (ii) is always true, and if the probability space (Ω,O,P)
is complete (i.e. all P-negligible subsets of Ω are measurable) one has the equivalence
(i)⇔ (ii).

In view of our definitions for random sets, Himmelberg’s theorem can be rephrased in
the following terms.

Proposition 94 (RACS and closed RAMS). (i) Any RACS Z has a measurable graph
Y = {(ω, x) ∈ Ω×Rd : x ∈ Z(ω)}, and thus also defines a unique random measurable
set.

(ii) Suppose that the probability space (Ω,O,P) is complete. Let Y ∈ O ⊗ Bd be a
measurable set such that for all ω ∈ Ω, its ω-section Y(ω) = {x ∈ Rd, (ω, x) ∈ Y}
is a closed subset of Rd. Then, the map ω 7→ Y(ω) defines a random closed set.
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9.2.2 Random measurable sets of finite perimeter

For a closed set F , the perimeter is generally defined by the (d− 1)-dimensional measure
of the topological boundary, that is Hd−1(∂F ). This definition is not relevant for a
measurable set A ⊂ Rd, in the sense that the value Hd−1(∂A) strongly depends on
the representative of A within its Lebesgue class. The proper notion of perimeter for
measurable sets is the variational perimeter that defines the perimeter as the variation
of the indicator function of the set. An important feature of the variational perimeter
is that it is lower semi-continuous for the convergence in measure, while the functional
F 7→ Hd−1(∂F ) is not lower semi-continuous on the set of closed sets F endowed with
the hit or miss topology. This is a key aspect for this chapter since it allows to consider
the variational perimeter as a regularity modulus for realisability problems in following
the framework of [LM15].

Variational perimeters Let U be an open subset of Rd. Recall that the (variational)
perimeter Per(A;U) of a measurable set A ∈ Bd in the open set U is defined by (9.4).
Denote by Sd−1 the unit sphere of Rd. Closely related to the perimeter, one also defines
the directional variation in the direction u ∈ Sd−1 of A in U by [AFP00, Section 3.11]

Vu(A;U) = sup

{∫
U

1A(x)〈∇ϕ(x), u〉dx : ϕ ∈ C 1
c (U,R), |ϕ(x)| ≤ 1 for all x

}
.

For technical reasons, we also consider the anisotropic perimeter

A 7→ PerB(A;U) =

d∑
j=1

Vej (A;U)

which adds up the directional variations along the d directions of the canonical basis B =
{e1, . . . , ed}. In geometric measure theory, the functional A 7→ PerB(A;U) is described
as the anisotropic perimeter associated with the anisotropy function x 7→ ‖x‖∞ (see
e.g. [Cas+08] and the references therein). Indeed, one easily sees that

PerB(A;U) = sup

{∫
U

1A(x) divϕ(x)dx : ϕ ∈ C 1
c (U,Rd), ‖ϕ(x)‖∞ ≤ 1 for all x

}
.

Hence the only difference between the variational definition of the isotropic perimeter
Per(A;U) and the one of the anisotropic perimeter PerB(A;U) is that the test functions
ϕ take values in the `2-unit ball Bd for the former whereas they take values in the `∞-unit
ball [−1, 1]d for the latter. The set inclusions Bd ⊂ [−1, 1]d ⊂

√
dBd lead to the tight

inequalities
Per(A;U) ≤ PerB(A;U) ≤

√
dPer(A;U). (9.7)

Consequently a set A has a finite perimeter Per(A;U) in U if and only if it has a finite
anisotropic perimeter PerB(A;U) (let us mention that this equivalence is not true when
considering only one directional variation Vu(A;U)). One says that a measurable set
A ⊂ Rd has locally finite perimeter if A has a finite perimeter Per(A;U) in all bounded
open sets U ⊂ Rd.

To finish let us mention that if X is a RAMS then Per(X;U), PerB(X;U), and Vu(X;U),
u ∈ Sd−1, are well-defined random variables since the maps A 7→ Per(A;U), A 7→
PerB(A;U) and A 7→ Vu(A;U) are lower semi-continuous for the convergence in meas-
ure [AFP00]. Consequently one says that a RAMS X has a.s. finite (resp. locally finite)
perimeter in U if the random variable Per(X;U) is a.s. finite (resp. if for all bounded
open sets V ⊂ U Per(X;V ) is a.s. finite).
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Remark 95. Rataj recently proposed a framework for “random sets of finite perimeter” [Rat14]
that models random sets as random variables in the space of indicator functions of sets
of finite perimeter endowed with the Borel σ-algebra induced by the strict convergence in
the space of functions of bounded variation [AFP00, Section 3.1]. Since this convergence
induced the L 1-convergence of indicator functions, any “random set of finite perimeter”
X uniquely defines a RAMS X having a.s. finite perimeter. One advantage of the RAMS
framework is that it is more general in the sense that it enables to consider random sets
that do not have finite perimeter.

Closed representative of one-dimensional sets of finite perimeter Although
the general geometric structure of sets of finite perimeter is well-known (see [AFP00,
Section 3.5]) it necessitates involved notions from geometric measure theory (rectifiable
sets, reduced and essential boundaries, etc.). However, when restricting to the case of
one-dimensional sets of finite perimeter, all the complexity vanishes since subsets of R
having finite perimeter all correspond to finite unions of non empty and disjoint closed
intervals.

More precisely, according to Proposition 3.52 of [AFP00], if a non-negligible meas-
urable set A ⊂ R has finite perimeter in an interval (a, b) ⊂ R, there exists an integer
p and p pairwise disjoint non empty and closed intervals Ji = [a2i−1, a2i] ⊂ R, with
a1 < a2 < · · · < a2p such that

• A ∩ (a, b) is equivalent in measure to the union
⋃
i Ji,

• the perimeter of A in (a, b) is the number of interval endpoints belonging to (a, b)

Per(A; (a, b)) = #{a1, a2, . . . , a2p} ∩ (a, b).

Let us remark that a set of the form A =
⋃
i[a2i−1, a2i] is closed and that such a set

satisfies the identity Per(A; (a, b)) = H0(∂A ∩ (a, b)), where ∂A denotes the topological
boundary of A and H0 is the Hausdorff measure of dimension 0 on R (i.e. the counting
measure) while in the general case one only has Per(A; (a, b)) ≤ H0(∂A ∩ (a, b)) since A
may contain isolated points.

More generally, if A ⊂ R has locally finite perimeter, then there exists a unique
countable or finite family of closed and disjoint intervals Ji = [a2i−1, a2i], i ∈ I ⊂ Z,
such that A is equivalent in measure to

⋃
i∈I Ji and for all bounded open intervals (a, b),

Per(A; (a, b)) is the number of interval endpoints belonging to (a, b).
Using both this observations and Proposition 94, one obtains the following proposition.

Proposition 96. Suppose that the probability space (Ω,O,P) is complete. Let X be a
RAMS of R that has a.s. locally finite perimeter. Then, there exists a RACS Z ⊂ R such
that for P-almost all ω ∈ Ω and for all a < b ∈ R,

L1(X(ω)∆Z(ω)) = 0 and Per(X(ω); (a, b)) = H0(∂Z(ω) ∩ (a, b)).

Non-closed RAMS in dimension d > 1 In contrast to the one-dimensional case,
in dimension d > 1 there exist measurable sets of finite perimeter that do not have
closed representative in their Lebesgue class. In [AFP00, Example 3.53], Ambrosio et al.
consider a set obtained as the union of an infinite family of open balls with small radii
and with centers forming a dense subset of [0, 1]d, which yields the following result.

Proposition 97. There exists a measurable subset A of [0, 1]d with finite perimeter, finite
measure L(A) < 1, and such that L(A ∩ U) > 0 for any open subset U of [0, 1]d.

Such a set clearly has no closed representative, because if it had one, say F , then F
would charge every open subset of [0, 1]d, and therefore it would be dense in [0, 1]d. But
since F is closed, one would have F = [0, 1]d, which contradicts L(F ) = L(A) < 1.



116 CHAPTER 9. REALISABILITY OF RANDOM SETS

9.3 Realisability result

9.3.1 Realisability problem and regularity modulus
Recall that the local covariogram of a RAMS X is γX(y;W ) = Eδy;W (X). Let us introduce
a regularized realisability problem for local covariogram. Put Un = (−n, n)d. Define the
weighted anisotropic perimeter by

PerβB(A) =
∑
n≥1

βnPerB(A;Un)

where the sequence (βn) is set to βn = 2−n(2n)−d so that
∑
n≥1 βnL(Un) = 1. For a

given function γ : Rd ×W → R, define

σγ(u;W ) =
1

‖u‖
[γ(0;W	[−u, 0])−γ(u;W	[−u, 0])+γ(0;W	[0, u])−γ(−u;W	[0, u])].

One defines for all windows W ∈ W the constant Lj(γ,W ) ∈ [0,+∞] by

Lj(γ,W ) = sup
ε∈R

σγ(εej ;W ), j ∈ {1, . . . , d}. (9.8)

Lj(γ,W ) is related to the Lipschitz property of γ in its spatial variable. The motivation
for considering this particular constant is that if γX is the local covariogram of a RAMS
X, then

EVej (X;W ) = sup
ε∈R

σγX(εej ;W ).

Theorem 98. Let γ : Rd × W → R be a function and r ≥ 0. Then γ is realisable by a
RAMS X such that

EPerβB(X) ≤ r

if and only if γ is admissible (see Definition 86) and

∑
n≥1

βn

 d∑
j=1

Lj(γ, Un)

 ≤ r, (9.9)

where for all j ∈ {1, . . . , d} and n ≥ 1, the constant Lj(γ, Un) is defined by (9.8).

The stationary counterpart of the above theorem is stated and proved in Section 9.3.2.
Let us recall the general definition and result of [LM15] that we use to prove The-

orem 98.

Definition 99 (Regularity moduli). Let G be a vector space of measurable real functions
on Bd. A G -regularity modulus on Bd is a lower semi-continuous function χ : Bd 7→
[0,+∞] such that for all g ∈ G , the level set

Hg = {A ∈ Bd, χ(A) ≤ g(A)} ⊂ Bd

is relatively compact for the convergence in measure.

In our setting, call G the vector space generated by the constant functionals and the
local covariogram functionals A 7→ δy;W (A), y ∈ Rd, W ∈ W .

Proposition 100. PerβB is a G -regularity modulus (and therefore a G ∗-regularity modulus
for any subspace G ∗ ⊂ G ).
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Proof. By definition of a regularity modulus, one has to show that the PerβB-level sets
are relatively compact. Consider a sequence (An) such that PerβB(An) ≤ c for all n ∈ N.
Then for all n,m ∈ N, PerB(An;Um) ≤ c

βm
< ∞ and thus (An) is a sequence of sets of

locally finite perimeter whose perimeter in any open bounded set U ⊂ Rd is uniformly
bounded. According to Theorem 3.39 of [AFP00], there exists a subsequence of (An) that
locally converges in measure in Rd.

For g ∈ G , denote by dom(g) the smallest open set such that for every measurable set
A, g(A) = g(A ∩ dom(g)). If g has the form

g =

q∑
i=1

aiδyi;Wi , (9.10)

we have dom(g) ⊂ ∪i(Wi ∪ (−yi +Wi)), but there is not equality because such a decom-
position is not unique.

9.3.2 Stationary case
The following theorem is the main result of this chapter. It is a refined version of The-
orem 87 given in the introduction.

Theorem 101. Let S2 : Rd → R be a function and r ≥ 0. Then there is a stationary
RAMS X such that {

S2(y) = γsX(y), y ∈ Rd,
PersB(X) ≤ r

(9.11)

if and only if S2 is admissible and

d∑
j=1

Lipj(S2, 0) ≤ r

2
.

We shall use a variant of Theorem 2.10(ii) from [LM15], where the monotonicity
assumption is replaced by a domination.

Theorem 102. Let G ∗, χ, Φ be like in Theorem 75 and assume that G ∗ is stable under
the action of a group of transformations Θ of Rd: For all θ ∈ Θ, g ∈ G ∗, θg : A 7→ g(θA)
is a function of G ∗. Assume furthermore that there is a sequence (gn)n≥1 of functions of
G ∗ such that 0 ≤ gn ≤ χ and

gn(A) −→
n→+∞

χ(A), A ∈ Bd,

and that χ is sub-invariant: For every θ ∈ Θ, there is a constant Cθ > 0 such that

χ(θA) ≤ Cθχ(A), A ∈M. (9.12)

Then if Φ is invariant under the action of Θ, that is,

Φ(θg) = Φ(g), g ∈ G ∗, θ ∈ Θ,

for any given r ≥ 0, there exists a Θ-invariant RAMS X such that{
Eg(X) = Φ(g), g ∈ G ∗,

Eχ(X) ≤ r

if and only if (8.5) holds.
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9.3.3 Covariogram realisability problem for RACS of R
The goal of this section is to establish a result similar to Theorem 101 for the specific
covariogram of one-dimensional stationary RACS.

First let us discuss the definition of local covariogram admissibility of functions in
arbitrary dimension d ≥ 1. By analogy with the definition of Bd-local covariogram
admissible functions (see Definition 86), when considering RACS of Rd, that is random
variables taking values in F = F (Rd) the set of all closed subsets of Rd, one says
that a function γ : Rd × W → R is F -local covariogram admissible if for all 5-tuples
(q ≥ 1, (ai) ∈ Rq, (yi) ∈ (Rd)q, (Wi) ∈ W q, c ∈ R),[

∀F ∈ F , c+

q∑
i=1

aiδyi;Wi
(F ) ≥ 0

]
⇒ c+

q∑
i=1

aiγ(yi;Wi) ≥ 0.

Besides, one says that S2 : R → R is F -specific covariogram admissible if (y,W ) 7→
S2(y)L(W ) is F -local covariogram admissible. However this distinction is superfluous
since these two notions of admissibility are strictly equivalent.

Proposition 103. A function γ : Rd×W → R is F -local covariogram admissible if and
only if it is Bd-local covariogram admissible.

Now that this technical point has been clarified we are in position to formulate our
result for the realisability of specific covariogram of stationary RACS of R.

Theorem 104. Suppose that the probability space (Ω,O,P) is complete. Let S2 : R→ R
be a given function and let r > 0. Then S2 is the covariogram of a stationary RACS
Z ⊂ R such that

E
(
H0(∂Z) ∩ (0, 1)

)
≤ r

if and only if S2 is F -specific covariogram admissible and Lipschitz with Lipschitz constant
L ≤ r

2 .

Note that although the geometry of sets with finite perimeter on the line seems quite
simplistic, a direct proof of the realisability result above is far from trivial.



Chapter 10

Inhomogeneous intensity
estimation with Voronoi
tessellations [Mor+19]

Abstract: Voronoi estimators are non-parametric and adaptive estimators of the in-
tensity of a point process. The intensity estimate at a given location is equal to the
reciprocal of the size of the Voronoi/Dirichlet cell containing that location. Their major
drawback is that they tend to paradoxically under-smooth the data in regions where the
point density of the observed point pattern is high, and over-smooth where the point
density is low. To remedy this behaviour, we propose to apply an additional smoothing
operation to the Voronoi estimator, based on resampling the point pattern by independ-
ent random thinning. Through a simulation study we show that our resample-smoothing
technique improves the estimation substantially. In addition, we study statistical prop-
erties such as unbiasedness and variance, and propose a rule-of-thumb and a data-driven
cross-validation approach to choose the amount of smoothing to apply. Finally we ap-
ply our proposed intensity estimation scheme to two datasets: locations of pine saplings
(planar point pattern) and motor vehicle traffic accidents (linear network point pattern).
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