
Automated Anomaly Detection in Large Sequences
Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas

EDF R&D; LIPADE, Université de Paris
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Abstract—Subsequence anomaly (or outlier) detection in long
sequences is an important problem with applications in a wide
range of domains. However, current approaches have severe
limitations: they either require prior domain knowledge, or
become cumbersome and expensive to use in situations with
recurrent anomalies of the same type. In this work, we address
these problems, and propose NorM, a novel approach, suitable
for domain-agnostic anomaly detection. NorM is based on a new
data series primitive, which permits to detect anomalies based on
their (dis)similarity to a model that represents normal behavior.
The experimental results on several real datasets demonstrate
that the proposed approach outperforms by a large margin the
current state-of-the art algorithms in terms of accuracy, while
being orders of magnitude faster.

Index Terms—Data Series, Time Series, Anomaly discovery.

I. INTRODUCTION

Massive collections of data series1 are becoming a reality
in virtually every scientific and social domain, and there is an
increasingly pressing need for developing techniques that can
efficiently analyze them [1], [2].

Anomaly, or outlier detection is an old problem [3]–[5],
finding applications in a wide range of domains. In the specific
context of sequences, which is the focus of this paper, we
are interested in identifying anomalous subsequences, that is,
unlike the outlier, not a single value, but a sequence of values.

Existing techniques either explicitly look for a set of
pre-determined types of anomalies [6], [7], or identify as
anomalies the subsequences with the largest distances to their
nearest neighbors (termed discords) [5], [8]. We observe that
these approaches pose limitations to the subsequence anomaly
identification task, for several reasons, explained below.

First, the anomalous behavior is not always known. There-
fore, techniques that use specific domain knowledge for min-
ing anomalies (e.g., in cardiology [6], and engineering [9])
involve several finely-tuned parameters, and do not gener-
alize to new cases and domains. Second, in the case of
general, domain-agnostic techniques for subsequence anomaly
detection, the state-of-the-art algorithms (e.g., [5], [8]) have
been developed for the case of a single anomaly in the
dataset, or multiple different (from one another) anomalies.
The reason is that these algorithms are based on the distance of
a subsequence to its Nearest-Neighbor (NN) in the dataset: the
subsequence that has the farthest NN is marked as an anomaly.

Figure 1 depicts this situation. We show a snippet of the
MIT-BIH Supraventricular Arrhythmia Database (MBA) ECG

1If the dimension that imposes the ordering of the sequence is time then
we talk about time series. In the rest of this paper, we will use the terms
sequence, data series, and time series interchangeably.
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Fig. 1. (a) MBA ECG (2000 points snippet from patient 820), with two
anomalous Supraventricular premature beats (S). (b) Euclidean distances of
each subsequence (length 75) to its best non-trivial match in the full sequence:
anomalies do not have the largest distance to their nearest neighbors.

recording [10], [11] of patient 820. This sequence includes
repeated anomalous subsequences (ventricular premature con-
tractions, marked by solid red rectangles). Following the state-
of-the-art approaches [5], [8], we plot in Figure 1(b) the
distance of each subsequence (of length 75) to its NN, and
we observe that the (known) anomalies do not correspond to
the most distant NN (i.e., the highest peak in Figure 1(b)).
This is because our dataset includes several anomalies that
are similar to one another (i.e., of the same type). At the same
time, these approaches mark as outliers subsequences that are
normal (dotted black rectangle), resulting in false positives.

Third, in order to remedy this situation, the mth discord
approach has been proposed [12]. This approach takes into
account the multiplicity, m, of the anomalous subsequences
that are similar to one another, and marks as anomalies all
the subsequences in the same group, by computing the mth

(instead of the 1st) NNs for each subsequence. Nevertheless,
this approach assumes that we know the multiplicity m, which
is not true in practice (otherwise, we need to re-execute the
algorithms for several different m values).

In this work, we address the aforementioned problems, and
propose NorM, a novel approach suitable for subsequence
anomaly detection. The proposed approach allows us to detect
anomalies based on their (dis)similarity to a model that repre-
sents the normal (expected) behavior. NorM starts by carefully
selecting some of the subsequences of the dataset, based on
a scoring mechanism. The selected set of subsequences are
then used to build the normal behavior model, which is itself
a sequence. This process is automatic (it uses the minimum
description length principle to take some of the decisions),
without the need for user intervention, and is effective even
when the dataset contains multiple anomalies. At the end,
NorM detects subsequence anomalies by comparing candidate



subsequences to this normal behavior model.
We experimentally demonstrate that NorM accurately iden-

tifies both single and repeated anomalies, and gracefully scales
to large datasets, outperforming by a large margin the detection
accuracy and time performance of the current state-of-the-art
algorithms.

II. PRELIMINARIES

A data series T ∈ Rn is a sequence of real-valued numbers
ti ∈ R [t1, t2, ..., tn]; |T | = n is the length (or size) of T .
We are typically interested in local regions of the data series,
namely subsequences. A subsequence Ti,` ∈ R` of a data
series T is a subset of contiguous values from T of length
` (usually ` � n) starting at position i. Formally, Ti,` =
[ti, ti+1, ..., ti+`−1]. The problem we are addressing in this
work is the identification of anomalous subsequences (of a
given length) within a long data sequence.

Given two sequences, A and B, of the same length, `, we
can calculate their Z-normalized Euclidean distance, dist, as
follows: dist(A,B) =

√∑l
i(
Ai,1−µA

σA
,
Bi,1−µB

σB
)2, where µ

and σ represent the mean and standard deviation of A and B.
Given a subsequence Ti,`, we say that its mth Nearest

Neighbor (mth NN) is Tj,`, if Tj,` has the mth shortest
distance to Ti,`, among all the subsequences of length ` in
T , excluding trivial matches [13]; a trivial match of Ti,`
is a subsequence Ta,`, where |i − a| < `/2 (i.e., the two
subsequences overlap by more than half their length).

The state-of-the-art solutions for subsequence anomaly de-
tection use the following definition for anomalies (discords):

Definition 1 (discord [5], [8], [14]–[16]): Among all subse-
quences of length ` of series T , the subsequence Ti,` that has
the largest distance to its NN is called a (data series) discord.

This is an intuitive definition: a subsequence is a discord if
its NN is very far away. However, this definition fails when
we have two neighboring discords, with a small distance to
each other, and a very large distance to all the rest of the
subsequences. In order to capture these situations, the mth-
discord has been proposed:

Definition 2 (mth-discord [12]): Among all subsequences
of length ` of series T , the subsequence Ti,` that has the largest
distance to its mth NN is called an mth-discord.

We now propose a definition that extends the previous two
for the case of the k most significant anomalies:

Definition 3 (Top-k mth-discord): A subsequence Ti,` is a
Top-k mth-discord if it has the kth largest distance to its mth

NN, among all subsequences of length ` of T .
Note that this definition subsumes the previous two: the

simple discord is equivalent to Top-1 1st-discord, and the
mth-discord is equivalent to Top-1 mth-discord.

Even though discords have been extensively studied and
used in the literature, they have several shortcomings that can
severely limit their practical use.

III. PROBLEM FORMULATION

We now formulate a new approach for subsequence anomaly
detection, based on the notion of normal (expected) behavior.

Since we are interested in subsequence anomalies, we first
define the set of all subsequences of length ` in a given data
series T : T` = {Ti,`|∀i.0 ≤ i ≤ |T | − ` + 1}. In general,
we assume that T` contains both normal and anomalous
subsequences. We define normal behavior as follows:

Definition 4 (Normal Model, NM ): Given a data series T ,
NM is a model that represents the normal (i.e., not anomalous)
trends and patterns of T .

The above definition allows several interpretations, which
can lead to different kinds of models. Subsequence anomalies
can then be defined in a uniform way: anomalies are the
subsequences that have the largest distances to the expected,
normal behavior, NM (or their distance is above a set thresh-
old). In this work, we propose a formalization for NM and
experimentally demonstrate its effectiveness on all datasets in
the literature used for subsequence anomaly discovery.

Definition 5 (Subsequence Anomaly): Given a data series T ,
the set T` of all its subsequences of length `, and the Normal
Model NM of T , the subsequence Tj,` ∈ T` with a distance
to NM d = mini∈[0,`NM

−`]{dist(Tj,`, NMi,`
)} is an anomaly

if d is in the Top-k largest distances among all subsequences
in T`, or d > ε, where ε ∈ R>0 is a threshold.

Note that the only essential input parameter2 is the length `
of the anomaly (which is also one of the inputs in all relevant
algorithms in the literature [5], [8], [12], [14]–[17]).

As we elaborate later on, in this work we choose to
define NM as a sequence that summarizes normality in T ,
by representing the average behavior of a set of (ideally
only) normal sequences. Intuitively, NM is the data series,
which tries to minimize the sum of Z-normalized Euclidean
distances between itself and some of the normal subsequences
in T . Last but not least, we need to compute NM in an
unsupervised way, i.e., without having normal/abnormal labels
for the subsequences in T`.

Observe that this definition of NM implies the following
challenge: even though NM summarizes the normal behavior
only, it is computed based on T , which may include (several)
anomalies. In our work, we address this challenge by taking
advantage of the fact that anomalies are a minority class.

We can now define the problem we want to solve.
Problem 1 (Subsequence Anomaly Detection): Given a data

series T , and the set T` of all its subsequences of length `,
detect the subsequence anomalies in T`.

IV. PROPOSED APPROACH

In this section, we describe NorM, our solution for auto-
mated subsequence anomaly detection.

NorM detects anomalies based on their distance from the
Normal Model sequence. It takes as input a data series T ,
and the length ` of the candidate anomalies. The algorithm
first computes the Normal Model NM based on T , and

2The parameter k (or ε) is not essential, as long as the algorithm can rank
the anomalies. In practice, experts start by examining the most anomalous
pattern, and then move down in the list (there is oftentimes no rigid thresh-
old separating anomalous from non-anomalous behavior [3]). All anomaly
discovery processes function this way.



subsequently detects and returns a ranked list of the anomalous
subsequences in T based on NM . We note that the length of
the anomalies, `, is a user-defined parameter in all subsequence
anomaly detection techniques, and can be set by the domain
expert (e.g., in the case of electrocardiogram data, cardiol-
ogists are interested in analyzing heartbeats, which have a
known length). The length of the Normal Model, `NM

, needs
to be larger than `. In our experiments, we use the default
value `NM

= 3`; the results also show stable performance as
`NM

varies.
[Computing the Normal Model] Recall that NM should
capture (summarize) the normal behavior of the data. This
may not be very hard to do for a sequence T that does not
contain any anomalous subsequences. In practice however, we
would like to apply the NorM approach in an unsupervised
way on any sequence, which may contain several anomalies.

We compute the NM sequence in three steps. First, we ex-
tract the subsequences that can serve as candidates for building
the NM . These candidates are either randomly selected from
T (NorM-smpl), or correspond to motifs3 (NorM-SJ). Then,
we group these subsequences according to their similarity in
a set of clusters C, adopting a hierarchical clustering strategy,
augmented by automated identification of the right number of
clusters using the Minimum Description Length principle. The
last step consists of scoring each cluster, and selecting the clus-
ter that best represents normal behavior. Formally, for a given
cluster c ∈ C, we select the cluster that maximizes the follow-
ing formula: Norm(c,C) = Frequency(c)2×Coverage(c)∑

x∈C dist(Center(c),Center(x))
,

where Frequency(c) is the number of subsequences in c, and
Coverage(c) is the time interval between the first and the last
occurence of a subsequence in c.

Based on the subsequences of the selected cluster, we build
NM by computing its centroid (mean subsequence).
[Normal Model Based Anomaly Detection] At this point, we
have our Normal Model NM , and we now discuss the problem
of how to identify the anomalous subsequences in a series T .
Intuitively, the anomalous subsequences are the ones that are
far away from NM . Our technique starts by considering the
pairwise distances between each subsequence of length ` in
T to subsequences of the same length in NM . This operation
results in a meta-sequence, NM./` T where (NM./` T )i, 1 =
min(dist(Ti,`, NM,1,`), ..., dist(Ti,`, NM,|NM |−`+1,`)). In
other words, it contains at position i the nearest neighbor
distance between subsequence Ti,` and any subsequence of
the same length, `, in NM .

These distances correspond to their degree of abnormality:
the larger the distance is to all normal patterns, the more abnor-
mal the subsequence is. We then extract the k subsequences
of length `, which have the highest distances in NM ./` T
and rank them according to their distances, or extract all the
subsequences with a distance larger than some threshold.

3Motifs of T are the subsequences that have the smallest distance to each
other.

V. EXPERIMENTAL EVALUATION

We implemented our algorithms in C (compiled with gcc
5.4.0) and Python 3.5, and used a server with Intel Xeon CPU
E5-2650 2.20GHz and 250GB RAM.
[Datasets] We benchmark our system using annotated, real
and synthetic datasets. Following previous work [18], we
use several synthetic datasets with injected anomalies. We
refer to those datasets using the label SRW-[# of anomalies]-
[% of noise]-[length of anomaly]. Our real datasets are the
following. Simulated engine disks data (SED) from the NASA
Rotary Dynamics Laboratory [19]. representing disk revo-
lutions recorded over several runs (3K rpm speed). MIT-
BIH Supraventricular Arrhythmia Database (MBA) [10], [11],
which are electrocardiogram recordings from 5 patients, con-
taining multiple instances of two different kinds of anomalies.
Five additional real datasets from various domains that have
been studied in earlier works [8], [20], and their anomalies
are simple discords (usually only 1): aerospace engineering
(Space Shuttle Marotta Valve [20]), gesture recognition (Ann’s
Gun dataset [8]), medicine (Patient’s respiration measured by
the thorax extension [20], ECG recordings qtb/sel102 [20]),
and electrical consumption study (Dutch Power Consumption
data [20]).
[Measures] We use the Top-k accuracy measure to evaluate
the effectiveness of the methods. Top-k accuracy is defined as
the number of correctly identified anomalies among the top-k
answers of the algorithm, divided by k (this corresponds to
precision on the anomaly class TPA/(TPA + FPA), where
TPA is the number of detected true anomalies, and FPA the
number of false positives). We also measure time, in order to
evaluate the efficiency and scalability of the methods.
[Algorithms] We compare NorM to the current state-of-the-
art algorithms. We consider two techniques that enumerate
Top-k 1st discords, GrammarViz (GV) [8] and STOMP [5].
Moreover, we compare NorM against the Disk Aware Discord
Discovery algorithm (DAD) [12], which finds mth discords.
We also compare to Local Outlier Factor (LOF) [23] and
Isolation Forest [24]. Finally, we use LSTM-AD [25], a
supervised deep learning technique. Note that in contrast to
all other methods, LSTM-AD is a supervised technique.

A. Results

[Critical Difference Diagram] These experiments test the
capability of each method to correctly retrieve the k anomalous
subsequences in each dataset (for the discord based techniques,
we consider the Top-k 1st discord and the mth discord
(with m = k)). After rejecting the null hypothesis using the
Friedman test, we use the pairwise Post-Hoc Analysis to test
to produce the critical difference diagram for the algorithms
and datasets in our study. The critical difference diagram (see
Figure 2) resulting from the Wilcoxon signed-rank test with
α = 0.05 shows that NorM-SJ and NorM-smpl are the overall
winners, and significantly better than all other methods.

Regarding LSTM-AD, we note that in general it is more
accurate than the discord based algorithms. Nevertheless, we
stress that LSTM-AD only achieves this performance, because



Fig. 2. Critical difference diagram.

1

10

100

1000

10000

100000

0 1000000 2000000

NormA-SJ NormA-smpl GV DAD STOMP IF LOF

Ti
m

e 
(s

ec
)

1

10

100

1000

10000

0 500 1000 1500

Ti
m

e 
(s

ec
)

0                                   1M                                2M

(MBA(14046)) (SRW-[60]-[0%]-[100,200,400,800,1600])

Time out

Time out Time out

Dataset length Anomaly length(a) (b)

NorM NorM

Fig. 3. Scalability: execution time vs (a) dataset size, (b) anomaly length.
Timeout at 8 hours.

(contrary to the rest of the techniques) it benefits from a
training phase on labeled data, which are often times not
available.
[Scalability Evaluation] Figure 3(a) shows the execution time
(seconds in log scale) of NorM and all the competitors, when
varying the size of the dataset. We use several prefix snippets
(50K to 2M points) of the real dataset MBA(14406), and we
set k equal to the number of anomalies that are annotated in
each snippet. Since NorM-smpl performs a limited number of
distance calculations during both subsequence clustering (only
few samples from the data series are selected) and anomaly
scoring (limited to the subsequences in NM ), We observe
that it is 1-2 orders of magnitude faster than the competitors,
and gracefully scales with the dataset size. Moreover, NorM-
SJ that uses the STOMP algorithm for the Normal Model
computation stage, has a small additional time overhead (when
compared to STOMP). GV, DAD and LOF adopt different
pruning strategies in order to reduce the number of Euclidean
distance computations, which prove to be less effective. DAD
and LOF, in particular, reach the time-out point (8 hours in
our experiments) for datasets ≥ 1M points.

Figure 3(b) depicts the time performance results as we
vary the length of the anomalies between 100-1600 points
(SRW-[60]-[0%]-[100-1600] datasets). The performance of
STOMP is constant, because its complexity is not affected by
the (anomaly) subsequence length. NorM remains relatively
stable, since the Euclidean distances are computed using the
STOMP algorithm. In NorM, only the clustering operations
are affected by the length of the subsequences to consider,
which in all experiments we ran was always a very small
number (∼1-2% of all subsequences). LOF and IF are com-
puting distances using all overlapping subsequences and the
computational time is therefore affected by their length. As
shown in Figure 3(d), both of these two methods perform
orders of magnitude worse than STOMP and NorM. GV and
DAD do not scale with the anomaly length, either.

VI. CONCLUSIONS

Even though the problem of anomaly detection in data
series has attracted lots of attention, the techniques that have

been proposed so far fall short in terms of effectiveness and
efficiency. In our work, we describe a novel approach that
is based on the representation of normal behavior, which
enables us to detect both single and recurrent anomalies,
irrespective of the domain, and leads to superior accuracy and
time performance.
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