
Matrix Profile X: VALMOD - Scalable Discovery of
Variable-Length Motifs in Data Series

Michele Linardi

LIPADE, Paris Descartes University

michele.linardi@parisdescartes.fr

Yan Zhu

UC Riverside

yzhu015@ucr.edu

Themis Palpanas

LIPADE, Paris Descartes University

themis@mi.parisdescartes.fr

Eamonn Keogh

UC Riverside

eamonn@cs.ucr.edu

ABSTRACT
In the last fifteen years, data series motif discovery has emerged

as one of the most useful primitives for data series mining, with

applications to many domains, including robotics, entomology, seis-

mology, medicine, and climatology. Nevertheless, the state-of-the-

art motif discovery tools still require the user to provide the motif

length. Yet, in at least some cases, the choice of motif length is

critical and unforgiving. Unfortunately, the obvious brute-force

solution, which tests all lengths within a given range, is computa-

tionally untenable. In this work, we introduce VALMOD, an exact

and scalable motif discovery algorithm that efficiently finds all mo-

tifs in a given range of lengths. We evaluate our approach with five

diverse real datasets, and demonstrate that it is up to 20 times faster

than the state-of-the-art. Our results also show that removing the

unrealistic assumption that the user knows the correct length, can

often produce more intuitive and actionable results, which could

have been missed otherwise.

KEYWORDS
Data Series; Time Series; Motif Discovery; Variable Length; Data

Mining

ACM Reference Format:
Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn Keogh. 2018.

Matrix Profile X: VALMOD - Scalable Discovery of Variable-Length Motifs

in Data Series. In SIGMOD/PODS ’18: 2018 International Conference on Man-
agement of Data, June 10–15, 2018, Houston, TX, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3183713.3183744

1 INTRODUCTION
Data series

1
have gathered the attention of the data management

community for more than two decades [1–3, 6, 13–15, 17, 18, 37,

1
If the dimension that imposes the ordering of the series is time, then we talk about

time series. However, a series can also be defined through other measures (e.g., angle in

radial profiles in astronomy, mass in mass spectroscopy, position in genome sequences,

etc.). We use the terms time series, data series, and sequence interchangeably.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3183744

38, 47, 50, 57, 59]. They are now one of the most common types of

data, present in virtually every scientific and social domain [16, 26,

35, 39].

Over the last decade, data series motif discovery has emerged

as perhaps the most used primitive for data series data mining,

and it has many applications to a wide variety of domains [48,

51], including classification, clustering, and rule discovery. More

recently, there has been substantial progress on the scalability of

motif discovery, and nowmassive datasets can be routinely searched

on conventional hardware [48].

Another critical improvement in motif discovery, is the reduc-

tion in the number of parameters requiring specification. The first

motif discovery algorithm, PROJECTION [5], required the user to

set seven parameters, and it still only produces answers that are

approximately correct. Researchers have "chipped" away at this

over the years [31, 42], and the current state-of-the-art algorithms

only require the user to set a single parameter, which is the desired

length of the motifs. Paradoxically, the ease with which we can now

perform motif discovery has revealed that even this single burden

on the user’s experience or intuition may be too great.

For example, AspenTech, a company that makes software for

optimizing the manufacturing process for the oil and gas industry,

has begun to use motif discovery in their products both as a stand-

alone service and also as part of a precursor search tool. They

recently noted that, "our lighthouse (early adopter) customers love
motif discovery, and they feel it adds great value [...] but they are
frustrated by the finicky setting of the motif length." [33]. This issue,
of being restricted to specify length as an input parameter, has

also been noted in other domains that use motif discovery, such

as cardiology [45] and speech therapy [46], as well as in related

problems, such as data series indexing [22].

The obvious solution to this issue is to make the algorithms

search over all lengths in a given range and rank the various length

motifs discovered.

Nevertheless, this strategy poses two challenges. First, how we

can rank motifs of different lengths. Second, and most important,

how we can search over this much larger solution space in an

efficient way, in order to identify the motifs.

In this work, we address both problems. The former lends itself

to a simple solution, which has not been reported in the literature.

The latter requires new techniques that significantly extend the

state-of-the-art algorithms, including the introduction of a novel

lower bounding method, which makes efficiently searching a large

space of potential solutions possible.

https://doi.org/10.1145/3183713.3183744
https://doi.org/10.1145/3183713.3183744

0 10 seconds 12 seconds

Xylem Ingestion

Stylet passage through plant
cells

Figure 1: An existence proof of semantically different mo-
tifs, of slightly different lengths, extracted from a single
dataset.

Note that even if the user has good knowledge of the data domain,

in many circumstances, searching with one single motif length is

not enough, because the data can contain motifs of various lengths.

For example, Figure 1 previews the 10-second and 12-second motifs

discovered in the Electrical Penetration Graph (EPG) of an insect

called Asian citrus psyllid. The two motif pairs are radically differ-

ent, reflecting two different types of insect activities. In order to

capture all useful activity information within the data, a fast search

of motifs over all lengths is necessary.

The contributions of our work are the following.

• We define the problem of variable-length motif discovery,

which significantly extends the usability of the motif discov-

ery operation.

• We propose an exact algorithm, called Variable Length Motif

Discovery (VALMOD): Given a data seriesT , VALMOD finds

the subsequence pair with the smallest Euclidean distance

of each length in the input range [ℓmin , ℓmax]. VALMOD

is based on a novel lower bounding technique, which is

specifically designed for the motif discovery problem.

• We evaluate our approach using five diverse real datasets,

and demonstrate the scalability of our approach. The results

show that VALMOD is up to 20x faster than the state-of-the-

art-techniques. Furthermore, we present case studies with

datasets from entomology and seismology, which demon-

strate the usefulness of our approach.

2 PROBLEM DEFINITION
We begin by defining the data type of interest, data series:

Definition 2.1 (Data series). A data series T ∈ Rn is a sequence

of real-valued numbers ti ∈ R [t1, t2, ..., tn], where n is the length

of T .

We are typically not interested in the global properties of a data

series, but in the local regions known as subsequences:

Definition 2.2 (Subsequence). A subsequence Ti, ℓ ∈ R
ℓ
of a data

series T is a continuous subset of the values from T of length ℓ

starting from position i . Formally, Ti, ℓ = [ti , ti+1, ..., ti+ℓ−1].

The particular local property we are interested in this work is

data series motifs. A data series motif pair is the pair of the most

similar subsequences of a given length, ℓ, of a data series:

Definition 2.3 (Data series motif pair). Ta, ℓ and Tb, ℓ is a motif

pair iff dist(Ta, ℓ ,Tb, ℓ) ≤ dist(Ti, ℓ ,Tj, ℓ) ∀i, j ∈ [1, 2, ...,n − ℓ + 1],

where a , b and i , j, and dist is a function that computes the

z-normalized Euclidean distance between the input subsequences

[5, 31, 46, 48, 51].

Note, that if we remove the motif pair from the dataset, the pair

with the second smallest distance will become the new motif pair.

In this way, we can produce a ranked list of subsequence pairs,

which we call motif pairs of length ℓ.

We store the distance between a subsequence of a data series

with all the other subsequences from the same data series in an

ordered array called a distance profile.

Definition 2.4 (Distance profile). A distance profile D ∈ R(n−ℓ+1)

of a data series T regarding subsequence Ti, ℓ is a vector that stores
dist(Ti, ℓ ,Tj, ℓ), ∀j ∈ [1, 2, ...,n − ℓ + 1], where i , j.

One of themost efficient ways to locate the exact data seriesmotif

is to compute the matrix profile [53, 56], which can be obtained by

evaluating the minimum value of every distance profile in the time

series.

Definition 2.5 (Matrix profile). A matrix profileMP ∈ R(n−ℓ+1)

of a data series T is a meta data series that stores the z-normalized

Euclidean distance between each subsequence and its nearest neigh-

bor, wheren is the length ofT and ℓ is the given subsequence length.

The data series motif can be found by locating the two lowest values

inMP .

To avoid trivial matches [4], in which a pattern is matched to

itself or a pattern that largely overlaps with itself, the matrix profile

incorporates an "exclusion-zone" concept, which is a region before

and after the location of a given query that should be ignored. The

exclusion zone is heuristically set to ℓ/2. The recently introduced

STOMP algorithm [56] offers a solution to compute the matrix

profileMP in O(n2) time. This may seem untenable for data series

mining, but several factors mitigate this concern. First, note that the

time complexity is independent of ℓ, the length of the subsequences.

Secondly, the matrix profile can be computed with an anytime

algorithm, and in most domains, in just O(nc) steps the algorithm
converges to what would be the final solution [53] (c is a small

constant). Finally, the matrix profile can be computed with GPUs,

cloud computing, and other HPC environments that make scaling

to at least tens of millions of data points trivial [56].

We can now formally define the problems we solve.

Problem 1 (Variable-Length Motif Pair Discovery). Given
a data series T and a subsequence length-range [ℓmin , ..., ℓmax],
we want to find the data series motif pairs of all lengths in
[ℓmin , ..., ℓmax], occurring in T .

One naive solution to this problem is to repeatedly run the state-

of-the art motif discovery algorithms for every length in the range.

However, note that the size of this range can be as large as O(n),
which makes the naive solution infeasible for even middle-size data

series. We aim at reducing this O(n) factor to a small value.

Note that the motif pair discovery problem has been extensively

studied in this last decade [19, 27–29, 31, 53, 56], the reason being

that if we want to find a collection of recurrent subsequences in T ,
the most computationally expensive operation consists of identi-

fying the motif pairs [56], namely, solving Problem 1. Extending

0 50 100 150 200 250

Original Length

Downsampled 1 In 2

Downsampled 1 In 3

Downsampled 1 In 4

Downsampled 1 In 5

Downsampled 1 In 6

0 100 200
0

12
Euclidean Distance

Euclidean Distance * Sqrt(1/l)

Euclidean Distance / l 0

0.5

1

max normalized
Euclidean Distance

max normalized
Euclidean Dist. / l

max normalized
Euclidean Distance * Sqrt(1/l)

0 100 200

Figure 2: (left) Two series from the TRACE dataset, as prox-
ies for time series signatures at various speeds. (center) The
classic Euclidean distance is clearly not length invariant.
(right) After divide-by-max normalizing, it is clear that the
length-normalized Euclidean distance has a strong bias to-
ward the longest pattern.

motif pairs to sets incurs a negligible additional cost (as we also

show in our study).

Given a motif pair {Tα, ℓ ,Tβ, ℓ}, the data series motif set Sℓr , with
radius r ∈ R, is the set of subsequences of length ℓ, which are at

distance at most r from either Tα, ℓ , or Tβ, ℓ . More formally:

Definition 2.6 (Data series motif set). Let {Tα, ℓ ,Tβ, ℓ} a motif

pair of length ℓ of data series T . The motif set Sℓr is defined as:

Sℓr = {Ti, ℓ |dist(Ti, ℓ ,Tα, ℓ) < r ∨ dist(Ti, ℓ ,Tβ, ℓ) < r }.

The cardinality of Sℓr , |S
ℓ
r |, is called the frequency of the motif

set.

Intuitively, we can build a motif set starting from a motif pair.

Then, we iteratively add in the motif set all subsequences within

radius r . We use the above definition to solve the following problem

(optionally including a constraint on the minimum frequency for

motif sets in the final answer).

Problem 2 (Variable-Length Motif Sets Discovery). Given
a data seriesT and a length range [ℓmin , . . . , ℓmax], we want to find
the set S∗ = {Sℓr |S

ℓ
r is a motif set, ℓmin ≤ ℓ ≤ ℓmax }. In addition,

we require that if Sℓr , S
′ℓ′

r ′ ∈ S
∗ ⇒ Sℓr ∩ S

′ℓ′

r ′ = ∅.

Thus, the variable-length motif sets discovery problem results

in a set, S∗, of motif sets. The constraint at the end of the problem

definition restricts each subsequence to be included in at most one

motif set. Note that in practice we may not be interested in all the

motif sets, but only in those with theK smallest distances, leading to

a top-K version of the problem. In our work, we provide a solution

for the top-K problem (though, setting K to a very large value will

produce all results).

3 COMPARING MOTIFS OF DIFFERENT
LENGTHS

Before introducing our solutions to the problems outlined above,

we first discuss the issue of comparing motifs of different lengths.

This becomes relevant when we want to rank motifs of different

lengths (within the given range), which is useful in order to identify

the most prominent motifs, irrespective of their length. In this

section, we propose a length-normalized distance measure that the

VALMOD algorithm uses in order to produce such rankings.

The increased expressiveness of VALMOD offers a challenge.

Since we can discover motifs of different lengths, we also need

to be able to rank motifs of different lengths. A similar problem

occurs in string processing, and a common solution is to replace

the edit-distance by the length-normalized edit-distance, which is

the classic distance measure divided by the length of the strings in

question [24]. This correction would find the pair {concatenation,

concameration} more similar than {cat, cot}, matching our intuition,

since only 15% of the characters are different in the former pair, as

opposed to 33% in the latter.

Researchers have suggested this length-normalized correction

for time series, but as we will show, the correction factor is incor-

rect. To illustrate this, consider the following thought experiment.

Imagine that some process in the system we are monitoring oc-

casionally "injects" a pattern into the time series. As a concrete

example, washing machines typically have a prototypic signature

(as exhibited in the TRACE dataset [40]), but the signatures express

themselves more slowly on a cold day, when it takes longer to heat

the cooler water supplied from the city [9]. We would like all equal

length instances of the signature to have approximately the same

distance. As a consequence, we factorize the Euclidean distance

by the following quantity: sqrt(1/ℓ), where ℓ is the length of the

sequences. This aims to favor longer and similar sequences in the

ranking process of matches that have different lengths.

In Figure 2(left) we show two examples from the TRACE

dataset [40], which will act as proxies for a variable length sig-

nature. We produced the variable lengths by down sampling. In

Figure 2(center), we show the distances between the patterns as

their length changes. With no correction, the Euclidean distance

is obviously biased to the shortest length. The length-normalized

Euclidean distance looks "flatter" and suggests itself as the proper

correction. However, its variation over the sequence length change

is not visible due to the small scale. In Figure 2(right), we show all

of the measures after dividing them by their largest value. Now

we can see that the length-normalized Euclidean distance has a

strong bias toward the longest pattern. In contrast to the other two

approaches, the sqrt(1/lenдth) correction factor provides a near

perfect invariant distance over the entire range of values.

4 PROPOSED APPROACH
Our algorithm, VALMOD (Variable Length Motif Discovery), starts

by computing thematrix profile on the smallest subsequence length,

namely ℓmin , within a specified range [ℓmin , ℓmax]. The key idea

of our approach is to minimize the work that needs to be done for

succeeding subsequence lengths (ℓmin + 1, ℓmin + 2, . . ., ℓmax). In

Figure 3, it can be observed that the motif of length 8 (T33,8 −T97,8)
have the same offsets as the motif of length 9 (T33,9 −T97,9). Can
we exploit this property to accelerate our computation?

It seems that if the nearest neighbor of Ti, ℓmin is Tj, ℓmin , then

probably the nearest neighbor of Ti, ℓmin+1 is Tj, ℓmin+1. For exam-

ple, as shown in Figure 3(bottom), if we sort the distance profiles

of T33,8 and T33,9 in ascending order, we can find that the nearest

neighbor of T33,8 is T97,8, and the nearest neighbor of T33,9 is T97,9.
One can imagine that if the location of the nearest neighbor

of Ti, ℓ (i = 1, 2, ...,n −m + 1) remains the same as we increase ℓ,

then we could obtain the matrix profile of length ℓ +k inO(n) time

0 128

()

…
…

()

…
…

64

Figure 3: (top) The top motifs of length 9 in an example data
series have the same offsets as the top motifs of length 8.
(bottom) The sorted distance profiles of T33,8 and T33,9.

0 128

𝟑𝟑,𝟖 𝟗𝟕,𝟖

𝟗𝟕,𝟗

64

𝟑𝟑,𝟗

𝟑𝟑,𝟏𝟗
.
.
.

.

.

.

𝟗𝟕,𝟏𝟗

. . .

𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟖)

𝟑𝟑,𝟖 𝟗𝟕,𝟖

…
…

𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟗)

𝟑𝟑,𝟗 𝟗𝟕,𝟗

…
…

𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟏𝟗)𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟖)

𝑑𝑖𝑠𝑡 𝟑𝟑,𝟖 𝟗𝟕,𝟖

…
…

𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟗)

𝑑𝑖𝑠𝑡 𝟑𝟑,𝟗 𝟗𝟕,𝟗

…
…

𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟏𝟗)

𝟑𝟑,𝟏𝟗 𝟏,𝟏𝟗

…
…

. . .

𝒓𝒂𝒏𝒌 based on
Lower Bounds
of Euclidean

Distance

𝒓𝒂𝒏𝒌 based
on Euclidean
Distance (ED)

𝟏,𝟏𝟗

𝑑𝑖𝑠𝑡 𝟑𝟑,𝟏𝟗 𝟗𝟕,𝟏𝟗

…
…

Figure 4: (top distance profiles) Ranking by true distances
leads to changes in the order of the pairs. (bottom distance
profiles) Ranking by lower bound distances maintains the
same order of pairs over increasing lengths.

(k = 1, 2, . . .). However, this is not always true. The location of the

nearest neighbor of Ti, ℓ may not change as we slightly increase ℓ,

if there is a substantial margin between the first and second entries

of Dranked (Ti, ℓ). But, as ℓ gets larger, the nearest neighbor of Ti, ℓ
is likely to change. For example, as shown in Figure 4, when the

subsequence length grows to 19, the nearest neighbor ofT33,19 is no
longerT97,19, butT1,19. We observe that the ranking of the distance

profile values may change, even when the data is relatively smooth.

When the data is noisy and skewed, this ranking can change even

more often. Is there any other rank-preserving measure that we

can exploit to accelerate the computation?

The answer is yes. Instead of sorting the entries of the distance

profile, we create and sort a new vector, called the lower bound dis-
tance profile. Figure 4(bottom) previews the rank-preserving prop-

erty of the lower bound distance profile. As we will describe later,

once we know the distance between Ti, ℓ and Tj, ℓ , we can evaluate

a lower bound distance between Ti, ℓ+k and Tj, ℓ+k , ∀k ∈ [1,2,3,. . .].
The rank-preserving property of the lower bound distance profile

can help us prune a large number of unnecessary computations as

we increase the subsequence length.

4.1 The Lower Bound Distance Profile
Before introducing the lower bound distance profile, let us first in-

vestigate its basic element: the lower bounding Euclidean distance.

Assume that we already know the z-normalized Euclidean dis-

tance dℓi, j between two subsequences of length ℓ: Ti, ℓ and Tj, ℓ ,

and we are now estimating the distance between two longer sub-

sequences of length ℓ + k : Ti, ℓ+k and Tj, ℓ+k . Our problem can be

stated as follows: given Ti, ℓ , Tj, ℓ and Tj, ℓ+k (but not the last k
values of Ti, ℓ+k), is it possible to provide a lower bound function

LB(dℓ+ki, j), such that LB(dℓ+ki, j) ≤ dℓ+ki, j ? This problem is visualized

in Figure 5 .

Arbitrary data can be
added here

Figure 5: Increasing the subsequence length from ℓ to ℓ + k .

One may assume that we can simply set LB(dℓ+ki, j) = dℓi, j by

assuming that the last k values of Ti, ℓ+k are the same as the last k
values of Tj, ℓ+k . However, this is not an answer to our problem, as

we need to evaluate z-normalized Euclidean distances, which are

not simple Euclidean distances. The mean and standard deviation

of a subsequence can change as we increase its length, so we need

to re-normalize both Ti, ℓ+k and Tj, ℓ+k . Assume that the mean and

standard deviation ofTx,y are µx,y andσx,y , respectively (i.e.Tj, ℓ+k
corresponds to µ j, ℓ+k and σj, ℓ+k). Since we do not know the last k
values ofTi, ℓ+k , both µi, ℓ+k and σi, ℓ+k are unknown and can thus

be regarded as variables, and we have the following [55]:

dℓ+ki, j ≥
min

µi, ℓ+k ,σi, ℓ+k

√√√√ ℓ∑
p=1
(
ti+p−1 − µi, ℓ+k

σi, ℓ+k
−
tj+p−1 − µ j, ℓ+k

σj, ℓ+k
)2

= min
µi, ℓ+k ,σi, ℓ+k

σj, ℓ

σj, ℓ+k

√√√√ ℓ∑
p=1
(
ti+p−1 − µi, ℓ+k

σi, ℓ+kσj, ℓ
σj, ℓ+k

−
tj+p−1 − µ j, ℓ+k

σj, ℓ
)2

=
min
µ′,σ ′

σj, ℓ

σj, ℓ+k

√√√√ ℓ∑
p=1
(
ti+p−1 − µ ′

σ ′
−
tj+p−1 − µ j, ℓ

σj, ℓ
)2 (1)

Clearly, the minimum value shown in Eq. 1 can be set as

LB(dℓ+ki, j). We can obtain LB(dℓ+ki, j) by solving

∂LB(d ℓ+k
i, j)

∂µ′ = 0 and

∂LB(d ℓ+k
i, j)

∂σ ′ = 0:

LB(dℓ+ki, j) =

√
ℓ

σj, ℓ
σj, ℓ+k

if qi, j ≤ 0√
ℓ(1 − q2i, j)

σj, ℓ
σj, ℓ+k

otherwise

(2)

where qi, j =

∑ℓ
p=1

(tj+p−1ti+p−1)
ℓ −µi, ℓ µ j, ℓ

σi, ℓσj, ℓ .

LB(dℓ+ki, j) yields the minimum possible z-normalized Euclidean

distance betweenTi, ℓ+k andTj, ℓ+k , givenTi, ℓ ,Tj, ℓ andTj, ℓ+k (but

not the last k values of Ti, ℓ+k). Now that we have obtained the

lower bound Euclidean distance between two subsequences, we are

able to introduce the lower bound distance profile.

Using Eq. 2, we can evaluate the lower bound Euclidean distance

between Tj, ℓ+k and every subsequence of length ℓ + k in T . By
putting the results in a vector, we obtain the lower bound distance

profile LB(Dℓ+k
j) corresponding to subsequence Tj, ℓ+k : LB(D

ℓ+k
j)

= LB(dℓ+k
1, j), LB(d

ℓ+k
2, j), ...,LB(d

ℓ+k
n−ℓ−k+1, j). If we sort the components

of LB(Dℓ+k
j) in an ascending order, we can obtain the ranked lower

bound distance profile: LBranked (D
ℓ+k
j) = LB(dℓ+kr1, j

),LB(dℓ+kr2, j
),

...,LB(dℓ+krn−ℓ−k+1, j
), where LB(dℓ+kr1, j

) ≤ LB(dℓ+kr2, j
) ≤ ...

≤ LB(dℓ+krn−ℓ−k+1, j
).

We would like to utilize this ranked lower bound distance profile

to accelerate our computation. Assume that we have a best-so-far

pair of motifs with a distance distBSF . If we examine the pth el-

ement in the ranked lower bound distance profile and find that

LB(dℓ+krp, j
) > distBSF , then we do not need to calculate the exact

distance for dℓ+krp, j
,dℓ+krp+1, j

, ...,dℓ+krn−ℓ−k+1, j
anymore, as they cannot

be smaller than distBSF . Based on this observation, our strategy

is as follows. We set a small, fixed value for p. Then, for every

j, we evaluate whether LB(dℓ+krp, j
) > distBSF is true: if it is, we

only calculate dℓ+kr1, j
,dℓ+kr2, j

, ...,dℓ+krp−1, j
. If it is not, we compute all

the elements of Dℓ+k
j . We update distBSF whenever a smaller dis-

tance value is observed. In the best case, we just need to calculate

O(np) exact distance values to obtain the motif of length l + k .
Note that the order of the ranked lower bound distance profile

is preserved for every k . That is to say, if LB(dℓ+ka, j) ≤ LB(dℓ+kb, j),

then LB(dℓ+k+1a, j) ≤ LB(dℓ+k+1b, j). This is because the only compo-

nent in Eq. 2 related to k is σj, ℓ+k . When we increase k by 1, we

are just performing a linear transformation for the lower bound

distance: LB(dℓ+k+1i, j) = LB(dℓ+ki, j)σj, ℓ+k/σj, ℓ+k+1. Therefore, we

have LB(dℓ+k+1rp, j
) = LB(dℓ+krp, j

)σj, ℓ+k/σj, ℓ+k+1 , and the ranking is

preserved for every k .

4.2 The VALMOD Algorithm
We are now able to formally describe the VALMOD algorithm.

The pseudocode for VALMOD is shown in Algorithm 1. With the

call of ComputeMatrixProfile() in line 5, we build the matrix profile

corresponding to ℓmin , and in the meantime store the smallest p
values of each distance profile in the memory. Note that the matrix

profile is accommodated in the vectorMP , which is coupled with

the matrix profile index, IP , which is a structure containing the

offsets of the nearest neighbor subsequences. We can easily find

the motif corresponding to ℓmin as the minimum value of MP .

Algorithm 1: VALMOD

Input: DataSeries T , int ℓmin int ℓmax , int p
Output:VALMP

1 int nDP ← |T | − ℓmin + 1 ;
2 VALMP ← newVALMP (nDP);
3 VALMP .MP = {⊥,...,⊥};

4 MaxHeap[] l istDP , double []MP , int [] I P ;

5 l istDP ,MP , I P ←ComputeMatr ixProf ile (T , ℓmin , p); // listDP contains p

entries of each distance profile

6 VALMP ← updateVALMP (VALMP ,MP ,I P ,nDP) ;
7 for i ← ℓmin + 1 to ℓmax do
8 nDP← |T | − i + 1 ;

// compute SubMP and update listDP for the length i

9 bool bBestM, double [] SubMP , I P ←ComputeSubMP (T ,nDP ,l istDP ,i ,p);
10 if bBestM then

// SubMP surely contains the motif, update VALMP with it

11 updateVALMP (VALMP ,SubMP ,I P ,nDP);
12 else
13 l istDP ,MP ,I P ←ComputeMatr ixProf ile (T ,i ,p);

// SubMP might not contain the motif, update VALMP computing MP

14 updateVALMP (VALMP ,MP ,I P ,nDP);
15 end
16 end

Algorithm 2: updateVALMP

Input:VALMP , double []MPnew , int [] I P , nDP , ℓ
Output:VALMP

1 for i ← 1 to nDP do
// length normalize the Euclidean distance

2 double lNormDist ←MPnew [i] ∗
√
1/ℓ;

// if the distance at offset i of VALMP, surely comptued with previous

lengths, is larger than the actual, update it

3 if (VALMP .distances[i] > lNormDist orVALMP .MP [i] == ⊥) then
4 VALMP .distances[i] ←MPnew [i];
5 VALMP .normDistances[i] ← lNormDist ;
6 VALMP .lenдths[i] ← ℓ;

7 VALMP .indices[i] ← I P [i];
8 end
9 end

Then in lines 7-16, we iteratively look for the motif of every length

within ℓmin+1 and ℓmax . The ComputeSubMP function in line 9

attemps to find the motif of length i by only evaluating a subset

of the matrix profile corresponding to subsequence length i . Note
that this strategy, which is based on the lower bounding technique

introduced in section 4.1, might not be able to capture the global

minimum value within the matrix profile. In case that happens

(which is rare), the boolean flag bBestM is set to false, and we

compute the whole matrix profile with the computeMatrixPoril f e
procedure in line 13.

The final output ofVALMOD is a vector, which is calledVALMP
(variable length matrix profile) in the pseudo-code. If we were inter-

ested in only one fixed subsequence length, VALMP would be the

matrix profile normalized by the square root of the subsequence

length. If we are processing various subsequence lengths, then as

we increase the subsequence length, we update VALMP when a

smaller length-normalized Euclidean distance is observed.

Algorithm 2 shows the routine to update the VALMP struc-

ture. The final VALMP consists of four parts. The ith entry of the

normDistances vector stores the smallest length-normalized Eu-

clidean distance values between the ith subsequence and its nearest

neighbor, while the ith place of vectordistances stores their straight
Euclidean distance. The location of each subsequence’s nearest

Algorithm 3: ComputeMatrixPro f ile

Input: DataSeries T , int ℓ, int p
Output:MP , l istDP

1 int nDP ← |T |-ℓ+1;
2 double []MP ← double [nDP];
3 int [] I P ← int [nDP];
4 MaxHeap[] l istDP= new MaxHeap(p)[nDP];

// compute the dot product vector QT for the first distance profile

5 double []QT ← SlidinдDotProduct (T
1, ℓ , T);

// compute sum and squared sum of the first subsequence of length ℓ

6 s ← sum(T
1, ℓ); ss ← squaredSum(T

1, ℓ);

// comptue the first distance profile with distance formula (Eq.3) and store

the minimum distance in MP and the offset of the nearest neighbor in IP

7 D(Ti, ℓ)←CalcDistProf ile (QT ,Ti, ℓ , T , s , ss);
8 MP [1], I P [1] ←min(D(Ti, ℓ));

// iterate over the subsequences of T

9 for i← 2 to nDP do
// update the dot product vector QT for the ith subsequence

10 for j← nDP down to 2 do
11 QT [j]←QT [j − 1] −T [j − 1] ×T [i − 1] +T [j + ℓ − 1] ×T [i + ℓ − 1] ;

12 end
// update sum and squared sum of the ith subsequence

13 s ← s −T [i − 1] +T [ℓ + i − 2];
14 ss ← ss −T [i − 1]2 +T [ℓ + i − 2]2 ;
15 D(Ti, ℓ)←CalcDistProf ile (QT ,Ti, ℓ , T , s , ss);
16 MP [i], I P [i] ←min(D(Ti, ℓ));

// Store in listDP[i] the p entries e with smallest lower bounding

distance

17 int c← 0;

18 for each entry e in D(Ti, ℓ) do
// Compute the lower bound for the length ℓ + 1

19 e .LB← compLB(ℓ, ℓ + 1,QT [c], e .s1, e .s2, e .ss1, e .ss2);
// save the entry only if is smaller than the max lb so far or if

listDP[i] contains less than p elements

20 if e .LB < max (l istDP [i]) or |l istDP [i] | < p then
21 inser t (l istDP [i], e);
22 end
23 c← c + 1;
24 end
25 end

neighbor is stored in the vector indices . The structure lenдths con-

tains the length of the ith subsequences pair.

In the next two subsections, we detail the two sub-routines,

computeMatrixPoril f e and the ComputeSubMP .

4.3 Computing The Matrix Profile
The routine ComputeMatrixPro f ile (Algorithm 3) computes a ma-

trix profile for a given subsequence length, ℓ. It essentially follows

the STOMP algorithm [56], except that we also calculate the lower

bound distance profiles in line 18. In line 5, the dot product between

the sequence T
1, ℓ and the others in T is computed in frequency

domain in O(nloдn) time, where n = |T |. The dot product is com-

puted in constant time in line 11 by using the result of the previous

overlapping subsequences.

In line 7 we measure each z-normalized Euclidean distance, be-

tween Ti, ℓ and the other subsequence of length ℓ in T , avoiding
trivial matches. The distance measure formula utilized is the fol-

lowing [30, 53, 56]:

dist(Ti, ℓ ,Tj, ℓ) =

√
2ℓ(1 −

QTi, j − ℓµi µ j

ℓσiσj
) (3)

In Eq. 3 QTi, j represents the dot product of the two sub-series

with offset i and j respectively. It is important to note that, we may

compute µ and σ in constant time by using the running plain and

squared sum, namely s and ss (initialized in line 6). It follows that

µ = s/ℓ and σ =
√
(ss/ℓ) − µ2.

In lines 8 and 16, we update both the matrix profile and the

matrix profile index, which holds the offset of the closest match for

each Ti,l .
Algorithm 3 ends with the loop in line 18, which evaluates the

lower bound distance profile and stores the p smallest lower bound

distance values in listDP . In line 19, the procedure compLB eval-

uates the lower bound distance profile introduced in Section 4.1

using Eq. 2. The structure listDP is a Max Heap with a maximum

capacity of p. Each entry e of the distance profile in line 18 is a

tuple containing the Euclidean distance between a subsequence

Tj, ℓ and its nearest neighbor, the location of that nearest neighbor,

the lower bound Euclidean distance of the pair, the dot product

of them, and the plain and squared sum of Tj, ℓ . In Figure 6 (b) we

show an example of the distance profile in line 18. The distance

profile is sorted according to the lower bound Eulidean distance

values (shown as LB in the figure). The entries corresponding to the

p smallest LB values are stored in memory to be reused for longer

motif lengths.

The overall time complexity of the ComputeMatrixPro f ile rou-
tine is O(n2loдp), where n is the number of the computed distance

profiles.

4.4 Matrix Profile for Subsequent Lengths
We are now ready to describe our ComputeSubMP algorithm, which

allows us to find the motifs for subsequence lengths greater than ℓ

in linear time.

The input of ComputeSubMP, whose pseudo-code is shown in

Algorithm 4, is the vector listDp that we built in the previous step.

In line 5, we start to iterate over the p × n elements of listDp in

order to find the motif pair of length newL, using a procedure that is
faster than Algorithm 1, leading to a complexity that is now linear

in the best case (as the experiments show, this is often the case).

Since listDP potentially contains enough elements to compute the

whole matrix profile, it can provide more information than just the

motif pair.

In the loop of line 9, we update all the entries of listDP[i] by
computing the Euclidean and lower bound distance for the length

newL. This operation is valid, since the ranking of each listDP[i] is
maintained as the lower bound gets updated. Moreover, this latter

computation is done in constant time (line 10), since the entries

contain the statistics (i.e. sum, squared sum, dot product) for the

lengthnewL−1. Also note that the routineupdateDistAndLB avoids

the trivial matches, which may result from the length increment.

Subsequently, the algorithm checks in line 16 if minDist is

smaller than or equal tomaxLB, the largest lower bound distance

value in listDP[i]. If this is true,minDist is the smallest value in the

whole distance profile. In lines 17 and 18, we update the best-so-far

distance value and the matrix profile. On the other hand, we update

the smallest max lower bounding distance in line 21, recording also

that we do not have the true min for the distance profile with offset

i (line 23). Here, we may also note that even though the local true

min is larger than the max lower bound (i.e., the condition of line 16

is not true),minDist may still represent an approximation of the

true matrix profile point.

Algorithm 4: ComputeSubMP
Input: DataSeries T , int nDp ,MaxHeap[] l istDP , int newL, int p
Output: bBestM, SubMP , I P

1 double[] SubMP ← double[nDp];
2 int[] I P ← int[nDp];
3 doubleminDistAbs ← inf , doubleminLbAbs ← inf ;

4 List ⟨ int,double ⟩ nonV alidDP ;
// iterate over the partial distance profiles in listDP

5 for i ← 1 to nDp do
6 doubleminDist ← inf ;

7 int ind ← 0;

8 doublemaxLB← popMax(l istDP [i]);
// update the partial distance profile for the length newL (true

Euclidean and lower bounding distance)

9 for each entry e in listDP [i] do
10 e .dist , e .LB← updateDistAndLB(e, newL);
11 minDist ←min(minDist ,e .dist));
12 ifminDist == e .dist then
13 ind = e .of f set ;
14 end
15 end

// check if the min (minDist) of this partial distance profile is the

min of the complete distance profile

16 ifminDist < maxLB then
// minDist is the real min; valid distance profile

17 minDistABS ←min(minDistAbs ,minDist);
18 SubMP [i] =minDist ;
19 I P [i] =ind ;
20 else

// minDist is not the real min; non-valid distance profile

21 minLbAbs ←min(minLbAbs ,maxLB));
22 SubMP [i] = ⊥;
23 nonV alidDP .add (⟨i,maxLB ⟩)
24 end
25 end
26 bool bBestM ← (minDistABS < minLbAbs) ;

// if SubMP does not contain the motif distance (bBestM = false), compute
the whole non valid distance profiles, if it is faster then
computeMatrixProfile (nDp / p = true)

27 if !bBestM and nonV alidDP .size() < (nDp/p) then
28 for each pair < ind, lbMax > in nonV alidDP do
29 if lbMax < minDistABS then
30 QT ← SlidinдDotProduct (Tind, ℓ , T);

31 double s ← sum(Tind, ℓ); double ss ← squaredSum(Tind, ℓ);
32 D(Tind, ℓ) ← CalcDistProf (QT ,Tind, ℓ , T , s , ss);
33 SubMP [ind], I P [ind] =min(D(Tind, ℓ));
34 inser t (l istDP [ind], D(Tind, ℓ));
35 end
36 end
37 bBestM ← 1;

38 end

When the iteration of the partial distance profiles ends (end of

for loop in line 5), the algorithm has enough elements to know if the

matrix profile computed contains the real motif pair. In line 26, we

verify if the smallest Euclidean distance we computed (minDistABS)
is less thanminLbAbs , which is the minimum lower bound of the

non-valid distance profiles.We call non-valid, all the partial distance

profiles, for which the maximum lower bound distance (i.e., the

p-th largest lower bound of the distance profile) is smaller than

the minimum true distance (line 20); otherwise, we call them valid

(line 16).

As a result of the ranking preservation of the lower bounding

function, if the above criterion holds, we know that each true Eu-

clidean distance in the non-valid distance profiles must be greater

than minDistABS . In line 27, the algorithm has its last opportu-

nity to exploit the lower bound in the distance profiles, in order to

avoid computing the whole matrix profile. If bBestM is false (the

motif has not been found), we start to iterate through the non-valid

T

(a) 1

1800

0
-1
-2
-3
-4
-5

0 600 1200

1

1800

0
-1
-2
-3
-4
-5

0 600 1200

T160,600

T

rank dist offset LB
1 2.34 1136 2.34
2 2.58 1135 2.57
3 2.79 1134 2.79
4 3.00 1133 2.99
5 3.18 1132 3.18

..
738 37.33 1071 24.50
739 37.33 1073 24.50
740 37.34 1072 24.50

T1136,600

(b)

i=1 … 160 … nDP
2.34 distance profiles vectors

(Matrix Profile)
computed in O(n2) time

Offset of subsequence (i) global minimum distance
motif pair: [T160,600 T1136,600]

600 600

Entries stored in memory

Figure 6: (a) Input time series, (b) Compute matrix profile
snapshot: (on the left) distance profile of the subsequence
T160,600 which is part of the motif.

Pruned
calculations

1

1800

0
-1
-2
-3
-4
-5

0

T

T160,601

dist
match
offset LB

1 2.34 1136 2.34
2 2.58 1135 2.57
3 2.79 1134 2.79
4 3.00 1133 2.99
5 3.19 1132 3.18
…
…
…

739 … … …

T1136,601601 601

maxLBminDist

T620,601
dist LB
1 24.07 20.68
2 24.07 20.69
3 24.07 20.69
4 24.08 20.69
5 24.09 20.69
..

739 … …

maxLB and minLbAbs

minDist

Figure 7: Compute Sub Matrix profile: the partial distance
profile of T160,601 contains the motif’s subsequences dis-
tance.

distances profiles. Note that we perform this iteration when their

number is less than half of the total distance profiles.

We present here two examples that explain the main procedures

of VALMOD.

Example 4.1. In Figure 6, we show a snapshot of a VALMOD

run. In Figure 6(a), VALMOD receives as input a data series of

length 1800. In Figure 6(b), thematrix profile for subsequence length

ℓ = 600 is computed (Algorithm 3). On the left, we depict the

distance profile regarding T160,600, and rank it according to the

lower bound (LB) distance values. Although we are computing

the entire distance profile, we store only the first p = 5 entries in

memory.

Example 4.2. Figure 7 shows the execution of ComputeSubMP
(Algorithm 4), taking place after the step illustrated in Figure 6(b).

In this picture, we show the distance profile of a subsequence be-

longing to the motif pair, for subsequence length ℓ = 601. This time

it is built by computing p = 5 distances (left side of the picture). We

can now make the following observations.

(a) In the distance profile of the subsequence T160,601 (left array):
minDist = 2.34 < maxLB = 3.18 ⇐⇒ the value 2.34 is both a

local and a global minimum (among all the distance profiles).

(b) Considering the partial distance profile of subsequence T620,601
(right array), we do not know if itsminDist is its real global mini-

mum, since 20.69 (maxLB) < 24.07 (minDist).
(c) We know, that 20.69 (maxLB of the distance profile of subse-

quence T620,601) is theminLbAbs , or in other words, the smallest

maxLB distance among all the partial distance profiles in which

maxLB < minDist holds.
(d)We know that there are no true Euclidean distances (among those

computed) smaller than 2.34. SinceminDist = 2.34 < minLbAbs =
20.69 ⇐⇒ 2.34 is the distance of the motif {T160,601;T1136,601}.

In the best case, ComputeSubMP takes O(np) time, whereas the

worst case time complexity is O(nCloдn), where n is the number of

the computed distance profiles, and C = n/p.

5 FINDING MOTIF SETS
We finally extend our technique in order to find the variable-length

motif sets. In that regard, we start to consider the top-K motif pairs,

namely the pairs having theK smallest length-normalized distances.

The idea is to extend each motif pair to a motif set considering the

subsequences proximity as a quality measure, favoring thus the

motif sets, which contain the closest subsequence pairs. Moreover,

for each top-K motif pair (Ta, ℓ ,Tb, ℓ), we use a radius r = D ∗
dist(Ta, ℓ ,Tb, ℓ), when we extend it to a motif set. We call the real

variable D radius factor. This choice, permits to tune the radius r by
the user defined radius factor, considering also the characteristics

of the data. Setting a unique and non data dependent radius for all

motif sets, would penalize the results of exploratory analysis.

First, we introduce Algorithm 5, a slightly modified version of the

updateValmp routine (Algorithm 2). The new algorithm is called

updateVALMPForMoti f Sets , and its main goal is to keep track of

the best K subsequence pairs (motif pairs) according to theVALMP
ranking, and the corresponding partial distance profiles. The idea

is to later exploit the lower bounding distances for pruning compu-

tations, while computing the motif sets.

In lines 4 to 7, we build a structure named pair , which carries the

information of the subsequences pairs that appear in the VALMAP
structure. During this iteration, we leave the fields partDP1 and
partDP2 empty, since they will be later initialized with the partial

distance profiles, if their pair is in the top K of VALMAP . In order

to enumerate the best K pairs, we use the global maximum heap

heapBestKPairs in line 8. Then, we assign to each pair (or update)

the corresponding partial distance profiles (line 15).

We are now ready to present the variable length motif sets dis-

covery algorithm (refer to Algorithm 6). Starting at line 1, the algo-

rithm iterates over the best pairs. For each one of those, we need

to check if the search range is smaller than the maximum lower

bound distances of both partial distance profiles. If this is true, we

are guaranteed that we have already computed all the subsequences

in the range. Therefore, in lines 7 and 14 we filter the subsequences

in the range, sorting the partial distance profile according to the

offsets. This operation will permit to find the trivial matches in

linear time.

Algorithm 5: updateVALMPForMoti f Sets

Input:VALMP , double []MPnew , int [] I P , nDP , ℓ,MaxHeap[] l istDP ,
Output:VALMP

1 for i ← 1 to nDP do
// length normalize the Euclidean distance

2 double lNormDist ←MPnew [i] ∗
√
1/ℓ;

// if the distance at offset i of VALMP, surely comptued with previous

lengths, is larger than the actual, update it

3 if (VALMP .distances[i] > lNormDist orVALMP .MP [i] == ⊥) then
4 entry pair ;
5 pair .of f 1← i, pair .of f 2← I P [i] ;
6 pair .distance ←MPnew [i], pair .ℓ← ℓ;

7 pair .par tDP1←⊥, pair .par tDP2←⊥ ;

8 inser t (heapBestKPairs, pair);
9 VALMP .distances[i] ←MPnew [i];

10 VALMP .normDistances[i] ← lNormDist ;
11 VALMP .lenдths[i] ← ℓ;

12 VALMP .indices[i] ← I P [i];
13 end
14 end
15 for each pair in heapBestKPairs do
16 if (pair .par tDP1== ⊥) then
17 pair .par tDP1← l istDP [pair .of f 1];
18 pair .par tDP2← l istDP [pair .of f 2];
19 end
20 end

Algorithm 6: computeVarLenдthMoti f Sets

Input: DataSeries T ,MaxHeap heapBestKPairs , int D
Output: Set S∗

1 for each pair in heapBestKPairs do
2 double r ← pair .distance * D ;

3 doublemaxLB1← popMax(pair .par tDP1);
4 doublemaxLB2← popMax(pair .par tDP2);
5 D(Tpair .of f 1,pair .ℓ) ← ∅, D(Tpair .of f 2,pair .ℓ) ← ∅ ;
6 ifmaxLB1 > r then

// sort according the offset, the partial distance profile

contains all the elements in the range

7 D(Tpair .of f 1,pair .ℓ) ←
sor tAndF ilterRanдe (r ,pair .par tDP1.toVector());

8 else
// re-compute the mat

9 double s ← sum(Tind, ℓ);
10 double ss ← squaredSum(Tind, ℓ);
11 D(Tpair .of f 1,pair .ℓ) ←

CalcDistProf InRanдe (r ,QT ,Tpair .of f 1,pair .ℓ , T , s , ss);
12 end
13 ifmaxLB2 > r then
14 D(Tpair .of f 2, ℓ) ← sor tAndF ilterRanдe (r ,pair .par tDP2.toVector());
15 else
16 double s ← sum(Tind, ℓ);
17 double ss ← squaredSum(Tind, ℓ);
18 D(Tpair .of f 2,pair .ℓ) ←

CalcDistProf InRanдe (r ,QT ,Tpair .of f 1,pair .ℓ , T , s , ss);
19 end

20 Set Spair .ℓr ←merдeRemoveTM (D(Tpair .of f 1, ℓ), D(Tpair .of f 2, ℓ));

21 S∗ .add (Spair .ℓr);

22 end

On the other hand, if the search range is larger than themaximum

lower bound distances of both partial distance profiles, we have to

re-compute the entire distance profile (lines 11 and 18), to find all the

subsequences in the range. Once we have the distance profile pairs

we need to merge them and remove the trivial matches (line 20).

Each time we add a subsequence in a motif set we remove it from

the search space: this guarantees the empty intersection among the

sets in S∗.

The complexity of the updateVALMPForMoti f Sets algorithm
is O(nloдK), while computeVarLenдthMoti f Sets (i.e., the final al-
gorithm) runs in O(Kploдp) time.

6 EXPERIMENTAL EVALUATION
6.1 Setup
Configuration. We implemented our algorithms in C (compiled

with gcc 4.8.4), and we ran them in a machine with the following

hardware: Intel Xeon E3-1241v3 (4 cores - 8MB cache - 3.50GHz -

32GB of memory). All the experiments in this paper are completely

reproducible. In that regard, the interested reader can find the

analyzed datasets and source code in the paper web page [21].

Datasets And Benchmarking Details. To benchmark our algo-

rithm, we use five different datasets:

• (GAP), which contains the recording of the global active elec-

tric power in France for the period 2006-2008. This dataset is

provided by EDF (main electricity supplier in France) [20];

• (CAP), the Cyclic Alternating Pattern dataset, which contains

the EEG activity occurring during NREM sleep phase [7];

• (ECG) and (EMG) signals from Stress Recognition in Auto-

mobile Drivers [12];

• (ASTRO), which contains a data series representing celestial

objects [41].

Table 1 summarizes the characteristics of the real datasets we

used in our experimental evaluation. For each dataset, we report

the minimum and maximum values, the overall mean and standard

deviation, and the total number of points.

MIN MAX MEAN STD-DEV
number of

points

ECG -2.182 1.543 0.006 0.24 1M

GAP 0.08 10.67 1.10 1.15 2M

ASTRO -0.00867 0.00447 0.00003 0.00031 2M

EMG -0.694 0.773 -0.005 0.041 1M

EEG -966 920 3.34 41.36 0.5M

Table 1: Characteristics of the datasets used in the experi-
mental evaluation.

The (CAP),(ECG) and (EMG) datasets are available in [10]. We

use several prefix snippets of these datasets, ranging from 0.1M to

1M of points.

In order to measure the scalability of our approach, we test

its performance along four dimensions, which are depicted in Ta-

ble 2. Each experiment is conducted by varying the parameter of

a single column, while for the others, the default value (in bold)

is selected. In our benchmark, we have two types of algorithms

to compare to VALMOD. The first are two state-of-the-art motif

discovery algorithms, which receive a single subsequence length as

input: QUICKMOTIF [19] and STOMP [53]. In our experiments, they

have been adapted to find all the motifs for a given subsequence

length range. The other approach in the comparative analysis is

Motif length

(ℓmin)

Motif range

(ℓmax−ℓmin)

Data series

size (points)

p (elements

of distance

profiles

stored)

256 100 0.1 M 5

512 150 0.2 M 10

1024 200 0.5 M 15

2048 400 0.8 M 20

4096 600 1 M 50 , 100 , 150

Table 2: Parameters of VALMOD benchmarking (default val-
ues shown in bold).

ECG EMG

GAP EEG

ASTRO

Time out after 24h

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

Figure 8: Scalability for various motif length ranges.

MOEN [29], which accepts a range of lengths as input, producing

the best motif pair for each length.

6.2 Results
For VALMOD, we report the total time, including the time to build

the matrix profile (Algorithm 3).

Scalability Over Motif Length. In Figure 8, we depict the perfor-

mance results of the four motif discovery approaches, when varying

the motif length. We note that the performance of VALMOD re-

mains stable over the five datasets. On the other hand, we observe

that a pruning strategy based on a summarized version of the data

is sensitive to subsequence length variation. This is the case for

QUICK MOTIF, which operates on PAA (Piecewise Aggregate Ap-

proximation) discretized data. Figure 8 shows that the performance

of QUICK MOTIF varies significantly as a function of the motif

length range, growing rapidly as the range increases, and failing to

finish within a reasonable amount of time in several cases.

Moreover, we argue that our proposed lower bounding measure

enables our method to improve upon MOEN, which clearly does

not scale well in this experiment (see Figure 8). The main reason of

this behavior is that the effectiveness of the lower bound of MOEN

decreases very quickly as we increase the subsequence length ℓ.

When we increase the subsequence length by 1, MOEN multiplies

the lower bound by a value smaller than 1 ([29], Section IV.B), thus

making it less tight. In contrast, the lower bound of VALMOD does

not always decrease (refer to Eq. 2):

σj,l
σj,l+k

may be larger than 1.

Consequently, the lower bound of VALMOD can remain effective

(i.e., tight) even after several steps of increasing the subsequence

length.

Concerning the VALMOD performance, we note a sole excep-

tion that appears in the noisy EMG data (bottom of Figure 8), for

a relatively high motif length range (4096-4196). A possible ex-

planation for this behavior is that the lower bounding distance

used by VALMOD is coarse, or in other words, it is not a good

approximation of the true distance. Figure 9 shows the difference

between the greater lower bounding distance (maxLB) and the

smaller true Euclidean distance for each distance profile. We use

the subsequence lengths 356 and 4196, which are the extremes

for this experiment. In this last plot, each value greater than 0

corresponds to a valid condition in line 16 of the ComputeSubMP
algorithm. This indicates that we found the smallest value of a

distance profile, while pruning computations. As the subsequence

length increases, VALMOD’s pruning becomes less effective for

the EMG dataset. On the other hand, it shows no variability of

its pruning effectiveness over the ECG dataset. The Tightness of

the Lower Bound (TLB) [43, 58] is a measure of the Lower bound-

ing quality, which given two data series t1 and t2, is computed

as follows: LBdist (t1, t2)/EuclideanDistance(t1, t2) (note that TLB
ranges from 0 to 1).

In Figure 10, we show the average TLB for each (partial) distance

profile. In the EMG dataset, when using the larger subsequence

length, we observe a sharp decrease of the lower bounding quality

(small TLB), explaining the behavior observed in Figure 9(left). On

the other hand, for all the subsequence lengths in the ECG dataset,

we have almost the same TLB (Figure 10(right)), explaining the

stable performance of VALMOD on this dataset.

In Figure 11, we also show the distribution of the pairwise sub-

sequences distance, using the same datasets and lengths. Note that

here we plot the Euclidean distance without length normalization,

since the algorithm uses it to rank the motifs in the trailing part.

In the EMG dataset, as the length increases, the distance distribu-

tion includes many high values, which affect VALMOD negatively.

Observe that in the ECG dataset, the values are more uniformly

distributed over all the subsequence lengths.

Note that in the discussion above, we have used the results of

the ECG and EMG datasets only, which represent the extreme cases

for VALMOD, exhibiting the overall best and worst performance,

respectively. The rest of the datasets produce results that lie between

these two extremes, and are omitted for brevity.

Scalability Over Motif Range. In Figure 12, we depict the perfor-

mance results as the motif range increases. VALMOD gracefully

scales on this dimension, whereas the other approaches can seldom

complete the task. Not only does our technique address the intrin-

sic problem of STOMP and QUICK MOTIF, which independently

process each subsequence length, but it also exhibits a substantial

EMG (maxLB – minDist)

ECG (maxLB – minDist)-20

0

30

-20

0

30

Offset Distance Profile0 0.5M Offset Distance Profile0 0.5M

4196 points

356 points

4196 points

356 points

Figure 9: The difference between the max lower bounding
distance (maxLB) and the min Euclidean distance of par-
tial distance profiles (ECG and EMG). Subsequence lengths:
356/4196.

EMG (TLB)
0

1

Offset Distance Profile0 0.5M

TLB

ECG (TLB)
0

1

Offset Distance Profile0 0.5M

4196 points

356 points

4196 points

356 points

Figure 10: Average of the tightness of the lower bounding
(TLB) for every Distance profile of dataset EMG and ECG for
the subsequence lengths: 356/4196.

0

1010

Euclidean distance0 10

EMG

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

0

1010

Euclidean distance0 10

ECG

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

4196 points
356 points

4196 points356 points

Figure 11: Distribution of Euclidean distance of pairwise
subsequences of ECG and EMG datasets.

improvement over MOEN, the existing state-of-the-art approach

for discovery of variable length motifs.

Scalability Over Data Series Length. In Figure 13, we experi-

ment with different data series sizes. For the EEG dataset we only

report three measurements, since this collection contains no more

than 0.5M points. We observe that QUICK MOTIF exhibits high sen-

sitivity, not only to the various data sizes, but also to the different

datasets (as in the previous case, where we varied the subsequence

length). It is also interesting to note that QUICK MOTIF is sligthly

faster than VALMOD on the ECG dataset, which contains regular

and similar heartbeat patterns, and is a relatively easy dataset for

motif discovery. Nevertheless, QUICK MOTIF, as well STOMP and

MOEN, fail to terminate within a reasonable amount of time for the

majority of our experiments. On the other hand, VALMOD does not

exhibit any abrupt changes in its performance, scaling gracefully

with the size of the dataset, across all datasets and sizes.

100 150 200 400 600

100 150 200 400 600

100 150 200 400 600

100 150 200 400 600

100 150 200 400 600

ECG EMG

GAP EEG

ASTRO

Time out after 24h

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

Figure 12: Scalability with increasing motif range.

0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M
0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M

0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M

GAP

ECG EMG

ASTRO

tim
e

(h
ou

rs
)

tim
e

(h
ou

rs
)

tim
e

(h
ou

rs
)

tim
e

(h
ou

rs
)

0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M

tim
e

(h
ou

rs
)

Time out after 24h

0

10

20

30

0.1M 0.2M 0.5M

EEG

Figure 13: Scalability with increasing data series size.

Effect of Changing Parameter p. In Figure 14, we study the effect
of parameter p on VALMOD’s performance. The p value determines

how many distance profile entries we compute and keep in the

memory. Increasing p leads to increased memory consumption,

but could also translate to an overall speed-up, since having more

distances may guarantee a larger margin between the greater lower

bounding distance and the minimum true Euclidean distance in

a distance profile. As we can see in the left side of the plot, in-

creasing p does not provide any significant advantage in terms

of time complexity. Moreover, the plots on the right-hand side of

the figure demonstrate that the size of the Matrix profile subset

(subMP), computed by the computeSubMP procedure, decreases in

the same manner at each iteration (i.e., as we increase the length of

0

50

100

150

200

5 10 15 20 50 100 150

5 10 15 20 50 100 150

0

50

100

150

200

5 10 15 20 50 100 150

5 10 15 20 50 100 150

GAP

100

106

|s
ub

M
P|

103

11241024 Subsequence length

p

100

106

|s
ub

M
P|

103

11241024 Subsequence length

p

ECG

EEG

100

106

|s
ub

M
P|

103

11241024 Subsequence length

p

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

0

50

100

150

200

5 10 15 20 50 100 150

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

5 10 15 20 50 100 150

5 10 15 20 50 100 150

0

50

100

150

200

5 10 15 20 50 100 150

0

50

100

150

200

5 10 15 20 50 100 150

5 10
15 20
50 100
150

100

106

|s
ub

M
P|

103

11241024 Subsequence length

p

100

106

|s
ub

M
P|

103

11241024 Subsequence length

pEMG

ASTRO

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

Figure 14: Scalability with increasing parameter p.

the subsequences that the algorithm considers), regardless of the

value of p.
It is important to note that irrespective of its size, subMP always

contains the smallest distances of the matrix profile, namely the

distances of the motif pair. Having a larger subMP does not repre-

sent an advantage w.r.t motif discovery, but rather an opportunity

to view and analyze the subsequence pairs, whose distances are

close to the motif.

6.3 Motif Sets
We now conduct an experiment to show the time performance of

identifying the variable length motif sets. We use the default values

of Table 2, varying K and the radius factor D for each dataset. In

Figure 15 we report the results; we also show the time to compute

VALMP (the output of VALMOD). We note that once we build

the pairs ranking of VALMP (heapBestKPairs in Algorithm 5), we

can run the procedure that computes the motif sets (Algorithm 6).

The results show that this operation is 3-6 orders of magnitude

K
Top K sets
(seconds) K

Top K sets
(seconds) K

Top K sets
(seconds) K

Top K sets
(seconds) K

Top K sets
(seconds)

10 1.74 10 0.09 10 0.001 10 1.64 10 1.60

20 3.37 20 0.09 20 0.001 20 3.27 20 3.23

40 6.66 40 0.09 40 0.001 40 6.53 40 6.37

60 10 60 0.09 60 0.001 60 9.81 60 9.44

80 13.33 80 0.09 80 0.001 80 13.08 80 12.59

D
Top K sets
(seconds) D

Top K sets
(seconds) D

Top K sets
(seconds) D

Top K sets
(seconds) D

Top K sets
(seconds)

2 0.0015 2 0.001 2 0.001 2 6.52 2 4.45

3 0.0016 3 0.001 3 0.001 3 6.50 3 5.79

4 6.67 4 0.22 4 0.001 4 6.88 4 6.12

5 6.67 5 0.35 5 0.001 5 7.47 5 6.45

6 6.67 6 0.88 6 0.001 6 6.86 6 6.56

a)

b)

GAP EEG ECG EMG ASTRO

VALMP
time

9601
seconds

VALMP
time

9608
seconds

VALMP
time

9653
seconds

VALMP
time

10294
seconds

VALMP
time

9100
seconds

Figure 15: Time performance of variable length motif sets
discovery. (a) Varying K (default D=4). (b) Varying radius fac-
tor D (default K=40).

faster than the computation of VALMP . The advantage in time

performance is pronounced for the ECG and EEG datasets, thanks

to the pruning we perform with the partial distance profiles.

The fast performance of the proposed approach also allows for a

fast exploratory analysis over the radius factor, which would other-

wise (i.e., with previous approaches) be extremely time-consuming

to set for each dataset.

7 RELATEDWORK
While research on data series similarity measures and data series

query-by-content [34, 36] has a very long history, data series motifs
were introduced just fifteen years ago [5]. Following their intro-

duction, there was an explosion of interest in their use for diverse

applications. There exist analogies between data series motifs and
sequence motifs (in DNA), which have been exploited. For example,

discriminative motifs in bioinformatics [44] inspired discrimina-

tive data series motifs (i.e., data series shapelets) [32]. Likewise,

the work of Grabocka et al. [11] on generating idealized motifs, is

similar to the idea of consensus sequence (or canonical sequence)

in molecular biology. The literature on the general data series motif

search is vast; we refer the reader to recent studies [53, 56] and

their references.

The QUICK MOTIF [19] and STOMP [56] algorithms represent

the state of the art for fixed-length motif pair discovery. QUICK

MOTIF first builds a summarized representation of the data using

Piecewise Aggregate Approximation (PAA), and arranges these

summaries in Minimum Bounding Rectangles (MBRs) in a Hilbert

R-Tree index. The algorithm then prunes the search space based

on the MBRs. On the other hand, STOMP is based on the compu-

tation of the matrix profile, in order to discover the best matches

for each subsequence. The smallest of these matches is the motif

pair. We observe that both the above approaches solve a restricted

version of our problem: they discover motif sets of cardinality two

(i.e., motif pairs) of a fixed, predefined length. On the contrary,

VALMOD removes these limitations and proposes a general and

efficient solution. Its main contributions are the novel algorithm for

examining candidates of various lengths and corresponding lower

bounding distance: these techniques help to reuse the computations

performed so far, and lead to effective pruning of the vast search

space.

We note that there are only three studies that deal with issues

of variable length motifs, and attempt to address them [8, 25, 54].

While these studies are pioneers in demonstrating the utility of

variable length motifs, they cannot serve as practical solutions

to the task at hand for two reasons: (i) they are all approximate,

while we need to produce exact results; and (ii) they require setting

many parameters (most of which are unintuitive). Approximate

algorithms can be very useful in many contexts, if the amount

of error can be bounded, or at least known. However, this is not

the case for the algorithms in question. In certain cases, such as

when analyzing seismological data, the threat of litigation, or even

criminal proceedings [4], would make any analyst reluctant to use

an approximate algorithm.

The other work to explicitly consider variable length motifs is

MOEN [29]. Its operation is based on the distance computation of

subsequences of increasing length, and a corresponding pruning

strategy based on upper and lower bounds of the distance com-

puted for the smaller length subsequences. Unlike the algorithms

discussed above, MOEN is exact and requires few parameters. How-

ever, it has been tuned for producing only a single motif pair for

each length in the range, and as our evaluation showed, it is not

competitive in terms of time-performance to our approach. This

is due to its relatively loose lower bound and sub-optimal search

space pruning strategy, which force the algorithm to perform more

work than necessary.

In summary, while there is a large and growing body of work

that both uses motif discovery in diverse domains, or offers en-

hancements/generalizations of basic motif search, this work offers

the first scalable, parameter-light, exact variable-length motif set

discovery algorithm in the literature.

8 CONCLUSIONS
Motif discovery is an important subject of inquiry in data series

mining across several domains, and a key operation necessary for

several analysis tasks. Even though much effort has been dedicated

to this problem, no solution had been proposed for discovering

motifs of different lengths.

In this work, we propose the first algorithm for variable-length

motif discovery. We describe a new distance normalization method,

as well as a novel distance lower bounding technique; both of which

are necessary for the solution to our problem. We experimentally

evaluated our algorithm by using five real datasets from diverse

domains. The results demonstrate the efficiency and scalability of

our approach (up to 20x faster than the state of the art), also its

usefulness.

In terms of future work, we would like to further improve the

pruning effectiveness of VALMOD, which would lead to faster per-

formance even for larger motif length ranges.We also plan to extend

VALMOD in order to efficiently compute a complete matrix profile

for each length in the input range. This would enable us to support

more diverse applications, such as discovery of shapelets [52] and
discords [23, 53].

REFERENCES
[1] RakeshAgrawal, Christos Faloutsos, andArunN. Swami. 1993. Efficient Similarity

Search In Sequence Databases. In FODO ’93. 69–84.
[2] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn Keogh. 2010. iSAX

2.0: Indexing and mining one billion time series. In ICDM.

[3] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon, and

Eamonn J. Keogh. 2014. Beyond one billion time series: indexing and mining

very large time series collections with iSAX2+. KAIS 39, 1 (2014), 123–151.
[4] Edwin Cartlidge. Oct. 3, 2016. Seven-year legal saga ends as Italian official is

cleared of manslaughter in earthquake trial. Science (Oct. 3, 2016).
[5] Bill Yuan Chiu, Eamonn J. Keogh, and Stefano Lonardi. 2003. Probabilistic

discovery of time series motifs. In SIGKDD 2003. 493–498.
[6] Michele Dallachiesa, Themis Palpanas, and Ihab F. Ilyas. 2014. Top-k Nearest

Neighbor Search In Uncertain Data Series. PVLDB 8, 1 (2014), 13–24.

[7] MG Terzano et al. Sleep Med 2001 Nov, 2(6):537-553. Atlas, rules, and recording

techniques for the scoring of cyclic alternating pattern (CAP) in human sleep.

(Sleep Med 2001 Nov, 2(6):537-553).

[8] Yifeng Gao, Jessica Lin, and Huzefa Rangwala. 2016. Iterative Grammar-Based

Framework for Discovering Variable-Length Time Series Motifs. In ICMLA 2016.
7–12.

[9] C. Gisler, A. Ridi, D. Zufferey, O. A. Khaled, and J. Hennebert. 2013. Appliance

consumption signature database and recognition test protocols. In 2013 WoSSPA).
336–341.

[10] Glass L Hausdorff JM Ivanov PCh Mark RG Mietus JE Moody GB Peng C-K Stan-

ley HE. Goldberger AL, Amaral LAN. 2000 June 13. PhysioBank, PhysioToolkit,

and PhysioNet: Components of a New Research Resource for Complex Physio-

logic Signals. (2000 June 13). http://circ.ahajournals.org/cgi/content/full/101/23/

e215

[11] Josif Grabocka, Nicolas Schilling, and Lars Schmidt-Thieme. 2016. Latent Time-

Series Motifs. TKDD 11, 1 (2016), 6:1–6:20.

[12] Picard RW. Healey JA. June 2016. Detecting stress during real-world driving

tasks using physiological sensors. IEEE Transactions in Intelligent Transportation
Systems 6(2):156-166 (June 2016).

[13] H. V. Jagadish, Alberto O. Mendelzon, and Tova Milo. 1995. Similarity-Based

Queries. In ACM SIGACT-SIGMOD-SIGART Symposium.

[14] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2017. Time

Series Management Systems: A Survey. IEEE Trans. Knowl. Data Eng. 29, 11
(2017), 2581–2600.

[15] Shrikant Kashyap and Panagiotis Karras. 2011. Scalable kNN search on vertically

stored time series. In KDD.
[16] Eamonn J. Keogh. 2011. Machine Learning in Time Series Databases (tutorial).

[17] Eamonn J. Keogh, Kaushik Chakrabarti, Sharad Mehrotra, and Michael J. Pazzani.

Locally Adaptive Dimensionality Reduction for Indexing Large Time Series

Databases. In ACM SIGMOD 2001.
[18] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.

2018. Coconut: A Scalable Bottom-Up Approach for Building Data Series Indexes.

In PVLDB.
[19] Yuhong Li, Leong Hou U, Man Lung Yiu, and Zhiguo Gong. 2015. Quick-motif: An

efficient and scalable framework for exact motif discovery. (2015), 579–590 pages.

[20] M. Lichman. 2013. UCI Machine Learning Repository. (2013). http://archive.ics.

uci.edu/ml

[21] Michele Linardi. 2017. VALMOD support web page. (2017). http://www.mi.

parisdescartes.fr/~mlinardi/VALMOD.html

[22] Michele Linardi and Themis Palpanas. 2018. ULISSE: ULtra compact Index for

Variable-Length Similarity SEarch in Data Series. In ICDE.
[23] Wei Luo, Marcus Gallagher, and Janet Wiles. 2013. Parameter-Free Search of

Time-Series Discord. Journal of Computer Science and Technology (2013).

[24] A. Marzal and E. Vidal. 1993. Computation of Normalized Edit Distance and

Applications. IEEE Trans. Pattern Anal. Mach. Intell. 15, 9 (Sept. 1993).
[25] David Minnen, Charles Lee Isbell Jr., Irfan A. Essa, and Thad Starner. Discovering

Multivariate Motifs using Subsequence Density Estimation and Greedy Mixture

Learning. In AAAI Conference on Artificial Intelligence, 2007.
[26] Katsiaryna Mirylenka, Vassilis Christophides, Themis Palpanas, Ioannis Pe-

fkianakis, and Martin May. Characterizing Home Device Usage From Wireless

Traffic Time Series. In EDBT, 2016.
[27] Y. Mohammad and T. Nishida. 2012. Unsupervised discovery of basic human ac-

tions from activity recording datasets. In 2012 IEEE/SICE International Symposium
on System Integration (SII).

[28] Yasser F. O. Mohammad and Toyoaki Nishida. Exact Discovery of Length-Range

Motifs. In Intelligent Information and Database Systems - 6th Asian Conference,
ACIIDS 2014.

[29] Abdullah Mueen. Enumeration of Time Series Motifs of All Lengths. In ICDM,
2013.

[30] Abdullah Mueen, Hossein Hamooni, and Trilce Estrada. 2014. Time Series Join on

Subsequence Correlation. In 2014 IEEE International Conference on Data Mining,
ICDM 2014, Shenzhen, China, December 14-17, 2014. 450–459.

[31] Abdullah Mueen, Eamonn J. Keogh, Qiang Zhu, Sydney Cash, and M. Brandon

Westover. Exact Discovery of Time Series Motifs. In SDM 2009.
[32] Moss C. B. Neupane, D. and A. H. 2016. van Bruggen. 2016. Estimating citrus

production loss due to citrus huanglongbing in Florida. Annual Meeting, Southern
Agricultural Economics Association, San Antonio, TX. (2016).

[33] Michael. Noskov. 2015. Director, Data Science at Aspen Technology. Personal

communication. (2015).

[34] Themis Palpanas. Big Sequence Management: A glimpse of the Past, the Present,

and the Future. In SOFSEM 2016.
[35] Themis Palpanas. 2015. Data Series Management: The Road to Big Sequence

Analytics. SIGMOD Record 44, 2 (2015), 47–52.

[36] Themis Palpanas. 2017. The Parallel and Distributed Future of Data Series Mining.

In High Performance Computing & Simulation (HPCS).
[37] Spiros Papadimitriou and Philip S. Yu. Optimal multi-scale patterns in time series

streams. In ACM SIGMOD 2006.
[38] Davood Rafiei and Alberto Mendelzon. 1998. Efficient Retrieval of Similar Time

Sequences Using DFT. In ICDE.
[39] Usman Raza, Alessandro Camerra, Amy L. Murphy, Themis Palpanas, and

Gian Pietro Picco. 2015. Practical Data Prediction for Real-World Wireless Sensor

Networks. IEEE Trans. Knowl. Data Eng. (2015).
[40] D. Roverso. 2000. Multivariate Temporal Classification by Windowed Wavelet

Decomposition and Recurrent Networks. In ANS International Topical Meeting on
Nuclear Plant Instrumentation, Control and Human-Machine Interface.

[41] W.H.Baumgartner G.Ponti C.R.Shrader P. Lubinski H.A.Krimm F. Mattana

J. Tueller S. Soldi, V. Beckmann. 2014. Long-term variability of AGN at hard

X-rays. Astronomy & Astrophysics (2014).
[42] Suchi Saria, Andrew Duchi, and Daphne Koller. Discovering Deformable Motifs

in Continuous Time Series Data. In IJCAI 2011.
[43] Jin Shieh and Eamonn Keogh. 2008. iSAX: Indexing and Mining Terabyte Sized

Time Series. In SIGKDD. 623–631.
[44] Saurabh Sinha. 2002. Discriminative motifs. In Proceedings of the Sixth Annual

International Conference on Computational Biology, RECOMB 2002. 291–298.
[45] Zeeshan Syed, Collin M. Stultz, Manolis Kellis, Piotr Indyk, and John V. Guttag.

2010. Motif discovery in physiological datasets: A methodology for inferring

predictive elements. TKDD 4, 1 (2010), 2:1–2:23.

[46] J. Wang, A. Balasubramanian, L. Mojica de la Vega, J. Green, A. Samal, and B.

Prabhakaran. Word recognition from continuous articulatory movement time-

series data using symbolic representations. In Workshop on Speech and Language
Processing for Assistive Technologies. (SLPAT) (2013).

[47] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. 2013. A Data-

adaptive and Dynamic Segmentation Index for Whole Matching on Time Series.

PVLDB (2013).

[48] CWWhitney, DJ Gottlieb, S Redline, RG Norman, RR Dodge, E Shahar, S Surovec,

and FJ Nieto. 1998. Reliability of scoring respiratory disturbance indices and

sleep staging. Sleep (November 1998).

[49] Denis S. Willett, Justin George, Nora S. Willett, Lukasz L. Stelinski, and Stephen L.

Lapointe. 2016. Machine Learning for Characterization of Insect Vector Feeding.

PLOS Computational Biology (2016).

[50] Djamel-Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas.

2017. DPiSAX: Massively Distributed Partitioned iSAX.

[51] Dragomir Yankov, Eamonn J. Keogh, JoseMedina, Bill Yuan-chi Chiu, and Victor B.

Zordan. Detecting time series motifs under uniform scaling. In ACM.

[52] Lexiang Ye and Eamonn J. Keogh. 2009. Time series shapelets: a new primitive

for data mining. In KDD.
[53] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn J. Keogh.

Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That

Includes Motifs, Discords and Shapelets. In IEEE , ICDM 2016.
[54] Sorrachai Yingchareonthawornchai, Haemwaan Sivaraks, Thanawin Rakthan-

manon, and Chotirat Ann Ratanamahatana. 2013. Efficient Proper Length Time

Series Motif Discovery. In 2013 IEEE ICDM. 1265–1270.

[55] Yan Zhu, Abdullah Mueen, and Eamonn Keogh. 2018. Admissible Time Series

Motif Discovery with Missing Data. (2018). arXiv:1802.05472

[56] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael

Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk, and Eamonn J. Keogh. Matrix

Profile II: Exploiting a Novel Algorithm and GPUs to Break the One Hundred Mil-

lion Barrier for Time Series Motifs and Joins. In IEEE 16th International Conference
on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain.

[57] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2016. ADS: the

adaptive data series index. VLDB J. 25, 6 (2016), 843–866.
[58] Kostas Zoumpatianos, Yin Lou, Themis Palpanas, and Johannes Gehrke. 2015.

Query Workloads for Data Series Indexes. In ACM SIGKDD, 2015. 1603–1612.
[59] Kostas Zoumpatianos and Themis Palpanas. 2018. Data Series Management:

Fulfilling the Need for Big Sequence Analytics.. In ICDE.

http://circ.ahajournals.org/cgi/content/full/101/23/e215
http://circ.ahajournals.org/cgi/content/full/101/23/e215
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.mi.parisdescartes.fr/~mlinardi/VALMOD.html
http://www.mi.parisdescartes.fr/~mlinardi/VALMOD.html
http://arxiv.org/abs/1802.05472

9 APPENDIX
9.1 Experimental Case Study in Entomology
Insects that feed by ingesting plant fluids cause devastating damage

to agriculture worldwide, primarily by transmitting pathogens of

plants [49]. In recent years, the citrus industry of Brazil and Florida

has been devastated by the Huanglongbing disease, also known as

citrus greening disease [32]. The authors of this work span France,

Italy, and Southern California. These three regions are expected

to be the next regions to suffer from the economic impacts of this

disease; thus, we attempt to understand and eventually control the

main vector, the Asian citrus psyllid (Diaphorina citri). These insect
vectors can acquire and transmit pathogens, causing infectious

diseases by probing on host tissues and ingesting host fluids. As

shown in Figure 16, the feeding processes of these insects can be

recorded by gluing a thin wire to the insect’s back, completing

the circuit through a host plant, and then measuring fluctuations

in voltage level to create an Electrical Penetration Graph (EPG).

Finding repeated patterns in these data is a vital step in building

dictionaries of behavior, which is important to understanding and

(perhaps) ultimately controlling these pests.

We conducted an experiment on a dataset with 205,000 data-

points (about 5.5 hours) of an Asian citrus psyllid feeding on a

Valencia orange tree (Citrus sinensis), which was first hybridized in

Southern California. We searched for motifs in the range of 10 to 12
seconds. As Figure 1 shows, over this range the top motif changes

from the insect’s highly technical probing skill as it searches for a

rich vein, to a simple repetitive "sucking" behavior. This example

shows the utility of variable length motif discovery. An entomol-

ogist using a classic motif search, say at the length of 12 seconds,
might have believed that this insect only engaged in xylem inges-

tion during this time period. They would not have realized that the

insect had to reposition itself at least twice.

0 100,000 200,000

Voltage Source

Asian citrus psyllid

Stylet passage
Xylem Ingestion

Figure 16: (top.left) A cluster of Asian citrus psyllids feeding
on the leaf of a Valencia orange tree. (top.right) A psyllid
was connected to an EPG apparatus, and its behavior was
monitored for 5.5 hours. The identified motifs are depicted
in Figure 1.

10 COMPLEXITY ANALYSIS
10.1 Motif Pairs Discovery
ComputeMatrixProfile. In line 15 of Algorithm 2, the time cost to

compute a single distance profile is O(n), where n is the number of

subsequences of length ℓ. Therefore computing the n distance pro-

files takesO(n2) time. In line 18, computing the lower bounds of the

smallest p entries of each distance profile takesO(nloдp) additional
time. The overall time complexity of the ComputeMatrixPro f ile
routine is thus O(n2loдp). This routine is called at least once, for

the first subsequence length of the range, namely ℓ = ℓmin . In the

worst case, it is executed for each length in the range (though, this

never occurred in our experiments).

ComputeSubMP. In the best case, ComputeSubMP can find the

motif pair in O(np) time, where n, is the total number of distance

profiles. This means that, no distance profile computation takes

place, since the condition in line 26 of Algorithm5 is satisfied. Oth-

erwise, if we need to iterate over the non-valid distances profiles

for finding the answer (which occurs rarely in practice), the time

complexity reaches its worst case, O(nCloдn), with C = n/p. This
is asymptotically faster than re-executing ComputeMatrixProfile,
which takesO(n2loдp) time. Note that, each non-valid distance pro-

file (starting in line 30) is computed by using the primitives intro-

duced in the ComputeMatrixProfile algorithm, only if its maximum

lower bound is less than the smallest true distance minDistABS .
This indicates that the distance profile for length newLmay contain

not yet computed distances smaller than minDistABS , which is

our best-so-far. Therefore, the overall complexity of VALMOD is

O(n2loдp + (ℓmax − ℓmin)np) in the best case, whereas the worst

case time complexity isO((ℓmax −ℓmin)n
2loдp). Clearly, the n2loдp

factor dominates, since (ℓmax − ℓmin) acts as a constant. Neverthe-

less, the length range is not negligible, w.r.t the time performance,

when we need to run a quadratic routine over it. If the worst case

occurs often, then the performance will degenerate. However, this

is not the case, as we show in the experimental evaluation.

10.2 Motif Sets Discovery
UpdateVALMPForMotifSets. The complexity of the

updateVALMPForMoti f Sets algorithm isO(nloдK), where n is the

length of the VALMP structure, which is linearly scanned and up-

dated.O(loдK) time is needed to retain the K best pairs ofVALMP ,
using the heap structure in line 8.

ComputeVarLengthMotifSets. The final algorithm
computeVarLenдthMoti f Sets takes O(Kploдp) time, in the

best case. This occurs, when after iterating the K pairs in

heapBestKPairs , each partial distance profile of length p, contains
all the elements in the range r . In this case, we just need an extra

O(ploдp) time to sort its elements (line 7 and 14). On the other

hand, the worst case time is bounded by O(Knloдn), where n is the

length of the input data series T . In this case, the algorithm needs

to recompute K times the entire distance profile (line 11 and 18), at

a unit cost of O(nloдn) time.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Comparing Motifs of Different Lengths
	4 Proposed Approach
	4.1 The Lower Bound Distance Profile
	4.2 The VALMOD Algorithm
	4.3 Computing The Matrix Profile
	4.4 Matrix Profile for Subsequent Lengths

	5 Finding Motif Sets
	6 Experimental Evaluation
	6.1 Setup
	6.2 Results
	6.3 Motif Sets

	7 Related Work
	8 Conclusions
	References
	9 Appendix
	9.1 Experimental Case Study in Entomology

	10 Complexity Analysis
	10.1 Motif Pairs Discovery
	10.2 Motif Sets Discovery

