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Context & Objectives 
Images, bursts and videos acquired by smartphones, action cameras, and even professional digital cameras are 
affected by blur of different sources. Even though some of these (intrinsic) sources can be calibrated, other 
(extrinsic) blur sources like motion, and defocus are unknown and need to be guessed from the degraded 
image itself. This blind deblurring problem is extremely ill-posed, and despite recent progress thanks to deep 
learning and generative AI techniques, the problem is still wide open for future improvements. 
During the last three years, our team has significantly improved the state of the art performance in blind image 
deblurring. On one hand [Laroche2023] achieves reconstructions of unprecedented quality, but at a 
computational cost that is still not well-suited for real-time or embedded applications. On the other hand 
[Carbajal2023; Laroche2022] provide more flexibility at a lower cost but can only handle blur kernels of 
relatively small size. The aim of this thesis is to significantly improve the state of the art in blind image and 
video deblurring, in terms of image quality, real world applicability and computational speed by leveraging 
both mathematical models and cutting edge deep learning technologies. 

Methodology 

More precisely this thesis will explore the following research directions. 

Part I - Diffusion models and bridges 

 
Figure 1: Diffusion-based blind image deblurring. Image credit [BlindDPS]. 

I.a - Accelerate via latent space diffusion 

First of all the Diffusion EM blind deblurring method in [Laroche2023; BlindDPS] progressivley estimates the 
sharp image and blur kernel as shown in the figure above. It can be further accelerated in many ways to reach 
computational complexities closer to what can be executed in embedded devices: The most obvious one is to 
replace the standard diffusion model by a more lightweight one which runs in the compressed latent-space of 
an autoencoder like Stable Diffusion [StableDiffusion]. Early attempts to solve inverse problems with Stable 
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Diffusion, produced plausible images that are only loosely consistent with the measurements. To improve this 
consistency we need to: 

1. find better trade-offs between compression and expressivity of the autoencoder, and 
2. use more accurate approximations to compute the likelihood 𝑝(𝑦|𝑧𝑡). This can be done by 

generalizing the Gaussian approximations proposed in  [PiGDM], in combination with linearization and 
the use of the Fisher identity like in latent-space-ULA [Pereyra2022]. 

I.b - Accelerate further via diffusion bridges. 

Diffusion models need a large number of steps because they start from a Gaussian white noise image 𝑥𝑇  that is 
progressively transformed into an image from the posterior 𝑥0|𝑦. This is a sensible choice for generative 
models (without conditioning on the observations 𝑦). For conditional generative models where the distribution 
of the degraded observations 𝑦 is relatively close to that of the clean image 𝑥0, we can reduce the number of 
steps if the backward diffusion process starts from the distribution of the degraded observations 𝑦 as 
evidenced by Image to Image Schrödinger Bridges [I2SB], or a deterministic variant called Inversion by Direct 
Iteration [InDI]. The similarities between these two approaches were highlighted in [CDDB], but need to be 
further explored in the context of blind deblurring. In particular, we shall address the following questions 

1. I2SB and InDI may be trained for the blind deblurring task, without need for an explicit Expectation 
Maximisation step for kernel estimation like in [Laroche2023]. The question is whether these methods 
can handle a large family of blur kernels as effectively as explicit blur estimation methods like 
[Laroche2023] and [Carbajal2023].  

2. In [CDDB] the authors suggest that I2SB and InDI do not sufficiently enforce data consistency, and 
suggest to incorporate a guidance mechanism (like in PiGDM) to improve this aspect. This suggests a 
negative answer to the previous question, and calls for the use (in the blind deblurring case) of an EM 
algorithm like [Laroche2023], where the diffusion model is replaced by a guided Schrödinger bridge. 
Such an algorithm is a promising alternative both in terms of speed and accuracy, that will be explored 
in this thesis. 

I.c -Extend to spatially varying blur 

So far we discussed improvements to the method in [Laroche2023], but this method has a salient shortcoming: 
it cannot deal in its present form with spatially varying blur. To deal with spatially varying blur we need to adapt 
both the score network (modeling the image prior) and the blur estimation module. The latter can handle 
spatially varying blur by employing the kernel prediction networks suggested in [Carbajal202]. To adapt the 
score network, we can employ an unrolled architecture like in [Laroche2022], or the decomposed diffusion 
sampler recently proposed in [DDS]. 
From a mathematical viewpoint the FastDiffusionEM method in [Laroche2023] is surprising: it is an accelerated 
version of a well-known Expectation Maximization algorithm, with known convergence properties. The 
convergence properties of the accelerated version are not known, and yet this accelerated version provides 
better performance than the original (slower) EM algorithm. This calls for an in-depth study of the accelerated 
algorithm to clarify why it works so well, and how it can be further improved or generalized. 

Part II - Joint blur-prediction/deblurring 

architecture  

The work in [Carbajal2023] is able to deal with spatially 
varying blur thanks to a kernel prediction network that 
infers spatially localized blur kernels. These local kernels are 
then deblurred by a non-blind deblurring network with an 
unrolled architecture [Laroche2022] as shown in the figure 
below. Both modules can be improved in order to deal with 
extreme blur. 

II.a - Dealing with extreme blur 

First of all, blur identification and deblurring performance 
can be improved if both kernel prediction and deblurring 
are performed progressively within a diffusion model as demonstrated in  [Laroche2023] in the uniform blur 

Figure 3: Joint blur prediction and deblurring. Image 
credit [Carbajal2023] 
Figure 2: Joint blur estmation and deblurring. Image 
credit [Carbajal 2023] 



case. Doing so in the non-uniform blur setting requires to adapt the architecture and training mechanism of 
both the deblurring network (that should act now as a conditional score) and the blur estimation module (that 
should take as input an image with different levels of noise). Furthermore, the overall method can be 
accelerated by replacing the diffusion model by a diffusion bridge [InDI; I2SB; CDDB], or by a latent diffusion 
engine [StableDiffusion]. 

 
Figure 4: Extreme blur. Image credit [ExBlurRF] 

Current attempts to deal with extreme blur are based on NeRFs [ExBluRF; DeblurNeRF] (see figure above) or on 
the projective motion blur model [Tai2011; Hirsch2011; Whyte2010]. These works need to assume that the 
scene is static, and that the focal length is sufficiently long or that the scene is far enough to be considered 
planar. In that case the deformations of the scene projected in the image plane are reduced to homographies, 
and the non-uniform blur can be globally modeled by a small set of (a few hundred) parameters. While these 
methods achieve impressive results when the planar assumptions hold, most blur scenes are not planar or 
contain moving objects, leading to unsatisfactory results.  
In order to allow for both extreme blurs and moving objects in the scene, we can localize the projective motion 
blur model, by assuming that the scene is composed of a set of (possibly moving) planar patches. Each planar 
patch is then associated to a homographic motion blur model, and the global blur can be predicted by a 
siamese network similar to the KPN in [Carbajal2023]. Similarly the non-blind deblurring network (unrolled or 
diffusion model architecture) needs to be adapted from the KPN case to the piecewise-homographic blur 
representation. Finally both blur prediction and deblurring networks can be jointly trained as in [Carbajal2023]. 

II.b - Self-Supervised training 

A major limitation of the work in [Carbajal2023] and the extension described above is that it requires triplets of 
sharp image, blurred image, blur kernel for supervised training. Even though a remarkable work has been done 
to build excellent synthetic datasets, there is still the risk of domain shift when applying these algorithms in 
situations where such training data is not available. 
In such cases self-supervised training or fine-tuning can provide a sensible way of overcoming domain shifts. In 
particular, equivariant imaging [Tachella2023; Chen2023] provides a principled way of training without ground 
truth: they show that degraded observation suffices for training, as long as the prior distribution of the latent 
image satisfies some invariance properties. 
In the case of blind deblurring we may safely assume that natural images follow a rotationally invariant 
distribution (and possibly also a scale invariant one). This invariance can be exploited via a data augmentation 
mechanism that leads to a self-supervised loss. For this procedure to work for a given degradation operator 𝐴, 
a necessary condition is that the stack of operators [𝐴𝑅1 … 𝐴𝑅𝑛] (where 𝑅𝑖  represent the different rotations) is 
full rank. For the case of motion deblurring where the kernels are locally directional, this condition is clearly 
satisfied. 
As a first step toward fully self-supervised learning, we shall first consider the non-blind case, then the blind 
case with simple directional blurs, and finally the full model with non-uniform blur described in the previous 
paragraph. 

Part III - motion blured videos 

III.a - Plug & play methods and temporal upsampling. 

So far, we dealt with the problem of blind deblurring of a single image. However, if we consider blind motion 
deblurring of videos, the temporal dimension introduces additional information that can be used to our 
advantage. More specifically, let's consider the problem of joint temporal upsampling and blind deblurring of 



videos affected by motion blur, i.e. we want to recover an ideal high-framerate, sharp sequence 𝑢(𝑥, 𝑡) from 
the acquired low-framerate motion-blurred sequence 𝑣(𝑥, 𝑡). The relationship between both sequences can 
not only be expressed in closed form (1b), it does not require the knowledge of the unknown motion blur, and 
the corresponding proximal operator can be computed explicitly. This means that if we have a strong prior 𝑅1  
for 𝑢, that enforces both sharpness and temporal consistency, then we can solve this joint problem by 
computing the maximum a posteriori 

𝑢̂ = argmin𝑢𝐷1(𝑢, 𝑣) + 𝑅1(𝑢)      (E1) 

using alternate proximal descent algorithms like ADMM. The data-fitting term 𝐷1 reflects equation (1b). The 
prior 𝑅1  can be either hand-crafted (𝑒. 𝑔. spatio-temporal total variation) or implicit in a video denoiser 
algorithm as demonstrated in [Monod2023]. In the latter case we should prioritize SoTA video denoisers with a 
large temporal receptive field like [FastDVDNet; VRT; RVRT], possibly retrained on high-framerate videos. 
Alternatively, we could employ a video diffusion model as a prior as proposed in [Cherel2023]. 

 
Figure 5: joint blind motion deblurring and upsampling. Image credit [Zhong2021] 

The idea of joint motion deblurring and temporal upsampling of videos was already successfully explored in 
[NIRE, Zhong2021], by training a neural network specifically for this task in a supervised manner. To do so, 
sharp/blurred sequence pairs are required (see figure above) whereas the proposed plug & play approach only 
requires sharp sequences to train a powerful denoiser or diffusion model. 
A potential shortcoming of the previous approach is that a large oversampling rate 𝑟 is required for the 
Riemann sum (1b, that defines 𝐷1 ) to accurately approximate the actual integral (1). In order to write a more 
accurate approximation with relatively low values of 𝑟, we can compute the optical flow 𝜙 of the sharp 
sequence [RIFE], and either   

1. impose temporal regularity to the optical flow, or  
2. use the optical flow to improve the temporal resolution of the data-fitting term 𝐷1. 

More precisely, the first idea amounts to considering the blind deblurring problem in a variational formulation 
as a joint minimization of an augmented energy of the form 

            argmin𝑢,𝜙𝐷1(𝑣, 𝑢) + 𝑅1(𝑢) + 𝐷2(𝑢, 𝜙) + 𝑅2(𝜙)    (E2) 

where 𝜙 is the optical flow of the (unknown) sharp sequence, i.e. it minimizes a coupling term 𝐷2(𝑢, 𝜙). By 
imposing temporal coherence to this vector field, we indirectly impose (via the coupling term 𝐷2) temporal 
coherence to the sharp sequence, which is essential for sensible upsampling. For instance, we could use the 
following spatio-temporal regularization of the optical flow. 
From an algorithmic viewpoint the variational formulation (E2) can be solved by alternate optimization splitting 
algorithms like ADMM, to separate implicit regularization 𝑅1  and 𝑅2  (as denoising algorithms on 𝑢 and 𝜙 like in 
PnP approaches), from data-fitting and coupling terms like 𝐷1 and 𝐷2. 
From a mathematical viewpoint, the non-trivial coupling term 𝐷2 requires some careful attention to ensure its 
convergence. In  [NikolovaTan2019] the convergence of a similar variational approach is studied in detail, 
where the coupling term is bi-convex. In our case only a linearized version of 𝐷2 is bi-convex, so a 
generalization of that result shall be required if we want convergence guarantees for this algorithm. A further 
generalization shall be required to account for possibly non-convex implicit regularization terms 𝑅1(𝜑). 
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arrondissement. 
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