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Abstract. The main framework of multivariate extreme value theory is well-
known in terms of probability, but inference and model choice remain an active
research �eld. Theoretically, an angular measure on the positive quadrant of
the unit sphere can describe the dependence among very high values, but no
parametric form can entirely capture it. The practitioner often makes an as-
sertive choice and arbitrarily �ts a speci�c parametric angular measure on the
data. Another statistician could come up with another model and a completely
di�erent estimate. This leads to the problem of how to merge the two di�erent
�tted angular measures. One natural way around this issue is to weigh them ac-
cording to the marginal model likelihoods. This strategy, the so-called Bayesian
Model Averaging (BMA), has been extensively studied in various context, but
(to our knowledge) it has never been adapted to angular measures. The main
goal of this article is to determine if the BMA approach can o�er an added
value when analyzing extreme values.
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1. Introduction

Assessing the probability of occurrence of joint extreme events has proven to be a
major issue for risk management and a complex inferential problem in statistics. To
illustrate this point, daily maximum concentrations of three air pollutants, PM10
(Particulate matter), NO (Nitrogen oxide) and NO2 (Nitrogen dioxide), recorded
in Leeds (U.K.) during �ve winter seasons (1994-1998)1, are displayed in Figure 1.
Visually, asymmetrical relationships seem to be present, the dependence between
NO2 and NO may be stronger than that between the two other pairs. For this
Leeds data set, at least three di�erent approaches (Cooley et al., 2010; He�ernan
and Tawn, 2004; Boldi and Davison, 2007) have already been proposed. He�ernan
and Tawn (2004)'s study focuses on conditional distributions, allowing both for
asymptotic dependence or independence at extreme levels. On the contrary, Cooley
et al. (2010) and Boldi and Davison (2007), under the assumption of asymptotic
dependence, characterize the joint distribution of extremes in terms of the so-called
angular measure (see Section 2 for more details), respectively in a parametric and
semi-parametric framework. In this paper, we follow this latter approach, and
focus on parametric models. Several such models have already been proposed for
the case where the data are dependent at asymptotic levels: see e.g. chapter 9
of Beirlant et al. (2004); Tawn (1990) or Coles and Tawn (1991) for the Logistic

Date: Preprint version of the article published in Extremes, 2013. Received: 23 May 2012 /
Revised: 14 November 2012 / Accepted: 22 November 2012.

1Five di�erent air pollutant concentrations (PM10, NO, NO2, O3, and SO2) were measured
in the city centre of Leeds, see http://www.airquality.co.uk for more details. We restrict our
analysis to the three most dependent pollutants.
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Figure 1. Daily maximum concentrations of three air pollutants,
PM10, NO and NO2, recorded in Leeds (U.K.) during �ve winter
seasons (1994-1998)

and Dirichlet families; or Cooley et al. (2010) for the Pairwise Beta model, further
generalized by Ballani and Schlather (2011).

In this context, two practitioners working on the same data may well have chosen
two distinct models, leading to di�erent estimates of some quantity of interest such
as a probability of joint excess of some high multivariate threshold. One could thus
reasonably ask if it would be appropriate to merge these results. Our main objective
throughout this paper is to investigate how to average the estimates issued from
existing parametric families and what are the bene�ts and the limitations of such
an approach.

The Bayesian framework appears to be well tailored for this task because setting
priors o�ers a natural way to integrate results issued from di�erent studies. The
so-called Bayesian Model Averaging ( BMA) method has been extensively studied
in other contexts (e.g., Raftery et al., 2005; Madigan and Raftery, 1994; Hoeting
et al., 1999). Its adaption to the analysis of multivariate extreme events repre-
sents the main aim of this work. To our knowledge, in the �eld of multivariate
extremes, the only publication using BMA is Apputhurai and Stephenson (2011).
They combined the cumulative distribution functions of asymptotically dependent
and independent models, in the bi-variate case. Our approach di�ers from theirs
in focusing on asymptotically dependent models, and combining the dependence
structures themselves (angular measures or exponent functions, see Section 2 for
de�nitions and rationale for such a choice).

In the next section, we recall the necessary background about multivariate ex-
tremes. In Section 3, we detail the BMA nuts and bolts within a multivariate
extremes context. The BMA scheme is implemented in Section 4 with two di�er-
ent models: the Pairwise Beta model (Cooley et al., 2010) and a nested asymmetric
logistic model. A simulation study is performed: data sets are generated from a
semi-parametric Dirichlet mixture model ( DM ) introduced by Boldi and Davison
(2007) and we compare the predictive performance of the BMA versus a model
choice framework. The tri-variate Leeds data set is also revisited. Section 5 o�ers
a few conclusions regarding the advantages and limitations of averaging spectral
measures.

2. Background and notations

Spectral measure.
Let X = (X1, . . . , Xd)

T be a positive random vector of dimension d whose margins



follow a unit Fréchet distribution, P(Xi ≤ x) = exp(−1/x), for all x > 0. To
describe the extremal behaviour of the vector X, it is mathematically convenient
to transform the Cartesian coordinates into pseudo-polar ones by setting

R = X1 + · · ·+Xd and W = (X1/R, . . . ,Xd/R)T

where R and W are often called the radius and the angular vector, respectively.
The latter one lies on the unit simplex Sd = {w : w1 + · · · + wd = 1, wi > 0}.
With regards to the Leeds data set, we follow the exact same procedure as Cooley
et al. (2010) to estimate the marginal distributions of the three pollutants plotted
in Figure 1. Each uni-variate series can thus easily be transformed into unit Fréchet
distributed ones via a probability integral transformation. Observations with the
100 largest radial components 2 (out of 539 non missing triplets) are plotted on
the unit simplex S3 in Figure 2. The points located at the centre of this triangle
correspond to events that were equally extreme in the three directions.
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Figure 2. Leeds data set: the 100 points with largest radial com-
ponent R = x1 + x2 + x3 (unit Fréchet scale) projected on the unit
simplex.

Multivariate extreme value theory tells us that, under mild conditions3, the
dependence structure among excesses above a high radial threshold r can be char-
acterized by the asymptotic distribution H of the angular component:

(1) lim
r→∞

P (W ∈ B | R > r) = H(B) ,

2Besides the L1-norm (x1 + x2 + x3), other norms could be used for threshold selection.
3 The largest values have to belong to the domain of attraction of a max-stable distribution

(the distribution G is said to be max-stable if Gt(tx) = G(x) for any t > 0). This type of
distribution arises as the natural non-degenerate limit of rescaled i.i.d. component wise maxima
of random vectors with unit Fréchet margins (de Haan and Ferreira, 2006; Resnick, 1987, 2007).
Within this framework, it is classical to de�ne the exponent function V (x) = − logG(x) that
satis�es V (tx) = t−1V (x).



The spectral measure H(.) is any probability measure on the simplex Sd that
satis�es the following moment constraint

(2) ∀i ∈ {1, . . . , d},
∫
Sd

wi dH(w) =
1

d
.

Limit measure.
With our normalization choice, the spectral measure is related to a limit measure

ν, de�ned on E = [0,∞]d \ {0}, in pseudo-polar coordinates, by dν = d
r2

dr dH
(see e.g. Chapter 6 of Resnick, 2007). The measure ν is homogeneous of order −1,
i.e. for any measurable subset A ⊂ E, ν(tA) = 1

t ν(A). If A is relatively compact
in E,

(3) lim
n→∞

nP

(
X

n
∈ A

)
= ν(A).

In particular, (3) holds for any failure set A of the form A(u) = {x : x1 >
u1, . . . , xd > ud} .

Modelling threshold excesses.
Equations (1) and (3) provide the main elements for modelling excesses in practice.
Given a data set whose margins have been transformed into unit Fréchet, one may
�x a high radial threshold r0 and retain only observations with radial component
exceeding r0. The corresponding angular data set W = (W1, . . . ,Wn), as in Figure
2 with n = 100 excesses, is assumed to be an i.i.d. sample distributed according to
H(.). Then, the statistician has to propose and �t an adequate spectral measure.

In other words, all the inference in this paper is based on the following key as-
sumption, in view of (3): Conditionally on the radial component R exceeding the
retained threshold r0, the random vector X is assumed to be distributed accord-
ing to some (normalized) limit probability measure ν̃, with, in polar coordinates,
dν̃ = d

r0
dr
r2

dH . The angular and the radial components are thus assumed to be

independent on regions {r > r0}, and H characterizes ν̃, so that a a statistical
model for excesses above r0 can be indexed by a set of angular measures. Also, the
likelihood is proportional to the density h evaluated at the angular data points W
and inference can be made with the angular components only. This assumption of
`perfect threshold' has a second consequence: The likelihood of an angular measure
which mass is concentrated on the axis is zero, because all the angular data points
lie in the interior of the positive quadrant. This restricts any likelihood-based in-
ference to asymptotically dependent models, i.e. to H-families which put some
mass in the interior of the unit simplex only.

Relaxing the `perfect threshold' assumption is possible if one works with max-
stable distributions, but then, the link with questions related to excesses above
threshold is not immediate. Another reason for not considering this option in the
context of model averaging is the fact that an average of max-stable distributions
is not max-stable. More details are given at the end of this section.

Further, one may consider asymptotically independent models with second-order
regular variation in the interior of the positive quadrant (Ledford and Tawn, 1996;
Ramos and Ledford, 2009). However, �exible parametric models for asymptoti-
cally independent data, in problems of dimension greater than three, have only



recently been proposed in an unpublished paper from Qin et. al (2008) 4. For the
sake of simplicity, we leave apart this class of models and focus on asymptotically
dependent data.

If a vector u = (u1, . . . , ud)
T de�nes the boundary of a failure region A(u) =

{x : x1 > u1, . . . , xd > ud} is such that
∑d

i=1 ui > r0 for some large r0, using (3)
and the homogeneity property of the limit measure, the probability of being in the
failure region can be approximated with ν:

(4)

P(X1 > u1, . . . , Xd > ud) ' ν
(
A(u)

)
= d

∫
A

1

r2
dr dH(w)

= d

∫
Sd

∫
r>maxi=1:d

ui
wi

1

r2
dr dH(w)

= d

∫
Sd

min
i=1:d

wi
ui

dH(w)

A classical way of proposing parametric max-stable models is to de�ne them
through their exponent function V , (see footnote 3), which is related to ν by

∀x ∈ E, V (x) = ν {([0, x1]× · · · × [0, xd])
c} ,

were ( · )c denotes the complementary set in E. In the case where all the mass of
the angular measure H is concentrated in the interior of the simplex Sd, and V
is regular, Theorem 1 of Coles and Tawn (1991) provides a general relationship to
derive the spectral density h(w) from V (.): h(w) = −1

d ∂x1,...,xdV (x)|x=w . One
advantage of such models is that (4) has an analytical expression obtained from V
by inclusion-exclusion. For three-dimensional sample spaces, it yields

(5)

ν
(
A(u)

)
= V (u1, u2, u3) + · · ·
· · ·V (u1,∞,∞) + V (∞, u2,∞) + V (∞,∞, u3)− · · ·
· · · (V (u1, u2,∞) + V (u1,∞, u3) + V (∞, u2, u3)) .

One drawback is that the angular likelihood h has to be computed by di�erentiation
of order d.

Multivariate extreme models.
In theory, the only constraint on H is encapsulated by (2), which advocates in
favour of fully non-parametric estimation methods (see e.g. Einmahl et al., 2001;
Einmahl and Segers, 2009; Guillotte et al., 2011; Gudendorf and Segers, 2011). In
a Bayesian context, it is computationally di�cult to handle moderate dimension
problems with semi-parametric spectral measures. For example, Boldi and Davison
(2007) introduced a semi parametric Bayesian model based on mixtures of Dirichlet
distributions and concluded that �one practical drawback with the approach stems
from the use of simulation algorithms, which may converge slowly unless they have
been tuned. A second is that the number of parameters increases rapidly with the
number of mixture components, so model complexity must be sharply penalized
through an information criterion or a prior on the number of mixture components".

4 Qin X., Smith R.L., Ren R.E., Modelling multivariate extreme dependence, In 2008 Joint
Statistical Meetings(JSM) Proceedings, Risk Analysis Section. Alexandria, VA: American Sta-
tistical Association: 3089-3096



From a practical point of view, parameters in some well-chosen models may
o�er interpretable summaries to describe the dependence structure (e.g., a �nite
number of parameters allows to compare between two time periods), and a feasible
strategy to reduce the computational complexity. A seminal example (Gumbel,
1960) of parametric model de�ned by the exponent function is the logistic one

VL(x) =

(
d∑
i=1

x
−1/α
i

)α
(0 < α < 1) .

The logistic model can be extended to handle asymmetrical behaviours and to cap-
ture additional dependencies among subsets of variables (Coles and Tawn, 1991).
In particular, the exponent function

(6)

VNL(x) = 2−α0

[(
x
−1

α0α12
1 + x

−1
α0α12
2

)α12

+

(
x
−1

α0α13
1 + x

−1
α0α13
3

)α13

+ · · ·(
x
−1

α0α23
2 + x

−1
α0α23
3

)α23 ]α0

(0 < α0 , α12, α13, α23 < 1) ,

is a possible generalization which allows for asymmetric pairwise relationships,
while concentrating all its mass in the interior of S3. This model belongs to the
class of the nested asymmetric logistic models. In the remainder of this paper, we
refer to the one de�ned by (6) as the NL model, we denote α = (α0, α12, α13, α23).
The expression for the NL density hNL( · |α) on S3 is given in appendix. One
advantage of NL is its low number of parameters and in their interpretability. The
scalar α0 describes the overall dependence among the three coordinates and the
αij 's characterize the additional pairwise dependences. The dependence between
a coordinates subset is a decreasing function of the corresponding parameter.

It is also possible to de�ne a multivariate extreme model directly through the
spectral density. For example, Cooley et al. (2010) �tted to the Leeds data set the
following Pairwise Beta (PB) model

hPB(w|β0, {βij}1≤i<j≤d) =
∑

1≤i<j≤d
hij(w|β0, βij) (β0, βij > 0) ,

which is a sum of beta functions de�ned by

hij(w|β0, βij) = Kd(β0) w2β0−1
ij (1− wij)(d−2)β0−d+2 Γ(2βij)

Γ2(βij)
w
βij−1

i/ij w
βij−1

j/ij

with wij = wi + wj , wi/ij = wi
wi+wj

and Kd(β0) = 2(d−3)!
d(d−1)

Γ(β0d+1)
Γ(2β0+1)Γ(β0(d−2)) .

5 The

interpretation for the parameters in the PB model is similar to the NL model's
one, except that the strength of the dependence is an increasing function of β0 and
of the βij 's. Again, we denote β = (β0, β12, β13, β23).

Having at our disposal several spectral models leads us to the question of how to
average them with respect to the data set at hand. First, one could wonder what
is the meaning of averaging spectral measures in terms of random variables and if
directly averaging the corresponding max-stable distributions could be a valuable

5The di�erence of a multiplicative factor
√
d in our normalizing constant compared to the one

given by Cooley et al. (2010) is due to the choice of the reference measure: in the aforementioned
study, the reference measure is the Lebesgue measure (more precisely the Hausdor� measure)
on the simplex itself, whereas we write our densities with respect to its projection on the d − 1
dimensional euclidean space.



alternative. However, if the random vector Mj follows a max-stable distribution
Gj(x) = exp(−Vj(x)) with unit Fréchet margins, then the averaged distribution

G(x) = p1G1(x) + · · ·+ pJGJ(x) (with
∑J

j=1 pj = 1) is not max-stable anymore:

it does not satisfy Gt(tx) = G(x) for any t > 0. In contrast, averaging the angular
measures Hj still provides another valid angular measure. Indeed, p1H1(.) + · · ·+
pJHJ(.) satis�es (2). In terms of random vectors, averaging angular measures
translates into component-wise max-linear combinations. More precisely, if the
Mj 's are independent, then the max-linear combination M̃ = p1M1 ∨ · · · ∨ pJMJ ,

where ∨ denotes the component-wise maximum, has exponent function Ṽ (x) =

p1V1(x) + · · · + pJVJ(x). The latter is associated with the spectral measure H̃ =
p1H1 + · · · + pJHJ . This derives immediately from the homogeneity property
(Vj(tx) = t−1Vj(x)) characterizing exponent functions:

P(M̃ ≤ x) = P

 J∨
j=1

pjMj ≤ x

 =
J∏
j=1

P(Mj ≤
x

pj
)

=

J∏
j=1

exp

[
−Vj

(
x

pj

)]
= exp

− J∑
j=1

pjVj(x)

 .

3. Bayesian Model Averaging for spectral measures

In the general context of parametric modeling, the information loss relative to
the choice of one particular model may be high. Averaging the estimates stemming
from several models, with appropriate weights, can be used to partially overcome
this issue. As an example, Raftery et al. (2005) found some evidence in an ensemble
weather forecast context that the predictive variance in one model would sometimes
not re�ect the total predictive uncertainty, whereas the predictive variance in the
averaged model accounted better for prevision errors. Madigan and Raftery (1994)
found some examples, in a contingency tables context, where averaging models
resulted in better predictive performance, as measured by a logarithmic scoring
rule. We recall here the basic BMA features within our spectral measure context.
For a review of BMA, the reader may refer to Hoeting et al. (1999).

Suppose we haveM spectral density modelsM1, . . . ,MM , such that each model
Mm = {hm( · | θm), θm ∈ Θm} has a �nite dimensional parameter space Θm. In
this paper, for illustrative purpose, we set M = 2 and h1 and h2 correspond
respectively to the aforementioned PB spectral measure family hPB and to the
NL one hNL.

In a Bayesian framework, beliefs of the statistician about θm (e.g., arising from
expert knowledge), prior to any observation, are made explicit: each parameter
space Θm is endowed with a prior measure (in our case, a probability measure),

denoted πm. Now, in a Bayesian model averaging setting, the statistical model M̃
is the disjoint union of the individual models: in other words, the parameter space
Θ̃ indexing M̃ is the disjoint union Θ̃ =

⊔M
m=1 Θm. We recall that a disjoint union

of sets A1, . . . , AM is de�ned by
⊔M
m=1Ai = {(m, am) , 1 ≤ m ≤M,am ∈ Am}. In

the sequel, the term `union model' will refer to the BMA model indexed by the
disjoint union Θ̃. A prior on the index set {1, . . . ,M} is thus needed: we choose
(p1, . . . , pM ), with p1 + · · ·+ pM = 1, so that pm is the a priori weight ofMm. In



this work, lacking expert knowledge, we choose a uniform prior: pm = 1/M for all

m. The prior distribution π̃ on M̃ is

π̃(
M⊔
m=1

Bm) =
M∑
m=1

pmπm(Bm) ,

for any collection of measurable sets (B1, . . . , BM ) with Bm ⊂ Θm. Suppose that
each model has a well de�ned spectral density hm( · | θm). Given the sample
of excesses W = (W1, . . . ,Wn), a common density estimator is the Posterior
predictive density 6 which, in the disjoint union model, is de�ned by

(7) h̃(w | W ) =

M∑
m=1

pm(W )

∫
Θm

hm(w | θm) d(πm|W )(θm) ,

where πm|W = πm( · | W ) is the posterior distribution restricted to Mm, and
pm(W ) is the posterior weight of Mm. This explains the terminology �model
averaging�: our density estimate is the average of the density estimates produced in
separate Bayesian models. As mentioned above, the family of admissible densities
is stable under convex combinations, and it is also stable under integration with
respect to any probability measure. Consequently, the posterior predictive density
still de�nes a valid angular measure.

More generally, if the goal is to estimate some quantity of interest ∆, (a mea-
surable function of θm in each modelMm, such as e.g. the probability of a failure
set, then ∆ is a random variable which prior and posterior distributions in each
model are respectively the image measures ∆∗πm and ∆∗[πm|W ]. The posterior
distribution in the BMA model is thus the average

∆∗[π|W ] =
M∑
m=1

pm(W )∆∗[πm|W ]

and the mean estimate is δ̂ =
∑M

m=1 pm(W )
∫

Θm
∆(θm) d[πm|W ](θm) .

The Bayes formula provides immediately the expression for the posterior weights:
pm(W ) is proportional to the marginal likelihood Lm(W ) of the observed angular
sample in each modelMm, multiplied by the corresponding prior model weight

pm(W ) =
pmLm(W )

p1L1(W ) + · · ·+ pMLM (W )
,

where

(8) Lm(W ) =

∫
Θm

hm(W |θm) dπm(θm) .

In practice, for high dimensional parameter spaces, the main hurdle lies in es-
timating the integral (8). This can be done either by Monte-Carlo methods or
asymptotic approximations, from which the Bayesian Information Criterion (BIC)
derives. (see e.g. the review from Kass and Raftery, 1995, and the references
therein). When the sample size n is not too small compared to the dimension k of

6The density estimator de�ned by (7) is a �Bayes estimator�: it minimizes the posterior ex-

pected quadratic loss Eπ̃|W

{(
h(w| · )− ĥ(w)

)2
}
, at each point w, where the expectancy is

taken with respect to the posterior density π̃|W in the union parameter space (see e.g. Robert,
2007, Chap. 2, for details about Bayesian decision theory).



the parameter space, a reasonable trade-o� between precision and computational
e�ciency is the Laplace's approximation method: the logarithm of the integrand
l̃m(θm) = log

[
hm(w|θm)πm(θm)

]
should be approximately normal around the pos-

terior mode θ̂m, with covariance matrix Σ̂ = (−d2 l̃)−1 where d2 l̃ is the Hessian

matrix at θ̂. This yields, by integration, the Laplace approximation

(9) L̂m(W ) = (2π)k/2
∣∣∣Σ̂∣∣∣1/2 h(W |θ̂m)πm(θ̂m)

Kass and Raftery (1995) suggest that in most cases where n/k ≥ 20, (9) yields
a good precision. More details about the validity of (9) may be found in Kass
et al. (1990). For lower sample size, one alternative to obtain the posterior weights
would be to implement a MC MC algorithm with reversible jumps between the
individual models. The proportion of `time' spent in each model would provide
estimates of posterior weights. The main di�culty with this approach would be to
de�ne reasonable `jumps' proposals, to obtain jumps acceptance rates high enough
for the chain's mixing properties to remain acceptable in practice.

Inside each single model, the posterior parameter distribution is classically eval-
uated by a Metropolis-Hastings algorithm producing an approximate posterior
sample (θm,1, . . . , θm,N ). The latter is used to approximate each term h̃m(w) =∫

Θm
hm(w | θm)d(πm|W )(θm) in (7) via

(10) ĥm(w) =
1

N

N∑
t=1

hm(w | θm,t) .

Throughout this paper, the total number of simulations is set to 50× 103, from
which the �rst 30 × 103, values are discarded. The Heidelberger and Welch test
(Heidelberger and Welch, 1981; Cowles and Carlin, 1996) and the Geweke con-
vergence diagnostics (Geweke, 1992) show good convergence properties for this
burn-in period.

4. BMA with the PB and NL spectral measures

4.1. Preliminary: de�nition of Bayesian PB and NL models. Before im-
plementing the BMA scheme, we need to separately implement our two models in
a Bayesian framework. To our knowledge, this has never been done for the PB
model neither for our NL model.

Since none of these models is part of the exponential family, there is no obvious
uninformative or invariant prior choices at hand. So, for convenience, we transform
the parameter spaces to obtain unconstrained ones. Namely, we set

θPB = log(β) ∈ R4 ; θNL = logit(α) ∈ R4 .

where, for theNLmodel, logit(x) = log(x/(1−x)), which excludes the independent
case α = (1, 1, 1, 1). Then, the parameters in each model are assumed to be a priori
mutually independent and normally distributed with common mean equal to 0 and
standard deviation equal to 3. Results on simulated data (see Appendix) show that
this prior speci�cation does not introduce a strong bias in the estimations.

4.2. Averaging the PB and NL models: simulation study.



Comparison with other approaches.
An alternative to the BMA framework would be to select the `best' model given a
data set. The criterion for comparison could be, for example, the posterior weight,
or the BIC or AIC. In our case, these three criteria are approximately equivalent:
indeed, the di�erences of scores between two models in terms of AIC or BIC are
the same when the two models have same dimension (k1 = k2), since in such a case
BIC12 − AIC12 = (k2 − k1) log n− 2(k2 − k1) = 0. Selecting the model according
to the BIC or the AIC is thus exactly the same. As for the posterior weights, note
that the prior model weights were chosen uniform (here (1/2, 1/2)). The posterior
odds are then equal to the Bayes factor: B12 = p1(W )/p2(W ) = L1(W )/L2(W ).
For large sample sizes the logarithm of the latter can be approximated by the
Schwarz criterion S = logL1(W )− logL2(W )−1/2(k2−k1) log(n), which is −1/2
times the the BIC (see e.g. Kass and Raftery, 1995; Kass et al., 1990). In view of
the asymptotic equivalence of the three criteria, and because posterior weights are
anyway computed for the BMA, the `model selection' alternative considered here
consists in selecting the model with highest posterior weight.

The main goal of our simulations is to compare the predictive performance of
the BMA against this model selection framework and against single models, in
terms of predictive angular densities and estimations of the probability of being
in a failure region A(u) as de�ned in Section 2. The union model is larger than
any individual model, and averaging instead of selecting allows to `integrate' the
uncertainty. One could thus expect the predictive performance to be enhanced.

The main theoretical limitation of the averaging approach stems from a con-
centration phenomenon: if the data arises from the union model (thus, from one
of the individual model), the posterior mass should concentrate around the true
value and assign more mass to the model containing it. In �misspeci�ed� cases
(when the true distribution does not belong to the union model), the posterior is
bound to concentrate around �asymptotic carrier� regions of the parameter space,
which minimize the Kullback-Leibler divergence to the true distribution (Berk,
1966; Kleijn and van der Vaart, 2006). In our context, this means that, for large
sample sizes, the BMA is likely to select a single model, except if the true dis-
tribution is at exact �equi-distance� from the two. Consequently, we restrict our
study to situations where the sample size is moderate (namely, 80 points).

Predictive scores with simulated data.
In this paragraph, the angular data set W under consideration is supposed to be
simulated according to some angular distribution h0 (a Dirichlet mixture (DM)
distribution, see the next paragraph) on the simplex S3. The density estimates
produced by each inference framework (PB model, NL model, BMA and model
selection) are to be compared. We now introduce di�erent scoring rules allowing to
do so. The interest of considering several scores is that they rank the predictions
according to di�erent criteria. It may happen that one framework be selected by
one scoring rule and discarded by another one. The aim here is to check consistency,
i.e. that our conclusions are relatively independent from the considered score.



As a performance score for a density estimate ĥ �tted to W , we consider the
logarithmic score

(11) LS(ĥ, h0) = −Eh0 log(ĥ( · )) = −
∫
S3

log(ĥ(w))h0(w) dw ,

associated to the Kullback-Leibler divergence between the density estimate and
the true distribution. A model with low LS is `close' to the truth. According to
this rule, the best model is the one minimizing the score (note that a zero is not a
measure of perfect �t). Since one can simulate from h0, the latter integral can be
evaluated by simple Monte-Carlo

(12) L̂S(ĥ, h0) =
−1

Nmc

Nmc∑
N=1

log(ĥ(wN )) ; wN
i .i .d .∼ h0 .

In the remainder of this paper, Nmc is set to 50× 103.
The approximation (12) allows us to compare the performance of the predictive

densities ĥPB, ĥNL, ĥBMA and ĥSelect. respectively in the PB model, in the NL
model, in the BMA and in the model selection framework. The predictive density
for the latter is de�ned as

ĥSelect. = 1pPB(W )≥0.5ĥPB + 1pPB(W )<0.5ĥNL .

One of the main interest in multivariate extreme value theory may reside in
the probability of an excess of a high threshold. In this study, we consider the
probability of falling in the failure region A(u) with u = (100, 100, 100). On the
Fréchet scale, it corresponds to a marginal excess probability of roughly 1

100 . The
quantity of interest ∆ is thus a joint probability

∆(m, θ) = P(X > u|m, θ) ' ν(A(u)|m, θ)
where m ∈ {PB,NL} (see Section 2). The true probability is

∆(h0) = Ph0(X > u) = ν0(A(u)) ,

where ν0 is the true exponent measure, which density in pseudo-polar coordinates
is (e.g. on the region {r > 1}) dν0 = d dr

r2
h0(w) dw. Here, the approximation

becomes an equality because the radii and angles are simulated independently
from each other.

For the PB (resp. the true ) density, ν(A(u)|θ,m) (resp. ν0(A(u) ) is given by
(4) and approximated by Monte-Carlo integration (since we can simulate angular
samples from PB distributions and from the true one). In the NL model, it is
simply given by (5).

The output of the Bayesian procedure in model m is, for a given data set W , an
approximate posterior sample {θm(t)}1≤t≤T 7. This posterior is transformed into
a posterior ∆-sample {δm(t)}1≤t≤T = {∆

(
θm(t)

)
}1≤t≤T ∈ (0, 1) of probabilities of

failure, so that the posterior predictive distribution ∆∗(πm|W ) (see Section 4) on
(0, 1) is approximated by the discrete cumulative distribution function (cdf )

F̂m(y) =
1

T

T∑
t=1

1δm(t)≤y (y ∈ (0, 1)) .

7Here, T = 200 after discarding the values from the burn-in period and thinning. The thinning
interval is set to 100 to reduce the computational time



The posterior predictive cdf in the BMA is thus the weighted average

F̂BMA( · ) = pPB(W ) F̂PB( · ) + pNL(W ) F̂NL( · ) .

We can now compare the di�erent distributions via strictly proper scoring rules
(Gneiting and Raftery, 2007), adapted to the case where the true distribution is
known to be the Dirac mass at δ0 = ∆(h0). Namely, we consider the continuous
ranked probability score (CRPS), the predictive model choice criterion8 (PMCC)
and the interval score (ISα) for the central (1 − α) ∗ 100 % interval based on

predictive quantiles, with α = 0.1. If F̂ , EF̂ (∆), VarF̂ (∆), q̂α,l and q̂α,u denote
respectively the predictive cdf on (0, 1), the predictive mean and variance, and the
predictive α/2 and 1 − α/2 quantiles, and if δ0 ∈ (0, 1) is the true value, these
(negatively oriented) scores are

CRPS(F̂ , δ0) =

∫
(0,1)

(F̂ (y)− 1δ0≤y)
2 dy ,(13)

PMCC(F̂ , δ0) = (EF̂ (∆)− δ0)2 + VarF̂ (∆) ,(14)

ISα(F̂ , δ0) =


2α(q̂α,u − q̂α,l) + 4(q̂α,l − δ0) if δ0 ≤ q̂α,l ,
2α(q̂α,u − q̂α,l) if q̂α,l ≤ δ0 ≤ q̂α,u ,
2α(q̂α,u − q̂α,l) + 4(δ0 − q̂α,u) if δ0 > q̂α,u .

(15)

Similarly to the logarithmic score, the `best' model according to a given scoring
rule is the one that minimizes the score.

Experimental setup.
Data sets are generated from Dirichlet mixture (DM) distributions (Boldi and
Davison, 2007), which cover a wide variety of distributional shapes. The Dirichlet
mixture parameters themselves are drawn according to a simulating rule described
in the Appendix. Note that the hyper parameters for this simulating rule were
chosen in order to grant signi�cantly positive weights to both models.

We generate 20 DM parameters {θi0}1≤i≤20 and for each θi0, 5 data sets
{W i

j }1≤j≤5 of size 80 each are generated according to the DM density hi0 corre-

sponding to θi0.
For each of the 100 data sets {W i

j }1≤i≤20,1≤j≤5, separate inference is made

in each framework `fr' (here, fr represents the PB model, the NL model, the

BMA and the model selection framework), yielding a density estimate ĥij |fr, a cdf
for the probability of failure F̂ ij |fr and posterior model weights which are approx-

imated via (9). The posterior mode and the hessian matrix are approximated by
numerical optimization.

Finally, the scores obtained by each framework are averaged over all the exper-
iments (i, j).

Results.
The �rst panel of Table 1 shows the average scores (over the 100 data sets) obtained
by each model, by the BMA and in the selection framework. The second panel

8This scoring rule is not proper in the general case but becomes so when the true distribution
is a Dirac mass.



shows the average score di�erences9 between the BMA and the three other possible
approaches, together with an order of magnitude of the errors involved by the
Monte-Carlo approximations used to compute the score di�erences between the
BMA and the other approaches. More details about these errors are given in the
Appendix.

For example, line ` BMA/ PB', column `CRPS' corresponds to

CRPS(BMA/PB) =

20∑
i=1

5∑
j=1

CRPS(F̂ ij |BMA, δ̂i)− CRPS(F̂ ij |PB, δ̂i),

where δ̂i is the Monte-Carlo estimate of the true probability of failure under the
Dirichlet distribution with parameter θi0, i.e.

δ̂i =
3

Nmc

Nmc∑
N=1

min
j∈1:d

{
wj,N
uj

}
; wN

i .i .d∼ hi0 ; uj =
1

100
.

Column `LS' corresponds to

20∑
i=1

5∑
j=1

L̂S(ĥij |BMA)− L̂S(ĥij |PB),

where L̂S is given by (12).

Table 1. Comparison of mean scores with simulated data (error
magnitude on score di�erences between parentheses).

Scores LS CRPS PMCC IS

PB −107.48 24.04 20.97 45.06

NL −106.07 21.34 18.69 38.08

BMA −108.39 21.33 19.56 37.21

Select −107.36 22.95 20.11 42.27

BMA/PB −0.91 (0.32) −2.7 (0.04) −1.41 (0.05) −7.85 (0.15)

BMA/NL −2.33 (0.32) −0.002 (0.09) 0.87 (0.08) −0.87 (0.21)

BMA/Select −1.03 (0.32) −1.62 (0.02) −0.55 (0.01) −5.06 (0.12)

In terms of spectral density itself, the BMA approach obtains the best loga-
rithmic score (�rst column, second panel). The logarithmic score obtained by the
selection framework is also better than the ones obtained both by the PB and by
the NL models. The gain is less obvious in terms of estimated probabilities of
failure, probably because, for this kind of simulated data, the NL model obtains
better average scores than the PB model (note that this tendency is reversed in
terms of logarithmic scores). In any case, the BMA gives slightly, but consis-
tently, better predictions, with respect to all the considered scores, than the model
selection framework (line 7).

The disappointing aspect of these results is the fact that the relative gain or loss
is low: roughly, between 1/100 and 1/10 depending on the considered score.

9The scores reported in each column have respectively been multiplied by 102, 105, 108 and
105 to improve the readability of the numerical output.



4.3. Example: Leeds data set. We separately �t the PB and the NL model on
the Leeds data set. Table 2 gathers results in terms of the transformed parameters
in each model. θ̂post and σ̂post denote the mean and standard deviation of the

posterior sample issued from the Metropolis algorithm, θ̂mode, σ̂mode, are the pos-
terior mode and the `standard deviation' represented by (with the notations of the
Laplace approximation (9)) the squared root of the diagonal elements of the inverse

hessian Σ̂. The maximum likelihood estimates θ̂mle and the estimated standard
errors σ̂mle are also reported. Our Bayesian analysis corroborates the frequentist

Table 2. The PB and NL models �tted to Leeds data: Compari-
son between frequentist estimates and posterior summary statistics.

PB model NL model

log β0 log β12 log β13 log β23 logitα0 logitα12 logitα13 logitα23

θ̂post 0.3 1.27 −0.35 1.22 0.22 0.89 4.57 1.19

σ̂post 0.14 0.43 0.23 0.42 0.09 0.49 1.69 0.64

θ̂mode 0.3 1.3 −0.34 1.14 0.21 0.79 3.67 1.03

σ̂mode 0.14 0.43 0.22 0.42 0.09 0.45 1.23 0.42

θ̂mle 0.3 1.32 −0.34 1.16 0.21 0.81 17.97 1.07

σ̂mle 0.14 0.43 0.22 0.43 0.09 0.47 2588.78 0.44

estimates. The unusually high standard deviation of the maximum likelihood esti-
mate for logit(α13) is easily explained: the inverse logit link function is numerically
�at (equal to 1) above 17, and logit−1(3.67) = 0.98. As expected, adding a prior
re-centres the estimates towards the origin, but the relative discrepancy between
the Bayesian and frequentist modes (with respect to the standard deviation of the
frequentist ones) is less than 0.12. Also, the posterior mode and mean are close to
each other. This suggests that the asymptotic domain of validity of the Bernstein-
Von Mises theorem (asymptotic normality of the posterior distribution, see e.g.
van der Vaart, 2000) is approximately reached.

The posterior predictive spectral densities in the PB and NL models can be
computed via (10). The squared dots in Figure 3 represent the data displayed in
Figure 2. Each panel tells us the same main story, a lot of mass in the middle,
more near the middle of the edges joining the pairs (PM10,NO) and (NO,NO2)
than between the pair (PM10,NO2). This pattern roughly corresponds to the
distribution of the observed angular points over the simplex. Still, the two panels
have important di�erences. For example, the NL model assigns more mass to the
regions near the vertices.

For this Leeds data set, the posterior weights are overwhelmingly in favour of
the NL model. Table 3 gathers the posterior weights issued from the BIC approx-
imation, the Laplace method and by simple Monte-Carlo integration (parameters
are drawn from the prior).

For the Leeds data, BMA teaches us that a well-chosen four parameters NL
model belonging to the large Nested Asymmetric Logistic family outperforms the
PB model.



Figure 3. Leeds data: posterior predictive densities in the PB
model (left panel) and the NL model (right panel).

Table 3. Leeds data set: posterior PB model weights and mar-
ginal likelihoods.
MC MC steps: 100× 103.

Laplace BIC Monte-Carlo

PB 2.2 1032 4.1 1032 2.4 1032( 4.8 1031)

NL 8.2 1034 1 1035 1.4 1035( 1.9 1034)

p̂PB(W) 0.0027 0.004 0.0017

5. Discussion

This article shows that it is feasible to implement a BMA approach for angular
measure models. Simulation studies indicate that this approach can, at best, im-
prove the predictive density estimates over each single model and at worst, be used
as a selection tool by identifying a single one. For the four considered scoring rules,
the gain represented by the BMA against the model selection framework is signif-
icant (in view of the Monte-Carlo errors) but moderate: the order of magnitude of
the scores is unchanged.

For the sake of conciseness, we have only considered two models to be averaged.
Future BMA roads would be to enlarge the dictionaries of parametric spectral
families (e.g. for the PB model, Ballani and Schlather, 2011) and/or to extend
the BMA framework to a mixture model setup, i.e. replacing the disjoint union
parameter space by a product space. The resulting model would be more �exible,
in the sense that the posterior mass would not have to concentrate on one single
model for large sample sizes. As a drawback, the dimension of a product space is
the sum of the dimensions of individual models, and the curse of dimensionality is
likely to impose longer burn-in periods for MC MC algorithms. Also, one could
not use posterior samples obtained in distinct models. We recall that, in this
paper, we consider situations when separate inference has already been achieved,
or can be made in a simple way, and where estimates are to be averaged. The main
interest of the BMA approach is to o�er a compromise between model �exibility



and parsimony: the estimated distribution (the posterior predictive) is a mixture,
while inference is conducted in lower dimensional models.

Also, for our leading example, He�ernan and Tawn (2004)'s study suggests that
the pairs (S02, NO) and (SO2, PM10) might be asymptotically independent. It
should thus be of interest to average general spectral measures associated with
asymptotically independent models, as introduced by Ledford and Tawn (1996)
and Ramos and Ledford (2009) in the bi-variate case, and extended to general
multivariate problems in Qin et. al. (see footnote 4). The estimated distribu-
tions would not be max-stable anymore, but this would account for a potentially
greater source of uncertainty than the one attached to model choice within the
asymptotically dependent class.

Supplementary material

An R package is available at
http://www.lsce.ipsl.fr/Phocea/Pisp/index.php?nom=anne.sabourin
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Appendix 1: Bayesian PB and NL models

Simulation rule for the PB model.
Whereas Cooley et al. used an accept-reject method for simulation, the one that
we propose here is direct. The PB density can be re-parametrized by setting
ρij = wi + wj , wi/ij = wi/(wi + wj) , sij = w[−(i,j)]/(1 − ρij), where w[−(i,j)] =
(w1, . . . , wi−1, wi+1, . . . , wj−1, wj+1, . . . , wd).

The transformation (ρij , wi/ij , sij) 7→ w has Jacobian: J = J(ρij) = ρij(1 −
ρij)

d−3. Each beta function

hi,j(
{
wij , wi/ij , sij

}
|β0, βij) ,

can be expressed within these new coordinates

hi,j(
{
ρij , wi/ij , s(wij)

}
|β0, βij) ∝ ρ2β0

ij (1− ρij)(d−2)β0−1 · · ·

· · ·wβij−1

i/ij

(
1− wi/ij

)βi,j−1 1

J(ρij)
,

which can be written with the standard R package notations as

1

J(ρij)
dbeta(ρij , 2β0+1, (d−2)β0) dbeta(wi/ij , βi,j , βi,j) ddirichlet(sij , rep(1, d−2)) .

The three factors correspond to two Beta distributions and one uniform distribution
on the unit simplex of dimension d − 3. The following algorithm produces the
desired angular variables W according to the density hPB(. | β0, βij).

Algorithm 1.

(1) Choose uniformly a pair (i < j).



(2) Generate independently the vectors Rij, Wi/ij and Sij according to the Beta
distributions Be(2β0+1, (d−2)β0) and Be(βij , βij), and the uniform Dirich-
let distribution Dird−2(1, . . . , 1), respectively.

(3) De�ne W as Wi = RijWi/ij , Wj = Rij(1−Wi/ij) and W[−(i,j)] =
(1−Rij)Sij.

Angular density in the NL model.
From Coles and Tawn (1991), Theorem 1, with our normalizing convention, the
angular density on the simplex is hNL(w[α) = −1

d ∂1,2,3VNL(x|α)|x=w , where we
write ∂i1,...,ik( · ) the partial derivative with respect to xi1 , . . . , xik .

Letting
(16)

Uij(x) = x
−1

α0αij

i + x
−1

α0αij

i (1 ≤ i < j ≤ 3) , T (x) = (Uα12
12 + Uα13

13 + Uα23
23 ) (x) ,

we have VNL = 2−α0Tα0(x), so that

∂1,2,3VNL(x|α) = 2−α0α0

[
Tα0−1(x)∂1,2,3T (x) + · · ·

(α0 − 1)Tα0−2(x) {∂1T (x)∂2,3T (x) + ∂2T (x)∂1,3T (x) + ∂3T (x)∂1,2T (x)}+ · · ·
(α0 − 1)(α0 − 2)Tα0−3(x)∂1T (x)∂2T (x)∂3T (x)

]
.

The simple and double partial derivatives are

(17) ∂iT (x) =
−1

α0

(
x
−1

α0αij
−1

i U
αij−1
ij + x

−1
α0αik

−1

i Uαik−1
ik

)
and

(18) ∂i,jT (x) =
αij − 1

α2
0αij

(
xi xj

) −1
αij
−2
U
αij−2
ij .

The third order derivative is thus zero. Finally, we have

(19)

hNL(w|α) =

[
α0(1− α0)

2α0 d
Tα0−3 . . .

. . .
{ ∑

1≤i 6=j 6=k≤3

T∂iT∂j,kT + (α0 − 2)∂1T∂2T∂3T
}]

x=w

where all the terms are given in (16), (17) and (18).

Simulation method in the NL model.
We adapt here the method proposed by Stephenson (2003) to our context.

Algorithm 2.

(1) Generate independently four positive alpha-stable variables S, S12, S13, S23,
with respective index α0, α12, α13, α23 ∈ (0, 1), i.e. with Laplace transform

E(exp(−tS)) = e−t
α0 ( resp. e−t

αij
).

(2) For i ∈ {1, 2, 3} :
(a) Simulate independently two standard exponentials Ei,ij , Ei,ik.

(b) Set Xi,ij =

[(
S
2

) 1
αij

Sij
Ei,ij

]αijα0

and Xi,ik =
[(

S
2

) 1
αik

Sik
Ei,ik

]αikα0

.

(c) Set Xi = max(Xi,ij , Xi,ik).



Then, X = (X1, X2, X3) has unit Fréchet margins and a multivariate distribution
belonging to the NL model (6).

Proof. IfX is generated according to the above algorithm, the conditional variables
Xi,ij| (S = s, Sij = sij) are independent with distribution

P (Xi,ij ≤ xi|s, s12) = exp

(
−sij

(s
2

)1/αij ( 1

xi

)1/(α0αij)
)
,

So that X has conditional distribution

P (X ≤ x|s, s12) = exp

(
−

∑
1≤i<j≤3

sij
(s

2

)1/αij · · ·
· · ·

((
1

xi

)1/(α0αij)

+

(
1

xj

)1/(α0αij)
))

.

Integrating with respect to the sij 's and s and using the Laplace transform
property of positive α-stable variables yields the desired distribution function. �

The angular componentsWi = Xi/(X1+X2+X3) follow immediately. By �xing
a high threshold r0 and retaining only the angular points corresponding to radii
R > r0, one obtains a sample on the simplex, approximately following angular
distribution with density hNL(.|α) .

Appendix 2: Results with simulated data from single models

Two data sets of 80 angular points each are simulated, one in the PB model,
the other in the NL model. A 50 103-iteration Metropolis-Hastings is run, the last
20 103 values are kept.

The marginal posterior densities for the four parameters in the PB (resp. NL )
model, obtained by a kernel smoothing of the posterior sample, are shown (solid
lines) in Figure 4 (resp. Figure 5) , together with the prior densities (thin dotted
lines) and the true parameters (vertical thick dotted lines). For all the parameters
components, the posterior concentrates around the �true� value.

The posterior predictive density estimates are deduced from the posterior sample
according to (10), and plotted in Figure 6. showing remarkable agreement between
the estimated (solid lines), and the true distribution contours (dotted lines).

Basic summary statistics for the posterior samples are gathered in Table 4 (θ0

stands for the �true� transformed parameter, see sub-section 4.3 for other nota-
tions), together with maximum likelihood estimates. The three approaches yield
comparable results and the true parameter values lie at less than two standard
deviations from their respective posterior mean estimates (except for the global
dependence parameter α0 in the NL model, where the discrepancy is about 2.4 for
the three estimates).

Appendix 3: Simulation study

We give here a more complete account of the results obtained in Section 4.2.
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Figure 4. PBmodel: prior and posterior parameter marginal den-
sities with simulated data. Upper left panel: logit(β0), upper right
panel: logit(β12), left and right lower panels: logit(β13) and
log(β23).

Table 4. The PB and NL models �tted to simulated data: Com-
parison between frequentist estimates and posterior summary sta-
tistics.

PB model NL model

θ log β0 log β12 log β13 log β23 logitα0 logitα12 logitα13 logitα23

θ0 0.69 1.1 −0.69 2.3 0.41 −0.85 1.39 −0.41

θ̂post 0.62 1.28 −0.53 2.7 0.15 −0.5 2.41 0.23

σ̂post 0.2 0.35 0.26 0.6 0.11 0.3 0.73 0.4

θ̂mode 0.62 1.31 −0.52 2.77 0.14 −0.55 2.15 0.13

σ̂mode 0.19 0.34 0.25 0.58 0.11 0.28 0.61 0.35

θ̂mle 0.62 1.32 −0.52 2.88 0.14 −0.56 2.25 0.13

σ̂mle 0.19 0.35 0.25 0.61 0.11 0.28 0.67 0.35

Dirichlet mixture model for spectral densities. Recall that the Dirichlet
density, which we denote diri, can be parametrized by a mean vector µ ∈ Sd and
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Figure 5. NLmodel: prior and posterior parameter marginal den-
sities with simulated data. Upper left panel: log(α0), upper right
panel: log(α12), left and right lower panels: log(α13) and log(α23).
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Figure 6. Angular measures: Simulation and estimation in the
the PB model (left panel) and in the NL model(right panel).

a concentration parameter ν > 0, so that

∀w ∈ Sd, diri(w | µ, ν) =
Γ(ν)∏d

i=1 Γ(νµi)

d∏
i=1

wνµi−1
i .



The Dirichlet mixture model is the family of �nite mixtures of such densities, with
positive weight vector ω =

(
ω1, . . . , ωK

)
(K ≥ 1) summing to one, concentration

vector ν =
(
ν1, . . . , νK

)
and mean matrix µ =

(
µ · ,1, . . . ,µ · ,K

)
where µ.,k =

(µ1,k, . . . , µd,k) is the mean vector for the kth mixture component. In this model,
the mean constraint (2) is equivalent to

(20) ∀i ∈ {1, . . . , d},
K∑
k=1

ωk µi,k =
1

d
.

Simulation of random Dirichlet mixture parameters and data sets. For
our simulation, we generate 20 Dirichlet mixture parameters

θi0 = (µi· ,1:K ,ω
i
1:K ,ν

i
1:K)1≤i≤10

with K = 10 components, so that (20) holds for all θi0. Each θi0 is generated as
follows:

• For k ∈ {1, . . . ,K}, νk is generated under a truncated Gamma distribution
with shape equal to 1.4 and scale equal to 10, with an upper bound set to
100.
• For k ∈ {1, . . . ,K−1}, µ · ,k is generated (independently) under a Dirichlet
distribution with concentration parameter equal to 6 and a mean parameter
set to G0 = (1/3, 1/3, 1/3), truncated to the region {w ∈ S3 : ∀i ≤ 3, wi >
ε} with ε = 1/100.
• The �rst K − 1 weights are constrained to be equal to each other and the
location for the last kernel centre µ.,K is set in in such a way that (20)
holds while keeping the last weight ωK as close to 1/K as possible.

For each θi0, �ve data sets of size 80 each are generated under the corresponding
Dirichlet mixture distribution. To avoid numerical errors, angular points with any
coordinate less than 10−8 are rejected.

Error assessment for the mean di�erential scores. Since a lot of Monte-
Carlo steps are involved in the di�erential score computations, the second part
of Table 1 may only be interpreted as an order of magnitude for the errors. In
the remainder of this subsection, an alternative alt denotes either the systematic
choice of the PB or the NL model, or the model selection framework where the
retained estimate is the one produce by the model with greatest posterior weight.
If S is a scoring rule, S(BMA/alt) is the score di�erence between the BMAand
the alternative.

Di�erential logarithmic score.
Here, we account for the error involved by the Monte-Carlo approximation (12).

For a given alternative alt, parameter θi0 and data set Wi
j , let ĥ

i
j |BMA (resp.

ĥij |alt ) the posterior predictive distributions in the BMA and in the alternative

framework. Let L̂S(ĥij |BMA) (resp. L̂S(ĥij |alt)) be the Monte-Carlo estimate of

the Logarithmic score as in (12), and let σ̂ij(BMA) (resp. σ̂ij(alt)) be the classical

Monte-Carlo error of the estimate. When i is �xed and j varies, the errors σ̂ij are not
independent because they depend on the same Monte-Carlo sample. An estimated

upper bound for the standard deviation of the di�erential score L̂S
i
j(BMA/alt)



is then σ̂ij = σ̂ij(BMA) + σ̂ij(alt). This is conservative in the sense that this

upper bound is only reached in the unrealistic case where L̂S
i
j(BMA) and L̂S

i
j(alt)

have correlation equal to −1. In the same way, an upper bound for the standard
deviation of the average (letting i �xed) is the average standard deviation: σ̂i =
1
5

∑5
j=1 σ̂

j
i . Further, when i varies, the di�erential scores are independent from each

other (i.e. if i1 6= i2, 1 ≤ j1, j2 ≤ 5, then L̂S
i1
j1(BMA/alt) and L̂S

i2
j2(BMA/alt)

are independent). Consequently, an estimated upper bound for the variance of the

average is σ̂(LS(BMA/alt))2 = 1
202
∑20

i=1

[
σ̂i
]2
. The errors reported in the �rst

column, lines 9-11 of Table 1 are the squared roots of the latter quantity.

Failure region scores: CRPS, PMCC and IS.
In this paragraph, the error concerns the approximation of the true probability of
failure. Let δ̂i0, σ̂

i
0 be respectively the mean Monte-Carlo estimate of the latter

(see (4) ), and its estimated standard deviation, for a given Dirichlet parameter

θi0. We de�ne the boundaries of a typical centred error interval: δiinf = δ̂i0 − σ̂i0,
δisup = δ̂i0 + σ̂i0. Now, given a scoring rule S (one of the CRPS, PMCC and

IS rules) and an alternative alt, let Si(BMA/alt, δiinf) (resp S
i(BMA/alt, δsup)),

be the mean di�erential score obtained between the BMA and framework alt,
when the true failure probability is set to δiinf (resp. δisup). For example, for
the CRPS di�erential score between the PB model and the NL model, we set
CRPSi(BMA/PB, δisup) = 1

5

∑5
j=1CRPS(F̂ ij |BMA, δisup)− CRPS(F̂ ij |PB, δisup).

An order of magnitude for the �uctuation of the partially averaged score
Si(BMA/alt, δ̂i) is

err(Si, alt) =
∣∣Si(BMA/alt, δiinf)− Si(BMA/alt, δisup)

∣∣ /2 .
The �nal score Ŝ(BMA/alt) is the average over i ∈ {1, . . . , 20} of the

Si(BMA/alt, δ̂i0)'s, and the errors are independent when i varies. The heuristic
error magnitude reported in the three last lines and last columns of Table 1 are
thus (up to multiplication by the factor appearing in the column titles)

err(S, alt) =

(
1

20

20∑
i=1

[
err(Si, alt)

]2)1/2

.
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