Homework 1: answers

Solution: Exercise 1 We first show that we may find $A \in \mathbb{R}^{p \times q}$ such that

$$
\begin{equation*}
X=A Y+U, \quad \text { where } U \Perp Y, \text { is a random vector of dimension } p \tag{1}
\end{equation*}
$$

1. For $A \in \mathbb{R}^{p+q}$, and $U=X-A Y$, we have that (U, Y) is a Gaussian vector, because it is a linear tranform of the Gaussian vector (X, Y). Thus, if $\operatorname{Cov}(X-A Y, Y)=\mathbf{0}_{\mathbb{R}^{p \times q}}$, then $U \Perp Y$. The converse is immediate: the covariance matrix of two independent vectors is null.
2. If A and U satisfy (1), then $U=X-A Y$ is a linear transform of (X, Y), thus U is a Gaussian vector as well.
3. If A and U satisfy (1), then for all bounded, continuous function h, for P_{Y}-almost all y,

$$
\mathbb{E}(h(X) \mid Y=y)=\mathbb{E}(h(A Y+U) \mid Y=y)=\mathbb{E}(h(A y+U)),
$$

with $A y+U \sim \mathcal{N}\left(A y+m_{U}, \Sigma_{U}\right)$. Thus

$$
\mathcal{L}(X \mid Y=y)=\mathcal{N}\left(A y+m_{U}, \Sigma_{U}\right) .
$$

4. We now solve (1) w.r.t. A, U. According to question 1., an equivalent condition is that $\operatorname{Cov}(X-A Y, Y)=0$.

$$
\begin{aligned}
\operatorname{Cov}(X-A Y, Y)=0 & \Longleftrightarrow \mathbb{C o v}(X, Y)-A \operatorname{Cov}(Y, Y)=0 \\
& \Longleftrightarrow \Sigma_{X, Y}-A \Sigma_{Y Y}=0 \\
& \Longleftrightarrow A=\Sigma_{Y Y}^{-1} \Sigma_{X, Y} .
\end{aligned}
$$

Now, according to question 3 . we only need to compute Σ_{U} and m_{U}. The above display implies that

$$
\begin{equation*}
m_{U}=\mathbb{E}\left(X-\Sigma_{Y Y}^{-1} \Sigma_{X, Y} Y\right)=m_{X}-\Sigma_{Y Y}^{-1} \Sigma_{X, Y} m_{Y} \tag{2}
\end{equation*}
$$

and letting $\tilde{X}=X-m_{X}, \tilde{Y}=Y-m_{Y}$,

$$
\begin{align*}
\Sigma_{U} & =\mathbb{E}\left(\left(\tilde{X}-\Sigma_{X Y} \Sigma_{Y Y}^{-1} \tilde{Y}\right)\left(\tilde{X}-\Sigma_{X Y} \Sigma_{Y Y}^{-1} \tilde{Y}\right)^{\top}\right) \\
& =\Sigma_{X X}-\Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X}-\Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X}+\Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X} \\
& =\Sigma_{X X}-\Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X} \tag{3}
\end{align*}
$$

Combining question 3 . and equations (2) and (3) yields

$$
\mathcal{L}(X \mid Y=y)=\mathcal{N}\left(m_{X}+\Sigma_{X Y} \Sigma_{Y Y}^{-1}\left(y-m_{X}\right), \Sigma_{X X}-\Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X}\right)
$$

Solution: Exercise 2

- First the vector $(X, A X+Y)$ is Gaussian, as a linear transformation of the Gaussian vector (X, Y).
- Since $\mathbb{E}(A X+Y)=m_{X}+A m_{Y}, \operatorname{Cov}(A X+Y)=A \Sigma_{X} A^{\top}+\Sigma_{Y}$ (because $\Sigma_{X Y}=0$) and $\operatorname{Cov}(X, A X+Y)=\Sigma_{X} A^{\top}$, we obtain

$$
\binom{X}{A X+Y} \sim \mathcal{N}\left(\binom{m_{X}}{m_{X}+A Y},\left(\begin{array}{cc}
\Sigma_{X} & \Sigma_{X} A^{\top} \\
A \Sigma_{X} & \Sigma_{Y}+A \Sigma_{X} A^{\top}
\end{array}\right)\right) .
$$

Solution: Exercise 3

1. We check that $\left(\Lambda+A^{\top} L A\right)\left(\Lambda^{-1}-\Lambda^{-1} A^{\top} K^{-1} A \Lambda^{-1}\right)=I_{p}$.

$$
\begin{aligned}
& \left(\Lambda+A^{\top} L A\right)\left(\Lambda^{-1}-\Lambda^{-1} A^{\top} K^{-1} A \Lambda^{-1}\right) \\
& =I_{p}-A^{\top} K^{-1} A \Lambda^{-1}+A^{\top} L A \Lambda^{-1}-A^{\top} L A \Lambda^{-1} A^{\top} K^{-1} A \Lambda^{-1} \\
& =I_{p}-A^{\top}\left(L-K^{-1}-L A \Lambda^{-1} A^{\top} K^{-1}\right) A \Lambda^{-1}
\end{aligned}
$$

Alos, since $\left(A \Lambda^{-1} A^{\top}+L^{-1}\right) K^{-1}=I_{q}$; we have

$$
A \Lambda^{-1} A^{\top} K^{-1}=I_{q}-L^{-1} K^{-1}
$$

The two latter displays yield

$$
\begin{aligned}
& \left(\Lambda+A^{\top} L A\right)\left(\Lambda^{-1}-\Lambda^{-1} A^{\top} K^{-1} A \Lambda^{-1}\right) \\
& =I_{p}+A^{\top}\left(L-K^{-1}-L\left(I_{q}-L^{-1} K^{-1}\right) A \Lambda^{-1}\right. \\
& =I_{p}
\end{aligned}
$$

2. The expression for $\Sigma_{X \mid y}$ is a direct consequence of Exercise 2 and of the latter question. On the other hand, using Exercise 2 again,

$$
\begin{align*}
\mu_{X \mid y} & =\mu+\Lambda^{-1} A^{\top} K^{-1}(y-A \mu-b) \\
& =\left(I_{p}-\Lambda^{-1} A^{\top} K^{-1} A\right) \mu+\Lambda^{-1} A^{\top} K^{-1}(y-b) \tag{4}
\end{align*}
$$

nonumber $=\left(I_{p}-\left(\Lambda^{-1}-S\right) \Lambda\right) \mu+\Lambda^{-1} A^{\top} K^{-1}(y-b) \quad$ using the latter question.

Also

$$
\begin{aligned}
S \Lambda^{-1} A^{\top} K^{-1} & =\left(A^{\top} L A+\Lambda\right) \Lambda^{-1} A^{\top}\left(A \Lambda^{-1} A^{\top}+L^{-1}\right)^{-1} \\
& =\left(A^{\top} L A \Lambda^{-1} A^{\top}+A^{\top}\right)\left(A \Lambda^{-1} A^{\top}+L^{-1}\right)^{-1} \\
& =A^{\top} L\left(A \Lambda^{-1} A^{\top}+L^{-1}\right)\left(A \Lambda^{-1} A^{\top}+L^{-1}\right)^{-1} \\
& =I_{q}
\end{aligned}
$$

Thus $\Lambda^{-1} A^{\top} K^{-1}=S A^{\top} L$, which combined with (5) yields

$$
\mu_{X \mid y}=S \Lambda \mu+S A^{\top} L(Y-b) .
$$

