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Setting

Not purely Bayesian framework : the training step is not necessarily
Bayesian, only the prediction step is.
• Sample space X = X1 × · · · × Xd (d features)
• some features may be categorical, some discrete, some continuous

. . .
• data Xi = (Xi ,1, . . .Xi ,d), i = 1, . . . , n.
• Classification problem : Xi may come from anyone of K classes

(C1, . . . , CK ).

• Example

{
Xi ,1 ∈ Rp×p : X-ray image from patient i
Xi ,2 ∈ {0, 1} : result of a blood test from patient i .

• classes : {ill, healthy, healthy carrier}.
• Goal predict the class c ∈ {1, . . . ,K} of a new patient.
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Naive Bayes assumption

Conditionally to the class c(i) ∈ {1, . . . ,K} of observation i , the
features (Xi ,1, . . . ,Xi ,d) are independent.

• Looks like a strong (and erroneous) assumption !
• In practice : produces reasonable prediction (even though the

posterior probabilities of each class are not to be taken too
seriously)
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1. Training step
• Training set

{
(xi ,j , c(i)), i ∈ {1, . . . , n}, j ∈ {1, . . . , d}

}
,

c(i) ∈ {1, . . . ,K}.

• for k ∈ {1, . . . ,K} :
• Retain observations of class k → i ∈ Ik .

• For j ∈ {1, . . . , d} estimate the class distribution, with density

pj,k(xj) = p(xi,j |c(i) = k),

using data (xi,j)i∈Ik , usually in a parametric model with parameter
θj,k : → estimated density pj,k,θ̂j,k ( · )

• output : the conditional distribution of X given C = k ,

pk(x) =
k∏

j=1

pj,k,θ̂j,k (xj)
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2. computing the predictive class probabilities

input :
• new data point x = (x1, . . . , xd)

• From step 1 : conditional distributions of X given C = k :
pk( · ) =

∏
p
j ,k,θ̂j,k

(plug-in method, neglect estimation error of θ̂j ,k).

(a) Assign a prior probability to each class : π = (π1, . . . , πK ),
πk = Pπ(C = k).
step 1 → joint density of (X ,C ) : q(x , k) = πkpk(x).

(b) Apply the discrete Bayes formula :

π(k|x) =
πkpk(x)∑K
c=1 πcpc(x)

=
πk
∏d

j=1 pj ,k,θ̂j,k
(xj)∑K

c=1 πc
∏d

j=1 pj ,c,θ̂j,c (xj)

Easy to implement ! O(kdN) for N testing data.
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3. final step : class prediction

• Classification task : output= a predicted class x̂

• Naive Bayes prediction for a new point x

ĉ = argmax
k∈{1,...,k

π(k|x).

(a maximum a posteriori)
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Example : text documents classification

• 2 classes : {1 = spam , 2 = non spam }

• vocabulary V = {w1, . . . ,wV }.

• dataset : documents (email) Ti = (Ti ,j , j = 1, . . . ,Ni ), i ≤ n with

• Ni : number of words in Ti

• ti,j ∈ V : j th word in Ti
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Conditional model (text documents)

• Naive Bayes assumption : in document Ti , conditionally to the
class, words are drawn independently from each other in the
vocabulary V

• Ti can be summarized by a ‘bag of words’ Xi = (Xi ,1, . . . ,Xi ,V ) :

Xi ,j : number of occurrences of word j in Ti .

• Conditional model for Xi given its class k ∈ {1, 2} :

L(Xi |C = k) =Multi
(
θk = (θ1,k , . . . , θV ,k),Ni

)
, i.e.

pk,θk (x) =
Ni !∏V

j=1 xi ,j !

V∏
j=1

θ
xi,j
j ,k
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1. training step (text documents)
Fit separately 2 Multinomial models on spam and non-spam

• Here : the Dirichlet prior Diri(a1 . . . , av ), aj > 0 is conjugate for the
Multinomial model, with density

diri(θ|a1, . . . , aV ) =
Γ(
∑V

j=1 aj)∏V
j=1 Γ(aj)

V∏
j=1

θ
aj−1
j

on SV = {θ ∈ RV
+ :
∑V

j=1 θj = 1} the V − 1-simplex.

• Mean of θ under π = Diri(a1, . . . , aV ) :

Eπ(θ) =
( a1∑

j aj
, . . . ,

aV∑
j aj

)
• The posterior for x1:n = (xi ,1, . . . , xi ,V )i∈{1,...,n} is

Diri
(
(a1 +

n∑
i=1

xi ,1), . . . , (aV +
n∑

i=1

xi ,V )
)
.
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1. training step (text documents) Cont’d
• Concatenate documents of each class separately

→ x (k) = (x
(k)
j )j=1,...,V , k = 1, 2

with xk,j = total # occurrences of word j in documents of class k .

• θk = (θk,1, . . . , θk,V ) multinomial parameter for class k .

• Flat priors on θk : π1 = π2 = Diri(1, . . . , 1)

• Posterior mean estimates

θ̂k = Eπk
[θ|x (k)] =

(
x

(k)
1 + 1

V +
∑V

j=1 x
(k)
j

, . . . ,
x

(k)
V + 1

V +
∑V

j=1 x
(k)
j

)

(the prior acts as regularizer : ‘+1’ term avoids 0 probabilities.
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2. Prediction step

• For a new document xnew the predictive probabilities of each class
are :

π(C = k |xnew ) =
p(xnew |C = k)π1

p(xnew |C = k)π1 + p(xnew |C = 2)π2

with

p(xnew |C = k) ∝
V∏
j=1

θ̂k,j
xnewj

• The class prediction is

k∗(xnew ) = argmax
k=1,2

p(xnew |C = k)
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The regression problem

• Supervised learning : training dataset (xi ,Yi ), i ≤ n, with
• xi ∈ X the features for observation i (considered non random)

• Yi ∈ R the label (random variable).

• goal : for a new observation with features xnew , predict Ynew , i.e.
construct a regression function h ∈ H, so that h(x) is our best
prediction of Y at point x .

• h should
• be simple (avoid over-fitting) → simple class H.

• fit the data well : measured through a loss function L(x , y , h).
example : squared error loss L(x , y , h) = (y − h(x))2.
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Multiple classical strategies
• Statistical learning approach : empirical risk minimization

Rn(x1:n, y1:n, h) =
1
n

n∑
1

L(xi , yi , h)

→ minimize
h∈H

Rn(x1:n, y1:n, h)

• Probabilistic modeling approach (likelihood based) : assume e.g.

Yi = h0(xi ) + εi ,

εi ∼ Pε independent noises, e.g. Pε = N (0, σ2), σ2 known or not.

→ likelihood of h, ph(x1:n, y1:n) =
∏n

i=1 pε(yi − h(xi )).

→ minimize
h∈H

−
n∑

i=1

log pε(yi − h(xi ))

• With Gaussian noises, both strategies coincide.
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Linear regression

• h : a linear combination of basis functions φj : X 7→ R (feature
maps), j ∈ {1, . . . , p}

h(x) =

p∑
j=1

θjφj(x), θj unknown, φj known, i.e.

H =
{ p∑

j=1

θjφj : θ = (θ1, . . . , θp) ∈ Rp
}

• Examples
• X = Rp, φj(x) = xj : canonical feature map

• X = R, φj(x) = x j−1 : polynomial basis function

• X = Rd , φj(x) = 1
(2π)d/2 det Σj

exp− 1
2 (x − µj)

>Σ−1
j (x − µj),

Gaussian basis function
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Empirical risk minimization for linear regression

• Empirical risk :

Rn(x1:n, y1:n, θ) =
1
2

n∑
i=1

(yi − 〈θ, φ(xi )〉)2 =
1
2
‖y1:n − Φθ‖2,

with Φ ∈ Rn×p : design matrix, Φi ,j = φj(xi ).
• Minimizer of Rn : the least squares estimator
• explicit solution when Φ>Φ is of rank p (invertible)

θ̂ = (Φ>Φ)−1Φ>y1:n
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Regularization

• goals : prevent
• over-fitting
• numerical instabilities (inversion of (Φ>Φ).

• Add a complexity penalty (function of θ) to the empirical risk
• penalty :λ‖θ‖22 → ridge regression
• penalty :λ‖θ‖1 → Lasso regression
• e.g. with L2 penalty, the optimization problem becomes

θ̂ = argmin
θ
‖y1:n − Φθ‖2 + λ‖θ‖22 for some λ > 0.

→ solution θ̂ =
[
Φ>Φ + λIp

]−1
Φ>y1:n.
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Bayesian linear model
• Again, Yi = 〈θ,Φ(xi )〉+ εi

• Assume εi ∼ N (0, β−1), β > 0 noise precision viewed as a constant
(known or not)

• Prior distribution on θ ∈ Rp : π = N (m0, S0).

• independence assumption : ε1 ⊥⊥ ε2 ⊥⊥ · · · ⊥⊥ θ.

• Y = Y1:n = Φθ + ε1:n, with Φ ∈ Rn×p,Φi ,j = φj(xi ).

Bayesian model

{
θ ∼ π = N (m0, S0)

L
[
Y |θ

]
= N (Φθ, 1

β In)

• Natural Bayesian estimator : θ̂ = Eπ(θ|Y1:n).
→ posterior distribution ? 19/42



Conditioning and augmenting Gaussian vectors

Lemma
Let {

W ∼ N (µ,Λ−1)

L[Y |w ] = N (Aw + b, L−1)

i.e. Y = AW + b + ε with ε ∼ N (0, L−1) ⊥⊥W .

Then L[W |y ] = N (my , S) with

S = (Λ + A>LA)−1

my = S [A>L(y − b) + Λµ.]

proof : homework (see exercises sheet online)
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Application to posterior computation

Using the lemma with

A = Φ, b = 0, W = θ, Λ = S−1
0 , µ = m0, L = βIp,

we obtain immediately the posterior distribution

π( · |Y1:n) = L[θ|y1:n] = N (mn,Sn)

with {
Sn =

(
S−1

0 + βΦ>Φ
)−1

mn = Sn
(
βΦ>y1:n + S−1

0 m0
) (1)

Posterior mean estimate

θ̂ = Eπ[θ|y1:n] = mn
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Special case : diagonal, centered prior

• choose m0 = 0, S0 = α−1Ip, with α : prior precision
(it makes sense !)
• Then (1) becomes

Sn =
(
αIp + βΦ>Φ

)−1
= β−1

(α
β

+ Φ>Φ
)−1

mn = Sn
(
βΦ>y1:n

)
=

(α
β

+ Φ>Φ
)−1

Φ>y1:n︸ ︷︷ ︸
penalized least squares solution

(2)

Adding a prior N (0, α−1Ip)
⇐⇒

Adding a L2 regularization with parameter λ = α/β.

remark : Narrow prior ⇐⇒ large α ⇐⇒ large penalty
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Predictive distribution

New data point (xnew ,Ynew ), with Ynew not observed and xnew known :

• goal : obtain the posterior distribution of Ynew (mean and
variance→ credible intervals).

• We still have Ynew = 〈θ, φ(xnew )〉+ ε, ε ∼ N (0, β−1) and ε ⊥⊥ θ.

• Now (after training step) θ ∼ π( · |y1:n) = N (mn, Sn)

• Thus Ynew
d
= linear transform of Gaussian vector (ε,θ)

L[Ynew |y1:n] = N

(
φ(xnew )>mn, φ(xnew )>Snφ(xnew ) + β−1

)

23/42



Example : polynomial basis functions
• True regression functions : h0(x) = sin(x)
• Polynomial basis functions : φ(x) = (1, x , x2, x3, x4) (p = 5).
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Noise precision : β = 5, N = 20.
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Estimated regression function

• ĥ(x) = 〈θ̂,Φ(x)〉 = θ̂1 +
∑5

j=2 θ̂jx
j−1

• With the previous dataset
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Predictive distribution
• ĥ(x) : the mean of L(Ynew|y1:n) for xnew = x

• Remind L(Ynew|y1:n) = N (ĥ(x), σ2
new = φ(x)>Snφ(x) + β−1)

• → posterior credible interval for Y ,

Ix =
[
ĥ(x)− 1/96

√
σ2
new , ĥ(x) + 1/96

√
σ2
new

]
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Model choice problem

• What if several model in competition {Mk , k ∈ {1, . . . ,K}}, with
Mk = {Θk ,πk} ?

• Continuous case : family of models {Mα, α ∈ A}

• → How to choose k or α ?

• Examples :
• M1 = {Θ,π1}, M2 = {Θ,π2} with π1 a flat prior and π2 the

Jeffreys prior

• Mα linear model with normal prior on the noise N (0, α−1)
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Hierarchical models

• Bayesian view : put a prior on unknown quantities, then condition
upon data.
• Model choice problem : put a ‘hyper-prior’ on α ∈ A (or

k ∈ {1, . . . ,K}) → hierarchical Bayesian model
• Convenient when dealing with parallel experiments
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Example of hierarchical model

Example : 2 rivers with fishes.

• Xi ∈ {0, 1} : fished fish ill or sound.

• Xi ∼ Ber(θ), with θ = θ1 in river 1 and θ = θ2 in river 2.

• θ1 and θ2 are 2 realizations of θ ∼ Beta(a, b)

• α = (a, b) : hyper-parameter for the prior

• hierarchical Bayes : put a prior on α (e.g. product of 2 independent
Gammas).
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Posterior mean estimates in a BMA framework
• denote πh the hyper-prior on k (or α)
• Let us stick to the discrete case , k ∈ {1, . . . ,M}.
• The prior is a mixture distribution π =

∑K
k=1 π

h(k)πk( · ), i.e. for
all π-integrable function g(θ),

Eπ[g(θ)] = Eπh

[
E (g(θ)|k)

]
=

K∑
k=1

πh(k)

∫
Θk

g(θ) dπk(θ)

• by the tower rule for conditional expectations, the posterior mean
is a weighted average

ĝ = Eπ[g(θ)|X1:n] = Eπh

[
E (g(θ)|k,X1:n) |X1:n

]
=

K∑
k=1

πh(k |X1:n)

∫
Θk

g(θ) dπk(θ|X1:n)︸ ︷︷ ︸
ĝk :posterior mean in model k
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Model evidence
Computing the posterior mean in the BMA framework requires
• Computing the posterior means in each individual model
→ k ‘moderate’ tasks
• Averaging them with weights πh(k |X1:n), posterior weight of

model k
• Bayes formula

πh(k |X1:n) =
πh(k)p(X1:n|k)∑K
j=1 π

h(j)p(X1:n|j)
with

p(X1:n|k) = evidence of model k

=

∫
Θk

p(X1:n|θ) dπk(θ)

= mk(X1:n) marginal likelihood of X1:n in model k

hard to compute (integral)
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Shortcomings of BMA

• Inference has to be done in each individual model
• Usually one weight (say π(k∗|X1:n)) � all others (reason :

concentration of the posterior around the true θ0 ∈ Θk0 and k∗ = k0
=⇒ final estimate ĝ ≈ ĝk0 . Other ĝk ’s are almost useless

Bottleneck : compute k∗.
model choice problem.
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Posterior weights, model evidence and Bayes factor

Recall k∗ = argmax
k

π(k |X1:n) = argmax
k

p(X1:n|k)︸ ︷︷ ︸
evidence of model k

πh(k)

• Uniform prior on k =⇒ only the evidence p(X1:n|k) matters.
• in any case : prior influence vanishes with n.
• Relevant quantity to compare model k and j :

Bkj =
p(X1:n|k)

p(X1:n|j)
: Bayes factor (Jeffreys, 61)

• Suggested scale for decision making :
log10 Bkj Bkj evidence against Bj

0→ 1/2 1→ 3.2 not significant
1/2→ 1 3.2→ 10 substantial
1→ 2 10→ 100 strong
> 2 > 100 decisive
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Occam’s razor principle

Between 2 models explaining the data equally well,
one ought to choose the simplest one.

→ Avoid over-fitting

→ Better generalization properties.
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Occam’s razor and model evidence

• When selecting k∗ according to the model evidences p(X1:n|k), the
Occam’s razor is automatically implemented.

• Reason : the prior plays the role of a regularizer.
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automatic complexity penalty : intuition 1

Complex model =⇒ large Θk

=⇒ small πk(θ) (if uniform over Θk)

=⇒
∫

Θk

pθ(x1:n)πk(θ) dθ small

(average over large regions where pθ(x1:n) small)
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automatic complexity penalty : intuition 2

• if Θk ⊂ R : assume
• πk flat over interval of length ∆prior

k

• pθk (X1:n) peaked around pθ̂MAP,k
(X1:n) with ‘width’ ∆posterior

k .

• then πk(θ) ≈ 1/∆prior
k and

p(X1:n|k) =

∫
Θk

pθ(x)πk(θ) dθ ≈ p
θ̂MAP,k

(X1:n)
∆θposteriork

∆θpriork︸ ︷︷ ︸
complexity penalty

• If Θk ⊂ Rd and same approximation in each dimension

log p(X1:n|k) ≈ log p
θ̂MAP,k

(X1:n) + d log
∆θposteriork

∆θpriork︸ ︷︷ ︸
dimension + complexity penalty
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