Introduction to Bayesian learning Lecture 2: Bayesian methods for (un)supervised problems

Anne Sabourin, As. Prof., Telecom ParisTech

September 2019

1. Supervised learning example : Naive Bayes Classification

- 2. Bayesian linear regression Regression : reminders Bayesian linear regression
- 3. Bayesian model choice

Bayesian model averaging Bayesian model selection Automatic complexity penalty Laplace approximation and BIC criterion Empirical Bayes

Setting

Not purely Bayesian framework : the training step is not necessarily Bayesian, only the prediction step is.

- Sample space $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_d$ (d features)
- some features may be categorical, some discrete, some continuous ...
- data $X_i = (X_{i,1}, \dots, X_{i,d}), i = 1, \dots, n.$
- Classification problem : X_i may come from anyone of K classes (C_1, \ldots, C_K) .
- Example $\begin{cases} X_{i,1} \in \mathbb{R}^{p \times p} : & \text{X-ray image from patient } i \\ X_{i,2} \in \{0,1\} : & \text{result of a blood test from patient } i. \end{cases}$
- classes : {ill, healthy, healthy carrier}.
- Goal predict the class $c \in \{1, \dots, K\}$ of a new patient.

Naive Bayes assumption

Conditionally to the class $c(i) \in \{1, ..., K\}$ of observation i, the features $(X_{i,1}, ..., X_{i,d})$ are independent.

- Looks like a strong (and erroneous) assumption!
- In practice : produces reasonable prediction (even though the posterior probabilities of each class are not to be taken too seriously)

1. Training step

- Training set $\{(x_{i,j}, c(i)), i \in \{1, \dots, n\}, j \in \{1, \dots, d\}\}, c(i) \in \{1, \dots, K\}.$
- for $k \in \{1, \ldots, K\}$:
 - Retain observations of class $k \to i \in I_k.$
 - For $j \in \{1, \dots, d\}$ estimate the class distribution, with density

$$p_{j,k}(x_j) = p(x_{i,j}|c(i) = k),$$

using data $(x_{i,j})_{i \in I_k}$, usually in a parametric model with parameter $\theta_{j,k}$: \rightarrow estimated density $p_{j,k,\widehat{\theta}_{j,k}}(\cdot)$

• **output** : the conditional distribution of X given C = k,

$$p_k(x) = \prod_{j=1}^k p_{j,k,\widehat{\theta}_{j,k}}(x_j)$$

2. computing the predictive class probabilities

input :

- new data point $x = (x_1, \ldots, x_d)$
- From step 1 : conditional distributions of X given C = k : $p_k(\cdot) = \prod p_{j,k,\widehat{\theta}_{j,k}}$ (plug-in method, neglect estimation error of $\widehat{\theta}_{j,k}$).
- (a) Assign a prior probability to each class : $\pi = (\pi_1, \dots, \pi_K)$, $\pi_k = \mathbb{P}_{\pi}(C = k)$. step 1 \rightarrow joint density of (X, C) : $q(x, k) = \pi_k p_k(x)$.

(b) Apply the discrete Bayes formula :

$$\pi(k|x) = \frac{\pi_k p_k(x)}{\sum_{c=1}^{K} \pi_c p_c(x)} = \frac{\pi_k \prod_{j=1}^{d} p_{j,k,\widehat{\theta}_{j,k}}(x_j)}{\sum_{c=1}^{K} \pi_c \prod_{j=1}^{d} p_{j,c,\widehat{\theta}_{j,c}}(x_j)}$$

Easy to implement ! O(kdN) for N testing data.

3. final step : class prediction

- Classification task : output= a predicted class \widehat{x}
- Naive Bayes prediction for a new point \boldsymbol{x}

$$\widehat{c} = \operatorname*{argmax}_{k \in \{1,...,k} \pi(k|x).$$

(a maximum a posteriori)

Example : text documents classification

• 2 classes : $\{1 = \text{ spam }, 2 = \text{ non spam }\}$

• vocabulary
$$\mathcal{V} = \{w_1, \ldots, w_V\}.$$

- dataset : documents (email) $T_i = (T_{i,j}, j = 1, ..., N_i), i \leq n$ with
 - N_i : number of words in T_i
 - $t_{i,j} \in \mathcal{V} : j^{th}$ word in T_i

Conditional model (text documents)

- Naive Bayes assumption : in document T_i , conditionally to the class, words are drawn independently from each other in the vocabulary \mathcal{V}
- T_i can be summarized by a 'bag of words' $X_i = (X_{i,1}, \dots, X_{i,V})$: $X_{i,j}$: number of occurrences of word j in T_i .
- Conditional model for X_i given its class $k \in \{1,2\}$:

$$\mathcal{L}(X_i|C=k) = \mathcal{M}ulti(\theta_k = (\theta_{1,k}, \dots, \theta_{V,k}), N_i), \quad i.e.$$
$$p_{k,\theta_k}(x) = \frac{N_i!}{\prod_{j=1}^V x_{i,j}!} \prod_{j=1}^V \theta_{j,k}^{x_{i,j}}$$

1. training step (text documents)

Fit separately 2 Multinomial models on spam and non-spam

• Here : the Dirichlet prior $\mathcal{D}iri(a_1 \dots, a_v)$, $a_j > 0$ is conjugate for the Multinomial model, with density

$$diri(\theta|a_1,\ldots,a_V) = \frac{\Gamma(\sum_{j=1}^V a_j)}{\prod_{j=1}^V \Gamma(a_j)} \prod_{j=1}^V \theta_j^{a_j-1}$$

on $\mathcal{S}_V = \{ \theta \in \mathbb{R}^V_+ : \sum_{j=1}^V \theta_j = 1 \}$ the V - 1-simplex.

• Mean of $\boldsymbol{\theta}$ under $\boldsymbol{\pi} = \mathcal{D}iri(a_1, \dots, a_V)$: $\mathbb{E}_{\boldsymbol{\pi}}(\boldsymbol{\theta}) = \left(\frac{a_1}{\sum_j a_j}, \dots, \frac{a_V}{\sum_j a_j}\right)$

• The posterior for $x_{1:n} = (x_{i,1}, \ldots, x_{i,V})_{i \in \{1, \ldots, n\}}$ is

$$Diri((a_1 + \sum_{i=1}^n x_{i,1}), \ldots, (a_V + \sum_{i=1}^n x_{i,V})).$$

- 1. training step (text documents) Cont'd
 - Concatenate documents of each class separately

$$ightarrow \ x^{(k)} = (x^{(k)}_j)_{j=1,...,V} \ , \quad k=1,2$$

with $x_{k,j} = \text{total } \# \text{ occurrences of word } j \text{ in documents of class } k$.

- $\theta_k = (\theta_{k,1}, \dots, \theta_{k,V})$ multinomial parameter for class k.
- Flat priors on $\boldsymbol{\theta}_k : \boldsymbol{\pi}_1 = \boldsymbol{\pi}_2 = \mathcal{D}\textit{iri}(1, \dots, 1)$
- Posterior mean estimates

$$\widehat{\theta}_{k} = \mathbb{E}_{\pi_{k}}[\theta|x^{(k)}] = \left(\frac{x_{1}^{(k)} + 1}{V + \sum_{j=1}^{V} x_{j}^{(k)}}, \dots, \frac{x_{V}^{(k)} + 1}{V + \sum_{j=1}^{V} x_{j}^{(k)}}\right)$$

(the prior acts as regularizer : +1' term avoids 0 probabilities.

2. Prediction step

• For a new document \boldsymbol{x}^{new} the predictive probabilities of each class are :

$$\pi(C = k | x^{new}) = \frac{p(x^{new} | C = k)\pi_1}{p(x^{new} | C = k)\pi_1 + p(x^{new} | C = 2)\pi_2}$$

with

$$p(x^{new}|C=k) \propto \prod_{j=1}^{V} \widehat{\theta_{k,j}}^{x_j^{new}}$$

• The class prediction is

$$k^*(x^{new}) = \operatorname*{argmax}_{k=1,2} p(x^{new} | C = k)$$

1. Supervised learning example : Naive Bayes Classification

- 2. Bayesian linear regression Regression : reminders Bayesian linear regression
- 3. Bayesian model choice

Bayesian model averaging Bayesian model selection Automatic complexity penalty Laplace approximation and BIC criterion Empirical Bayes

1. Supervised learning example : Naive Bayes Classification

- 2. Bayesian linear regression Regression : reminders Bayesian linear regression
- 3. Bayesian model choice

The regression problem

- Supervised learning : training dataset $(x_i, Y_i), i \leq n$, with
 - $x_i \in \mathcal{X}$ the features for observation *i* (considered non random)
 - $Y_i \in \mathbb{R}$ the label (random variable).
- goal : for a new observation with features x_{new} , predict Y_{new} , *i.e.* construct a *regression function* $h \in \mathcal{H}$, so that h(x) is our best prediction of Y at point x.
- *h* should
 - be simple (avoid over-fitting) \rightarrow simple class \mathcal{H} .
 - fit the data well : measured through a loss function L(x, y, h). example : squared error loss $L(x, y, h) = (y - h(x))^2$.

Multiple classical strategies

• Statistical learning approach : empirical risk minimization

$$R_n(x_{1:n}, y_{1:n}, h) = \frac{1}{n} \sum_{1}^n L(x_i, y_i, h)$$

$$\rightarrow \underset{h \in \mathcal{H}}{minimize} \qquad R_n(x_{1:n}, y_{1:n}, h)$$

• Probabilistic modeling approach (likelihood based) : assume e.g.

$$Y_i = h_0(x_i) + \epsilon_i ,$$

 $\epsilon_i \sim P_{\epsilon}$ independent noises, e.g. $P_{\epsilon} = \mathcal{N}(0, \sigma^2), \sigma^2$ known or not.

 \rightarrow likelihood of $h, \, p_h(x_{1:n}, y_{1:n}) = \prod_{i=1}^n p_\epsilon(y_i - h(x_i)).$

$$ightarrow minimize_{h\in\mathcal{H}} - \sum_{i=1}^{n} \log p_{\epsilon}(y_i - h(x_i))$$

• With Gaussian noises, both strategies coincide.

Linear regression

• h: a linear combination of basis functions $\phi_j : \mathcal{X} \mapsto \mathbb{R}$ (feature maps), $j \in \{1, \dots, p\}$

$$\begin{split} h(x) &= \sum_{j=1}^{p} \theta_{j} \phi_{j}(x), \quad \theta_{j} \text{ unknown}, \quad \phi_{j} \text{ known}, \quad i.e \\ \mathcal{H} &= \Big\{ \sum_{j=1}^{p} \theta_{j} \phi_{j} : \quad \theta = (\theta_{1}, \dots, \theta_{p}) \in \mathbb{R}^{p} \Big\} \end{split}$$

• Examples

- $\mathcal{X} = \mathbb{R}^p$, $\phi_j(x) = x_j$: canonical feature map
- $\mathcal{X} = \mathbb{R}, \quad \phi_j(x) = x^{j-1}$: polynomial basis function

•
$$\mathcal{X} = \mathbb{R}^d$$
, $\phi_j(x) = \frac{1}{(2\pi)^{d/2} \det \Sigma_j} \exp{-\frac{1}{2}(x-\mu_j)^\top \Sigma_j^{-1}(x-\mu_j)}$,
Gaussian basis function

Empirical risk minimization for linear regression

• Empirical risk :

$$R_n(x_{1:n}, y_{1:n}, \theta) = \frac{1}{2} \sum_{i=1}^n (y_i - \langle \theta, \phi(x_i) \rangle)^2 = \frac{1}{2} \|y_{1:n} - \Phi \theta\|^2,$$

with $\Phi \in \mathbb{R}^{n \times p}$: design matrix, $\Phi_{i,j} = \phi_j(x_i)$.

- Minimizer of R_n : the *least squares* estimator
- explicit solution when $\Phi^{\top}\Phi$ is of rank p (invertible)

$$\widehat{\theta} = (\Phi^{\top} \Phi)^{-1} \Phi^{\top} y_{1:n}$$

Regularization

- goals : prevent
 - over-fitting
 - numerical instabilities (inversion of $(\Phi^{\top}\Phi)$.
- Add a complexity penalty (function of θ) to the empirical risk
- penalty $:\lambda \|\theta\|_2^2 \to \text{ridge regression}$
- penalty $:\lambda \|\theta\|_1 \to$ Lasso regression
- e.g. with L_2 penalty, the optimization problem becomes

$$\widehat{\theta} = \operatorname*{argmin}_{\theta} \|y_{1:n} - \Phi\theta\|^2 + \lambda \|\theta\|_2^2 \quad \text{for some } \lambda > 0.$$

$$\rightarrow \text{ solution } \widehat{\theta} = \left[\Phi^{\top} \Phi + \lambda I_{\rho} \right]^{-1} \Phi^{\top} y_{1:n}.$$

1. Supervised learning example : Naive Bayes Classification

- 2. Bayesian linear regression Regression : reminders Bayesian linear regression
- 3. Bayesian model choice

Bayesian linear model

- Again, $Y_i = \langle \theta, \Phi(x_i) \rangle + \epsilon_i$
- Assume $\epsilon_i \sim \mathcal{N}(0, \beta^{-1}), \beta > 0$ noise precision viewed as a constant (known or not)
- Prior distribution on $\boldsymbol{\theta} \in \mathbb{R}^p$: $\boldsymbol{\pi} = \mathcal{N}(m_0, S_0)$.
- independence assumption : $\epsilon_1 \perp\!\!\!\perp \epsilon_2 \perp\!\!\!\perp \cdots \perp\!\!\!\!\mid \boldsymbol{\theta}$.

•
$$Y = Y_{1:n} = \Phi\theta + \epsilon_{1:n}$$
, with $\Phi \in \mathbb{R}^{n \times p}$, $\Phi_{i,j} = \phi_j(x_i)$.

Bayesian model

$$egin{cases} oldsymbol{ heta} \sim oldsymbol{\pi} = \mathcal{N}(m_0, S_0) \ \mathcal{L}ig[Y| hetaig] = \mathcal{N}(\Phi heta, rac{1}{eta} I_n) \end{cases}$$

• Natural Bayesian estimator : $\hat{\theta} = \mathbb{E}_{\pi}(\theta | Y_{1:n})$. \rightarrow posterior distribution?

Conditioning and augmenting Gaussian vectors

Lemma

Let

$$\left\{egin{array}{l} \mathcal{W}\sim\mathcal{N}(\mu,\Lambda^{-1})\ \mathcal{L}[\mathcal{Y}|w]=\mathcal{N}(\mathcal{A}w+b,\mathcal{L}^{-1}) \end{array}
ight.$$

i.e. $Y = AW + b + \epsilon$ with $\epsilon \sim \mathcal{N}(0, L^{-1}) \perp W$.

Then $\mathcal{L}[W|y] = \mathcal{N}(m_y, S)$ with

$$S = (\Lambda + A^{\top}LA)^{-1}$$
$$m_y = S[A^{\top}L(y-b) + \Lambda\mu.]$$

proof : homework (see exercises sheet online)

Application to posterior computation

Using the lemma with

$$A = \Phi, \quad b = 0, \quad W = \theta, \quad \Lambda = S_0^{-1}, \quad \mu = m_0, \quad L = \beta I_p,$$

we obtain immediately the posterior distribution

$$\pi(\cdot | Y_{1:n}) = \mathcal{L}[\theta | y_{1:n}] = \mathcal{N}(m_n, S_n)$$

with

$$\begin{cases} S_n = \left(S_0^{-1} + \beta \Phi^{\top} \Phi\right)^{-1} \\ m_n = S_n \left(\beta \Phi^{\top} y_{1:n} + S_0^{-1} m_0\right) \end{cases}$$
(1)

Posterior mean estimate

$$\widehat{\theta} = \mathbb{E}_{\boldsymbol{\pi}}[\boldsymbol{\theta}|\boldsymbol{y}_{1:n}] = \boldsymbol{m}_n$$

Special case : diagonal, centered prior

- choose $m_0 = 0$, $S_0 = \alpha^{-1} l_p$, with α : prior precision (it makes sense!)
- Then (1) becomes

$$\begin{cases} S_n = \left(\alpha I_p + \beta \Phi^{\top} \Phi\right)^{-1} = \beta^{-1} \left(\frac{\alpha}{\beta} + \Phi^{\top} \Phi\right)^{-1} \\ m_n = S_n \left(\beta \Phi^{\top} y_{1:n}\right) = \underbrace{\left(\frac{\alpha}{\beta} + \Phi^{\top} \Phi\right)^{-1} \Phi^{\top} y_{1:n}}_{\text{penalized least squares solution}} \end{cases}$$
(2)

Adding a prior
$$\mathcal{N}(0, \alpha^{-1} I_p)$$

 \iff
Adding a L_2 regularization with parameter $\lambda = \alpha/\beta$.

remark : Narrow prior \iff large $\alpha \iff$ large penalty

Predictive distribution

New data point (x_{new}, Y_{new}) , with Y_{new} not observed and x_{new} known :

- **goal** : obtain the posterior distribution of Y_{new} (mean and variance \rightarrow credible intervals).
- We still have $Y_{new} = \langle \theta, \phi(x_{new}) \rangle + \epsilon$, $\epsilon \sim \mathcal{N}(0, \beta^{-1})$ and $\epsilon \perp \mu$.
- Now (after training step) $\boldsymbol{\theta} \sim \boldsymbol{\pi}(\boldsymbol{\cdot} | y_{1:n}) = \mathcal{N}(m_n, S_n)$
- Thus $Y_{new} \stackrel{d}{=}$ linear transform of Gaussian vector (ϵ, θ)

$$\mathcal{L}[Y_{new}|y_{1:n}] = \mathcal{N}\left(\phi(x_{new})^{\top}m_n, \ \phi(x_{new})^{\top}S_n\phi(x_{new}) + \beta^{-1}\right)$$

Example : polynomial basis functions

- True regression functions : $h_0(x) = \sin(x)$
- Polynomial basis functions : $\phi(x) = (1, x, x^2, x^3, x^4) \ (p = 5).$

Estimated regression function

•
$$\widehat{h}(x) = \langle \widehat{\theta}, \Phi(x) \rangle = \widehat{\theta}_1 + \sum_{j=2}^5 \widehat{\theta}_j x^{j-1}$$

• With the previous dataset

25/42

Predictive distribution

- $\widehat{h}(x)$: the mean of $\mathcal{L}(Y_{\text{new}}|y_{1:n})$ for $x_{\text{new}} = x$
- Remind $\mathcal{L}(Y_{\text{new}}|y_{1:n}) = \mathcal{N}(\widehat{h}(x), \sigma_{new}^2 = \phi(x)^{\top} S_n \phi(x) + \beta^{-1})$
- $\bullet \ \to {\rm posterior} \ {\rm credible} \ {\rm interval} \ {\rm for} \ Y$,

$$I_{x} = \left[\widehat{h}(x) - 1/96\sqrt{\sigma_{new}^{2}}, \widehat{h}(x) + 1/96\sqrt{\sigma_{new}^{2}}\right]$$

- 1. Supervised learning example : Naive Bayes Classification
- 2. Bayesian linear regression Regression : reminders Bayesian linear regression
- 3. Bayesian model choice

Bayesian model averaging Bayesian model selection Automatic complexity penalty Laplace approximation and BIC criterion Empirical Bayes

Model choice problem

- What if several model in competition $\{M_k, k \in \{1, ..., K\}\}$, with $M_k = \{\Theta_k, \pi_k\}$?
- Continuous case : family of models $\{M_{\alpha}, \alpha \in \mathcal{A}\}$
- \rightarrow How to choose k or α ?
- Examples :
 - $M_1 = \{\Theta, \pi_1\}, M_2 = \{\Theta, \pi_2\}$ with π_1 a flat prior and π_2 the Jeffreys prior
 - M_{α} linear model with normal prior on the noise $\mathcal{N}(0, \alpha^{-1})$

- 1. Supervised learning example : Naive Bayes Classification
- 2. Bayesian linear regression
- 3. Bayesian model choice Bayesian model averaging Bayesian model selection Automatic complexity penalty Laplace approximation and BIC criteri Empirical Bayes

Hierarchical models

- Bayesian view : put a prior on unknown quantities, then condition upon data.
- Model choice problem : put a 'hyper-prior' on $\alpha \in \mathcal{A}$ (or $k \in \{1, \dots, K\}$) \rightarrow hierarchical Bayesian model
- Convenient when dealing with parallel experiments

Example of hierarchical model

 $\label{eq:example:2} {\rm Example:2\ rivers\ with\ fishes.}$

- $X_i \in \{0,1\}$: fished fish ill or sound.
- $X_i \sim Ber(\theta)$, with $\theta = \theta_1$ in river 1 and $\theta = \theta_2$ in river 2.
- θ_1 and θ_2 are 2 realizations of $\theta \sim Beta(a, b)$
- $\alpha = (a, b)$: hyper-parameter for the prior
- hierarchical Bayes : put a prior on α (*e.g.* product of 2 independent Gammas).

Posterior mean estimates in a BMA framework

- denote π^h the hyper-prior on k (or α)
- Let us stick to the discrete case , $k \in \{1, \dots, M\}.$
- The prior is a mixture distribution $\pi = \sum_{k=1}^{K} \pi^{h}(k) \pi_{k}(\cdot)$, *i.e.* for all π -integrable function $g(\theta)$,

$$\mathbb{E}_{\pi}[g(\theta)] = \mathbb{E}_{\pi^{h}}\Big[\mathbb{E}\left(g(\theta)|k\right)\Big] = \sum_{k=1}^{K} \pi^{h}(k) \int_{\Theta_{k}} g(\theta) \,\mathrm{d}\pi_{k}(\theta)$$

• by the tower rule for conditional expectations, the posterior mean is a weighted average

$$\widehat{g} = \mathbb{E}_{\pi}[g(\theta)|X_{1:n}] = \mathbb{E}_{\pi^{h}}\Big[\mathbb{E}\left(g(\theta)|k, X_{1:n}\right)|X_{1:n}\Big]$$
$$= \sum_{k=1}^{K} \pi^{h}(k|X_{1:n}) \underbrace{\int_{\Theta_{k}} g(\theta) \,\mathrm{d}\pi_{k}(\theta|X_{1:n})}_{\Theta_{k}}$$

 $\widehat{g}_k: \mathrm{posterior}$ mean in model k

Model evidence

Computing the posterior mean in the BMA framework requires

- Computing the posterior means in each individual model $\rightarrow k$ 'moderate' tasks
- Averaging them with weights $\pi^h(k|X_{1:n})$, posterior weight of model k
- Bayes formula

$$\pi^{h}(k|X_{1:n}) = \frac{\pi^{h}(k)p(X_{1:n}|k)}{\sum_{j=1}^{K}\pi^{h}(j)p(X_{1:n}|j)}$$

with

$$\begin{split} p(X_{1:n}|k) &= \text{ evidence of model } k \\ &= \int_{\Theta_k} p(X_{1:n}|\theta) \, \mathrm{d}\pi_k(\theta) \\ &= m_k(X_{1:n}) \text{ marginal likelihood of } X_{1:n} \text{ in model } k \\ & \swarrow \\ & \text{hard to compute (integral)} \end{split}$$

Shortcomings of BMA

- Inference has to be done in each individual model
- Usually one weight (say $\pi(k^*|X_{1:n})$) \gg all others (reason : concentration of the posterior around the true $\theta_0 \in \Theta_{k_0}$ and $k^* = k_0$ \implies final estimate $\hat{g} \approx \hat{g}_{k_0}$. Other \hat{g}_k 's are almost useless

Bottleneck : compute k^* . model choice problem.

- 1. Supervised learning example : Naive Bayes Classification
- 2. Bayesian linear regression
- 3. Bayesian model choice Bayesian model averaging Bayesian model selection Automatic complexity penalty Laplace approximation and BIC criteric Empirical Bayes

Posterior weights, model evidence and Bayes factor

Recall
$$k^* = \underset{k}{\operatorname{argmax}} \pi(k|X_{1:n}) = \underset{k}{\operatorname{argmax}} \underbrace{p(X_{1:n}|k)}_{\text{evidence of model } k} \pi^h(k)$$

- Uniform prior on $k \implies$ only the evidence $p(X_{1:n}|k)$ matters.
- in any case : prior influence vanishes with n.
- Relevant quantity to compare model k and j :

$$B_{kj} = \frac{p(X_{1:n}|k)}{p(X_{1:n}|j)}$$
: Bayes factor (Jeffreys, 61)

• Suggested scale for decision making :

$\log_{10} B_{kj}$	B_{kj}	evidence against B_j
0 ightarrow 1/2	1 ightarrow 3.2	not significant
1/2 ightarrow 1	3.2 ightarrow 10	$\operatorname{substantial}$
1 ightarrow 2	10 ightarrow 100	strong
> 2	> 100	decisive

1. Supervised learning example : Naive Bayes Classification

2. Bayesian linear regression

3. Bayesian model choice

Bayesian model averaging Bayesian model selection Automatic complexity penalty Laplace approximation and BIC criterion Empirical Bayes Occam's razor principle

Between 2 models explaining the data equally well, one ought to choose the simplest one.

 \rightarrow Avoid over-fitting

 \rightarrow Better generalization properties.

Occam's razor and model evidence

- When selecting k^* according to the model evidences $p(X_{1:n}|k)$, the Occam's razor is automatically implemented.
- Reason : the prior plays the role of a regularizer.

automatic complexity penalty : intuition 1

Complex model \implies large Θ_k \implies small $\pi_k(\theta)$ (if uniform over Θ_k) $\implies \int_{\Theta_k} p_{\theta}(x_{1:n})\pi_k(\theta) \,\mathrm{d}\theta$ small (average over large regions where $p_{\theta}(x_{1:n})$ small)

automatic complexity penalty : intuition 2

- if $\Theta_k \subset \mathbb{R}$: assume
 - π_k flat over interval of length Δ_k^{prior}
 - $p_{\theta_k}(X_{1:n})$ peaked around $p_{\widehat{\theta}_{MAP,k}}(X_{1:n})$ with 'width' $\Delta_k^{posterior}$.
- then $\pi_k(\theta) \approx 1/\Delta_k^{prior}$ and

$$p(X_{1:n}|k) = \int_{\Theta_k} p_{\theta}(x) \pi_k(\theta) \, \mathrm{d}\theta \approx p_{\widehat{\theta}_{MAP,k}}(X_{1:n}) \qquad \underbrace{\frac{\Delta \theta_k^{p_c}}{\Delta \theta}}_{=}$$

complexity penalty

• If $\Theta_k \subset \mathbb{R}^d$ and same approximation in each dimension

$$\log p(X_{1:n}|k) \approx \log p_{\widehat{\theta}_{MAP,k}}(X_{1:n}) + \underbrace{d \log \frac{\Delta \theta_k^{posterior}}{\Delta \theta_k^{prior}}}_{\text{dimension + complexity penalty}}$$

1. Supervised learning example : Naive Bayes Classification

2. Bayesian linear regression

3. Bayesian model choice

Bayesian model averaging Bayesian model selection Automatic complexity penalty Laplace approximation and BIC criterion Empirical Bayes

1. Supervised learning example : Naive Bayes Classification

2. Bayesian linear regression

3. Bayesian model choice

Bayesian model averaging Bayesian model selection Automatic complexity penalty Laplace approximation and BIC criterion Empirical Bayes