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1. Supervised learning example : Naive Bayes Classification
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Setting

&Not purely Bayesian framework : the training step is not necessarily
Bayesian, only the prediction step is.

e Sample space X = Xy X -+ X Xy (d features)

e some features may be categorical, some discrete, some continuous

data X; = (X,'yl, .. .X,'7d), i=1,...,n
Classification problem : X; may come from anyone of K classes
(Cl, - ,CK).

Example {

Xi1 € RP*P: X-ray image from patient i
Xi2 € {0,1} : result of a blood test from patient .

classes : {ill, healthy, healthy carrier}.

Goal predict the class ¢ € {1,..., K} of a new patient.
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Naive Bayes assumption

Conditionally to the class c(i) € {1,..., K} of observation i/, the
features (Xj1,...,Xjq) are independent.

e Looks like a strong (and erroneous) assumption !

e In practice : produces reasonable prediction (even though the
posterior probabilities of each class are not to be taken too
seriously)
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1. Training step

e Training set {(xij,c(i)), i€ {1,...,n}, j€{1,...,d}},
c(i)e{l,...,K}.

o for ke {l,...,K}:

e Retain observations of class kK — i € Iy.
e For j € {1,...,d} estimate the class distribution, with density

pi.k(x;) = p(xijlc(i) = k),

using data (x;j)ies,, usually in a parametric model with parameter
0j.k : — estimated density p; , 7 ()
[ A R}

e output : the conditional distribution of X given C = k,
k
o) = [T prses, ()
j=1
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2. computing the predictive class probabilities

input :
e new data point x = (xi,...,xq)

e From step 1 : conditional distributions of X given C = k : R
pe(-) =11 Pk (plug-in method, neglect estimation error of 6; x).
K30,

(a) Assign a prior probability to each class : 7 = (71,...,7k),
Tk = Pr(C = k).
step 1 — joint density of (X, C) : q(x, k) = mxpk(x).

(b) Apply the discrete Bayes formula :

d .
SRR C A L= Y T )
K T K d
Docm1TePe(x)  Ycmame [l Pj,cﬁjyc(xj)

Easy to implement ! O(kdN) for N testing data.
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3. final step : class prediction

e Classification task : output= a predicted class X

e Naive Bayes prediction for a new point x

¢ = argmax 7(k|x).
ke{l,....k

(a maximum a posteriori)
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Example : text documents classification

e 2 classes : {1 = spam ,2 = non spam }
e vocabulary V = {wy,...,wy}.

e dataset : documents (email) T; = (T;j,j =1,...,N;), i < n with
e N; : number of words in T;

o tj; €V : j*" word in T;
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Conditional model (text documents)

e Naive Bayes assumption : in document T;, conditionally to the
class, words are drawn independently from each other in the
vocabulary V

e T; can be summarized by a ‘bag of words’ X; = (Xi1,...,Xiv) :

X;.;j : number of occurrences of word j in T;.

e Conditional model for X; given its class k € {1,2} :

,C(X,|C = k) = Mu/ti(@k = (917/(, R ,9\/’;(), N,'), 1.€.
14

;! .
po (x) = =—— [ 6%
1= %! j=1
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1. training step (text documents)

Fit separately 2 Multinomial models on spam and non-spam

e Here : the Dirichlet prior Diri(a;y ..., a,), aj > 0 is conjugate for the
Multinomial model, with density

14
r(z_[:l a_/) v er_l
IIﬁ;lr(aD j=1 ’
on Sy ={0eRY: Z}/:l 0; = 1} the V — l-simplex.

diri(0|ay,...,ay) =

e Mean of 8 under w = Diri(ay,...,ay) :
al ay
E.(0) = ( . )
" Zj dj Zj aj
e The posterior for x1., = (Xi,1,- -, Xi,v)ie{1,..,n} 18

i=1

Diri((a1+ Y xi1), - (av + ) xiv))-
i=1
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1. training step (text documents) Cont’d
e Concatenate documents of each class separately

L k) = ()9,("))1.:17_._7\/ . k=12

with x, ; = total # occurrences of word j in documents of class k.
e 0k = (0k1,---,0kv) multinomial parameter for class k.
e Flat priors on 6 : w1 = wp = Diri(1,...,1)

e Posterior mean estimates

~ “ {9 41 XU 41
ek:Eﬂ'k[0|X ] = v (k) % (k)
Vit 21 Vit =1

(the prior acts as regularizer : ‘+1’ term avoids 0 probabilities.
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2. Prediction step

e For a new document x"" the predictive probabilities of each class
are :
p(x""|C = k)m1
p(xmew|C = k)m1 + p(x"eW|C = 2)m

m(C = K[x"") =

with
v —~ xhew
p(x""|C = k) HOU ’
j=1
e The class prediction is

k*(x"®") = argmax p(x"¢"|C = k)
k=1,2
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2. Bayesian linear regression
Regression : reminders
Bayesian linear regression
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2. Bayesian linear regression
Regression : reminders
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The regression problem
e Supervised learning : training dataset (x;, Y;), i < n, with
o x; € X the features for observation i (considered non random)

e Y; € R the label (random variable).

e goal : for a new observation with features xpen, predict Yyew, i.e.
construct a regression function h € H, so that h(x) is our best
prediction of Y at point x.

e h should

e be simple (avoid over-fitting) — simple class H.

e fit the data well : measured through a loss function L(x, y, h).
example : squared error loss L(x,y, h) = (y — h(x))>.
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Multiple classical strategies

e Statistical learning approach : empirical risk minimization
1 n
Rn(Xl:nayl:na h) = E Zl: L(Xivyiv h)
— minimize Rn(X1:n, Y1:n, h)

heH

e Probabilistic modeling approach (likelihood based) : assume e.g.
Yi = ho(xi) + i,

¢; ~ P independent noises, e.g. P. = N'(0,02), o known or not.

— likelihood of h, pp(Xi:n, y1:n) = [ 1= Pe(yi — h(xi))-

— mm/m/ze Z |0g Pe i :))

e With Gaussian noises, both strategles coincide.
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Linear regression

e h: a linear combination of basis functions ¢; : X — R (feature
maps), j € {1,..., p}

p
h(x) = Zeﬂpj(x), 0; unknown, ¢; known, i.e.
j=1

p
’H:{Zej(ﬁji 9:(91,...,9p)€Rp}
j=1
e Examples
e XY =RP, ¢j(x)=x;: canonical feature map
e X=R, ¢j(x)=x"1: polynomial basis function

e X =R ¢j(x)= m exp—3(x — pj)TZJTI(X — 1),
Gaussian basis function
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Empirical risk minimization for linear regression

e Empirical risk :

1< 1
Rn(Xlznv)/l:n,e) = 5 Z(}/i - <97 (;5(X,-)>)2 = EHYI:n - ¢0”27
i=1

with ® € R"*P : design matrix, ®;; = ¢;(x;).
e Minimizer of R, : the least squares estimator

e explicit solution when ® '@ is of rank p (invertible)

f=(oTo) oy,
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Regularization

goals : prevent

e over-fitting
e numerical instabilities (inversion of (¢ ®).

e Add a complexity penalty (function of #) to the empirical risk

penalty :\||0]|3 — ridge regression

penalty :\A||6]|; — Lasso regression

e.g. with Ly penalty, the optimization problem becomes

0 = argmin |[y1., — P0|> + A[|0]3  for some A > 0.
0

N -1
— solution 6§ = [CDTCD + )\/p} Ty,
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2. Bayesian linear regression

Bayesian linear regression
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Bayesian linear model
e Again, Y; = (0, ®(x;)) +¢;

e Assume ¢; ~ N(0,571), B > 0 noise precision viewed as a constant
(known or not)

e Prior distribution on 8 € RP : 7w = N (mg, So).
e independence assumption : e; 1L ey 1L --- 1L 6.
o Y =Y1.,=d0+ €1.n, With ® € Rnxp)q)’_’j = ¢j(Xf).

Bayesian model

QNTI':N(m(),So)
LIY|0] = N(®0, 51,)

e Natural Bayesian estimator : 0 = Ex(0|Y1:n).
— posterior distribution ? 19/42



Conditioning and augmenting Gaussian vectors

Lemma

Let
W~ N (p, A1)
L[Y|w] = N(Aw + b, L1)

ie. Y = AW + b+ e with e ~ (0, L71) 1L W.
Then L[W|y] = N(m,,S) with

S=N+ATLA)T
m, = S[ATL(y — b) + Au.]

proof : homework (see exercises sheet online)
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Application to posterior computation

Using the lemma with
A=®, b=0, W=0, AN=S" pu=my, L=04l,
we obtain immediately the posterior distribution
(- [Y1:n) = L[Bly1:n] = N (mn, Sn)

with )
Sn=(Sgt+po0)"
m, = Sy (B(])T_yl:n + S(;lmO)

Posterior mean estimate

é\: Eﬂ'lﬂ’}’l:n] = My
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Special case : diagonal, centered prior

e choose mg =0, S = a_llp, with « : prior precision
(it makes sense!)

e Then (1) becomes

_ -1
Sn=(al,+po o) = 5—1<% +o7o)

_ T _ o Ta) laT
mp = Sn(ﬁcb yl:n) - <B + o ¢'> > Yi:n

penalized least squares solution

(2)

Adding a prior NV(0,at/,)
—
Adding a L, regularization with parameter \ = a/f.

remark : Narrow prior <= large a <= large penalty
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Predictive distribution

New data point (Xpew Ynew), With Ypen not observed and xpe,, known :

e goal : obtain the posterior distribution of Yje, (mean and
variance— credible intervals).

e We still have Yjew = (0, ¢(Xnew)) + ¢, €~ N(0,371) and € 1L 6.
e Now (after training step) @ ~ (- |y1.n) = N(mp, Sp)

o Thus Ypew = linear transform of Gaussian vector (6,0)

E[Ynew‘}/l:n] = N<¢(Xnew)—rmna (b(xnew)—rsngb(xnew) + /8_1>
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Example : polynomial basis functions

e True regression functions : hg(x) = sin(x)
e Polynomial basis functions : ¢(x) = (1, x, x%,x3,x*) (p = 5).

— ho(x) =sin(x)
observation
—— noise
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Estimated regression function

o h(x) = (0, d(x)) =61 + 2?22 (/9\J-XJ.’1

e With the previous dataset

— ho(x) =sin(x) . —— ho(x) =sin(x)
observation N observation
—— estimated regression function —— estimated regression function

a=0.01 o =100
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Predictive distribution

° F(x) : the mean of L£(Ynew|y1:n) for Xpew = X
e Remind L(Yoew|y1:n) = N(F(X), U%ew = ¢(X)T5n¢(x) + 571)

e — posterior credible interval for Y |

e = [A(x) = 1/961/ 03, B(x) + 1/96\ /020, |

—— ho(x) = sin(x) —— ho(x) =sin(x)
*  observation «  observation
—— posterior mean —— posterior mean
credible intervals credible intervals
- % > w \
X X
a=0.01 a =100
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3. Bayesian model choice
Bayesian model averaging
Bayesian model selection
Automatic complexity penalty
Laplace approximation and BIC criterion
Empirical Bayes
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Model choice problem

What if several model in competition {My, k € {1,...,K}}, with
Mk = {@k, 7Tk} ?

Continuous case : family of models {M,,a € A}

— How to choose k or o ?

Examples :
o My ={0,m}, My ={0©,m,} with m; a flat prior and 7, the
Jeffreys prior

e M, linear model with normal prior on the noise N'(0, 1)
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3. Bayesian model choice
Bayesian model averaging
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Hierarchical models

e Bayesian view : put a prior on unknown quantities, then condition
upon data.

e Model choice problem : put a ‘hyper-prior’ on « € A (or
k € {1,...,K}) — hierarchical Bayesian model

e Convenient when dealing with parallel experiments
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Example of hierarchical model

Example : 2 rivers with fishes.

e X; € {0,1} : fished fish ill or sound.

e X; ~ Ber(0), with # = 0; in river 1 and 6 = 65 in river 2.

01 and 6, are 2 realizations of 6 ~ Beta(a, b)

e a = (a,b) : hyper-parameter for the prior

hierarchical Bayes : put a prior on « (e.g. product of 2 independent
Gammas).
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Posterior mean estimates in a BMA framework

e denote 7" the hyper-prior on k (or o)
e Let us stick to the discrete case , k € {1,..., M}.

e The prior is a mixture distribution 7 = S8, 7 (k)7 (), i.e. for
all 7w-integrable function g(8),

Ex[g(0)] = En [E(g(0)IK) | = Zw (k) | &(6)dme(6)

e by the tower rule for conditional expectations, the posterior mean
is a weighted average

& = Ealg(6)1X1:0] = B [E ((0) Ik, Xvn) [ X0

—ZW (k| X1.n) / 0) Ay (0] X1:p)

gk posterior mean in model k
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Model evidence
Computing the posterior mean in the BMA framework requires
e Computing the posterior means in each individual model
— k ‘moderate’ tasks
e Averaging them with weights 7/ (k|X1.,), posterior weight of
model k
e Bayes formula

Wh(k)P(Xl:n|k)
Sy () p(Xe:nl)

(k| X1.p) =

with
p(X1:nlk) = evidence of model k

_ / p(X1.n]0) dr (6)
Ok

= my(X1.n) marginal likelihood of Xj., in model k

&hard to compute (integral)
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Shortcomings of BMA

e Inference has to be done in each individual model

e Usually one weight (say m(k*|X1.n)) > all others (reason :
concentration of the posterior around the true fp € Oy, and k* = ko
— final estimate g ~ gk,. Other gi’s are almost useless

Bottleneck : compute k*.
model choice problem.
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3. Bayesian model choice

Bayesian model selection
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Posterior weights, model evidence and Bayes factor

Recall k* = argmaxm(k|X1.,) = argmax  p(Xp..|k)  7"(k)
k k ——

evidence of model k

Uniform prior on k = only the evidence p(Xi.p|k) matters.

e in any case : prior influence vanishes with n.

Relevant quantity to compare model k and j :

Byj = Im . Bayes factor (Jeffreys, 61)
e Suggested scale for decision making :
log1o Bkj ‘ By ‘ evidence against B;
0—1/2| 1—32 not significant
1/2—1]32—10 substantial
1—-2 | 10— 100 strong
> 2 > 100 decisive
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3. Bayesian model choice

Automatic complexity penalty
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Occam’s razor principle

Between 2 models explaining the data equally well,
one ought to choose the simplest one.

— Avoid over-fitting

— Better generalization properties.
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Occam’s razor and model evidence

e When selecting k* according to the model evidences p(Xi:n|k), the
Occam’s razor is automatically implemented.

e Reason : the prior plays the role of a regularizer.
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automatic complexity penalty : intuition 1

Complex model = large O
= small m,(#) (if uniform over ©y)
= Po(x1:n)mk(0) dO small
Ok
(average over large regions where py(x1.,) small)
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automatic complexity penalty : intuition 2

e if ©) C R : assume

e 7, flat over interval of length Ai”br
* py,(Xi:n) peaked around pg  (Xi:p) with ‘width’ ARostener,

e then 7y (0) ~ 1/AZrior and

Aeposterior

p(Xi:nlk) = /@ po(x)mi(0) dO ~ Pomiar (X1:n) W
k k

~—_———

complexity penalty

e If ©, C R? and same approximation in each dimension

posterior
AP

prior
AGP
—_——

dimension + complexity penalty

log p(X1:n|k) ~ log Paar s (X1:n) + dlog
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3. Bayesian model choice

Laplace approximation and BIC criterion
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3. Bayesian model choice

Empirical Bayes
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