Introduction to Bayesian learning
 Lecture 2: Bayesian methods for (un)supervised problems

Anne Sabourin, As. Prof., Telecom ParisTech

September 2019

1. Supervised learning example : Naive Bayes Classification
2. Bayesian linear regression

Regression : reminders
Bayesian linear regression
3. Bayesian model choice

Bayesian model averaging
Bayesian model selection
Automatic complexity penalty
Laplace approximation and BIC criterion
Empirical Bayes

Setting

Not purely Bayesian framework : the training step is not necessarily Bayesian, only the prediction step is.

- Sample space $\mathcal{X}=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{d}$ (d features)
- some features may be categorical, some discrete, some continuous
- data $X_{i}=\left(X_{i, 1}, \ldots X_{i, d}\right), i=1, \ldots, n$.
- Classification problem : X_{i} may come from anyone of K classes $\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}\right)$.
- Example $\begin{cases}X_{i, 1} \in \mathbb{R}^{p \times p}: & \text { X-ray image from patient } i \\ X_{i, 2} \in\{0,1\}: & \text { result of a blood test from patient } i\end{cases}$
- classes : \{ill, healthy, healthy carrier\}.
- Goal predict the class $c \in\{1, \ldots, K\}$ of a new patient.

Naive Bayes assumption

Conditionally to the class $c(i) \in\{1, \ldots, K\}$ of observation i, the features $\left(X_{i, 1}, \ldots, X_{i, d}\right)$ are independent.

- Looks like a strong (and erroneous) assumption!
- In practice : produces reasonable prediction (even though the posterior probabilities of each class are not to be taken too seriously)

1. Training step

- Training set $\left\{\left(x_{i, j}, c(i)\right), i \in\{1, \ldots, n\}, j \in\{1, \ldots, d\}\right\}$, $c(i) \in\{1, \ldots, K\}$.
- for $k \in\{1, \ldots, K\}$:
- Retain observations of class $k \rightarrow i \in I_{k}$.
- For $j \in\{1, \ldots, d\}$ estimate the class distribution, with density

$$
p_{j, k}\left(x_{j}\right)=p\left(x_{i, j} \mid c(i)=k\right),
$$

using data $\left(x_{i, j}\right)_{i \in l_{k}}$, usually in a parametric model with parameter $\theta_{j, k}: \rightarrow$ estimated density $p_{j, k, \widehat{\theta}_{j, k}}(\cdot)$

- output : the conditional distribution of X given $C=k$,

$$
p_{k}(x)=\prod_{j=1}^{k} p_{j, k, \widehat{\theta}_{j, k}}\left(x_{j}\right)
$$

2. computing the predictive class probabilities

input:

- new data point $x=\left(x_{1}, \ldots, x_{d}\right)$
- From step 1: conditional distributions of X given $C=k$: $p_{k}(\cdot)=\prod p_{j, k, \widehat{\theta}_{j, k}}$ (plug-in method, neglect estimation error of $\widehat{\theta}_{j, k}$).
(a) Assign a prior probability to each class : $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$, $\pi_{k}=\mathbb{P}_{\pi}(C=k)$. step $1 \rightarrow$ joint density of $(X, C): q(x, k)=\pi_{k} p_{k}(x)$.
(b) Apply the discrete Bayes formula :

$$
\pi(k \mid x)=\frac{\pi_{k} p_{k}(x)}{\sum_{c=1}^{K} \pi_{c} p_{c}(x)}=\frac{\pi_{k} \prod_{j=1}^{d} p_{j, k, \widehat{\theta}_{j, k}}\left(x_{j}\right)}{\sum_{c=1}^{K} \pi_{c} \prod_{j=1}^{d} p_{j, c, \widehat{\theta}_{j, c}}\left(x_{j}\right)}
$$

Easy to implement! $O(k d N)$ for N testing data.

3. final step : class prediction

- Classification task : output $=$ a predicted class \widehat{x}
- Naive Bayes prediction for a new point x

$$
\widehat{c}=\underset{k \in\{1, \ldots, k}{\operatorname{argmax}} \pi(k \mid x) .
$$

(a maximum a posteriori)

Example : text documents classification

- 2 classes: $\{1=$ spam, $2=$ non spam $\}$
- vocabulary $\mathcal{V}=\left\{w_{1}, \ldots, w_{V}\right\}$.
- dataset : documents (email) $T_{i}=\left(T_{i, j}, j=1, \ldots, N_{i}\right), i \leq n$ with
- N_{i} : number of words in T_{i}
- $t_{i, j} \in \mathcal{V}: j^{t h}$ word in T_{i}

Conditional model (text documents)

- Naive Bayes assumption : in document T_{i}, conditionally to the class, words are drawn independently from each other in the vocabulary \mathcal{V}
- T_{i} can be summarized by a 'bag of words' $X_{i}=\left(X_{i, 1}, \ldots, X_{i, v}\right)$:

$$
X_{i, j}: \text { number of occurrences of word } j \text { in } T_{i} .
$$

- Conditional model for X_{i} given its class $k \in\{1,2\}$:

$$
\begin{gathered}
\mathcal{L}\left(X_{i} \mid C=k\right)=\operatorname{Multi}\left(\theta_{k}=\left(\theta_{1, k}, \ldots, \theta_{V, k}\right), N_{i}\right), \quad \text { i.e. } \\
p_{k, \theta_{k}}(x)=\frac{N_{i}!}{\prod_{j=1}^{V} x_{i, j}!} \prod_{j=1}^{v} \theta_{j, k}^{x_{i, j}}
\end{gathered}
$$

1. training step (text documents)

Fit separately 2 Multinomial models on spam and non-spam

- Here : the Dirichlet prior $\operatorname{Diri}\left(a_{1} \ldots, a_{v}\right), a_{j}>0$ is conjugate for the Multinomial model, with density

$$
\operatorname{diri}\left(\theta \mid a_{1}, \ldots, a_{V}\right)=\frac{\Gamma\left(\sum_{j=1}^{V} a_{j}\right)}{\prod_{j=1}^{V} \Gamma\left(a_{j}\right)} \prod_{j=1}^{V} \theta_{j}^{a_{j}-1}
$$

on $\mathcal{S}_{V}=\left\{\theta \in \mathbb{R}_{+}^{V}: \sum_{j=1}^{V} \theta_{j}=1\right\}$ the V - 1-simplex.

- Mean of $\boldsymbol{\theta}$ under $\boldsymbol{\pi}=\mathcal{D i r i}\left(a_{1}, \ldots, a_{V}\right)$:

$$
\mathbb{E}_{\boldsymbol{\pi}}(\boldsymbol{\theta})=\left(\frac{a_{1}}{\sum_{j} a_{j}}, \ldots, \frac{a_{V}}{\sum_{j} a_{j}}\right)
$$

- The posterior for $x_{1: n}=\left(x_{i, 1}, \ldots, x_{i, V}\right)_{i \in\{1, \ldots, n\}}$ is

$$
\mathcal{D i r i}\left(\left(a_{1}+\sum_{i=1}^{n} x_{i, 1}\right), \ldots,\left(a_{V}+\sum_{i=1}^{n} x_{i, v}\right)\right)
$$

1. training step (text documents) Cont'd

- Concatenate documents of each class separately

$$
\rightarrow \quad x^{(k)}=\left(x_{j}^{(k)}\right)_{j=1, \ldots, V}, \quad k=1,2
$$

with $x_{k, j}=$ total \# occurrences of word j in documents of class k.

- $\theta_{k}=\left(\theta_{k, 1}, \ldots, \theta_{k, v}\right)$ multinomial parameter for class k.
- Flat priors on $\boldsymbol{\theta}_{k}: \boldsymbol{\pi}_{1}=\boldsymbol{\pi}_{2}=\operatorname{Diri}(1, \ldots, 1)$
- Posterior mean estimates

$$
\widehat{\theta}_{k}=\mathbb{E}_{\boldsymbol{\pi}_{k}}\left[\boldsymbol{\theta} \mid x^{(k)}\right]=\left(\frac{x_{1}^{(k)}+1}{V+\sum_{j=1}^{V} x_{j}^{(k)}}, \ldots, \frac{x_{V}^{(k)}+1}{V+\sum_{j=1}^{V} x_{j}^{(k)}}\right)
$$

(the prior acts as regularizer : ' +1 ' term avoids 0 probabilities.

2. Prediction step

- For a new document $x^{\text {new }}$ the predictive probabilities of each class are :

$$
\pi\left(C=k \mid x^{\text {new }}\right)=\frac{p\left(x^{n e w} \mid C=k\right) \pi_{1}}{p\left(x^{n e w} \mid C=k\right) \pi_{1}+p\left(x^{\text {new }} \mid C=2\right) \pi_{2}}
$$

with

$$
p\left(x^{n e w} \mid C=k\right) \propto \prod_{j=1}^{V}{\widehat{\theta_{k, j}}}^{x_{j}^{n e w}}
$$

- The class prediction is

$$
k^{*}\left(x^{\text {new }}\right)=\underset{k=1,2}{\operatorname{argmax}} p\left(x^{\text {new }} \mid C=k\right)
$$

1. Supervised learning example : Naive Bayes Classification
2. Bayesian linear regression

Regression : reminders
Bayesian linear regression
3. Bayesian model choice

Bayesian model averaging
Bayesian model selection
Automatic complexity penalty
Laplace approximation and BIC criterion
Empirical Bayes

1. Supervised learning example : Naive Bayes Classification

2. Bayesian linear regression

Regression : reminders
Bayesian linear regression
3. Bayesian model choice

The regression problem

- Supervised learning : training dataset $\left(x_{i}, Y_{i}\right), i \leq n$, with
- $x_{i} \in \mathcal{X}$ the features for observation i (considered non random)
- $Y_{i} \in \mathbb{R}$ the label (random variable).
- goal : for a new observation with features $x_{\text {new }}$, predict $Y_{\text {new }}$, i.e. construct a regression function $h \in \mathcal{H}$, so that $h(x)$ is our best prediction of Y at point x.
- h should
- be simple (avoid over-fitting) \rightarrow simple class \mathcal{H}.
- fit the data well : measured through a loss function $L(x, y, h)$. example : squared error loss $L(x, y, h)=(y-h(x))^{2}$.

Multiple classical strategies

- Statistical learning approach : empirical risk minimization

$$
\begin{aligned}
R_{n}\left(x_{1: n}, y_{1: n}, h\right)= & \frac{1}{n} \sum_{1}^{n} L\left(x_{i}, y_{i}, h\right) \\
\rightarrow \underset{h \in \mathcal{H}}{\operatorname{minimize}} \quad & R_{n}\left(x_{1: n}, y_{1: n}, h\right)
\end{aligned}
$$

- Probabilistic modeling approach (likelihood based) : assume e.g.

$$
Y_{i}=h_{0}\left(x_{i}\right)+\epsilon_{i},
$$

$\epsilon_{i} \sim P_{\epsilon}$ independent noises, e.g. $P_{\epsilon}=\mathcal{N}\left(0, \sigma^{2}\right), \sigma^{2}$ known or not.
\rightarrow likelihood of $h, p_{h}\left(x_{1: n}, y_{1: n}\right)=\prod_{i=1}^{n} p_{\epsilon}\left(y_{i}-h\left(x_{i}\right)\right)$.

$$
\rightarrow \underset{h \in \mathcal{H}}{\operatorname{minimize}}-\sum_{i=1}^{n} \log p_{\epsilon}\left(y_{i}-h\left(x_{i}\right)\right)
$$

- With Gaussian noises, both strategies coincide.

Linear regression

- h : a linear combination of basis functions $\phi_{j}: \mathcal{X} \mapsto \mathbb{R}$ (feature maps), $j \in\{1, \ldots, p\}$

$$
\begin{array}{r}
h(x)=\sum_{j=1}^{p} \theta_{j} \phi_{j}(x), \quad \theta_{j} \text { unknown, } \quad \phi_{j} \text { known, } \quad \text { i.e. } \\
\mathcal{H}=\left\{\sum_{j=1}^{p} \theta_{j} \phi_{j}: \quad \theta=\left(\theta_{1}, \ldots, \theta_{p}\right) \in \mathbb{R}^{p}\right\}
\end{array}
$$

- Examples
- $\mathcal{X}=\mathbb{R}^{p}, \quad \phi_{j}(x)=x_{j}:$ canonical feature map
- $\mathcal{X}=\mathbb{R}, \quad \phi_{j}(x)=x^{j-1}:$
polynomial basis function
- $\mathcal{X}=\mathbb{R}^{d}, \quad \phi_{j}(x)=\frac{1}{(2 \pi)^{d / 2} \operatorname{det} \Sigma_{j}} \exp -\frac{1}{2}\left(x-\mu_{j}\right)^{\top} \Sigma_{j}^{-1}\left(x-\mu_{j}\right)$,

Gaussian basis function

Empirical risk minimization for linear regression

- Empirical risk :

$$
R_{n}\left(x_{1: n}, y_{1: n}, \theta\right)=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\left\langle\theta, \phi\left(x_{i}\right)\right\rangle\right)^{2}=\frac{1}{2}\left\|y_{1: n}-\Phi \theta\right\|^{2}
$$

with $\Phi \in \mathbb{R}^{n \times p}:$ design matrix, $\Phi_{i, j}=\phi_{j}\left(x_{i}\right)$.

- Minimizer of R_{n} : the least squares estimator
- explicit solution when $\Phi^{\top} \Phi$ is of rank p (invertible)

$$
\widehat{\theta}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} y_{1: n}
$$

Regularization

- goals : prevent
- over-fitting
- numerical instabilities (inversion of $\left(\Phi^{\top} \Phi\right)$.
- Add a complexity penalty (function of θ) to the empirical risk
- penalty $: \lambda\|\theta\|_{2}^{2} \rightarrow$ ridge regression
- penalty : $\lambda\|\theta\|_{1} \rightarrow$ Lasso regression
- e.g. with L_{2} penalty, the optimization problem becomes

$$
\begin{aligned}
& \hat{\theta}=\underset{\theta}{\operatorname{argmin}}\left\|y_{1: n}-\Phi \theta\right\|^{2}+\lambda\|\theta\|_{2}^{2} \quad \text { for some } \lambda>0 . \\
& \rightarrow \text { solution } \widehat{\theta}=\left[\Phi^{\top} \Phi+\lambda I_{p}\right]^{-1} \Phi^{\top} y_{1: n} .
\end{aligned}
$$

1. Supervised learning example : Naive Bayes Classification

2. Bayesian linear regression

Regression : reminders
Bayesian linear regression

Bayesian model choice

Bayesian linear model

- Again, $Y_{i}=\left\langle\theta, \Phi\left(x_{i}\right)\right\rangle+\epsilon_{i}$
- Assume $\epsilon_{i} \sim \mathcal{N}\left(0, \beta^{-1}\right), \beta>0$ noise precision viewed as a constant (known or not)
- Prior distribution on $\boldsymbol{\theta} \in \mathbb{R}^{p}: \boldsymbol{\pi}=\mathcal{N}\left(m_{0}, S_{0}\right)$.
- independence assumption : $\epsilon_{1} \Perp \epsilon_{2} \Perp \cdots \Perp \boldsymbol{\theta}$.
- $Y=Y_{1: n}=\Phi \theta+\epsilon_{1: n}$, with $\Phi \in \mathbb{R}^{n \times p}, \Phi_{i, j}=\phi_{j}\left(x_{i}\right)$.

Bayesian model

$$
\left\{\begin{array}{l}
\boldsymbol{\theta} \sim \boldsymbol{\pi}=\mathcal{N}\left(m_{0}, S_{0}\right) \\
\mathcal{L}[Y \mid \theta]=\mathcal{N}\left(\Phi \theta, \frac{1}{\beta} I_{n}\right)
\end{array}\right.
$$

- Natural Bayesian estimator : $\widehat{\theta}=\mathbb{E}_{\boldsymbol{\pi}}\left(\boldsymbol{\theta} \mid Y_{1: n}\right)$.
\rightarrow posterior distribution?

Conditioning and augmenting Gaussian vectors

Lemma

Let

$$
\left\{\begin{aligned}
W & \sim \mathcal{N}\left(\mu, \Lambda^{-1}\right) \\
\mathcal{L}[Y \mid w] & =\mathcal{N}\left(A w+b, L^{-1}\right)
\end{aligned}\right.
$$

i.e. $Y=A W+b+\epsilon$ with $\epsilon \sim \mathcal{N}\left(0, L^{-1}\right) \Perp W$.

Then $\mathcal{L}[W \mid y]=\mathcal{N}\left(m_{y}, S\right)$ with

$$
\begin{aligned}
S & =\left(\Lambda+A^{\top} L A\right)^{-1} \\
m_{y} & =S\left[A^{\top} L(y-b)+\Lambda \mu .\right]
\end{aligned}
$$

proof : homework (see exercises sheet online)

Application to posterior computation

Using the lemma with

$$
A=\Phi, \quad b=0, \quad W=\theta, \quad \Lambda=S_{0}^{-1}, \quad \mu=m_{0}, \quad L=\beta I_{p}
$$

we obtain immediately the posterior distribution

$$
\boldsymbol{\pi}\left(\cdot \mid Y_{1: n}\right)=\mathcal{L}\left[\boldsymbol{\theta} \mid y_{1: n}\right]=\mathcal{N}\left(m_{n}, S_{n}\right)
$$

with

$$
\left\{\begin{align*}
S_{n} & =\left(S_{0}^{-1}+\beta \Phi^{\top} \Phi\right)^{-1} \tag{1}\\
m_{n} & =S_{n}\left(\beta \Phi^{\top} y_{1: n}+S_{0}^{-1} m_{0}\right)
\end{align*}\right.
$$

Posterior mean estimate

$$
\widehat{\theta}=\mathbb{E}_{\boldsymbol{\pi}}\left[\boldsymbol{\theta} \mid y_{1: n}\right]=m_{n}
$$

Special case : diagonal, centered prior

- choose $m_{0}=0, S_{0}=\alpha^{-1} I_{p}$, with α : prior precision (it makes sense!)
- Then (1) becomes

$$
\left\{\begin{align*}
S_{n}=\left(\alpha I_{p}+\beta \Phi^{\top} \Phi\right)^{-1} & =\beta^{-1}\left(\frac{\alpha}{\beta}+\Phi^{\top} \Phi\right)^{-1} \tag{2}\\
m_{n}=S_{n}\left(\beta \Phi^{\top} y_{1: n}\right) & =\underbrace{\left(\frac{\alpha}{\beta}+\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} y_{1: n}}_{\text {penalized least squares solution }}
\end{align*}\right.
$$

Adding a prior $\mathcal{N}\left(0, \alpha^{-1} I_{p}\right)$
\Longleftrightarrow
Adding a L_{2} regularization with parameter $\lambda=\alpha / \beta$.
remark : Narrow prior \Longleftrightarrow large $\alpha \Longleftrightarrow$ large penalty

Predictive distribution

New data point $\left(x_{\text {new }}, Y_{\text {new }}\right)$, with $Y_{\text {new }}$ not observed and $x_{\text {new }}$ known:

- goal : obtain the posterior distribution of $Y_{\text {new }}$ (mean and variance \rightarrow credible intervals).
- We still have $Y_{\text {new }}=\left\langle\boldsymbol{\theta}, \phi\left(x_{\text {new }}\right)\right\rangle+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \beta^{-1}\right)$ and $\epsilon \Perp \boldsymbol{\theta}$.
- Now (after training step) $\boldsymbol{\theta} \sim \boldsymbol{\pi}\left(\cdot \mid y_{1: n}\right)=\mathcal{N}\left(m_{n}, S_{n}\right)$
- Thus $Y_{\text {new }} \stackrel{\text { d }}{=}$ linear transform of Gaussian vector $(\epsilon, \boldsymbol{\theta})$

$$
\mathcal{L}\left[Y_{\text {new }} \mid y_{1: n}\right]=\mathcal{N}\left(\phi\left(x_{\text {new }}\right)^{\top} m_{n}, \quad \phi\left(x_{\text {new }}\right)^{\top} S_{n} \phi\left(x_{\text {new }}\right)+\beta^{-1}\right)
$$

Example : polynomial basis functions

- True regression functions : $h_{0}(x)=\sin (x)$
- Polynomial basis functions : $\phi(x)=\left(1, x, x^{2}, x^{3}, x^{4}\right)(p=5)$.

Estimated regression function

- $\widehat{h}(x)=\langle\widehat{\theta}, \Phi(x)\rangle=\widehat{\theta}_{1}+\sum_{j=2}^{5} \widehat{\theta}_{j} x^{j-1}$
- With the previous dataset

Predictive distribution

- $\widehat{h}(x)$: the mean of $\mathcal{L}\left(Y_{\text {new }} \mid y_{1: n}\right)$ for $x_{\text {new }}=x$
- Remind $\mathcal{L}\left(Y_{\text {new }} \mid y_{1: n}\right)=\mathcal{N}\left(\widehat{h}(x), \sigma_{\text {new }}^{2}=\phi(x)^{\top} S_{n} \phi(x)+\beta^{-1}\right)$
- \rightarrow posterior credible interval for Y,

$$
I_{x}=\left[\widehat{h}(x)-1 / 96 \sqrt{\sigma_{\text {new }}^{2}}, \widehat{h}(x)+1 / 96 \sqrt{\sigma_{\text {new }}^{2}}\right]
$$

1. Supervised learning example : Naive Bayes Classification
2. Bayesian linear regression

Regression : reminders
Bayesian linear regression
3. Bayesian model choice

Bayesian model averaging
Bayesian model selection
Automatic complexity penalty
Laplace approximation and BIC criterion
Empirical Bayes

Model choice problem

- What if several model in competition $\left\{M_{k}, k \in\{1, \ldots, K\}\right\}$, with $M_{k}=\left\{\Theta_{k}, \pi_{k}\right\} ?$
- Continuous case : family of models $\left\{M_{\alpha}, \alpha \in \mathcal{A}\right\}$
- \rightarrow How to choose k or α ?
- Examples :
- $M_{1}=\left\{\Theta, \pi_{1}\right\}, M_{2}=\left\{\Theta, \pi_{2}\right\}$ with $\boldsymbol{\pi}_{1}$ a flat prior and $\boldsymbol{\pi}_{2}$ the Jeffreys prior
- M_{α} linear model with normal prior on the noise $\mathcal{N}\left(0, \alpha^{-1}\right)$

1. Supervised learning example : Naive Bayes Classification
2. Bayesian linear regression
3. Bayesian model choice

Bayesian model averaging
Bayesian model selection
Automatic complexity penalty Laplace approximation and BIC criterion Empirical Bayes

Hierarchical models

- Bayesian view : put a prior on unknown quantities, then condition upon data.
- Model choice problem : put a 'hyper-prior' on $\alpha \in \mathcal{A}$ (or $k \in\{1, \ldots, K\}) \rightarrow$ hierarchical Bayesian model
- Convenient when dealing with parallel experiments

Example of hierarchical model

Example : 2 rivers with fishes.

- $X_{i} \in\{0,1\}$: fished fish ill or sound.
- $X_{i} \sim \mathcal{B e r}(\theta)$, with $\theta=\theta_{1}$ in river 1 and $\theta=\theta_{2}$ in river 2 .
- θ_{1} and θ_{2} are 2 realizations of $\boldsymbol{\theta} \sim \mathcal{B e t a}(a, b)$
- $\alpha=(a, b)$: hyper-parameter for the prior
- hierarchical Bayes : put a prior on α (e.g. product of 2 independent Gammas).

Posterior mean estimates in a BMA framework

- denote $\boldsymbol{\pi}^{h}$ the hyper-prior on k (or α)
- Let us stick to the discrete case,$k \in\{1, \ldots, M\}$.
- The prior is a mixture distribution $\boldsymbol{\pi}=\sum_{k=1}^{K} \pi^{h}(k) \pi_{k}(\cdot)$, i.e. for all $\boldsymbol{\pi}$-integrable function $g(\boldsymbol{\theta})$,

$$
\mathbb{E}_{\boldsymbol{\pi}}[g(\boldsymbol{\theta})]=\mathbb{E}_{\boldsymbol{\pi}^{h}}[\mathbb{E}(g(\boldsymbol{\theta}) \mid k)]=\sum_{k=1}^{K} \pi^{h}(k) \int_{\Theta_{k}} g(\theta) \mathrm{d} \pi_{k}(\theta)
$$

- by the tower rule for conditional expectations, the posterior mean is a weighted average

$$
\begin{aligned}
\widehat{g}=\mathbb{E}_{\boldsymbol{\pi}}\left[g(\boldsymbol{\theta}) \mid X_{1: n}\right] & =\mathbb{E}_{\boldsymbol{\pi}^{h}}\left[\mathbb{E}\left(g(\boldsymbol{\theta}) \mid k, X_{1: n}\right) \mid X_{1: n}\right] \\
& =\sum_{k=1}^{K} \pi^{h}\left(k \mid X_{1: n}\right) \underbrace{\int_{\Theta_{k}} g(\theta) \mathrm{d} \pi_{k}\left(\theta \mid X_{1: n}\right)}_{\widehat{\mathrm{g}}_{k}: \text { posterior mean in model } k}
\end{aligned}
$$

Model evidence

Computing the posterior mean in the BMA framework requires

- Computing the posterior means in each individual model $\rightarrow k$ 'moderate' tasks
- Averaging them with weights $\pi^{h}\left(k \mid X_{1: n}\right)$, posterior weight of model k
- Bayes formula

$$
\pi^{h}\left(k \mid X_{1: n}\right)=\frac{\pi^{h}(k) p\left(X_{1: n} \mid k\right)}{\sum_{j=1}^{K} \pi^{h}(j) p\left(X_{1: n} \mid j\right)}
$$

with

$$
\begin{aligned}
p\left(X_{1: n} \mid k\right) & =\text { evidence of model } k \\
& =\int_{\Theta_{k}} p\left(X_{1: n} \mid \theta\right) \mathrm{d} \pi_{k}(\theta) \\
& =m_{k}\left(X_{1: n}\right) \text { marginal likelihood of } X_{1: n} \text { in model } k \\
& \text { hard to compute (integral) }
\end{aligned}
$$

Shortcomings of BMA

- Inference has to be done in each individual model
- Usually one weight (say $\left.\pi\left(k^{*} \mid X_{1: n}\right)\right) \gg$ all others (reason : concentration of the posterior around the true $\theta_{0} \in \Theta_{k_{0}}$ and $k^{*}=k_{0}$ \Longrightarrow final estimate $\widehat{g} \approx \widehat{g}_{k_{0}}$. Other \widehat{g}_{k} 's are almost useless

> Bottleneck : compute k^{*}. model choice problem.

1. Supervised learning example : Naive Bayes Classification
2. Bayesian linear regression
3. Bayesian model choice

Bayesian model averaging
Bayesian model selection
Automatic complexity penalty Laplace approximation and BIC criterion Empirical Bayes

Posterior weights, model evidence and Bayes factor

Recall $k^{*}=\underset{k}{\operatorname{argmax}} \pi\left(k \mid X_{1: n}\right)=\underset{k}{\operatorname{argmax}} \underbrace{p\left(X_{1: n} \mid k\right)}_{\text {evidence of model } k} \pi^{h}(k)$

- Uniform prior on $k \Longrightarrow$ only the evidence $p\left(X_{1: n} \mid k\right)$ matters.
- in any case : prior influence vanishes with n.
- Relevant quantity to compare model k and j :

$$
B_{k j}=\frac{p\left(X_{1: n} \mid k\right)}{p\left(X_{1: n} \mid j\right)}: \quad \text { Bayes factor (Jeffreys, 61) }
$$

- Suggested scale for decision making :

$\log _{10} B_{k j}$	$B_{k j}$	evidence against B_{j}
$0 \rightarrow 1 / 2$	$1 \rightarrow 3.2$	not significant
$1 / 2 \rightarrow 1$	$3.2 \rightarrow 10$	substantial
$1 \rightarrow 2$	$10 \rightarrow 100$	strong
>2	>100	decisive

1. Supervised learning example : Naive Bayes Classification
2. Bayesian linear regression
3. Bayesian model choice

Bayesian model averaging
Bayesian model selection
Automatic complexity penalty
Laplace approximation and BIC criterion
Empirical Bayes

Occam's razor principle

Between 2 models explaining the data equally well, one ought to choose the simplest one.
\rightarrow Avoid over-fitting
\rightarrow Better generalization properties.

Occam's razor and model evidence

- When selecting k^{*} according to the model evidences $p\left(X_{1: n} \mid k\right)$, the Occam's razor is automatically implemented.
- Reason : the prior plays the role of a regularizer.

automatic complexity penalty : intuition 1

Complex model \Longrightarrow large Θ_{k}
\Longrightarrow small $\pi_{k}(\theta)$ (if uniform over Θ_{k})
$\Longrightarrow \int_{\Theta_{k}} p_{\theta}\left(x_{1: n}\right) \pi_{k}(\theta) \mathrm{d} \theta$ small
(average over large regions where $p_{\theta}\left(x_{1: n}\right)$ small)

automatic complexity penalty : intuition 2

- if $\Theta_{k} \subset \mathbb{R}:$ assume
- π_{k} flat over interval of length $\Delta_{k}^{\text {prior }}$
- $p_{\theta_{k}}\left(X_{1: n}\right)$ peaked around $p_{\hat{\theta}_{\text {MAP }, k}}\left(X_{1: n}\right)$ with 'width' $\Delta_{k}^{\text {posterior }}$.
- then $\pi_{k}(\theta) \approx 1 / \Delta_{k}^{\text {prior }}$ and

$$
p\left(X_{1: n} \mid k\right)=\int_{\Theta_{k}} p_{\theta}(x) \pi_{k}(\theta) \mathrm{d} \theta \approx p_{\widehat{\theta}_{M A P, k}}\left(X_{1: n}\right) \underbrace{\frac{\Delta \theta_{k}^{\text {posterior }}}{\Delta \theta_{k}^{\text {prior }}}}_{\text {complexity penalty }}
$$

- If $\Theta_{k} \subset \mathbb{R}^{d}$ and same approximation in each dimension

$$
\log p\left(X_{1: n} \mid k\right) \approx \log p_{\widehat{\theta}_{M A P, k}}\left(X_{1: n}\right)+\underbrace{d \log \frac{\Delta \theta_{k}^{\text {posterior }}}{\Delta \theta_{k}^{\text {prior }}}}_{\text {dimension }+ \text { complexity penalty }}
$$

1. Supervised learning example : Naive Bayes Classification
2. Bayesian linear regression
3. Bayesian model choice

Bayesian model averaging
Bayesian model selection
Automatic complexity penalty
Laplace approximation and BIC criterion Empirical Bayes

1. Supervised learning example : Naive Bayes Classification
2. Bayesian linear regression
3. Bayesian model choice

Bayesian model averaging
Bayesian model selection
Automatic complexity penalty Laplace approximation and BIC criterion
Empirical Bayes

