Exercice 1 (revision : Conditional distributions in a Gaussian vector).
Let $Z=(X, Y)$ be a Guaussian vector of dimension $p+q$ (p is the dimension of X and q is that of Y), with law

$$
\mathcal{N}\left(m=\binom{m_{X}}{m_{Y}}, \Sigma=\left(\begin{array}{cc}
\Sigma_{X} & \Sigma_{X Y} \\
\Sigma_{Y X} & \Sigma_{Y}
\end{array}\right)\right)
$$

where Σ_{Y} is positive definite. Our aim is to show that the conditional distribution of X given Y is (at almosst every y):

$$
\mathcal{L}(X \mid\{Y=y\})=\mathcal{N}\left(m_{X \mid y}, \Sigma_{X \mid y}\right)
$$

with

$$
\left\{\begin{align*}
m_{X \mid y} & =m_{X}+\Sigma_{X Y} \Sigma_{Y}^{-1}\left(y-m_{Y}\right) \tag{1}\\
\Sigma_{X \mid y} & =\Sigma_{X}-\Sigma_{X Y} \Sigma_{Y}^{-1} \Sigma_{Y X}
\end{align*}\right.
$$

To do this we shall write X as

$$
\begin{equation*}
X=A Y+U, \quad \text { where } U \Perp Y, \text { is a random vector of dimension } p \tag{2}
\end{equation*}
$$

and $A \in \mathbb{R}^{p \times q}$ is a given matrix (non random)

1. Show that problem (2) is equivalent to finding a matrix A such that $(X-A Y)$ and Y are uncorrelated (null covariance matrix)
2. Show that if A and U are solutions of (2), ten U follows a multivariate Gaussian distribution. Let us denote in the sequel $\left(m_{U}, \Sigma_{U}\right)$ its expectancy and covariance matrix (that we shall not determine for now)
3. Show that if (2) is satisfied, then the conditional distribution $\mathcal{L}(X \mid\{Y=y\})$ is a multivariate Gaussian distribution with mean $A y+m_{U}$ and variance Σ_{U}.
4. Determine A, then m_{U} and Σ_{U}. Conclude.

Exercice 2 (revision : 'Augmenting' a Gausian vector).
Let $X \sim \mathcal{N}\left(m_{X}, \Sigma_{X}\right), Y \sim \mathcal{N}\left(m_{Y}, \Sigma_{Y}\right)$ be Gaussian vectors with respective dimensions p, q. Assume $X \Perp Y$. Let $A \in \mathbb{R}^{q \times p}$ be a fixed (non random) matrix. Show that

$$
\binom{X}{A X+Y} \sim \mathcal{N}\left(\binom{m_{X}}{A m_{X}+m_{Y}},\left(\begin{array}{cc}
\Sigma_{X} & \Sigma_{X} A^{\top} \\
A \Sigma_{X} & \Sigma_{Y}+A \Sigma_{X} A^{\top}
\end{array}\right)\right)
$$

Exercice 3 (Linear transforms and conditioning, inverse formula).

1. (linear algebra) Let $\Lambda \in \mathbb{R}^{p \times p}$ and $L \in \mathbb{R}^{q \times q}$ be invertible matrices and let $A \in \mathbb{R}^{q \times p}$. Define

$$
K=A \Lambda^{-1} A^{\top}+L^{-1}
$$

Assuming that K is invertible, show that $\Lambda+A^{\top} L A$ is so, with inverse

$$
\begin{equation*}
\left(\Lambda+A^{\top} L A\right)^{-1}=\Lambda^{-1}-\Lambda^{-1} A^{\top} K^{-1} A \Lambda^{-1} \tag{3}
\end{equation*}
$$

2. Let $X \sim \mathcal{N}\left(\mu ; \Lambda^{-1}\right)$ and $\epsilon \sim \mathcal{N}\left(0, L^{-1}\right)$ be independent from each other and let $b \in \mathbb{R}^{q}$ be a constant vector. Let $Y=A X+b+\epsilon$. Define $S=\left(\Lambda+A^{\top} L A\right)^{-1}$. Show that the conditional distribution of X given Y is given by

$$
\mathcal{L}(X \mid Y=y)=\mathcal{N}\left(\mu_{X \mid y}, \Sigma_{X \mid y}\right)
$$

with

$$
\left\{\begin{array}{l}
\mu_{X \mid y}=S\left(\Lambda \mu+A^{\top} L(y-b)\right) \tag{4}\\
\Sigma_{X \mid y}=S
\end{array}\right.
$$

