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Why bother about extremes?

‘Il est impossible que l’improbable n’arrive jamais

Figure: Emil Julius Gumbel, 1891-1966

For risk management:

Measuring a risk (probability of occurrence) is the first step before
implementing prevention measures
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Natural Hazards

• Exceptional wave heights

Figure: Storm Xynthia, La Faute-Sur-Mer, march 1st 2010.
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Natural Hazards

• torrential rain

Figure: Ouagadougou, 2009.
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Natural Hazards
• Floods

Figure: 1934 flood at Port Pirie, Australia

3/39



Financial risk

• Large losses

• Large claims (insurances), . . .
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Applications to anomaly detection

• Training step:
Learn a ‘normal region’ (e.g. approximate support)

• Prediction step: (with new data)
Anomalies = points outside the ‘normal region’

If ‘normal’ data are heavy tailed, Abnormal 6⇔ Extreme .
There may be extreme ‘normal data’.

How to distinguish between large anomalies and normal extremes?
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Threshold exceedances: questions from risk management
Quantity of interest: X (water level, temperature, insurance claims, . . . )
−→ i.i.d. (independent and identically distributed) time series Xt , t ≥ 0.
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• Given a high threshold h, find p = P(X ≥ h)

• Given p (e.g. p = 10−4), find h such that P(X > h) ≤ p.

• Given a long duration T (e.g. 104), find P(maxt≤T Xt ≤ h).
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Beyond the range of data
For h� max(Xobs), or T � Tobs , or p � 1/Nobs too small :
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Empirical estimator P̂(X > h) =
1

Nobs

Nobs∑
i=1

1Xi>h = 0 !!

Need an extrapolation model
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Return level / Value at Risk / Quantile

• Terminology:

• Hydrology → ‘Return level’
• Finance: ‘Value at Risk’
• Statistics: ‘Quantile’

The return level/ VaR / Quantile associated with the (excess)
probability p is the level zp such that P(X > zp) = p.

• More formally (needed because such zp need not exist nor be unique):
Define F (x) = P(X ≤ x) (c.d.f., cumulative distribution function)

zp = F←(1− p).

Definition 1

The generalized inverse of F , defined for y ∈ [0, 1] is

F←(y) = inf{x : F (x) ≥ y}
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Return period τx for an event {X > x} I

• Definition from the French Hydrological Society:

• General case: Average duration separating two occurrences of the
considered event

• Rare event : (when no or very few such events have been observed
before: inverse of the probability of occurrence of the consisdered even
over one year.

• τx is the return period associated with the return level x .

Why is natural to define τx = 1/P(X > x)?
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Return period τx for an event {X > x} II

• Probabilistic viewpoint: given a sampling rate (here, annual)

Definition 2

τx is defined as the expectancy of the waiting time Tx between two events:

Tx = inf{n ≥ 0 :
n∨

t=1

Xt ≥ x} (a random variable)

and
τx = E(Tx).

Exercise : Show that E(Tx) = 1/P(X > x).
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Questions outside our scope

• Temporally dependent data (time series)

• Non-stationary data (climate change)

• In such cases the i.i.d. theory does not apply as it is, but refinements
exist under additional weak assumption (long range independence,
dynamic model)
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Overview of EVT: Three complementary approaches to
understand extremes

1. Block maxima

2. Excesses above a high threshold

3. Point process above a high threshold

The three approaches are equivalent in theory
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Idea behind EVA
Theory: Under minimal assumptions, distributions of

maxima/excesses converge to a certain class.

Modelling: Use those limits to model maxima/excesses above large
thresholds.

X: random object (variable / vector/ process) Xi
i .i .d .∼ X.

n∨
i=1

Xi
d
≈ Max-stable (n large)

[
X
∣∣ ‖X‖ ≥ r

] d
≈ Generalized Pareto (r large)

n∑
i=1

δ( i
n
,Xi )

d
≈ Poisson point process
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Block Maxima

• Maximum of a “block” of size n:

Mn = max
t=1,...,n

Xt
notation

=
n∨
1

Xt .

e.g. : monthly maximum of concentration for an air pollutant.

• Dividing the dataset into m blocks ↪→ m maxima (Mn[1], . . . ,Mn[m]) ;
Mn[i ] =

∨
t∈ bloc i Xt
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● Raw data
Block maxima
Block delimiters

• n ∗m data points (m blocks of size n) ↪→ only m maxima !
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Peaks-Over-Threshold

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

X

u

15/39



Peaks-Over-Threshold
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• Excess : Y = X − u, for X > u.

• Conditional survival function

F̄u(y) = P(X − u > y |X > u) =
F̄ (u + y)

F̄ (u)
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Limit laws and rescaling

Obvious issue:
Si F (x) < 1, alors P(Mn ≤ x) = F n(x) −→

n→∞
0 ...

• Maxima : ‘rescaling’:

M̃n =
Mn − bn

an

• Excesses : conditioning → Conditional survival function:

F̄u(y) = P(X − u > y |X > u) =
F̄ (u + y)

F̄ (u)
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The most famous weak convergence theorem

• If Xt are i.i.d. real r.v. with variance σ2 and expectancy µ, then∑n
t=1 Xt − n µ

σ
√
n

w−→N (0, 1)

• statement of the form (O(X1, . . . ,Xn)− bn)/an
w−→ Y ,

with O = ’sum’, bn = n µ, an = σ
√
n

Is there an anologous result for O = max?
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The most famous weak convergence theorem
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de
ns

ité

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

• The limit law has a specific structure: a normal distribution. The
sequences (an, bn) can be chosen such that the limit is centered, with
variance 1.

Is there an anologous result for O = max?
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Extreme Value theorem

Theorem 3 (Fisher et Tipett, 1928 ; Gnedenko 1943)

(Xt)t≥0 i.i.d random variables, Mn = maxt≤n Xt . If there exists sequences
(an)n > 0, (bn)n ∈ R, and a non-degenerate r.v. Y , s.t.

Mn − bn
an

d−→ Y ,

then, Y follows a “Generalized Extreme Value Distribution” (GEV), i.e.

∀x ∈ R, P(Y ≤ x) := Gµ,σ,ξ(x) = e−[(1+ξ
x−µ
σ

)+]−1/ξ

with ξ ∈ R, y+ = max(0, y), and Gµ,σ,0(x) = e−e
− x−µ

σ .
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GEV density
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Figure: Density plot for the three extremal types, respectively
(γ = 1, µ = 1, σ = 1), (γ = −1, µ = −1, σ = 1), (γ = 0, µ = 0, σ = 1); compared
with the Gaussian density with same mean and variance as the Gumbel one. The
right panel is a zoom on the tail.
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Simulated i.i.d. GEV data
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Figure: Series of i.i.d. random variables of the three extremal types, respectively
(γ = 1, µ = 1, σ = 1), (γ = −1, µ = −1, σ = 1), (γ = 0, µ = 0, σ = 1)
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GEV tails
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Figure: Survival function 1− F (x) for the three extremal types, respectively
(γ = 1, µ = 1, σ = 1), (γ = −1, µ = −1, σ = 1), (γ = 0, µ = 0, σ = 1); compared
with the Gaussian survival function with same mean and variance as the Gumbel
one.
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EVD shapes and sign of ξ: Fréchet, Weibull, Gumbel.

• Maurice Fréchet (1878 - 1973): French mathematician (topology, functional
analys, probability, statistics). Identifies the limit law of heavy-tailed distributions.

• Walloddi Weibull (1887- 1979, Annecy). Swedish Engineer and mathematician.
Material fatigue.

• Emil Julius Gumbel (1891, Munich - 1966, New-York): German Mathematican and
political essayist (pacifist). Leaves germany after his expelling from Heidelberg (32)
and rejoins France then the U.S. (40). Teaches in Paris, Lyon, Columbia.
Considered as the ‘father’ of Extreme Value Theory.
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Domains of attraction: Fréchet, Weibull, Gumbel

Under the conditions of the Fisher-Tipett-Gnedenko theorem, (i.e.,
∃(an) > 0, (bn), s.t. ∀x ∈ R,F n(anx + bn) −→

n→∞
Gξ,σ,µ(x)), the

distributions F belongs to the domain of attraction of

• Fréchet if ξ > 0.

• Weibull if ξ < 0

• Gumbel if ξ = 0

Typical representants of each class:

• Fréchet distribution: Φα(x) = e−x
−α

(x > 0), avec α > 0

• Weibull law: Ψα(x) = e−(−x)
α

(x < 0), avec α > 0

• Gumbel law: Λ(x) = e−e
−x
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Examples of laws in a domain of attraction, applications

• Gumbel’s domain:
ex : Gumbel law (!), Exponential laws F (x) = 1 − e−λx , (λ > 0) ; Normal

distributions, log-normal distributions.

hydrology (River streamflow, precipitation, annual maximum of water
level (dikes)

• Fréchet’s domain:
ex : Fréchet law (!), Pareto distribution F (x) = 1 − Kx−α ; Cauchy

F (x) = 1
2

1
π

tan−1(x) ; Student distribution f (x) = C(1 + x2/k)−
k+1
2 .

precipitations, river floods in mediterranean regime, pollution peaks,
financial log-returns (Dow Jones...)

• Weibull’s domain:
ex: Weibull law (!) ; Uniform distribution on a line segment ; truncated

exponential.

Material fatigue, temperatures, lifetime.
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How to determine the domain of attraction of a given law?

Exercises: find the domain of attraction and suitable sequences (an), (bn)
for

1. Exponential law : ∀x ≥ 0,F (x) = 1− e−λx (λ > 0).
Hint: use that (1− y/n)n → e−y

2. Uniform law: F (x) = x(0 < x < 1)

3. Pareto law F (x) = 1−
(
u
x

)α
(x > u, α > 0).

General case : one can check some conditions (von Mises conditions) on
the limit behavior of the ratio F ′/(1− F ) (out of our scope)
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Inference methods, existing R packages

• Most popular methods: Maximum likelihood, probability weighted
moments

• R packages: ismev, extRemes, evd, fExtremes, EVIM,

Xtremes, HYFRAN, EXTREMES , . . .

http://cran.r-project.org/

• Gilleland, Ribatet, Stephenson, 2013: A software review for extreme
value analysis

• Introductory book: Coles, 2001, An Introduction to Statistical
Modeling of Extreme Values.

• Here: maximum likelihood, package evd.

26/39
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Assumption behind extreme value (block maxima) models

• For n large enough, Mn ∼ Gµ,σ,ξ.

• goal: estimate µ, σ, ξ

• Use block maxima to learn estimates µ̂, σ̂, ξ̂.
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Block maxima
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Modeling the max with a GEV

Data : block maxima, block size n,

• (Mn[1], . . . ,Mn[m]) ; Mn[i ] =
∨in

t=(i−1)n+1{Xt}
(e.g. : annual maxima of a river stream flow over 50 years, annual maxima
of claims to an insurance, . . . )

• For large block sizes n, in view of Fisher, Tipett & Gnedenko
Theorem, the GEV family is a reasonable model for Mn
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Fitting a GEV model on block maxima

• m processed data : (Mn[1], . . . ,Mn[m]), Mn[i ] =
∨in

t=(i−1)n+1 Xt .
(ex: annual max of a river flow over fifty year)
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• modeling assumption: Mn[i ]−bn
an

∼ Gξ,0,1 (n fixed, but large.) for some
an, bn i.e.

Mn[i ] ∼ Gξ,µ,σ with µ = bn, σ = an .

• Parametric model:

{Gξ,µ,σ : ξ ∈ R, σ > 0, µ ∈ R}

• Estimation problem: (ξ̂, µ̂, σ̂) ?
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Maximum likelihood method: a reminder
• Data Yi

i.i.d.∼ Fθ(.)

• θ : unknown model parameter. (model = {Fθ, θ ∈ Θ})
• Dominated model: Fθ has sdensity fθ(.) = d

dy Fθ(.).

• Likelihood of θ, given m observations y = y1, . . . , ym: the (product)
denisty fθ, at point y.

L(θ|y1, . . . , ym) = fθ(y)
independence

=
m∏
i=1

fθ(yi ) .

The maximum likelihood estimator (MLE) is the maximizer (w.r.t. θ)
of the likelihood function.

θ̂ = arg max
θ
L(θ|y1, . . . , ym)

• Under generic assumption (model regularity): θ̂ is asymptotically
normal, with mean θ (true) and variance O(1/n)

• In the GEV model: θ = (ξ, µ, σ). Method only valid for ξ > −0.5
(the support depends on the parameter: the model is not regular)
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Example 1: block maxima inference with R package evd
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Figure: portpirie data in package evd: Annual maxima of the sea level at Port
Pirie, 1923-1987

(the data are already pre-processed, only the annual maxima are available)
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Example 1 Cont’d: MLE in the GEV model

> library(evd)
> fitgevpirie <- fgev(portpirie)
> fitgevpirie

Call: fgev(x = portpirie)
Deviance: -8.678117

Estimates
loc scale shape

3.87475 0.19805 -0.05012

Standard Errors
loc scale shape

0.02793 0.02025 0.09826

Optimization Information
Convergence: successful
Function Evaluations: 30
Gradient Evaluations: 8
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Example 1 Cont’d: graphical diagnostics

> plot(fitgevpirie)
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Figure: Graphical diagnostic plot for the GEV model fit on the Port Pirie dataset,
as provided by R package evd.
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Extreme quantile: plug-in estimation after MLE

• Return level (quantile) zp (corresponding to a return period 1/p):

zp = G−1ξ,µ,σ(1− p) =

{
µ−

[
1− {− log(1− p)}−ξ

]
σ
ξ if ξ 6= 0

µ− σ log(− log(1− p)) if ξ = 0

• Gaussian confidence intervals on the parameters + Delta method ⇒
Gaussian CI on r zp
> fgev(portpirie, prob=0.001)

Estimates

quantile scale shape

5.03508 0.19818 -0.04926

Standard Errors

quantile scale shape

0.34024 0.02010 0.09904

• ξ = 0 belongs to the CI! Should one use the Gumbel model?
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Graphical diagnostic for Gumbel domain
• Idea: If Fn(x) = e−e

− x−µ
σ , then

F←n (u) = σ [− log(− log(u))] + µ.

• F←n ( i
n+1) ' x(i) (the i th smallest observation)

• ⇒ the graph of points (− log(− log( i
n+1)); x(i)i ) is close to the

diagonal.

xord<-sort(portpirie,decreasing=F); n <- length(portpirie)

inds=1:n/(n+1)

gbquant<--log(-log(inds))

plot(gbquant,xord)

reg.lin<-lm(xord~gbquant) ; coeff<- reg.lin$coefficients

abline(coeff[1],coeff[2], col="red",lwd=2)
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Graphical diagnostic for Gumbel domain

• Idea: If Fn(x) = e−e
− x−µ

σ , then

F←n (u) = σ [− log(− log(u))] + µ.

• F←n ( i
n+1) ' x(i) (the i th smallest observation)

• ⇒ the graph of points (− log(− log( i
n+1)); x(i)i ) is close to the

diagonal.
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The Gumbel model seems suitable here. Return levels are then much
higher than in the Weibull model!
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Discussion: block-maxima approach

• Only the block maxima are used → information loss.

• Choice of the block size: bias variance compromise, with significant
impact.

• How to use the data in a different way?

Maxima ⇔ Peaks-Over-Threshold.

P(X > u + σ(u)y | X > u) = F̄u(y) −→
u→∞

?
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