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With the ubiquity of sensors, Big Data are now increasingly available in a wide variety of
domains of human activity (science, industry, health, environment, commerce, security, ...)
and rare/extreme phenomena are becoming observable in a significant manner. Before,
such events were mainly ’out-of-sample’ and Extreme Value Theory (EVT), the field of
probability and statistics concerned with tails of distributions, tackled their study through
(parametric) modelling essentially. With the need for analyzing extreme observations,
carrying often the critical information to design solutions to applications (e.g. health
monitoring of complex infrastructures) for which worst-case scenarios crucially matter,
the most recent years have seen an increasing interest of the EVT research community
towards novel machine learning algorithms and statistical learning theory, resonating with
a continuing effort of the statistical community to address larger-dimensional problems with
computationally feasible approaches (see e.g. the review Engelke and Ivanovs (2021)).

Let X be a random element (variable, vector, or function) of interest. One major goal
of EVT is to provide probabilistic descriptions and statistical inference methods for the
conditional distribution of t−1X given large ‖X‖, where ‖ · ‖ is a semi-norm and t is a
large threshold (see e.g. the monographs (De Haan and Ferreira (2007); Resnick (2008)).
In applications, relevant thresholds t may be as high as the largest observation among
n realizations of X. Probabilistic extrapolation is then needed to use the information
brought by a subsample of size kn � n composed of the observations with the largest semi-
norms. This requires sound theoretical assumptions pertaining to the theory of regular
variation and maximum domains of attraction, ensuring that a limit distribution µ =
limLaw(t−1X | ‖X‖ > t) exists as t → ∞, up to suitable standardization. This stylized
setting encompasses a wide range of applications in various scientific displines and risk
management where extremes have tremendous impact, such as climate science, insurance,
industrial monitoring systems (Beirlant et al. (2004)).
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This course aims at introducing the students with the most recent development of sta-
tistical learning viewpoints on EVT. From a theoretical perspective they will be offered an
overview of recent statistical learning theory for rare events, in addition to the necessary
probabilistic background on extreme value theory and regular variation. Theoretical de-
velopment will be motivated and illustrated by recent successful algorithms for handling
extreme values, be it for anomaly detection, extreme event classification or dimension
reduction in distributional tails.

Course structure: Each session is approximately divided into a 2h lecture and a 1h
tutorial.

The second to last lecture is a Q&A session where students can in particular get help
with their homework.

The last lecture will be organised as a seminar / working group where the students will
present recent research articles.

Grading

• 50% Homework (theoretical and practical exercises): Each course comes with a list
of exercises, partly coding, partly theory. These exercises should be handed out 2
weaks maximum after the day they are released. There is a Bonus rule allowing
students to improve upon past exercises (maximum 4 of them) after the Q&A last
course

• 50% Oral presentation ( 20 minutes, 10 slides) + written report (≤ 10 pages).

Syllabus (9*3h)

1. Basics of EVT: learning from block maxima.
Context and applications in risk management and anomaly detection. Fisher and
Tipett’s theorem withelements of proof. Method of block maxima
Tutorial: derivation of norming constants, numerical illustration for the weak con-
vergence of block maxima, case studies, choice of the block size.

2. Peaks-Over-Tresholds (POT) and Regular variation.
Link between POT and block maxima. Generalized Pareto distributions. Basics of
regular variation and vague convergence. Informal introduction to the Hill estimator.
Tutorial: Elements of proof - POT modeling on case studies - threshold choice -
Hill estimator in practice.

3. Regular Variation II, tail measures and weak convergence.
More on regular variation - Karamata representation theorem - weak consistency of
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the Hill estimator - Quantile estimation.
Tutorial: Visualization of weak convergence of tail measures - Elements of proof for
Karamata.

4. Multivariate extremes.
Reduction to the standard case - characterizing max-id distributions - characteriz-
ing simple max-stable distributions - Angular measure - Multivariate Peaks-over-
threshold
Tutorial: Elements of proofs - Simulation - Basics of non-parametric estimation in
moderate dimension (kernel and histogram methods).

5. Statistical learning guarantees for extremes.
Vapnik-type concentration inequalities for rare events - illustrations on estimation
tasks in multivariate extremes (standard tail dependence function and angular mea-
sure)
Tutorial: Elements of proof and numerical illustration of the error bounds

6. High dimensional extremes.
Notions of sparsity in multivariate extremes - Applications to anomaly detection
Tutorial: PCA - multiple subspace clustering - Anomaly detection

7. Supervised learning with extreme values.
Learning with extreme covariates (classification) - Dimension reduction with extreme
targets
Tutorial: Demo and Elements of proof

8. Q&A session.
Help with articles/homework

9. Oral presentations
Mandatory attendance
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