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1 Introduction

In the course you studied theoretical properties of multivariate extension of
the EVT. In particular you characterized the shape of limiting distribution
of maxima or excesses of multivariate samples.
The goal of this TP is to give an idea of how to sample from those limiting
distributions.
There are a huge variety of approaches to sample from such distributions.
We will only look at a specific method to sample from the logistic model,
with the methods suggested in Stephenson 2003.
For more methods, you can look first at the very short review of the mev

package which is one of the main R packages for Extreme Value Modelling :
click here to see mev documentation for simulation of multivariate extreme.

2 Multivariate logistic model

2.1 Brief introduction to multivariate logistic model

We will use the method suggested in [2]. The idea is to use a parametric
distribution family to model the dependence structure of the multivariate
extreme value distribution fonction. Let’s denote by d ∈ N the dimension
of our space. Denote by G(x), x ∈ Rd

+ the cdf of a multivariate distri-
bution function. Let’s define, as in the course, V (·) = − logG(·) which is
the exponent measure of the distribution. Then, multivariate logistic model
is characterized in [1] by having random variables having exponent function
V (x) = µ([0, x]c) defined by

VL(x) =

(
d∑
j=1

x
−1/α
j

)α

.
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0 ≤ α ≤ 1 is called the dependence parameter, it measures the depen-
dence between Xj, j = 1 . . . d the extremes α→ 1,α→ 0 correspond respec-
tively to independence and complete dependence.

We will see in this TP how to sample X multivariate random
variables having exponent function VL.

2.2 Algorithm 1 for simulation

Consider the transformations

Z =

(
d∑
j=1

X
−1/α
j

)α

(3)

Ti = (XiZ)−1/α =
X
−1/α
i∑d

j=1X
−1/α
j

(4)

of [1], so that
∑d

i=1 Ti = 1. Let Sd =
{

(ω1, . . . , ωd) ∈ Rd
+ :
∑

j ωj = 1
}

denote the d − 1 dimensional unit simplex. Shi shows in [1] that T1, . . . , Td
are independent of Z, (T1, . . . , Td) is distributed uniformly on Sd, and that
Z is a mixture of gamma distributions with density

fd(z) =
d∑
j=1

pd,jΓ(z, j)

where

Γ(z, k) =
1

Γ(k)
zk−1e−z, z > 0

is the density function of a gamma distribution with unit scale and shape
parameter k. The mixture probabilities can be calculated using the recur-
rence relations

pd,1 =
Γ(d− α)

Γ(d)Γ(1− α)

(d− 1)pd,j = (d− 1− αj)pd−1,j + α(j − 1)pd−1,j−1, j = 2, . . . , d− 1,

pd,d = αd−1

given in [1] Caution there is a typo in the [2] paper for value of pd,d which is
αd−1 and not αd
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This provides a simple numerical method for the calculation of the d
mixture probabilities pd,1, . . . , pd,d of fd(z) at any given dimension d and any
α ∈ (0, 1]. Let W1, . . . ,Wd be independent standard exponential random
variables. Denoting the cumulative probabilities by Pm =

∑m
i=1 pd,i for m =

1, . . . , d and setting P0 = 0 yields the following algorithm, which is (using
slightly different transformations) reproduced from [1].

Algorithm 1: Multivariate logistic

1. Set (T1, . . . , Td) =
(
W1/

∑d
j=1Wj, . . . ,Wd/

∑d
j=1Wj

)
.

2. Generate U uniformly over (0, 1) and find k ∈ {1, . . . , d} such that
Pk−1 ≤ U < Pk.

3. Generate Z from a gamma distribution with shape parameter k and
unit scale.

4. Set X = (X1, . . . , Xd) = (1/ZTα1 , . . . , 1/ZT
α
d ).

2.3 Brief overview of the algorithm

1. Question on the model: Check that the exponent measure VL satis-
fies the homogeneity property (Hint: you can compute VL(tx), t >
0, x ∈ Rd

+, and limxk→∞,k 6=j VL((x1 . . . xd)) with j = 1 . . . d and xj =
1)

2. Questions on Step 1

(a) What is the support of the random vector (T1, . . . , Td) ?

(b) What is its law on this support ? (Give a brief argument)

3. Questions on Step 2

(a) Calculate p1,1, p2,1, p2,2, p3,1, p3,2, p3,3.

(b) The k defined in step 2 is random (its value will depend on U
value). What is its law ? (Just give the result)

4. Question on Step 3: Can you deduce the law of Z ?

5. Question on Step 4: Can you deduce the law of X ?
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2.4 Sampling from multivariate logistic model

You can use the tp2.ipynb file provided.

1. Try to sample T random variables from the step 1 function imple-
mented in thetp2.ipynb file. Plot on the same graph histograms of
the marginals of T . How do you interpret this graph ?

2. Complete the step 2 function in the tp2.ipynb file (Caution there is
a typo in [2]: use the recurrence relationship in [1] or the corrected
version of this TP.

3. Implement the algorithm to generate a sample of n variables from the
exponent measure, in dimension d ∈ N, with α ∈ (0, 1]. Use d = 4,
α = 1/4.

4. Sample (Xi)i=1...n for a large n. Plot boxplots of the angle of X for a
growing value of its norm. (You can make boxplots of the angles of the
variables XiIr≤||X||<r+1, r = 1 . . . 100). How do you interpret this graph
?

5. Set d = 2 and compare the angle distribution (marginal and bivariate
distribution) for α→ 0 and for α→ 1.

2.5 To go further

To go further, you can

• Dive into the paper [2] and try to reproduce Algorithm 2.1 which is
another way of sampling from the logistic model, and compare both
methods.

• Dive into the paper [2] and try to reproduce Algorithm 2.2 or 1.2 to
sample from asymmetric logistic model. (this part can be time con-
suming, because of high computing times in high dimension.
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