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Chapter 1

Introduction

1.1 Foreword
Extreme value theory (EVT) is concerned with characterizing the probabilistic

structure of tail events. Depending on the context, the focus is on the distribution
of the maximum of a large sample or on the conditional distribution of excesses
above large thresholds. In a multivariate or infinite dimensional setting (when
stochastic processes are considered), the maximum is usually defined component-
wise, and the large thresholds are relative to the norm of the random element under
consideration. Since large-scale events are of particular concern for risk analysis,
applications of extreme value analysis are numerous, ranging from insurance and
finance to environmental sciences, including robustness of industrial installations.
It is thus no wonder that extreme value statistics have aroused interest in the sta-
tistical community for decades. In contrast, until recently, extreme events have
only carried little weight in the statistical learning and machine learning commu-
nity. The largest values of a dataset are routinely treated as outliers and removed
from the training test in most machine learning algorithms, if they are treated at
all. Typical machine learning tasks are more related with mean behaviors than
rare events. Also extreme value analysis makes extensive use of statistical mod-
els, while model-free approaches are preferred in the machine learning commu-
nity. From a theoretical perspective, one common working assumption made in
the statistical learning literature is that the random variables under considerations
are sub-Gaussian, that is satisfy a concentration inequality of the same kind as
a Gaussian variable, which is not compatible with regular variation assumptions
typically made in extreme value analysis. Nonetheless, in some specific machine
learning tasks such as anomaly detection, predictive maintenance, failure antic-
ipation, extreme events and the distributional tail play a central role, while data
scarcity suggests to use an extrapolation model such as those issued from extreme
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value theory. Also some aspects of the statistical learning literature such as nor-
malized Vapnik-Chervonenkis inequalities are a hint that concentration results can
be derived for the empirical measure of rare events, opening the road to a finite
sample analysis of various estimators featured by extreme value statistics.

This thesis gathers my contribution to bridging the gap between extreme value
theory and statistical learning from a theoretical perspective as well as in applica-
tions. This line of thoughts has recently generated interest, in particular the topic
of dimensionality reduction and sparse pattern detection has drawn considerable
attention in the past few years, as reviewed by Engelke and Ivanovs (2020). To
my best knowledge however when I started working on this subject, that is, after
completing my PhD in 2013, the only existing works in this direction was, first, a
concentration study for extreme order statistics (Boucheron and Thomas (2012))
allowing for an adaptive choice of the number of extreme order statistics in tail
index estimation (Boucheron and Thomas (2015)), see also Carpentier and Kim
(2015) under additional regularity assumptions, and second, in a multivariate set-
ting, a clustering algorithm aiming at identifying the support of the distribution of
tail events (Chautru et al. (2015)).

1.2 Layout of the thesis
Chapter 2 starts off with a brief exposition of the necessary background on

concentration inequalities for statistical learning (Section 2.1.1) and presents a
specific concentration inequality adapted to rare classes which is proved in Goix
et al. (2015) (see Section 2.1.2) and used on several occasions in the different con-
tributions which are gathered in this thesis. Section 2.2 provides a first example of
application of this inequality to statistical analysis of multivariate extremes after
recalling basic facts pertaining to multivariate extreme value theory and regular
variation (Section 2.2.1).

In Chapter 3 we consider the problem of classification in extreme regions of
the predicting variable. The opening section 3.1 presents some background on the
empirical risk minimization paradigm for classification from a statistical learning
perspective, which is the viewpoint adopted by Jalalzai et al. (2018) (Section 3.2)
where we derive the form of optimal tail classifiers and prove finite sample gen-
eralization bounds regarding empirical classifiers learnt in this framework. This
general methodology is applied in Jalalzai et al. (2020) (Section 3.3) in a natu-
ral language processing framework, where a representation learning strategy with
heavy tailed target is designed for improved classification of extreme sentence
embeddings and dataset augmentation.

Chapter 4 gathers my contribution to the topic of dimensionality reduction
for multivariate extremes. Two main directions are explored for this purpose: (i)
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multiple subspace clustering, in other terms identification of the support of the
limit distribution of extremes among a large number of possible unions of lower
dimensional subsets of the original sample space (Goix et al. (2017), Section 4.1
and Chiapino and Sabourin (2016); Chiapino et al. (2019b), Section 4.2) ; and (ii)
Principal component analysis of the limit distribution (Drees and Sabourin (2021),
Section 4.3).

Chapter 5 is dedicated to the machine learning treatment of anomalies located
in the tails of the dataset, that is anomaly detection and clustering of anomalies.
In Goix et al. (2016) (Section 5.1) the dimension reduction device proposed in
Goix et al. (2017) is exploited to detect anomalies deviating from the estimated
tail support. In a somewhat different spirit, in Thomas et al. (2017) (Section 5.2)
we focus on moderate dimensional problems and adopt a strategy based on mini-
mum volume sets to perform anomaly detection on the angular component of the
limit law of extremes, thus exploiting the pseudo-polar decomposition of the latter
distribution. Finally, in Chiapino et al. (2019a) (Section 5.3) we consider the prob-
lem of clustering extremes of a large dimensional vector in the context of aviation
safety management. In the latter framework, all extreme values (defined by the
fact that the norm of the considered vector is comparatively large) are considered
as potential anomalies, contrarily to the former sections of this chapter where the
goal is to distinguish between normal and abnormal data among extremes.

Chapter 6 presents a piece of work (Sabourin and Segers (2017)) which is
somewhat disconnected to the rest of the thesis. The focus is on semi-continuous
processes, namely upper semi-continuous ones, which have been proposed in the
literature of spatial extremes to model some meteorological extreme events such
as rainstorms. A widely used pre-processing step in applications related to spatial
extremes is to apply a preliminary standardization step to the marginal distribu-
tions of the considered object. The question we ask is under which conditions it
is legitimate to do so with the above described processes while preserving max-
stability properties.

Chapter 7 opens perspectives and sketches the main lines of ongoing works.
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Chapter 2

Statistical learning guarantees for
Extreme Value Analysis

In a statistical context, the goal is to learn some features of the distribution of
the random element of interest, based on data. A crude partitioning of the field
would be (i) the frequentist asymptotic approach, (ii) the Bayesian approach, (iii)
the statistical learning approach. The first approach provides explicit asymptotic
guarantees concerning estimated quantities depending on the true distribution.
The second one allows to build confidence regions depending on the observed
data, which are valid for any sample size. The third approach provides explicit
universal error bounds which do not depend on the data and are also valid for any
sample size. Until recently, the literature in extreme value statistics has mainly
followed the first two approaches. This chapter gathers my contributions to the
third one. It starts with a general concentration result for rare events (Section 2.1)
which can be applied to extreme value analysis to obtain finite sample guarantees
for estimators related to the empirical risk minimization paradigm. Section 2.2
provides a first example of application of this concentration inequality to the anal-
ysis of the empirical estimator of the Stable Tail Dependence Function (STDF), a
classical summary of the dependence structure of multivariate extremes.

2.1 Concentration inequalities for rare events
The material gathered in this section and the next one relies on the publication

Goix et al. (2015). After introducing some notation and recalling the minimum
necessary background on statistical learning and concentration inequalities for VC
classes (Section 2.1.1) we state and comment the main concentration result of the
cited reference.
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2.1.1 Statistical learning on VC classes
We recall some standard definitions and results borrowed from learning the-

ory. For an in depth introduction, refer e.g. to Lugosi (2002) or Bousquet et al.
(2003). If P is the distribution on the sample space X of a random variable (r.v.)
X , then Pn denotes the empirical distribution on X of an independent and identi-
cally distributed (i .i .d .) sample X1, . . . , Xn ∼ P . The framework developed by
Vapnik and Chervonenkis allows to control the deviations of the empirical mea-
sure uniformly over classes of sets of bounded complexity.

Definition 2.1 (Shattering coefficient and VC dimension). Let G be a class of
subsets of a space X . The shattering coefficient SG(n) of the class G is

SG(n) = max
x1,...,xn∈X

∣∣{A ∩ (x1, . . . , xn) : A ∈ G
}∣∣

= max
x1,...,xn∈X

∣∣{zA(x) = (1A(x1), . . . ,1A(xn)) ∈ {0, 1}n : A ∈ G
}∣∣

and the VC dimension of G is the integer

VG = sup
n∈N
{n : SG(n) = 2n.}

If VG <∞ we say that the class has finite VC dimension.

Many intuitive families of sets (half-spaces, finite classes, unions and inter-
sections of such classes . . . ) have finite VC dimension. Sauer’s lemma permits to
bound the shattering coefficient in terms of VC dimension. It is proved e.g. in Lu-
gosi (2002).

Lemma 2.2 (Sauer). The shattering coefficient satisfies SG(n) ≤
∑VG

k=0

(
n
k

)
. As a

corollary, for all n ∈ N, SG(n) ≤
(
n+ 1

)VG and for n ≥ VG , SG(n) ≤
(
en
VG

)VG .
The celebrated VC inequality is a uniform bound in probability on the devi-

ations of the empirical measure evaluated on a class G. Notice that by Sauer’s
Lemma, the term ln(SG(n)) in the statement is bounded by VG ln(en/VG) for all
n, and by VG ln(n+ 1) for n sufficiently large.

Theorem 2.3 (Vapnik-Chervonenkis inequality). Then for all n ∈ N, with proba-
bility (1− δ),

sup
A∈G
|P − Pn|(A) ≤ Bn(δ)

with Bn of order (as n→∞)

Bn(δ) = O

[√
ln(1/δ) + ln(SG(n))

n

]
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2.1.2 Contributions
In extreme value analysis, one typically uses the k (k � n) largest order statis-

tics of the sample at hand to estimate quantities pertaining to the tail distribution.
In a multivariate context (or even in a general metric space endowed with a scalar
multiplication) it is still possible to order the data according to their norm, or their
distance to the origin. This amounts to evaluating the empirical measure Pn is on a
class of sets of the kind G = {tB,B ∈ G1}where G1 is is any class of sets bounded
away from the origin and t > 0 is chosen such that the class union A = ∪A∈GA has
small probability p = P [A] = O(k/n). The classical empirical measure is then
replaced with the tail empirical measure, νk(A) = n

k
Pn(A) = 1

k

∑n
i=1 1A(Xi),

for A ∈ G. It is thus reasonable to expect concentration inequalities for the tail
empirical measure of the kind:

With probability 1− δ, sup
A∈G
|νk(A)− n/kP (A)| ≤ Bk(δ),

where Bk(δ) is as in Theorem 2.3 with n replaced with k. Dividing both sides of
the inequality by n/k and identifying p and k/n, the desired result becomes:

With probability 1− δ,

sup
A∈G
|Pn(A)− P (A)| ≤ O

(√
p [ln(1/δ) + ln(SG(np))]

n

)
.

(2.1)

The following normalized VC-inequality (Vapnik and Chervonenkis (2015);
Bousquet et al. (2003) ) is a first step towards this end, stating that with probability
1− 2δ,

sup
A∈G

∣∣∣∣∣Pn(A)− P (A)√
P (A)

∣∣∣∣∣ ≤ 2

√
lnSG(2n) + ln 4

δ

n
,

which immediately yields

sup
A∈G
|Pn(A)− P (A)| ≤ 2

√
p
[
lnSG(2n) + ln 4

δ

]
n

. (2.2)

Notice that the upper bound in the above display involves a logarithmic term
lnSG(2n) depending on the total sample size, not the effective sample size np
as in (2.1). The VC-inequality stated below achieves the goal stated in (2.1) and
is the cornerstone of the statistical learning contributions gathered in this thesis.
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Theorem 2.4 (Concentration on low probability regions, Goix et al. (2015)). Let
X1, . . . , Xn be i .i .d . realizations of a r.v.X with distribution P and let G be a VC-
class of sets with VC-dimension VG . Consider the class union A = ∪A∈GA, and
let p = P (A). Then there is an absolute constant C such that for all 0 < δ < 1,
with probability at least 1− δ,

sup
A∈G
|Pn(A)− P (A)| ≤ C

[
√
p

√
VG
n

ln
1

δ
+

1

n
ln

1

δ

]
. (2.3)

To give an idea of concentration tools at play we provide in the appendix sec-
tion an unpublished alternative statement (Theorem A.1) of Theorem 2.4 together
with a complete proof. In this alternative statement, which is part of an ongo-
ing work with Stéphane Lhaut and Johan Segers 1 about concentration for rare
events, the unknown constant C is replaced with a logarithmic factor

√
ln(pn)

which arises from using shattering coefficient to control the symmetrized devia-
tions of the empirical measure conditionally to the number of points hitting the
rare class. From a technical point of view it may be seen as a simplification of
Goix et al. (2015)’s approach insofar as it does not require a call to the Bernstein-
type inequality from McDiarmid (1998) applied to a maximum deviation func-
tional f(X1:n) = supA∈G |Pn(A)− P (A)|. Instead, the classical Bernstein in-
equality for binomial variables is used to control the number of points hitting the
rare class. This conditioning trick is thus a central step in the argument, also
present in Goix et al. (2015)’s proof.

2.2 Learning guarantees for the dependence struc-
ture of extremes

The concentration inequalities for rare classes obtained in Section 2.1 can be
exploited to obtain finite sample guarantees for various estimators of tail quanti-
ties. In this section we focus on a classical functional summary of the tail depen-
dence structure, the STDF defined in (2.8). We start off with a brief account of
the probabilistic framework adopted in Goix et al. (2015) as well as in most of the
contributions gathered in this thesis, that is multivariate regular variation (de Haan
and Resnick (1977); Resnick (1987, 2007)) For an extensive account of Extreme
Value Theory, in particular for relationships between the Max-domain of attrac-
tion and regular variation, we refer the reader to (Resnick, 1987; Beirlant et al.,
1996; de Haan and Ferreira, 2006). One should keep in mind that modelling the

1. Between the time the manuscript was sent to the reviewers and the defense, an arXiv version
has been submitted (Lhaut et al. (2021))
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upper tail of a random vector may require alternative and sometimes finer assump-
tions than regular variation, which underlie in particular the conditional extreme
value models (Wadsworth et al. (2017)) and the theory of hidden regular variation
(Das et al. (2013)). Here we focus on the original regular variation framework.

2.2.1 Background in Multivariate Extreme Value theory and
regular variation

We place ourselves in X = Rd endowed with its Borel σ-field B(Rd) and we
consider a random vector X = (X1, . . . , Xd) ∼ P and n i .i .d . replications of it
Xi = (Xi,1, . . . , Xi,d), i ≤ n. A traditional assumption in EVT is that after a suit-
able marginal standardization to unit Pareto margins, the conditional distribution
of the standardized vector V (see (2.4) below) given that ‖V ‖ > t converges to
a certain limit. Precisely, denoting by F the cumulative distribution (c.d.f.) of X
and letting Fj(x) = P(Xj ≤ x) define

T (x) =
1

1− Fj(xj)
, j ∈ {1, . . . , d}

V = T (X)

(2.4)

Then our key assumption is that there exists a Radon measure µ on Rd
+ \ {0},

called the exponent measure, which is finite on sets bounded away from 0 (that is
0 /∈ A such that

tP(V ∈ tA) −−−→
t→∞

µ(A) , (2.5)

for all setA ∈ B(Rd) which is bounded away from 0 such that µ(∂A) = 0. This is
equivalent to vague convergence of the measures µt = tP (V ∈ t · ) on the space
[0,∞]d \ {0} (see Resnick (1987, 2007)) and to M0 convergence of the same
measures on Rd

+ as defined in Hult and Lindskog (2006) on a complete separable
metric space. Notice that including or not the points at infinity does not matter in
practice since µ assigns no mass to subspaces at infinity, that is to the subspaces
{x ∈ [0,∞] : xj = ∞ for j ∈ J ⊂ {1, . . . , d}}, J 6= ∅. Indeed an immediate
consequence of (2.5) is that µ is homogeneous of order −1, µ(tA) = t−1µ(A) for
t > 0 and A ∈ B(Rd).

A few remarks are in order concerning Condition (2.5). First, notice that con-
dition (2.5) is a special case of regular variation: a random vector Z is regularly
varying if there exists a real function b(t) > 0 and a limit measure ν, such that

b(t)P(Z ∈ tA) −−−→
t→∞

ν(A) (ν(δA) = 0, 0 /∈ A) (2.6)

where b is a positive function such that b(tx)/b(t) → x−α for all x, t > 0. The
exponent α is called the index of regular variation. In the standard form (2.5)
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the normalizing function is b(t) = t so that α = 1. Thus condition (2.5) may
seem overly stringent since it requires regular variation of V in a standard form.
However it is in fact weaker than the starting point of multivariate extreme value
theory. Indeed the latter framework relies on the maximum domain of attraction
(MDA) condition stipulating that the componentwise maximum Mn = maxi≤nXi

converges in distribution, after affine normalization. Namely the MDA condition is
that (Mn − bn)/an converges weakly to a non-degenerate limit, with an ∈ (R∗+)d

and bn ∈ Rd two sequences of vectors, and where all algebraic operations are
understood componentwise (see e.g. de Haan and Ferreira (2006); Beirlant et al.
(1996) and the references therein). This assumption is equivalent ( De Haan and
Resnick (1987), proposition 5.10) to a marginal MDA condition on the marginal
distributions together with our standard regular variation assumption (2.5). In
contrast our assumption (2.5) concerns only the dependence structure of X repre-
sented by V .

An additional assumption that we make throughout this chapter is that the
marginal distributions Fj are continuous, so that the marginally ordered samples
have no ties with probability one.

Assumption 2.1. The margins ofX have continuous c.d.f., namely F1, . . . , Fd are
continuous.

It should be noted that this assumption is present for convenience of the sta-
tistical analysis mainly and could be replaced with an assumption that the weight
of the atoms δx decay sufficiently fast at infinity, which is the case anyway under
marginal MDA conditions (see Leadbetter et al. (1983), Theorem 1.7.13).

The exponent measure can be characterized in many different ways. One such
characterization relies on a transformation to polar coordinates: given ‖ · ‖ a
norm on Rd, for v ∈ R+ \ {0}, set T (v) = (r(v), θ(v)) where r(v) = ‖v‖ and
θ(v) = r(v)−1v. Let S+ denote the positive orthant of the unit sphere on Rd.
Then the homogeneity property of µ implies that µ ◦ T −1 is a product measure on
R∗+ × S+, namely d(µ ◦ T −1)(r, θ) = dr

r2
⊗ dΦ(θ). The angular component Φ,

usually called the angular measure has finite mass and the above definition may
be rephrased as follows: for all t > 0 and B ∈ B(S+), where B(S+) is the trace
σ-field of B(Rd) on S+,

µ
{
x ∈ Rd

+ : r(x) ≥ t, θ(x) ∈ B
}

= t−1Φ(B). (2.7)

The fact that the angular measure characterizes the exponent measure suggests
estimating Φ instead of µ using extreme angles θ(Vi)’s such that r(Vi) is large.
This reduces the dimension of the problem by one. This may seem little, but it
should be noticed that the removed radial dimension is the one along which the
data points are likely to be the most spread out since the radial distribution behaves
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asymptotically as a power law, while the angular component is contained in the
compact set S+. This line of thoughts is the one underlying the developments of
the following Chapters 3, 4, 5.

In contrast in Goix et al. (2015) the focus is on the STDF denoted by l which
is the evaluation of µ on L-shaped regions of the kind [0,∞]d \ [0, y] (see (2.8)
below). From a technical viewpoint, in a realistic setting where the marginal
distributions Fj are unknown, working with such rectangular regions instead of
angular regions makes it easier to control the error induced by marginal estima-
tion. Indeed, the deviations F̂j(x)−Fj(x) may be analyzed separately and a mere
union bound ensures a joint control of the marginal error. Here and throughout
for a, b ∈ [−∞,∞]d such that aj ≤ bj for all j ∈ {1, . . . , d} the notation [a, b]
stands for the rectangle {x ∈ [−∞,∞]d : ∀j ∈ {1, . . . , d}, aj ≤ xj ≤ bj}.
Also it is convenient to work on [0,∞]d, which is stable under the change of
variable x 7→ 1/x and then for a, b ∈ [0,∞]d as above, the complementary set
of [a, b] is understood as [a, b]c = [0,∞]d \ [a, b]. Finally, when clear from the
context, the notation ∞ (resp. 0) may indifferently denote the point at infinity
(resp. the origin) in R+ or Rd

+. Changing variable as described above amounts
to considering U = (U1, . . . , Ud) with Uj = 1 − Fj(Xj). Under the assump-
tion that Fj is continuous, Uj is uniform on [0, 1], a convenient feature for using
concentration theory and empirical processes. Equipped with these notations, for
x = (x1, . . . , xd) ∈ [0,∞]d \ {∞}, the STDF evaluated at x is

l(x) = µ
(
[0, x−1]c

)
= lim

t→0
t−1P

(
U1 ≤ t x1 or . . . or Ud ≤ t xd

)
(2.8)

The empirical estimator of l denoted by ln below is routinely defined (see
Huang (1992), Qi (1997), Drees and Huang (1998), Einmahl et al. (2006)) as

ln(x) =
1

k

n∑
i=1

1{Xi,1 ≥ X(n−bkx1c+1),1 or . . . or Xi,d ≥ X(n−bkxdc+1),d}, (2.9)

which derives naturally from (2.8), up to replacing t with k/n, taking empirical
counterparts of the Fj’s to define rank transformed variables Ûi,j’s and replacing
the distribution Q of the r.v. U with Q̂n, the empirical distribution of the Ûi’s.

2.2.2 Contribution: finite sample guarantees on the STDF

Although extensive studies have proved consistency and asymptotic normal-
ity for the empirical version of the STDF (see Huang (1992), Drees and Huang
(1998) and de Haan and Ferreira (2006) for the asymptotic normality in dimen-
sion 2, Qi (1997) for consistency in arbitrary dimension, and Einmahl et al. (2012)
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for asymptotic normality in arbitrary dimension under differentiability conditions
on l), Goix et al. (2015) is to my best knowledge the first contribution to a non-
asymptotic analysis. In that paper, upper bounds are derived on the maximal de-
viation sup0≤x≤T |ln(x)− l(x)| with expected rate of convergence in O(k−1/2)
without any smoothness condition on l.

The main idea is to adapt Theorem 2.4 to the particular setting in view. Con-
sider Q and Qn, respectively the distribution of the standardized vector U and the
empirical measure relative to an i .i .d . sample of size n and use the VC class of
sets

A =

{[k
n

x,∞
] c

: x ∈ Rd
+, 0 ≤ xj ≤ T (1 ≤ j ≤ d)

}
so that VG = d (Devroye et al. (1996), Theorem 13.8). Then it is easy to show
that Q(A) = p ≤ dT k

n
, so that a direct consequence of Theorem 2.4 is that for

δ ≥ e−k,

sup
xj∈[0,T ],j∈{1,...,d}

n

k

∣∣∣∣(Qn −Q)(
k

n
[x,∞]c)

∣∣∣∣ ≤ Cd

√
T

k
ln

1

δ
. (2.10)

Inequality (2.10) is the cornerstone of the following theorem, which is the
main result of Goix et al. (2015). The remaining steps of the proof aim at con-
trolling the discrepancy between Qn and Q̂n, the latter being the actual observ-
able statistic while the former is based on pseudo-observations Ui which are not
observed since the margins Fj are unknown. This is done following the same
general lines as in Qi (1997), replacing asymptotic arguments from empirical pro-
cesses with non asymptotic upper bounds, again issued from empirical process
theory.

Theorem 2.5. Let T be a positive number such that T ≥ 7
2
( ln d
k

+ 1), and δ such
that δ ≥ e−k. If the marginal distributions are continuous (Assumption 2.1) then
there is an absolute constant C such that for each n > 0, with probability at least
1− δ:

sup
0≤x≤T

|ln(x)− l(x)| ≤ Cd

√
T

k
ln
d+ 3

δ
+ sup

0≤x≤2T

∣∣∣∣nk F̃ (
k

n
x)− l(x)

∣∣∣∣
The second term of the upper bound of Theorem 2.5 is a bias term which

depends on the discrepancy between the left hand side and the limit in (2.8) at level
t = k/n. The value k can be interpreted as the effective number of observations
used in the empirical estimate, i.e. the effective sample size for tail estimation.
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Chapter 3

Classification of extreme events

The material gathered in this chapter relies on the published papers Jalalzai
et al. (2018) and Jalalzai et al. (2020).

Classification is the flagship of supervised learning problems. It is also one of
a most natural framework in which uniform concentration bounds such as those
introduced as background in Chapter 2 reveal themselves fruitful for proving gen-
eralization guarantees of classifiers obtained via Empirical Risk Minimization
(ERM). A natural question to ask is whether the concentration tools for rare events
laid out in Section 2.1.2 can be used to propose classifiers dedicated to the tails of
the explanatory variable with satisfactory generalization guarantees. To fix ideas,
consider a classification problem where a random pair (X, Y ) is observed, where
X is an explanatory variable and Y ∈ {−1,+1} is the label to be predicted. Sup-
pose that the goal is to predict the labels associated to large explanatory variables
say ‖X‖ ≥ t for some large threshold t. As detailed in the next background sec-
tion, classification by ERM consists in selecting a classifier gn from a class G such
that the empirical risk of the classifier (the number of errors on the training set) is
minimal among the class. If the focus is on the error made above threshold t, one
should think of a specific strategy to avoid two pitfalls: (i) the classical ERM solu-
tion is not guaranteed to perform well in the tails because the relative weight of the
training error made in this region is negligible and has thus negligible influence
on the output gn , (ii) if one restricts the training set to tail regions {‖x‖ > t}, the
size of the training set may be too small for large values of t to guarantee any gen-
eralization properties. After providing some background on generalization guar-
antees for classifiers issued from the ERM strategy (Section 3.1) we summarize in
Section 3.2 the main findings of Jalalzai et al. (2018).

We conclude this chapter (Section 3.3) with an application (Jalalzai et al.
(2020)) of the framework and the results from Section 3.2 in Natural Language
Processing (NLP) which involves in addition a representation learning strategy.
The aim of this paper is double: (i) improve classification of sentences which
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vectorial representation has a large norm, (ii) take advantage of the radial invari-
ance of the classifiers dedicated to the tail to generate new data with prescribed
label, which is a major challenge for dataset augmentation. In the present thesis
I shall mainly focus on the methods and results related to the first goal, as the
second one is more specialized to the NLP setting. A key ingredient of the pro-
posed methodology is a representation learning device with heavy tailed target,
i.e. such hat the obtained representation is multivariate regularly varying. Even
though we have not tried to derive theoretical guarantees regarding the quality of
the representation learning procedure, experimental results show that the obtained
representation fulfills the regular variation requirements. This may open the road
to a novel line of research aiming at broadening the impact of multivariate EVT

in a regular variation setting by proposing data pre-processing strategies based on
representation learning in order to ensure that the pre-processed data satisfies the
regular variation conditions (2.5) or (2.6).

3.1 Classification in the ERM paradigm: background
We recall in this section the standard statistical learning framework for binary

classification. All the facts stated below are proved in Lugosi (2002) or Bousquet
et al. (2003). As sketched out at the beginning of this chapter, (X, Y ) ∼ P is
a random pair on a product space X × Y with Y a set made of two elements,
say Y = {−1,+1}. As it is the case in Chapter 2, here and throughout we take
X = Rd. The explanatory variable X is assumed to contain relevant information
for predicting Y . Given a family G of classifiers g : X → {−1, 1} the goal is to
select gn sufficiently close to the minimizer of the 0−1 riskR(g) = P (g(X) 6= Y )
over the class G. If the latter class is the whole family G∗ of measurable functions
g : X → Y the solution of the risk minimization problem is the so called Bayes
classifier g∗ : x 7→ 21{η(x) ≥ 1/2} − 1 where η is the regression function,
η(x) = P (Y = 1 | X = x). However P is unknown and in a supervised setting,
one can only use a training set (Xi, Yi)i≤n made of n i .i .d . copies of (X, Y ). The
ERM strategy consists in selecting gn as the minimizer over G of the empirical risk

Rn(g) =
1

n

n∑
i=1

1{g(Xi) 6= Yi} = Pn(1{g(x) 6= y})

The latter expression suggests to consider, for each classifier g ∈ G, the set Ag =
{z = (x, y) : g(x) 6= y} ⊂ X×Y . The family of classifiers G is thus in one-to-one
correspondence with the class of sets G = {Ag, g ∈ G}. With these notations,

P − Pn(Ag) = R(g)−Rn(g).
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Thus, as soon as the class G is simple enough so that G has finite VC dimension,
Vapnik’s result (Theorem 2.3) provides a probabilistic upper bound on supg∈G |R−
Rn|(g) = supA∈G |P − Pn|(A). One may wonder at some point why such a uni-
form control is necessary. Here is an answer: in practice, a quantity of interest
for which upper bounds are welcome is the deviation of the true risk R(gn) of the
selected classifier from its empirical version Rn(gn) based on the training sample,
and the excess risk R(gn) − R∗, where R∗ = infg∈G R(g). The starting point for
deriving such guarantees is that, on the one hand

R(gn) ≤ Rn(gn) + sup
g

(R(g)−Rn(g)).

On the other hand, for ε > 0, consider gε an epsilon minimizer of R, that is
R(gε) ≤ R∗ + ε. Then

R(gn)−R∗ ≤ R(gn)−R(gε) + ε

≤
(
R(gn)−Rn(gn)

)
+
(
Rn(gn)−Rn(gε)

)︸ ︷︷ ︸
≤0

+
(
Rn(gε)−R(gε)

)
+ ε

Letting ε→ 0 yields a control of the excess risk,

R(gn)−R∗ ≤ 2 sup
g∈G
|R(g)−Rn(g)| .

3.2 Binary classification in extreme regions
Following the opening argument of this chapter, the main focus of Jalalzai

et al. (2018) is the problem of producing a classifier minimizing the probability of
an error conditional to a excess above a radial threshold,

Rt(g) := RPt(g) = P (Y 6= g(X) | ‖X‖ > t) , (3.1)

as t → ∞, where Pt denotes the conditional distribution of (X, Y ) given that
‖X‖ > t, and where for any probability distribution onX×Y ,RQ(g) = Q{(x, y) :
y 6= g(x)}. Thus we introduce the risk at infinity,

R∞(g) = lim sup
t→∞

Rt(g), g any classifier. (3.2)

Notice already that the Bayes classifier g∗ defined in Section 3.1 relative to P is a
minimizer of R∞. Indeed for ‖x‖ > t the regression functions relative to P and
Pt coincide, and so do the Bayes classifiers, g∗P = g∗Pt , so that Rt(g

∗) ≤ Rt(g) for
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any classifier g. Taking the limit superior as t → ∞, the desired result follows.
However their is still no guarantee that the ERM classifier gn performs well in
the tail, especially if G is a parametric class, because the number of potential
errors made by gn in the tail is by definition negligible compared to the number of
potential errors in the bulk.

To avoid the second pitfall (data scarcity) mentioned above, we need to make
assumptions about Pt as t→∞. In our context it is rather natural to assume that
the class distributions P (X ∈ · | Y = σ1), σ ∈ {−1,+1} are regularly varying
(see (2.6)). Also for the problem to be meaningful one needs to ensure that the
ratio P (Y = +1 | ‖X‖ > t) /P (Y = −1 | ‖X‖ > t) has a limit in (0,∞), other-
wise the problem is either trivial (one class has asymptotic weight equal to 1 ) or
insoluble (the quantities P (Y = +1 | X ∈ tA) have no limit as t → ∞). Equiv-
alently, one must assume that the ratio of the normalizing functions b+(t)/b−(t)
converges to a finite, non zero limit. Thus necessarily the indices of regular vari-
ation are the same, α+ = α−. In Jalalzai et al. (2018) we make the simplifying
assumption that the tail index is equal to 1 and that the normalizing functions
b+(t), b−(t) in (2.6) may both be chosen as b+(t) = b−(t) = t. This would in-
deed be the case if the explanatory variable had been marginally standardized as
in (2.4), so that one would work with a the random pair (V, Y ). This explains the
notation µ instead of ν in Assumption 3.1 below and the term ‘angular measure’
referring to the angular component of the limit measure. Of course in practice
the margins are unknown and taking into account the marginal error is the subject
of ongoing work (see Section 7.1). Summarizing, the first assumption in Jalalzai
et al. (2018) is

Assumption 3.1. For all σ ∈ {−, +}, the conditional distribution of X given
Y = σ1 is regularly varying with limit measure µσ, angular measure Φσ(dθ)
(respectively, limit measure µσ(dx)) and normalizing function b(t) = t: for A ⊂
[0,∞]d \ {0} a measurable set such that 0 /∈ ∂A and µ(∂A) 6= 0,

tP
(
t−1X ∈ A | Y = σ 1

)
−−−→
t→∞

µσ(A), σ ∈ {−,+},

and for B ⊂ S a measurable set,

Φσ(B) = µσ{x ∈ Rd
+ : R(x) > 1, θ(x) ∈ B}, σ ∈ {−,+},

Remark 3.1. An inspection of the proofs of Jalalzai et al. (2018) shows that the
choice of the functions b+(t), b−(t) plays no role since only conditional probabili-
ties above t come into play, as long as b+(t)/b−(t)→ ` ∈ (0,∞). Thus the results
of the paper are unchanged when replacing the assumption that bσ(t) = t with the
latter condition concerning the limit of their ratio, up to a minor modification of
the definitions of the limiting pair (X∞, Y∞) introduced below which should take
into account the limit `.
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In Jalalzai et al. (2018)’s framework, denoting by p the marginal probabil-
ity p = P (Y = +1), it is easy to see that P (Y = +1 | ‖X‖ > t) → p∞ =
pΦ+(S+)/Φ−(S+). It is quite natural to define a limiting pair (X∞, Y∞) on Rd

+ ∩
{x : ‖x‖ ≥ 1} × {−1, 1} through its distribution :

P (Y∞ = 1) = p∞

P (X∞ ∈ A | Y∞ = y) = lim
t
P (X ∈ tA, Y∞ = y | ‖X| > t)

=
µsign(y)(A)

Φsign(y)(S+)

(3.3)

Then by homogeneity of µ, it can be shown that the regression function η∞(x) =
P (Y∞ = 1 | X∞ = x) relative to (X∞, Y∞) depends on the angle θ(x) = ‖x‖−1x
only. A reasonable conjecture is that the Bayes classifier g∗∞(x) = 21{η∞(x) ≥
1/2}−1 relative to the the distribution P∞ of the pair (X∞, Y∞) is also optimal for
the asymptotic risk R∞. We prove that it is the case under the following regularity
assumption

Assumption 3.2. (UNIFORM CONVERGENCE ON THE SPHERE OF η(tx)) The
limiting regression function η∞ is continuous on S and

sup
θ∈S+
|η(tθ)− η∞(θ)| −−−→

t→∞
0

Assumption 3.2 is satisfied under the condition of uniform convergence of
densities required in the framework of De Haan and Resnick (1987); Cai et al.
(2011). We may now state the main result of Jalalzai et al. (2018) concerning
optimal classification at extreme levels. To understand the statement, the reader
should keep in mind that we already have R∗t = Rt(g

∗) and R∗P∞ = RP∞(g∗∞)
from the definitions and the above argument.

Theorem 3.2. (Jalalzai et al. (2018)) Under Assumptions 3.1 and 3.2,

R∗t = Rt(g
∗) −−−→

t→∞
R∗P∞ . (3.4)

Hence, we have: R∗∞ = R∗P∞ . In addition, the classifier g∗∞ minimizes the asymp-
totic risk in the extremes:

inf
g measurable

R∞(g) = L∞(g∗∞) = Emin(η∞(Θ∞), 1− η∞(Θ∞)). (3.5)

Equation (3.4) means that limit of the infimum R∗t of the risk above level t
coincide with the infimum of risk RP∞ relative to the limit distribution. Equa-
tion (3.5) ensures that the minimizer g∞ of the risk relative to the limit distribu-
tion P∞ also minimizes the limit risk R∞. A very useful consequence in practice
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is that there exists an optimal classifier for R∞ which depends solely on the an-
gle θ(x) of the explanatory variable. This suggests an ERM strategy based on
restricting the attention to angular classifiers, i.e. classifiers depending on the
angular component of x only. In the sequel, the notation GS stands for any fam-
ily of such classifiers. As is customary in tail analysis, we consider an empiri-
cal version of Rt based on the k observations (Xi, Yi) such that the norms ‖Xi‖
rank among the k largest. Introducing the order statistics (X(i), Y(i)) such that
‖X(1)‖ > . . . > ‖X(n)‖ we fix τ > 0 a small probability and we let k = bnτc. If
tτ is the 1− τ quantile of the r.v. ‖X‖, then

R̂k(g) =
1

k

k∑
i=1

1{Y(i) 6= g(X(i))} = RP̂k
(g), (3.6)

is the empirical version of Rtτ . Then we suggest performing classification above
large threshold t using the ERM classifier

ĝk ∈ argming∈GS R̂k(g)

This strategy is guaranteed to be successful as stated below. The proof relies on
the concentration inequalities for rare events stated in Section 2.1

Theorem 3.3 (ERM classification for extremes, Jalalzai et al. (2018)). Suppose
that the angular class GS is of finite VC dimension VGS < +∞. Let ĝk be any
minimizer of (3.6). Then, for δ ∈ (0, 1), ∀n ≥ 1, we have with probability larger
than 1− δ:

Rtτ (ĝk)−R∗tτ ≤
1√
k

(√
2(1− τ) ln(2/δ) + C

√
VGS ln(1/δ)

)
+

1

k

(
5 + 2 ln(1/δ) +

√
ln(1/δ)(C

√
VGS +

√
2)
)

+

{
inf
g∈GS

Rtτ (g)−R∗tτ

}
,

where C is a constant independent from n, τ and δ.

The last term is a bias term relative to the richness of the class GS. Under the
assumption that the class is rich enough to discriminate the pairs in the tails, we
obtain

Corollary 3.4. Under the assumptions of Theorems 3.2 and 3.3, assume in addi-
tion that the model bias asymptotically vanishes as τ → 0, i.e.

inf
g∈GS

Rtτ (g)−R∗tτ −→ 0 as τ → 0.

Then, as soon as k → +∞ as n → ∞, the sequence of classifiers (ĝk) is asymp-
totically consistent,

R∞ (ĝk)→ R∗∞ as n→∞.
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3.3 Heavy-tailed representations, classification and
data augmentation in a NLP framework

The present section relies on the material published in Jalalzai et al. (2020).

Introduction Representing the meaning of natural language in a mathematically
grounded way is a scientific challenge that has received increasing attention with
the explosion of digital content and text data in the last decade. Relying on the
richness of contents, several embeddings have been proposed Peters et al. (2018);
Radford et al. (2018); Devlin et al. (2018) with demonstrated efficiency for the
considered tasks when learnt on massive datasets. However, none of these embed-
dings take into account the fact that word frequency distributions are heavy tailed
Baayen (2002); Church and Gale (1995); Mandelbrot (1953), so that extremes are
naturally present in texts. Similarly, Babbar et al. (2014) shows that, contrary to
image taxonomies, the underlying distributions for words and documents in large
scale textual taxonomies are also heavy tailed. Exploiting this information, sev-
eral studies, as Clinchant and Gaussier (2010); Madsen et al. (2005), were able
to improve text mining applications by accurately modeling the tails of textual
elements.

In this work we rely on the multivariate EVT framework for classification pre-
sented in Section 3.2. The tail region (where samples are considered as extreme)
of the input variable x ∈ Rd is of the kind {‖x‖ ≥ t}, for a large threshold t. The
latter is typically chosen such that a small but non negligible proportion of the data
is considered as extreme, namely 25% in our experiments. A major advantage of
this framework in the case of labeled data is that classification on the tail regions
may be performed using the angle Θ(x) = ‖x‖−1x only. The main idea behind
the present paper is to take advantage of the scale invariance for two tasks regard-
ing sentiment analysis of text data: (i) Improved classification of extreme inputs,
(ii) Label preserving data augmentation, as the most probable label of an input x is
unchanged by multiplying x by λ > 1. Jalalzai et al. (2018) demonstrate the use-
fulness of their framework with simulated and some real world datasets. However,
there is no reason to assume that the previously mentioned text embeddings sat-
isfy the required regularity assumptions. The aim of the present work is to extend
Jalalzai et al. (2018)’s methodology to datasets which do not satisfy their assump-
tions, in particular to text datasets embedded by state of the art techniques. This
is achieved by the algorithm Learning a Heavy Tailed Representation (in short
LHTR) which learns a transformation mapping the input data X onto a random
vector Z which does satisfy the aforementioned assumptions. The transformation
is learnt by an adversarial strategy Goodfellow et al. (2016). In the appendix sec-
tion of the paper we propose an interpretation of the extreme nature of an input
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in both LHTR and BERT representations. In a word, these sequences are longer
and are more difficult to handle (for next token prediction and classification tasks)
than non extreme ones.

Our second contribution is a novel data augmentation mechanism GENELIEX
which takes advantage of the scale invariance properties of Z to generate syn-
thetic sequences that keep invariant the attribute of the original sequence. Label
preserving data augmentation is an effective solution to the data scarcity problem
and is an efficient pre-processing step for moderate dimensional datasets Wang
and Perez (2017); Wei and Zou (2019). Adapting these methods to NLP problems
remains a challenging issue.The problem consists in constructing a transformation
h such that for any sample x with label y(x), the generated sample h(x) would
remain label consistent: y

(
h(x)

)
= y(x) Ratner et al. (2017). The dominant

approaches for text data augmentation rely on word level transformations such
as synonym replacement, slot filling, swap deletion Wei and Zou (2019) using
external resources such as wordnet Miller (1995). Linguistic based approaches
can also be combined with vectorial representations provided by language models
Kobayashi (2018). However, to the best of our knowledge, building a vectorial
transformation without using any external linguistic resources remains an open
problem. In this work, as the label y

(
h(x)

)
is unknown as soon as h(x) does not

belong to the training set, we address this issue by learning both an embedding
ϕ and a classifier g satisfying a relaxed version of the problem above mentioned,
namely ∀λ ≥ 1

g
(
hλ(ϕ(x))

)
= g
(
ϕ(x)

)
. (3.7)

In order to exploit the scale invariance of the regression function in the tails, hλ is
chosen as the homothety with scale factor λ, hλ(x) = λx. In this paper, we work
with output vectors issued by BERT Devlin et al. (2018). BERT and its variants
are currently the most widely used language model but we emphasize that the pro-
posed methodology could equally be applied using any other representation as in-
put. BERT embedding does not satisfy the regularity properties required by EVT,
as demonstrated empirically in the appendix section of the paper. Besides, there
is no reason why a classifier g trained on such embedding would be scale invari-
ant, i.e. would satisfy for a given sequence u, embedded as x, g(hλ(x)) = g(x)
∀λ ≥ 1. On the classification task, we demonstrate on two datasets of sentiment
analysis that the embedding learnt by LHTR on top of BERT is indeed following
a heavy-tailed distribution. Besides, a classifier trained on the embedding learnt
by LHTR outperforms the same classifier trained on BERT. On the dataset aug-
mentation task, quantitative and qualitative experiments demonstrate the ability
of GENELIEX to generate new sequences while preserving labels.
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Learning a Regularly varying representation We now introduce a novel al-
gorithm Learning a heavy-tailed representation (LHTR) for text data from high
dimensional vectors as issued by pre-trained embeddings such as BERT. The idea
behind is to modify the output X of BERT so that classification in the tail regions
enjoys the statistical guarantees presented in Section 3.2, while classification in
the bulk (where many training points are available) can still be performed using
standard models. Stated otherwise, LHTR increases the information carried by the
resulting vector Z = ϕ(X) ∈ Rd′ regarding the label Y in the tail regions of Z
in order to improve the performance of a downstream classifier. In addition LHTR
is a building block of the data augmentation algorithm GENELIEX (not detailed
in the present thesis). LHTR proceeds by training an encoding function ϕ in such
a way that (i) the marginal distribution q(z) of the code Z be close to a user-
specified heavy tailed target distribution p satisfying the regularity condition (2.6)
with b(t) = t, and (ii) the classification loss of a multilayer perceptron trained on
the code Z be small.

A major difference distinguishing LHTR from existing auto-encoding schemes
is that the target distribution on the latent space is not chosen as a Gaussian distri-
bution but as a heavy-tailed, regularly varying one. A workable example of such
a target is provided in our experiments As the Bayes classifier (i.e. the optimal
one among all possible classifiers) in the extreme region has a potentially differ-
ent structure from the Bayes classifier on the bulk (recall from Section 3.2 that
the optimal classifier at infinity depends on the angle Θ(x) only), LHTR trains two
different classifiers, gext on the extreme region of the latent space on the one hand,
and gbulk on its complementary set on the other hand. Given a high threshold t, the
extreme region of the latent space is defined as the set {z : ‖z‖ > t}. In practice,
the threshold t is chosen as an empirical quantile of order (1−κ) (for some small,
fixed κ) of the norm of encoded data ‖Zi‖ = ‖ϕ(Xi)‖. The classifier trained by
LHTR is thus of the kind g(z) = gext(z)1{‖z‖ > t} + gbulk(z)1{‖z‖ ≤ t}. If the
downstream task is classification on the whole input space, in the end the bulk
classifier gbulk may be replaced with any other classifier g′ trained on the origi-
nal input data X restricted to the non-extreme samples (i.e. {Xi, ‖ϕ(Xi)‖ ≤ t}).
Indeed training gbulk only serves as an intermediate step to learn an adequate rep-
resentation ϕ.

Remark 3.5. Recall from Section 3.2 that the optimal classifier in the extreme re-
gion as t → ∞ depends on the angular component θ(x) only, or in other words,
is scale invariant. One can thus reasonably expect the trained classifier gext(z) to
enjoy the same property. This scale invariance is indeed verified in our experi-
ments and is the starting point for our data augmentation algorithm GENELIEX.
An alternative strategy would be to train an angular classifier, i.e. to impose scale
invariance. However in preliminary experiments (not shown here), the resulting
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classifier was less efficient and we decided against this option in view of the scale
invariance and better performance of the unconstrained classifier.

The goal of LHTR is to minimize the weighted risk

R(ϕ, gext, gbulk) =ρ1P (Y 6= gext(Z), ‖Z‖ ≥ t) +

ρ2P
(
Y 6= gbulk(Z), ‖Z‖ < t

)
+

ρ3D(q(z), p(z))

where Z = ϕ(X), D is the Jensen-Shannon distance between the heavy tailed tar-
get distribution p and the code distribution q, and ρ1, ρ2, ρ3 are positive weights.
Following common practice in the adversarial literature, the Jensen-Shannon dis-
tance is approached (up to a constant term) by the empirical proxy L̂(q, p) =

supD∈Γ L̂(q, p,D), with L̂(q, p,D) = 1
m

∑m
i=1 logD(Zi)+log

(
1−D(Z̃i)

)
, where

Γ is a wide class of discriminant functions valued in [0, 1], and where independent
samples Zi, Z̃i are respectively sampled from the target distribution and the code
distribution q. The classifiers gext, gbulk are of the form gext(z) = 21{Cext(z) >
1/2) − 1, gbulk(z) = 21{Cbulk(z) > 1/2) − 1 where Cext, Cbulk are also discrim-
inant functions valued in [0, 1]. Following common practice, we shall refer to
Cext, Cbulk as classifiers as well. In the end, LHTR solves the following min-max
problem infCext,Cbulk,ϕ supD R̂(ϕ,Cext, Cbulk, D) with

R̂(ϕ,Cext, Cbulk, D) =
ρ1

k

k∑
i=1

`(Y(i), C
ext(Z(i))) + · · ·

ρ2

n− k

n−k∑
i=k+1

`(Y(i), C
bulk(Z(i))) + · · ·

ρ3 L̂(q, p,D),

where {Z(i) = ϕ(X(i)), i = 1, . . . , n} are the encoded observations with asso-
ciated labels Y(i) sorted by decreasing magnitude of ‖Z‖ (i.e. ‖Z(1)‖ ≥ · · · ≥
‖Z(n)‖), k = bκnc is the number of extreme samples among the n encoded obser-
vations and `(y, C(x)) = −(y logC(x) + (1− y) log(1−C(x)), y ∈ {0, 1} is the
negative log-likelihood of the discriminant function C(x) ∈ (0, 1). A summary of
LHTR and an illustration of its workflow are provided in the appendix sections of
the paper.

Summary of experiments In our experiments we work with the infinity norm.
The proportion of extreme samples in the training step of LHTR is chosen as κ =
1/4. The threshold t defining the extreme region {‖x‖ > t} in the test set is
t = ‖Z̃(bκnc)‖ as returned by LHTR.
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Classifiers Cbulk, Cext involved in LHTR are Multi Layer Perceptrons (MLP).
The regularly varying target distribution is chosen as a multivariate logistic distri-
bution F (x) = exp

{
−(
∑d

j=1 xj
1
δ )δ
}

with parameter δ = 0.9. This distribution is
widely used in the context of extreme values analysis and differ from the classical
logistic distribution.

We start with a simple bivariate illustration of the heavy tailed representation
learnt by LHTR. Our goal is to provide insight on how the learnt mapping ϕ acts
on the input space and how the transformation affects the definition of extremes
(recall that extreme samples are defined as those samples which norm exceeds an
empirical quantile).

Labeled samples are simulated from a Gaussian mixture distribution with two
components of identical weight. The label indicates the component from which
the point is generated. LHTR is trained on 2250 examples and a testing set of size
750 is shown in Figure 3.1. The testing samples in the input space (Figure 3.1(a))
are mapped onto the latent space via ϕ (Figure 3.1(c)) In Figure 3.1(b), the ex-
treme raw observations are selected according to their norm after a component-
wise standardisation of Xi. The extreme threshold t is chosen as the 75% empiri-
cal quantile of the norm on the training set in the input space. Notice in the latter
figure the class imbalance among extremes. In Figure 3.1(c), extremes are selected
as the 25% samples with the largest norm in the latent space. Figure 3.1(d) is sim-
ilar to Figure 3.1(b) except for the selection of extremes which is performed in the
latent space as in Figure 3.1(c). On this toy example, the adversarial strategy ap-
pears to succeed in learning a code which distribution is close to the logistic target,
as illustrated by the similarity between Figure 3.1(c) and Figure 3.2.In addition,
the heavy tailed representation allows a more balanced selection of extremes than
the input representation.

We next compare the performance of three models on NLP data. The baseline
NN model is a MLP trained on BERT. The second model LHTR1 is a variant of
LHTR where a single MLP (C) is trained on the output of the encoder ϕ, using all
the available data, both extreme and non extreme ones. The third model (LHTR)
trains two separate MLP classifiers Cext and Cbulk respectively dedicated to the
extreme and bulk regions of the learnt representation ϕ. All models take the same
training inputs, use BERT embedding and their classifiers have identical structure.

Comparing LHTR1 with NN model assesses the relevance of working with
heavy-tailed embeddings. Since LHTR1 is obtained by using LHTR with Cext =
Cbulk, comparing LHTR1 with LHTR validates the use of two separate classifiers so
that extremes are handled in a specific manner. As we make no claim concerning
the usefulness of LHTR in the bulk, at the prediction step we suggest working with
a combination of two models: LHTR with Cext for extreme samples and any other
off-the-shelf ML tool for the remaining samples (e.g. NN model).
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Figure 3.1 – 3.1(a): Bivariate samples Xi normally distributed and designed for
binary classification, in the input space. 3.1(b): Xi’s in the input space with ex-
tremes from each class selected in the input space. 3.1(c): Latent space represen-
tation Zi = ϕ(Xi). Extremes of each class are selected in the latent space. 3.1(d):
Xi’s in the input space with extremes from each class selected in the latent space.

In our experiments we rely on two large datasets from Amazon (231k reviews)
McAuley and Leskovec (2013) and from Yelp (1,450k reviews) Yu et al. (2014);
Liu et al. (2015). Reviews, (made of multiple sentences) with a rating greater than
or equal to 4

5
are labeled as +1, while those with a rating smaller or equal to 2

5

are labeled as −1. The gap in reviews’ ratings is designed to avoid any overlap
between labels of different contents.

Results. To illustrate the generalization ability of the proposed classifier in the
extreme regions we consider nested subsets of the extreme test set Ttest, T λ = {z ∈
Ttest, ‖z‖ ≥ λt}, λ ≥ 1. For all factor λ ≥ 1, T λ ⊆ Ttest. The greater λ, the fewer
the samples retained for evaluation and the greater their norms. On both datasets,
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Figure 3.2 – Illustration of the distribution of the angle Θ(X) obtained with bi-
variate samples X generated from a logistic model with coefficient of dependence
δ = 0.9 Non extreme samples are plotted in gray, extreme samples are plotted in
black and the angles Θ(X) (extreme samples projected on the sup norm sphere)
are plotted in red. Note that not all extremes are shown since the plot was trun-
cated for a better visualization. However all projections on the sphere are shown.

LHTR1 outperforms the baseline NN model(see the cited paper for details), which
shows the improvement offered by the heavy-tailed embedding on the extreme
region. In addition, LHTR1 is in turn largely outperformed by the classifier LHTR,
which proves the importance of working with two separate classifiers. Finally
the classification scores of the proposed model respectively on the bulk region,
tail region and overall shows that using a specific classifier dedicated to extremes
improves the overall performance.
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Chapter 4

Dimensionality reduction

When monitoring a multivariate random vector X = (X1, . . . , Xd), the dis-
tributional structure of the tail is of particular importance due to the potentially
disastrous impact of tail events involving several variables, for many applications
ranging from insurance and finance to environmental risk management, network
surveillance (Finkenstadt and Rootzén, 2003; Smith, 2003) or anomaly detection
(Clifton et al., 2011; Lee and Roberts, 2008). As explained in Section 2.2.1, the
angular measure Φ encapsulates key information regarding the structure of such
extremes since after a suitable marginal standardization as in (2.4) and appropriate
regular variation assumptions, the standardized vector V satisfies

P (θ(V ) ∈ A | ‖V ‖ > r) ≈ cΦ(A)

for some normalizing constant c and all measurable subset of the sphere S+ such
that Φ(∂A) = 0. As it is usually the case in multivariate statistics, estimators of Φ
or any other summary of the tail dependence structure such as the STDF are prone
to suffer from the curse of dimensionality as d increases. In particular, most para-
metric models available for Φ or l (see e.g. Coles and Tawn (1991); Fougères et al.
(2009); Cooley et al. (2010); Sabourin and Naveau (2014)) have been designed for
the moderate dimensionality case, and existing proofs of asymptotic normality of
the non parametric version of Φ are only available in dimension d = 2 (Einmahl
et al. (2001),Einmahl and Segers (2009)) with techniques of proofs that do not
allow for an easy extension to the general d-dimensional setting. This chapters
gathers three lines of work aiming at reducing the dimensionality of the tail esti-
mation problem.

Section 4.1 presents the main findings of the Goix et al. (2016) and Goix
et al. (2017), the former being a short version of the latter which does not take
into account marginal uncertainty. The idea behind these papers is that in high
dimension (think e.g. of the discrete output of a climate model, where each Xj

is the value of a physical field at location i), some subgroups of components, say
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{Xj, j ∈ cm}, m = 1 . . . ,M are much likelier to exceed simultaneously a large
threshold than others. In a regular variation setting, this qualitative feature can be
formalized as the fact that the angular measure concentrates on a relatively small
number M (compared to 2d) of subcones of the positive orthant Rd

+. In Goix et al.
(2016, 2017) the family of such subcones is retrieved by empirical estimation of a
thickened version of these sets. Non-asymptotic guarantees are derived using an
extension of the concentration inequalities for the STDF presented in Section 2.2
to the empirical measure of the latter thickened sets.

This strategy is not always successful, in particular when the empirical angu-
lar measure spreads a small amount of mass onto a large number of subcones.
The main purpose of Chiapino and Sabourin (2016); Chiapino et al. (2019b) (Sec-
tion 4.2) is to overcome this issue by a clustering strategy which is similar in
spirit to the apriori algorithm (Agrawal et al. (1994)). In Chiapino et al. (2019b)
the asymptotic distribution of the stopping criterion for the algorithm proposed
in Chiapino and Sabourin (2016) is derived by leveraging the results of Einmahl
et al. (2012) on the asymptotic distribution of the empirical STDF. In addition
alternative criteria are proposed which are based on a multivariate version of the
coefficient of tail dependence (Ledford and Tawn (1996); Ramos and Ledford
(2009); De Haan and Zhou (2011); Eastoe and Tawn (2012)) in order to provide
asymptotic statistical guarantees in a Neyman-Pearson framework.

Finally Section 4.3 presents an alternative approach proposed in the accepted
paper Drees and Sabourin (2021) which consists in applying Principal Component
Analysis (PCA) to a suitably rescaled version of a regularly varying vector. We
show in the cited reference that doing so, one recovers a good approximation of
the support of µ, in the sense that the excess of reconstruction risk for the square
error loss is bounded from above with high probability for finite sample size.
Blanchard et al. (2007) provide such guarantees for standard PCA and our analysis
follows their footsteps while using specific concentration tools for rare classes,
namely a Bernstein-type concentration inequality from McDiarmid (1998) already
mentioned in Section 2.1.

As hinted in the introduction, dimension reduction in multivariate extremes
has drawn considerable attention in the past few years and various trails have been
followed towards this end: Simpson et al. (2020) propose a an alternative to Goix
et al. (2016, 2017)’s method based on modeling the regular variation indices of
each subcone, Meyer and Wintenberger (2019) propose in an unpublished paper
an alternative definition of sparsity with convenient algorithmic features. The PCA

strategy has been investigated by Cooley and Thibaud (2019) with illustrations on
financial and precipitation data. Several clustering approaches have been proposed
(Chautru et al. (2015), Janßen and Wan (2020), Fomichov and Ivanovs (2020)).
In a quite different spirit, graphical models can be used to seek sparsity patterns in
the dependence graph at extreme levels, see e.g. Engelke and Hitz (2020). Finally
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Engelke and Ivanovs (2020) propose an extensive review of the state-of-the art
dimension reduction strategies available for multivariate extremes.

4.1 Sparse representation of multivariate extremes
The motivating assumption behind Goix et al. (2016, 2017) is that the depen-

dence structure of extremes is such that
(i) Only a small number of groups of components may be concomitantly extreme,
so that only a small number of hyper-cubes (those corresponding to these subsets
of indexes precisely) have non zero mass (the adjective small is relative to the total
number of groups 2d).
(ii) Each of these groups contains a limited number of coordinates (compared to
the original dimensionality), so that the corresponding hyper-cubes with non zero
mass have small dimension compared to d.

These informal assumptions can be made rigorous as follows. In the remaining
of this section the norm we consider is the infinity norm, ‖ · ‖ = ‖ · ‖∞, and the
positive orthant S+ of the sphere and the angular measure are defined accordingly.
When clear from the context, the comparison operators ≤,≥, <,> are those of
the partial ordering on Rd: for vectors x, y ∈ Rd write x ≤ y if xj ≤ yj for all
j ∈ {1, . . . , d}. We introduce the truncated subcones of Rd

+

Ca = {v ≥ 0, ‖v‖∞ ≥ 1, vj > 0 for j ∈ a, vj = 0 for j /∈ a}. (4.1)

One remarkable property of the Ca’s is that they form a partition of the truncated
positive orthant: for ∅ 6= a 6= b ⊂ {1, . . . , d}, Ca ∩ Cb = ∅ and

⋃
∅6=a⊂{1,...,d} Ca =

{x ∈ Rd
+ : ‖x‖ ≥ 1}. Let Ωa denote the intersection of Ca and S+. Then we

clearly have µ(Ca) = Φ(Ωa) for any ∅ 6= a ⊂ {1, . . . , d} and the partitioning
property of the Ca’s passes on to the Ωa’s. Hence, one may naturally decompose
the exponent measure as

µ =
∑

∅6=a⊂{1,...,d}

µa, (4.2)

where each component µa is concentrated on the untruncated cone generated by
Ωa. Similarly, we may write Φ =

∑
∅6=a⊂{1,...,d}Φa , where Φa = Φ|Ωa . Then

‘µa 6= 0’ means that conditioned upon the event ‘R(V ) is large’ (i.e. , an excess of
a large radial threshold), the components Vj(j ∈ a) may be simultaneously large
while the other Vj’s (j /∈ a) are small, with non negligible probability. This is an
easy consequence of the definition (2.5), together with the fact that even though
Ca may not be a continuity set of the exponent measure µ, it holds (Lemma 1 from
Goix et al. (2017))that µ(Ca) = limε→0 µ(Rε

a) where Rε
a is a thickened version of
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Ca, namely

Rε
a = {v ≥ 0, ‖v‖ ≥ 1, vj > ε for j ∈ a, vj ≤ ε for j /∈ a}. (4.3)

Each index subset a thus defines a specific direction in the tail region. Note that
the Rε

a’ form a partition of the truncated positive orthant, just as the Ca’s do. Fig-
ures 4.1 and 4.2 below illustrate the different objects introduced thus far.

Figure 4.1 – Truncated cones in 3D Figure 4.2 – Truncated ε-rectangles
in 2D

The aim of Goix et al. (2016, 2017) is twofold. First, recover a rough approx-
imation of the support of Φ based on the partition {Ωa, a ⊂ {1, . . . , d}, a 6= ∅},
that is, determine which Ωa’s have nonzero mass, or equivalently, which µ′as (resp.
Φa’s) are nonzero. This support estimation is potentially sparse in the sense that
only a small number of Ωa may have non-zero mass and the latter may possibly be
of low dimensionality (if the dimension of the sub-cones Ωa with non-zero mass is
low). The second objective is to investigate how the exponent measure µ spreads
its mass on the Ca’s, the theoretical quantity µ(Ca) indicating to which extent ex-
treme observations may occur in the ‘direction’ a for ∅ 6= a ⊂ {1, . . . , d}.

In a word, the goal is to recover the (2d − 1)-dimensional unknown vector

M = {µ(Ca) : ∅ 6= a ⊂ {1, . . . , d}} (4.4)

from X1, . . . , Xn
i.i.d.∼ P and to build an estimator M̂ such that

‖M̂ −M‖∞ = sup
∅6=a⊂{1, ..., d}

|M̂(a)− µ(Ca)|

is small with large probability. These two goals are achieved using empirical ver-
sions of the angular measure evaluated on the ε-thickened rectangles Rε

a. The
following regularity conditions are required in addition to the continuity of mar-
gins (Assumption 2.1):

Assumption 4.1. Each component µa of (4.2) is absolutely continuous with re-
spect to Lebesgue measure dxa on Ca.
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Assumption 4.1 has a very convenient consequence regarding Φ (Lemma 2
from Goix et al. (2017)):

• Φ is concentrated on the (disjoint) faces

Ωa,j0 = {x : ‖x‖ = 1, xj0 = 1, 0 < xj < 1 for j ∈ a \ {j0}
xj = 0 for j /∈ a }

for j0 ∈ a, ∅ 6= a ⊂ {1, . . . , d}.
• The restriction Φa,j0 of Φ to Ωa,j0 is absolutely continuous w.r.t. the Lebesgue

measure dxa\j0 on the cube’s faces, whenever |a| ≥ 2.

Thus the angular measure Φ decomposes as Φ =
∑

a

∑
i0∈a Φa,i0 and that there

exist densities dΦa,i0/ dxari0 , |a| ≥ 2, i0 ∈ a, such that for allB ⊂ Ωa, |a| ≥ 2,

Φ(B) = Φa(B) =
∑
j0∈a

∫
B∩Ωa,j0

dΦa,j0

dxarj0
(x) dxa\j0 .

In order to formulate the next assumption, for |a| ≥ 2, we set

Ma = sup
j∈a

sup
x∈Ωa,j

dΦa,j

dxa\j
(x).

Assumption 4.2. (SPARSE SUPPORT) The angular density is uniformly bounded
on S+ (∀|a| ≥ 2, Ma < ∞), and there exists a constant M > 0, such that we
have

∑
a⊂{1,...,d},|a|≥2Ma < M .

We show that in the situation whereM is most informative, i.e. when the an-
gular density is constant on each subface Ωa, the constant M is moderate, namely
M ≤ d. Assumptions 4.1 and 4.2 are not necessary to prove a preliminary result
on a class of rectangles. However, they are required to bound the bias induced by
the tolerance parameter ε, in particular in the main result of the paper.

Since the marginal distributions Fj are unknown, we classically consider the
empirical counterparts of the Vi’s, V̂i = (V̂i,1, . . . , V̂i,d) for all i ∈ {1, . . . , n}, as
standardized variables obtained from a rank transformation (instead of a probabil-
ity integral transformation),

V̂i =

((
1− F̂1(Xi,1)

)−1

, . . . ,
(

1− F̂d(Xi,d)
)−1
)
,

where F̂j(x) = (1/n)
∑n

i=1 1{Xi,j<x}. The empirical probability distribution of
the rank-transformed data is then given by P̂n = (1/n)

∑n
i=1 δV̂i . A natural em-

pirical version of µ is defined as

µn(A) = (n/k)P̂n((n/k)A) =
1

k

n∑
i=1

1{V̂i ∈ (n/k)A} . (4.5)
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Our non-parametric estimator M̂(a) ofM(a) = µ(Ca) is then

M̂(a) = µn(Rε
a), ∅ 6= a ⊂ {1, . . . , d}. (4.6)

Figure 4.3 illustrates the estimation strategy in dimension 2.

Figure 4.3 – Estimation procedure

We decompose the error as

‖M̂ −M‖∞ = max
∅6=a⊂{1,...,d}

|µn(Rε
a)− µ(Ca)|

≤ max
∅6=a⊂{1,...,d}

|µ− µn|(Rε
a) + max

∅6=a⊂{1,...,d}
|µ(Rε

a)− µ(Ca)| .

(4.7)

The second term on the right-hand side of the above display is a bias term stem-
ming from the ε-thickening of the truncated cones. It is controlled using the reg-
ularity assumptions regularity assumptions 4.1 and 4.2. As for the first term, an
inspection of the above definitions together with those of the STDF and its em-
pirical counterpart shows that the latter may be defined as l(x) = µ([0, x−1]c)
and its empirical counterpart is, up to negligible terms of order O(1/k), ln(x) =
µn[0, x−1]c. Thus the guarantees obtained in Chapter 2 concern the maximal de-
viations sup1/T≤x |µn − µ| ([0, x]c). In Goix et al. (2017) these guarantees are
extended to a larger class of rectangles, the intersection of which with the sphere
S includes the thickened cones Rε

a. Here, the tolerance parameter ε plays the
same role as 1/T in the analysis of the empirical STDF. Thus, the maximal de-
viations in the first term of the sum is controlled with an upper bound of order

O(d
√

ln(d/δ)
εk

+ bias(n/k, ε)) where bias(t, ε) accounts for the difference between
the distribution of V above level t > 0 and the measure µ evaluated on rectangles,
namely

bias(t, ε) = max
x,z≥ε/2

max
a ⊂ {1,...,d}

a6=∅

µ(Ra,x,z)− tP (V ∈ tRa,x,z) (4.8)
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where for ∅ 6= a ⊂ {1, . . . , d} and x, z ∈ Rd
+,

Ra,x,z = {y ∈ Rd
+ : ∀j ∈ a, yj ≥ xj and ∀j ∈ {1, . . . , d} \ a, yj < zj}.

We can now state the main result of the paper, revealing the accuracy of the
estimate (4.6).

Theorem 4.1. Suppose that Assumptions 2.1, 4.1 and 4.2 are satisfied. There is
an universal constant C > 0 such that for every n, k, ε, δ verifying δ ≥ e−k,
0 < ε < 1/2 and ε ≤ 2/(7(1 + ln(d)/k)), the following inequality holds true with
probability greater than 1− δ:

‖M̂ −M‖∞ ≤ Cd

(√
1

εk
ln
d

δ
+Mdε

)
+ 4 bias (n/k, ε).

Notice that 7(1 + ln(d)/k)/2 is smaller than 4 as soon as ln(d)/k < 1/7, so that
a sufficient condition on ε is ε < 1/4. The term Mdε is also a bias term, which
stems from considering ε-thickened rectangles. It depends linearly on the sparsity
constant M defined in Assumption 4.2.

For the purpose of dimensionality reduction and anomaly detection, the goal
is to obtain a hopefully short list of subsets a such thatM(a) 6= 0. Even though
Theorem 4.1 establishes satisfactory guarantees on the supremum norm ‖M̂ −
M‖∞ it does not imply that the estimate M̂ should be sparse (i.e. with many null
entries) even thoughM is so. A natural way around is to threshold the estimate
M̂ to a suitably chosen level m > 0 and to declare as zero any entry M̂(a) < m.
Doing so is equivalent (up to a bias term) to solving a risk minimization problem
with an L1 penalization term, see Remark 5 in Goix et al. (2017). Goix et al.
(2016, 2017) propose an algorithm named DAMEX taking as input training data
X1, . . . , Xn, together with hyper-parameters ε, k,m, and returning a thresholded
list {M̂(a) : a ⊂ {1, . . . , d},M̂(a) > m}. The algorithm is particularly well
suited to large datasets since its complexity is of order O(dn ln(n)). Experimental
results on real and simulated data demonstrate the usefulness of the proposed
approach. Chapter 5 details at length how DAMEX can be used for anomaly
detection.

Finally, as it is the case in the previous chapters we have left the choice of
hyper parameters (here, k, ε,m) outside our scope. Investigating the accuracy of
validation strategies based on splitting the sample is part of my research perspec-
tives.
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4.2 Subspace clustering and hypothesis testing
Despite promising results on particular datasets described in Goix et al. (2016,

2017), DAMEX fails to recover a meaningful dependence structure in the tails
when the dataset does not exhibit a clear-cut sparsity pattern. This observation is
the starting point of Chiapino and Sabourin (2016), in which we propose a feature
clustering strategy to circumvent this issue. In Chiapino and Sabourin (2016) the
quantity of interest is river daily water-flow recorded at 92 locations of the French
river system form 1969 to 2008, which results after preprocessing into n = 14610
records. For this dataset, the subsets of components a ⊂ {1, . . . , d} impacted by
extreme events vary from one event to another, DAMEX thus finds a very large
number of subsets to be dependent, but not significantly so, (i.e. 0 < M̂(a)� 1),
thus no sparsity pattern emerges. However one remarkable feature of this dataset
is that many subsets of variables a ⊂ {1, . . . , d} such that M̂(a) > 0, form clus-
ters in the sense that their symmetric difference has small cardinality. In practice,
this means that several distinct extreme events have impacted ‘almost’ the same
locations. Our paper proposes a methodology enabling to cluster together such
‘close-by’ subsets. This is done by relaxing the constraint in Goix et al. (2016,
2017)’s approach that ‘features not in a take small values’ when constructing the
representation of the dependence structure. The output of the CLEF algorithm is
an alternative representation of the dependence structure which remains usable in
this ‘weakly sparse’ context. Namely, the aim of CLEF is to recover the maximal
subsets a ⊂ {1, . . . , d} (for the inclusion order), such that the probability of an ex-
treme event impacting concomitantly all components Xj, j ∈ a is non negligible,
in the sense that the associated joint tail coefficient χa is non zero, where

χa = lim
t→∞

tP (∀j ∈ a : Vj > t) = µ({x ∈ [0,∞)d | ∀j ∈ a : xj > 1}). (4.9)

In the bivariate case χ1,2 is the upper tail dependence coefficient denoted by χ in
Coles et al. (1999). As shown in Chiapino and Sabourin (2016) (Lemma 1), the
maximal subsets a such that χa > 0 are the same as the maximal subsets a such
thatM(a) > 0, thus the problem considered here coincides to some extent with
the one considered in Goix et al. (2016, 2017). On the other hand it shares similar-
ities with that of frequent itemsets mining and the Apriori algorithm introduced by
Agrawal et al. (1994), see also Gunopulos et al. (2003). Indeed, encoding as ‘1’
any value above a specified threshold and as ‘0’ any value below this threshold,
CLEF recovers the groups of items (= components) for which concomitant ‘1’
values are frequent. The combinatorial issue that arises with possibly 2d − 1 sub-
sets is circumvented in Apriori (see also a subset clustering method proposed in
Agrawal et al. (2005)) by considering subsets of increasing sizes, letting a subset
‘grow’ until its frequency in the database is not significant anymore. CLEF pro-
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ceeds in a similar fashion and has a natural interpretation in terms of multivariate
EVT.

Since χa ≤ χb as soon as a ⊃ b, any positive tolerance level with which we
would like to compare an estimate of χa should depend on a and in particular
be decreasing as a function of the cardinality |a|. To circumvent this issue, Chi-
apino and Sabourin (2016) consider for a such that |a| ≥ 2 the conditional tail
dependence coefficient

κa = lim
t→∞

P
[
∀j ∈ a : Vj > t

∣∣∣ ∑j∈a 1{Vj > t} ≥ |a| − 1
]
, (4.10)

which is the limiting conditional probability that all variables in a exceed a large
threshold given that all but at most one already do. In contrast to χa, the coefficient
κa has no particular reason to decrease as a function of |a|. Note that χa = µ(Γa)
while κa = µ(Γa)/µ(∆a) = χa/µ(∆a) where Γa = {x ∈ [0,∞)d | ∀j ∈ a :
xj > 1} is a subset of ∆a = {x ∈ [0,∞)d |

∑
j∈a 1{xj>1} ≥ |a| − 1}, provided

|a| ≥ 2. In words, ∆a is the set of vectors x ∈ [0,∞)d such that xj ≥ 1 for
all but at most one j ∈ a. Another way to see ∆a is as the union of the sets
Γa\{j} = {x | ∀i ∈ a \ {j} : xj ≥ 1} over all j ∈ a. If µ(∆a) = 0, then
µ(Γa) = 0 and also µ(Γa\{j}) = 0 for all j ∈ a, and in that case, we define
κa = 0.

In CLEF (Chiapino and Sabourin, 2016) summarized in Algorithm 1 below,
the criterion to decide whether χa > 0 or not is that κ̂a ≥ C, where C is a user-
defined tolerance level, κ̂a = µn(Γa)/µn(∆a), and µn is the empirical exponent
measure (4.5).

The level C can be chosen independently of a. Still, its choice is somewhat
arbitrary, and in particular, the user has no control of false positives. Another
popular summary of the tail dependence of components Xj, j ∈ a is the extremal
coefficient θa Smith (1990); Coles (1993); Schlather and Tawn (2002, 2003),

θa = lim
t→∞

tP (∃j ∈ a : Vj > t) = µ({v ∈ [0,∞)d | ∃j ∈ a : vj > 1}), (4.11)

The joint tail coefficients χa and the extremal coefficients θa are related via the
inclusion–exclusion formula, a property which is exploited in Chiapino et al.
(2019b) to derive the asymptotic distribution of the stopping criterion in CLEF
κ̂a provided that κa 6= 0. Indeed Einmahl et al. (2012, Theorem 4.6) find the weak
limit of the STDF empirical process

√
k(ln − l) on [0, T ]d for any T > 0 and the

following conditions stem from the cited article.

Assumption 4.3 (Uniform tail convergence). There exists γ > 0 such that, uni-
formly in x ∈ [0, 1]d with

∑d
j=1 xj = 1, we have

t−1P (∃j = 1, . . . , d : Fj(Xj) > txj)− l(x) = O(tγ), t→∞.
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Algorithm 1 CLEF (CLustering Extreme Features)
Input: Tolerance parameter C > 0.

STAGE 1: constructing the collection M̂max of tail-dependent groups.
Step 1: Put Â1 = {{1}, . . . , {d}} and S = 1.
Step s = 2, . . . , d: If Âs−1 = ∅, end STAGE 1. Otherwise:

• Generate candidates of size s:
A′s = {a ⊂ {1, . . . , d} : |a| = s and a \ j ∈ Âs−1 for all j ∈ a}.
• Put Âs =

{
a ∈ A′s : κ̂a > C

}
.

• If Âs 6= ∅, put S = s.

Output: M̂ = ∅ if S = 1 and M̂ =
⋃S
s=2 Âs if S ≥ 2.

STAGE 2: pruning, keeping maximal groups a only.
If S = 1, then M̂max = ∅. Otherwise:
Initialization: M̂max ← ÂS .
for s = (S − 1) : 2,

for a ∈ Âs,
If there is no b ∈ M̂max such that a ⊂ b, then M̂max ← M̂max ∪ {a}.

Output: M̂max

Assumption 4.4 (Moderate k). The sequence k = k(n) satisfies k = o(n2γ/(1+2γ))
as n→∞, with γ > 0 as in Condition 4.3.

Assumption 4.5 (Smoothness). For all j ∈ {1, . . . , d}, the partial derivative
∂jl = ∂l/∂xj exists and is continuous on the set {x ∈ [0,∞)d | xj > 0}.

Given the importance of the joint tail coefficient (4.9) for the problem at hand
we introduce the joint tail dependence function ra : [0,∞]a \ {∞} → [0,∞),
where ∞ = (∞, . . . ,∞), given by

ra(x) = lim
t→0

t−1P (∀j ∈ a : Vj > 1/xj) = µ({y | ∀j ∈ a : yj > 1/xj}) (4.12)

The empirical counterpart of ra is defined as r̂a(x) = µn({y | ∀j ∈ a : yj >
1/xj}), where µn is the same as in (4.5). We consider Hoffmann-Jørgensen weak
convergence in metric spaces as in van der Vaart (1998); van der Vaart and Wellner
(1996); notation . We work in the metric space L∞(E) of bounded, real func-
tions f on an arbitrary set E, the metric being the one induced by the supremum
norm, ‖f‖∞ = supx∈E|f(x)|

Einmahl (1997) and Einmahl et al. (2012) characterize the weak limit of the
empirical process

√
k(ln − l)(x) in terms of a centered Gaussian process W in-

dexed by the Borel sets of [0,∞]d \ {∞} bounded away from ∞ with covariance
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function
E (W (A)W (B)) = Λ(A ∩B). (4.13)

where the measure Λ is the image measure of the exponent measure under the
mapping i : x 7→ 1/x, the inverse operation being understood componentwise,
Λ = µ ◦ i−1. Note that W (∅) = 0 almost surely. For ∅ 6= a ⊂ {1, . . . , d} and
x ∈ [0,∞)a, write

Wa(x) = W ({y ∈ [0,∞]d | ∀j ∈ a : yj < xj}).

Leveraging Einmahl et al. (2012)’s result through the inclusion-exclusion formula
and the Delta method we obtain

Proposition 4.2. Let Xi = (Xi,1, . . . , Xi,d), for i ∈ {1, . . . , n}, be an indepen-
dent random sample from P , having continuous margins (Assumption 2.1) and
satisfying (2.5). Let k = k(n) → ∞ as n → ∞, while k(n) = o(n). If Condi-
tions 4.3, 4.4 and 4.5 hold, then, for T > 0, in the product space

∏
∅6=a⊂{1,...,d} L

∞([0, T ]a),
we have, as n→∞, the weak convergence

√
k {r̂a(x)− ra(x)} Wa(x)−

∑
j∈a

∂jra(x)W{j}(xj) = Za(x). (4.14)

The asymptotic normality of the vector
√
k (κ̂a − κa)∅6=a⊂dd follows (Proposi-

tion 2 in Chiapino et al. (2019b)), and the asymptotic variance can be consistently
estimated provided it is non zero.

If χa = 0 (or κa = 0), the limit distributions of the statistics
√
k(χ̂a − χa)

and
√
k(κ̂a − κa) are degenerate at zero. We therefore have no control on the

asymptotic type-I error rate of tests based on those statistics under H0 : κ0 = 0.
Instead we define a CLEF stopping criterion in terms of a test of H0 : κa ≥ κmin

versus H1 : κa < κmin, in terms of a user-defined level κmin > 0. Again the
choice of κmin is somewhat arbitrary; in our simulation experiments we choose
κmin = 0.08.

To overcome the issue of the choice of κmin we also consider alternative
CLEF stopping criteria based on estimators of the coefficient of tail dependence
ηa ∈ (0, 1], defined in (4.15) below. For bivariate distributions, this coefficient has
been introduced by Ledford and Tawn (1996) and extended by Ramos and Ledford
(2009) in order to model a wide range of situations including asymptotic depen-
dence (χ{1,2} > 0, η{1,2} = 1), and asymptotic independence (η{1,2} < 1) with
positive or negative association depending on the sign of η{1,2} − 1/2. De Haan
and Zhou (2011) and Eastoe and Tawn (2012) proposed and studied a multivariate
extension of ηa for |a| ≥ 3. The model assumption is that there exist ηa ∈ (0, 1]
and a slowly varying function La such that

P (∀j ∈ a : Vj > t) = t−1/ηaLa(t). (4.15)
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Suppose that the limit χa in (4.9) exists and that (4.15) holds. Then χa > 0
implies ηa = 1. The converse is true as well, provided lim inft→∞ La(t) > 0.
Modulo this side condition, which we take for granted, the null hypothesis χa > 0
corresponds to the simple hypothesis ηa = 1. We test the null hypothesis ηa = 1
via multivariate extensions of nonparametric estimators of ηa in Peng (1999) and
Draisma et al. (2004) which are respectively related to the Pickands estimator and
the Hill estimator for the extreme value index of Ta = minj∈a Vj , namely

η̂Pa = log(2)/ log{r̂a(2a)/r̂a(1a)} , (4.16)

η̂Ha =
1

k

k∑
i=1

log
T̂(n−i+1),a

T̂(n−k),a

, where T̂i,a = min
j∈a

V̂i,j, (4.17)

where for t ∈ R the notation ta stands for the constant vector of size |a| with
entries equal to t. The maximum likelihood estimator, also considered in Draisma
et al. (2004), is less suitable to our context due to its relative computational com-
plexity, since the test is destined to be performed on a large number of subsets a of
{1, . . . , d}. See also the review Bacro and Toulemonde (2013) and the references
therein.

The asymptotic normality of
√
k(η̂Pa − 1) (Proposition 4 in Chiapino et al.

(2019b)) follows from Proposition 4.2 and the delta method under the assumption
hat χa > 0. To prove the asymptotic normality of

√
k(η̂Ha − 1) (Proposition

6 in Chiapino et al. (2019b)) we extend to the multivariate setting the proof of
Theorem 2.1 in Draisma et al. (2004) which covers the bivariate case only, and we
provide a general expression for the asymptotic variance. A second-order regular
variation condition is required. Again, the asymptotic variance can be estimated
as soon as it is positive. Since the null limits of the test statistics η̂Pa , η̂

H
a are non-

degenerate under the condition that χa > 0, the asymptotic type-I error rate of the
test can be controlled, with no need to introduce an additional tolerance parameter
κmin.

We end up with three variants of the original CLEF algorithm, named CLEF-
asymptotic, CLEF-Peng and CLEF-Hill, obtained by replacing in Algorithm 1
the condition ‘κ̂a > C’ (under which the components of subset a are consid-
ered as tail-dependent) respectively with κ̂a > κmin − z1−ασ̂κ,a/

√
k, η̂a,P >

1− z1−ασ̂a,P/
√
k, and η̂a,H > 1− z1−ασ̂a,H/

√
k, where α > 0 is the type-I error,

z1−α is the 1−α quantile of a standard normal variable, and σ̂κ,a, σ̂κ,a, σ̂κ,a are the
estimated limit standard deviations of the considered estimators. The performance
of these three variants are compared together with CLEF and DAMEX on simu-
lated and real data. For real data, the ground truth is unknown so an unsupervised
cross-validation procedure is proposed to assess the quality of the output. Ex-
perimental results indicate that the choice of a particular algorithm and its tuning
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parameters should be made according to the particular dataset under considera-
tion, which confirms the importance of cross-validation for model selection in
this context.

4.3 Principal Component Analysis for Multivariate
extremes

We end this chapter with a presentation of the paper Drees and Sabourin
(2021) in which the unmissable PCA strategy for dimension reduction is adapted
to multivariate extremes and an upper bound on the reconstruction error in the
tail is obtained. We consider a (high dimensional) vector X satisfying the regular
variation assumption (2.6), that is, no standardization is required for a limit mea-
sure ν to exist. We denote by α > 0 the regular variation index. A reasonable
assumption is that the support of the limit measure ν is concentrated on a lower
dimensional subspace, meaning that certain linear combinations of the compo-
nents are much likelier to be large than others. Identifying this subspace and thus
reducing the dimension will facilitate a refined statistical analysis. In this work we
apply Principal Component Analysis to a re-scaled version of radially thresholded
observations.

In a classical setting, when ‖X‖ has finite second moments, PCA (Anderson
(1963)) is the method of choice to determine such supporting linear subspaces
if i .i .d . random vectors Xi, 1 ≤ i ≤ n, with the same distribution as X are
observed. Theoretical guarantees obtained so far concern the reconstruction er-
ror (Koltchinskii and Giné (2000); Shawe-Taylor et al. (2005); Blanchard et al.
(2007); Koltchinskii and Lounici (2017); Reiß and Wahl (2020)) or the approxi-
mation error for the eigenspaces of the covariance matrix (Zwald and Blanchard
(2006)), under the assumption that the sample space (or the feature space for
Kernel-PCA) has finite diameter or that sufficiently high order moments exist.

For motivation of our version of PCA, it is useful to keep the following working
hypothesis in mind, although it is not required for most results to hold.

Assumption 4.6. The vector space V0 = span(supp ν) generated by the support
of ν has dimension p < d.

Note that then the points (Xi/t)1{‖Xi‖ > t} are more and more concentrated
on a neighborhood of V0 as t increases, but usually they will not lie on V0. If
the dimension p of V0 is known, then it suggests itself to approximate V0 by the
subspace of dimension p that is ‘closest’ in expectation to these points.

In PCA one measures the closeness by the squared Euclidean distance which
hugely alleviates the optimization problem as one may work with orthogonal pro-
jections in the Hilbert space L2. However, this approach requires finite second
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moments which cannot be taken for granted in the above setting. Indeed, if α < 2
then E(‖Xi‖2) = ∞. Hence, we instead consider a rescaling function θ and the
re-scaled vectors Θi defined by

θ(x) = ω(x)x, x ∈ Rd

Θi = θ(Xi) 1 ≤ i ≤ n,
(4.18)

where ω : Rd → (0,∞) is a suitable scaling function. The most common choice
is ω(x) = 1/‖x‖, leading to Θi on the unit sphere which describes the direction
of Xi, and we focus on this re-scaling when we derive finite sample bounds on the
reconstruction error. Throughout this paper we use the Euclidean norm ‖ · ‖ = ‖ ·
‖2 and S := {x ∈ Rd : ‖x‖ = 1} denotes the associated unit sphere. Consistency
results are proved for more general scaling functions than the projection onto the
sphere, namely those satisfying the homogeneity condition:

∃ β ∈
(

1− α

2
, 1
]
∀λ > 0, x ∈ Rd : ω(λx) = λ−βω(x)

and cω := sup
x∈S

ω(x) <∞,
(4.19)

Before stating our main results we introduce some notation and the ERM setting
adopted in our work. For V a subspace of Rd, denote by ΠV (resp. Π⊥V ) the
orthogonal projection onto V (resp. on the orthogonal V ⊥), or the associated pro-
jection matrix. Let Pt denote the conditional distribution P (X ∈ · | ‖X‖ > t). A
consequence of (2.6) is that Pt converges weakly to P∞ = ν( · )/ν({x : ‖x‖ ≥ 1})
on the complementary set of the unit ball B1(0)c in Rd. For t > 0 we consider the
conditional risk

Rt(V ) := Pt
(
‖Π⊥V θ)‖2

)
= E

(
‖Π⊥V Θ‖2 | ‖X‖ > t

)
(4.20)

and its conditional counterpart for t taken as the empirical quantile t̂n,k of the
norm ‖X‖ at level 1− k/n,

R̂n,k(V ) := R̂t̂n,k
(V ) =

1

k

k∑
i=1

‖Π⊥V Θ(i)‖2 (4.21)

where Θ(i) = θ(X(i)) and the observations are ranked by decreasing order relative
to their norm, ‖X(1)‖ ≥ ‖X(2)‖ ≥ . . . ‖X‖. In the regular variation setting it is
natural to consider also the reconstruction risk at infinity

R∞(V ) := P∞‖ΠV θ − θ‖2 = P∞‖Π⊥V θ‖2. (4.22)

A direct consequence of standard facts from PCA is that the eigen vectors of the
conditional convariance matrix

Σt = E
(
XX> | ‖X‖ > t

)
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determine the best projection subspaces. Namely, considering Vp the set of all
subspaces of Rd of dimension p, and if u1, . . . , ud denote the eigen vectors of Σt

ranked by decreasing order of the associated eigen values, then

V ∗t = span(u1, . . . , up) ∈ argminV ∈Vp Rt(V ).

Similarly, denoting by (û1, ûp) the eigen vectors of the empirical conditional
covariance matrix

Σ̂n,k =
1

k

l∑
i=1

Θ(i)Θ
>
(i) ,

it holds that

V̂n,k = span(û1, . . . , ûp) ∈ argminV ∈Vp R̂n,k(V ).

It is easy to show (Lemma 2.5 from Drees and Sabourin (2021)) that under As-
sumption 4.6, V0 is the unique minimizer of R∞ over Vp, that R∞(V0) = 0 and
that any other subspace V such that R∞(V ) = 0 contains V0. Natural questions
arise: (i) under which conditions and in which sense do the minimizers V ∗t of Rt

converge to V ∗∞, a minimizer of R∞? (ii) What can be said about the empirical
minimizer V̂n of R̂n,k? (iii) Can one obtain uniform non asymptotic bounds of the
deviations of R̂n,k(V ) in order to bound the excess risk R∞(V̂n) − R∞(V ∗∞) (as
sketched in Section 3.1 in the context of classification)? (iv) What is the practical
relevance of this dimension reduction device, e.g. for non-parametric estimation
of the probability of failure regions?

First it is shown (Proposition 2.2 in Drees and Sabourin (2021) that condi-
tion (4.19) on the scaling function combined with weak convergence of Pt towards
P∞ entails that limt→∞ t

2(β−1)Rt(V ) = R∞(V ) for any fixed subspace V ⊂ Rd.
We then endow Vp with the metric induced by the operator norm of the orthog-
onal projection, ρ(V,W ) = |||ΠV −ΠW |||. It can be shown that Vp is compact
w.r.t. ρ and that the normalized conditional risk functions t2(β−1)Rt are uniformly
Lipschitz continuous from which the convergence of the risk minimizers follows
by standard arguments.

Theorem 4.3 (Theorem 2.5 in Drees and Sabourin (2021)). Suppose that ω satis-
fies condition (4.19) and that R∞ has a unique minimizer V ∗∞ in Vp. Then, for any
minimizer V ∗t of Rt in Vp, one has

lim
t→∞

ρ(V ∗t , V
∗
∞) = 0.

The consistency of the empirical risk minimizers follows the same line, after
replacing the uniform Lipschitz property of the risk functions with asymptotic
equicontinuity in probability of a rescaled version of the empirical risks R̂n,k.
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Theorem 4.4 (Theorem 2.7 in Drees and Sabourin (2021)). If ω satisfies condi-
tion (4.19) and R∞ has a unique minimizer V ∗∞ in Vp, then ρ(V̂n, V

∗
∞) → 0 in

probability for all minimizers V̂n of R̂n,k in Vp.

Under the stronger condition on ω that ω(x) ≤ 1/‖x‖ (thus ‖Θ‖ becomes a
bounded random vector), we derive an upper bound in probability for the devia-
tions of the empirical risk R̂n,k. To do so we adapt the arguments of Blanchard
et al. (2007) to take into account the (small) variance of Θ1{‖X‖ > t} and we
use a Bernstein-like concentration inequality from McDiarmid (1998) which is
already mentioned in Section 2.1.2 as a key ingredient of the proof of the gen-
eral concentration inequality for rare classes (Inequality (2.3)). Denote by tn,k
the 1 − k/n quantile of the norm ‖X‖. We state below a simplified version of
Theorem 3.1 in Drees and Sabourin (2021) which holds in the most intuitive case
ω(x) = 1/‖x‖:

Theorem 4.5 (Uniform risk bound I). If ω(x) = 1/‖x‖, with probability 1− δ,

sup
V ∈Vp

|R̂n,k(V )−Rtn,k(V )| ≤
[p ∧ (d− p)

k

(
1− (k/n) tr(Σ2

tn,k
)
)]1/2

+
[8

k
(1 + k/n) log(4/δ)

]1/2

+
4 log(4/δ)

3k
.

Note that the upper bound in Theorem 4.5 involves a term Σt which cannot be
calculated from the data and can thus not directly be used to construct confidence
intervals for the true reconstruction error Rtn,k(V̂n) or the minimal reconstruction
error infV ∈Vp Rtn,k(V ). Therefore, we derive data-dependent bounds directly from
(a minor improvement of) the bound established by Blanchard et al. (2007). This
result is be applied to the conditional distribution of Θ given ‖X‖ > t and the
resulting bound is to be interpreted conditionally on the numberNt of exceedances
over the chosen threshold t.

Theorem 4.6 (Conditional data-dependent risk bounds, Theorem 3.3 in Drees and
Sabourin (2021) ). If ω(x) ≤ 1/‖x‖ for all ` > 1, u, v > 0,

P
(

sup
V ∈Vp
|R̂t(V )−Rt(V )| ≥

[
(p ∧ (d− p))

( S̃t
`− 1

+
v

`

)]1/2

+ u
∣∣∣Nt = `

)
≤ 2 exp

(
− 2`u2) + exp

(
− b`/2cv2/2

)
with S̃t := N−1

t

∑n
i=1 ‖Θi,t‖4 − tr

(
(N−1

t

∑n
i=1 Θi,tΘ

>
i,t)

2
)

and bxc := max{k ∈
Z : k ≤ x}.

47



In our simulation study, we we examine the impact of PCA on the standard
non-parametric estimator of the angular probability measure related to the limit
measure ν, i.e. H(A) = ν({tθ, θ ∈ A})/ν(B0(1)c), based on the k largest
observations

Ĥn,k :=
1

k

n∑
i=1

δθtn,k (Xi).

(with θ(x) = x/‖x‖) We investigate how Ĥn,k is influenced if the data is first
projected onto a lower dimensional subspace using PCA:

ĤPCA
n,k :=

1

k

n∑
i=1

δθtn,k (Π⊥VXi)
.

Here, V denotes the subspace picked by PCA based on the same number k of
largest observations. It turns out that sometimes it is advisable to use a smaller
number k̃ for the PCA procedure; the resulting estimator of the spectral measure
is then denoted by ĤPCA

n,k,k̃
.

We simulate from different models of d-dimensional regularly varying vectors
for which the spectral measure is (approximately) concentrated on a p-dimensional
subspace. Since PCA is equivariant under rotations, w.l.o.g. we assume that this
subspace is spanned by the first p unit vectors. We consider moderate to high di-
mensions (respectively (d = 5, p = 2) and (d = 100, p = 5) ). The performance
of the spectral estimators is measured in terms of the errors of the resulting esti-
mators of the following probabilities in the limit model, which can be expressed
in terms of the angular measure:

(i) limu→∞ P(p−1
∑

1≤j≤pXj/‖X‖ > t(i) | ‖X‖ > u)

= H{x : p−1
∑p

j=1 xj > t(i)} for some t(i) ∈ (0, p−1/2)

(ii) limu→∞ P(min1≤j≤pXj > u,maxp+1≤j≤dXj ≤ u | ‖X‖ > u)

=
∫ (

(min1≤j≤p xj)
α − (maxp+1≤j≤d xj)

α
)+
H(dx)

(iii) limu→∞ P(X1 > u | max1≤j≤dXj > u)
=
∫

(x1)αH(dx)/
∫

(max1≤j≤p xj)
αH(dx)

(iv) limu→∞ P(min1≤j≤dXj > u | ‖X‖ > u) =
∫

(min1≤j≤d xj)
αH(dx)

The first probability is related to the c.d.f. of the mean contribution of the first
p coordinates to the norm of the random vector, thus quantifying, in some sense,
how strongly the norm is spread over the coordinates. Probability (ii) indicates
how likely it is that the first p components are all large, while this is not true for
any of the other components, given that the norm of the vector is large. Proba-
bility (iii) specifies how likely it is that the first component is extreme, given that
any component is extreme. In a financial context, such probabilities are used to
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quantify how strongly a specific market participant is exposed to a failure of any
market participant. Finally, probability (iv) specifies the minimal contribution of
any coordinate to the norm. Note that under Hypothesis 1 this probability equals
0. The other true values are determined by Monte Carlo simulations.

The marginal distributions are chosen as Fréchet with c.d.f. exp(−x−α), α ∈
{1, 2}, and α is assumed to be known since we are interested in the effect of the
PCA procedure on the estimator of the spectral measure, which should not be
compounded with the estimation error of the tail index.

Without dwelling into the details of the experimental result, we jump to their
conclusions here: while the PCA step does not always improve the estimator of
the angular measure, for probability (i) the resulting estimators are superior to
the standard estimator and in most other cases they seem competitive if p̃ (the re-
tained dimension of the projecting subspace) is chosen appropriately. To this end,
experimental results show that the plot of the empirical risk is a very useful tool,
however we have not tried to derive theoretical guarantees concerning the choice
of p̃. The added value of PCA is all the more visible for moderate dimensional
problems. For higher dimensional data, there may be some ambiguity about the
dimension of the subspace onto which the data should be projected. In case of
doubt, it is advisable to choose a higher dimensional subspace, in particular for
the PCA method that uses the same number of largest observations to estimate the
support and to calculate the estimator of the spectral measure. The PCA estimators
that determine the support based only on the largest 10 observations often exhibit
a desirable insensitivity to the choice of largest observations used to estimate the
spectral measure, which makes them easier to apply in practice.
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Chapter 5

Anomaly detection, clustering and
vizualization

What is usually referred to as an anomaly or an outlier in data analysis is
an observation which has been generated by a mechanism which is distinct from
the one having generated the vast majority of other points (the inliers). In other
terms the situation considered is that of a mixture model with highly imbalanced
classes. Depending on the context the goal may be, as in Anomaly Detection (AD)
to separate the anomalies from the rest in a pre-processing step, or on the contrary,
the focus may be on the anomalies themselves, the goal being then to characterize
their distribution through appropriate summaries. The first two sections of this
chapter relate to the former goal, while the third section is related to the latter and
presents a clustering and visualization algorithm dedicated to the anomalies in the
tail.

In AD, the underlying assumption is that anomalies lie in regions of the sample
space where the density on the inliers is low. Most anomaly detection strategies
consist in constructing a score function s : X → R+ representing the degree of
abnormality of a new unlabeled data point xnew. The lower s(xnew), the likelier it
is that xnew is an anomaly. The remaining ingredient to cook-up an AD algorithm
is a user-defined threshold relative to s(x) below which any new point is declared
as abnormal. When analyzed in a Neyman-Pearson framework in the limiting
case where the density of the outliers is uniform on X , the optimal scoring func-
tions are those which are non-decreasing transforms of the density function of the
inliers, so that the scoring function and the density function share the same level
sets. In semi-supervised AD the training data consists of only (or an overwhelming
proportion of) normal instances which are used to select a scoring function within
a class of controlled complexity, so that generalization bounds can be derived.
Numerous algorithms have been proposed, be it in a parametric setting (Barnett
and Lewis (1994); Eskin (2000) or in a non-parametric one, in which case popu-
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lar approaches include estimation of level sets of the inlier density (Breunig et al.
(2000); Schölkopf et al. (2001); Steinwart et al. (2005); Scott and Nowak (2006a);
Vert and Vert (2006), dimensionality reduction (Shyu et al. (2003); Aggarwal and
Yu (2001)), decision trees (Liu et al. (2008); Shi and Horvath (2012)), see also
Chandola et al. (2009) and the references therein. In high dimensional setting,
deep learning strategies have recently been proposed based on auto-encoding ap-
proaches (e.g. in Zhou and Paffenroth (2017)) or adversarial learning (Zenati et al.
(2018)), see also the review Chalapathy and Chawla (2019).

Investigating AD from the view point of Extreme Value Analysis is a natural
idea considering the fact that in many applications the inliers’ distribution is uni-
modal and low density regions and tail regions are the same. In such a case, under
appropriate regularity assumptions and if the problem at hand requires a very low
false alarm rate, EVT can help choosing a scoring function which approximates
well the lowest levels of the density. This simple consideration underlies sev-
eral recent works using uni-variate EVT for AD (Roberts (1999, 2000); Lee and
Roberts (2008); Clifton et al. (2008); Tressou (2008); Clifton et al. (2011); Siffer
et al. (2017); Vignotto and Engelke (2020)). Until recently there has been no AD

algorithm relying on multivariate EVT. In Goix et al. (2016, 2017) and Thomas
et al. (2017) we take a step towards bridging the gap between the practice of AD in
multivariate settings and multivariate EVT, as detailed respectively in sections 5.1
and 5.2 of the present thesis.

5.1 Anomaly detection via dimensionality reduction
of the multivariate tail

In this section we explain how the dimensionality reduction device presented
in Section 4.1 can be used to construct an AD algorithm named DAMEX in Goix
et al. (2016, 2017). In the suggested framework, extreme data are observed values
X such that the norm of their standardization ‖V ‖ is large, denoting by ‖ · ‖
the sup norm ‖ · ‖∞ on Rd throughout. Anomalies among extremes are those
which direction θ(V ) = V/‖V ‖ is unusual, which is an appropriate model for
anomalies in many applications. Recall the summary of the dependence structure
{M(a) = µ(Ca), ∅ 6= a ⊂ {1, . . . , d}} defined through equations (4.1), (4.4) and
its estimator {M̂(a), ∅ 6= a ⊂ {1, . . . , d}} from (4.5), (4.6). For large t ∈ R+

and a fixed measurable set A ⊂ [0,∞)d \ {0} (µ(∂A) = 0), the standardized
regular variation condition (2.5) implies that P (V ∈ tA) ≈ t−1µ(A) = µ(tA).
ConsideringA = Ca is tempting in view of the decomposition (4.2) however since
the Lebesgue measure of Ca is 0 for a 6= {1, . . . , d}, the condition µ(∂Ca) = 0
fails in general. Notice that this is the same argument which underlies the use of
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thickened conesRε
a for estimation purpose in (4.6). Thus M̂a may as well be seen

as an estimator of µ(Rε
a). In addition, doing so cancels out one of the bias terms

in the error bound stated in Theorem 4.1. In this context it seems appropriate
to propose a scoring function sn on the tail region of the standardized variables
{v : ‖v‖ ≥ t} such that for v ∈ Rε

α,

sn(v) = (‖v‖)−1M̂a ≈ P (‖V ‖ > ‖v‖, V ∈ Rε
a) .

Algorithm 2 DAMEX (Detecting Anomalies in Multivariate EXtremes

Input: parameters ε > 0, k = k(n), p ≥ 0.
Compute the marginal standardization function based on ranks

T̂ (x) =
(
1/(1− F̂j(xj))j∈{1,...,d}, x ∈ Rd (5.1)

Standardize the training data V̂i := T̂ (Xi)

Assign to each V̂i the cone Rε
a it belongs to.

Compute M̂(a) from (4.6).
(Optional) Set to 0 any M̂(a) below some small threshold m (e.g. a small
fraction p of the total empirical mass

∑
a M̂(a))

Output 1: (sparse) representation of the dependence structure{
M̂(a) : ∅ 6= a ⊂ {1, . . . , d}

}
.

Output 2: Scoring function

sn(x) := (1/‖T̂ (x)‖∞)
∑
a

M̂(a)1{T̂ (x) ∈ Rε
a}.

Notice that the scoring function issued by DAMEX is not intended to approx-
imate a density function (or any non decreasing transformation of it) of the tail
probability measure µ( · )/µ(B1(0)c), which in pseudo-polar coordinates is pro-
portional to ‖v‖−2 dΦ

dη (θ(v)), where Φ is the angular measure (2.7), η is any ap-
propriate reference measure on S+ (e.g. Φ itself). Instead in DAMEX the radial
contribution is proportional to 1/‖v‖. This choice is in part motivated by the inter-
pretability of such a score in terms of probability of a failure region as discussed
above. Most importantly, in a high dimensional context where we assume that the
support of µ is concentrated on lower dimensional subspaces, there is no universal
(or at least consensual, as it is the case with the Lebesgue measure in moderate di-
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mension) dominating reference measure according to which the anomalies could
be assumed to be distributed.

Experiments have been carried on with five reference AD datasets: shuttle,
forestcover, http, SF and SA. These datasets are available for instance on he UCI
Machine learning repository. The experiments are performed in a semi-supervised
framework (the training set consists of normal data) with various values of the
hyper-parameters. DAMEX significantly improves the performance (both in term
of precision and of ROC curves) in extreme regions for each considered dataset.
One should notice that DAMEX may be combined with any standard AD algo-
rithm to handle extreme and non-extreme data by splitting the input space between
an extreme region and a non-extreme one, then using Algorithm 2 to treat new ob-
servations that appear in the extreme region, and the standard algorithm to deal
with those which appear in the non-extreme region.

5.2 Anomaly detection in moderate dimension using
spherical Mass-Volume sets

The purpose of the paper Thomas et al. (2017) is to promote an anomaly de-
tection algorithm in moderate dimensional multivariate problems based on Multi-
variate EVT. Here, ‘moderate’ means that we may assume that the angular mea-
sure of extremes is concentrated on the interior of the positive orthant of the
unit sphere. This would typically be the case on subspaces indexed by compo-
nents a ⊂ {1, . . . , d} issued from the DAMEX algorithm, such that |a| ≥ 2
and for any b ( a, µ(Cb) = 0. In this work, as in Section 5.1, anomalies are
sought among extreme observations, i.e. among observations which norm –after
standardization– exceeds a large quantile. The main idea consists in applying
a classical multivariate anomaly detection approach, that is based on minimum
volume sets (MV-sets in short) estimation, to the angular component of the stan-
dardized variable. As in previous chapters for v ∈ Rd we use the pseudo polar
decomposition x = r(v)θ(v) with r(v) = ‖v‖ (radius) and θ(v) = ‖v‖−1v (an-
gle) with ‖v‖ = ‖v‖∞ throughout this section. The choice of the sup norm is
mainly dictated by algorithmic reasons as it facilitates the construction of empiri-
cal MV-sets as detailed below. Another incentive for the use of such a norm is that
it facilitates the connection with previous works Goix et al. (2016, 2017).

MV-sets Given a random vector Z taking its values in Z ⊂ Rd with d ≥ 1,
MV-sets correspond to subsets of the feature space Z ⊂ Rd where the probability
distribution P of the random variable Z is most concentrated. More precisely,
given a measure λ(dz) of reference on the space Z equipped with its Borel σ-
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algebra B(Z) and α ∈ (0, 1), a MV-set of level α for Z is any solution Ω∗α of the
problem:

min
Ω∈B(Z)

λ(Ω) subject to P (Z ∈ Ω) ≥ α , (5.2)

generalizing the well-known notion of quantile for 1-dimensional distributions,
refer to Einmahl and Mason (1992); Polonik (1997) for details on minimum vol-
ume set theory and to Scott and Nowak (2006a); Vert and Vert (2006) for related
statistical learning results. State-of-the-art methods for MV-sets estimation and
anomaly detection (e.g. Scott and Nowak (2006a); Schölkopf et al. (2001); Liu
et al. (2008)) are usually sensitive to scaling effects and consider a fixed level
α ∈ (0, 1) in their theoretical analysis (e.g. Scott and Nowak (2006a); Vert and
Vert (2006)) whereas the approach we suggest is concerned with extreme regions
(the level α tends to 1) and is insensitive to scaling effects.

Assume that Z’s distribution P is absolutely continuous w.r.t. λ and denote by
f(z) = dP/dλ(z) the related density. For any α ∈ (0, 1), under the assumption
that the density f is bounded and f(Z) has a continuous distribution Ff , one
may show (Polonik, 1997) that the set Ω∗α = {z ∈ Z : f(z) ≥ F←f (1 − α)}
is the unique solution of the minimum volume set problem (5.2), where for any
c.d.f. K(t) on R, K← denotes the left-continuous inverse K←(u) = inf{t ∈
R : K(t) ≥ u}. For high values of the mass level α, minimum volume sets are
expected to contain the modes of the distribution, whereas their complementary
sets correspond to abnormal observations.

Empirical MV-sets. A mass level α ∈ (0, 1) being preliminarily fixed, estimat-
ing an empirical MV-set consists in building from training data Z1, . . . , Zn an
estimate of a specific density level set Ω∗α by solving a natural statistical counter-
part of problem (5.2):

min
Ω∈G

λ(Ω) subject to Pn(Ω) ≥ α− ψn , (5.3)

where ψn plays the role of a tolerance parameter, and where optimization is re-
stricted to a subset G ofB(Z). The class G is supposed to be rich enough to include
Ω∗α or a reasonable approximation of it. It is ideally made of sets Ω whose volume
λ(Ω) can be efficiently computed or estimated, e.g. by Monte-Carlo simulation.
The empirical distribution based on the training sample (or a smoothed version
of the latter) Pn = (1/n)

∑n
i=1 δzi replaces P and the tolerance parameter Ψn is

chosen of the same order of magnitude as the supremum supΩ∈G |Pn(Ω)−P (Ω)|.
Under usual complexity assumptions on the class G combined with an appropri-
ate choice of ψn, non-asymptotic statistical guarantees for solutions Ω̂α of (5.3)
are given in Scott and Nowak (2006a), together with algorithmic approaches to
compute such solutions.
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MV-sets and multivariate EVT Our approach may be summarized as follows:
Since the angular measure Φ encapsulates the dependence structure of the tail,
recovering MV-sets on the sphere of high mass (i.e. corresponding to high values
of α) for the angular measure Φ gives access to the most probable directions of
extremes. In the case where the angular component alone should be considered for
anomaly detection, those angular MV-sets would allow to pin the complementary
sets as abnormal. In practice, the radial part does play a role (see equation (2.7))
and we define an anomaly score which is a product of a radial score and an angular
score based on a family of nested MV-sets.

Our approach shares similarity with (e.g. Cai et al., 2011), where estimation
of low levels of the density function using multivariate EVT is also considered in
a somewhat different context, that is assuming joint regular variation with a sin-
gle regular variation index as in (2.6). In the cited reference, consistency of the
extreme level sets is established. Here we take a different approach by assum-
ing regular variation of the standardized vector V and working with preliminary
standardized data. Also we obtain non-asymptotic upper bounds concerning the
estimated level sets. Despite this seemingly stronger result our work may not
be seen as an improvement of Cai et al. (2011) in that we do not take into ac-
count the impact of marginal standardization (which amounts to assuming that the
marginal distributions are known). Of course, the feature variables V̂i = T̂ (Xi)
obtained through (5.1) are not independent anymore and analyzing the accuracy
of an estimate of the angular distribution Φ is far from straightforward. However,
it has been shown in Einmahl et al. (2001); Einmahl and Segers (2009) that using
the rank transformed variables V̂i’s instead of the probability integral transformed
ones Vi does not damage the asymptotic properties of the empirical estimator of
the angular measure (in dimension 2, under suitable regularity assumptions). In
arbitrary dimension, as presented in Section 2.2, Goix et al. (2015) have obtained
a similar result for the finite sample case, concerning an alternative characteriza-
tion of the angular measure, which is an integrated version of Φ. Relaxing the
(unrealistic) assumption of known margins without substantial worsening the up-
per bound amounts to establishing concentration results on the empirical angular
measure, which is the subject of ongoing work, see Section 7.1.

We now rigorously formulate the MV-sets statistical problem on the sphere.
Denoting by λd the Lebesgue measure on S+ equipped with its Borel σ-algebra
B(S+), the generic goal in a MV-set context is to recover from training observa-
tions X1, . . . , Xn which are independent copies of the generic heavy-tailed r.v.
X , a solution of the problem minΩ∈B(S+) λd(Ω) subject to Φ(Ω) ≥ α. Note that
α ∈ (0,Φ(S+)), instead of α ∈ (0, 1), as Φ is not a probability distribution.

In practice, the angular measure Φ is an asymptotic object, whereas the data at
hand is non asymptotic. Also, it may be argued from a practical perspective that
our interest lies in large, but non asymptotic regions {x : ‖T (x))‖ > t} where T
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is the transform (2.4). In this work we thus consider the sub-asymptotic angular
measure at finite level t, Φt(Ω) = tP(‖V ‖ > t, V/‖V ‖ ∈ Ω) and notice from
(2.5) and (2.7) that Φt(Ω) → Φ(Ω) as t → ∞ as soon as Φ(∂Ω) = 0. In the
sequel we shall thus consider the modified, non asymptotic optimization problem

min
Ω∈B(S+)

λd(Ω) subject to Φt(Ω) ≥ α . (5.4)

In order to ensure existence and uniqueness of the solution of this optimization
problem, we consider the following assumptions, which are commonly used in
the MV-set literature to ensure the existence and uniqueness of the MV-set opti-
mization problem Polonik (1997).

A1 For any t > 1, the distribution Φt( · ) is absolutely continuous w.r.t. the
Lebesgue measure λd on S+ with density φt. In addition, the r.v. φt(θ(V ))
has no flat parts: ∀c > 0, P{φt(θ(V )) = c} = 0.

A2 The density φt(θ) of Φt( · ) is uniformly bounded:

sup
t>1,θ∈S+

φt(θ) <∞.

Given assumptions A1 and A2 one can show that (5.4) has a unique solution,
given by the density level set B∗α,t = {θ ∈ S+ : φt(θ) ≥ K−1

Φt
(Φ(S+) − α)},

where KΦt(y) = Φt({θ ∈ S+ : φt(θ) ≤ y}).
The general method described next consists in replacing in (5.4) the angular

measure Φt by a sharp estimate, involving a fraction of the original observations
(i.e. the most extreme observations).

Empirical estimation The algorithm we propose to estimate an MV-set of the
distribution of extreme data directions is implemented in three main steps de-
scribed in Algorithm 3. The output is meant to approach a MV-set of the angular
measure Φt for t = n/k, where k ∈ {1, . . . , n} is the number of extreme ob-
servations to be retained along each axis. The choice of k should depend on n,
in the sense that k = o(n) and k → ∞ as n → ∞. The practical choice of k
results from a bias/variance trade-off which is a recurrent issue in extreme values
analysis, that we shall not investigate. In practice, k is chosen in a stability region
of the output, and k = O(

√
n) appears to be a reasonable default choice.

Statistical guarantees Statistical guarantees for the general algorithm 3 and a
practical method for solving the optimization problem (5.5) it involves are detailed
next. from a practical perspective, a crucial advantage of the approach we promote
lies in the compactness of the feature space S+ used to detect abnormal directions.
Our analysis proceeds as if the marginal distributions were known, i.e. as if
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Algorithm 3 Empirical estimation of an angular MV-set

Inputs: Training data set {X1, . . . , Xn}, k ∈ {1, . . . , n}, mass level α,
tolerance ψk(δ), confidence level 1− δ, collection G of subsets of S+

Standardization: Apply the rank-transformation (5.1) to the Xi’s, yielding the
empirically marginally standardized vectors V̂i = T̂ (Xi), i = 1, . . . , n.
Thresholding: Retain the indexes

I =
{
i ∈ {1, . . . , n} : r(V̂i) ≥

n

k

}
=
{
i ∈ {1, . . . , n} : ∃j ≤ d, F̂j(X

(j)
i ) ≥ 1− k/n

}
and consider the angles θi = θ(V̂i) for i ∈ I.
Empirical MV-set estimation: Form the empirical angular measure Φ̂ =
(1/k)

∑
i∈I δθi and solve the constrained minimization problem.

min
Ω∈G

λd(Ω) subject to Φ̂(Ω) ≥ α− ψk(δ) . (5.5)

Output: Estimated MV-set Ω̂α ∈ G of the angular measure Φn/k.

the true transformed variables Vi’s were observables. Controlling the additional
sample error induced by the discrepancy V̂i − Vi is reserved for future work.

The result stated below shows that with high probability over the data set the
empirical MV-set estimated on the extremes is an approximation of the true MV-
set.

Theorem 5.1. Assume that assumptionsA1−A2 are fulfilled by the finite distance
angular measure Φt, t ≥ 1 related to X’s heavy-tailed distribution with λd as
reference measure. Let G be a finite class of sets with cardinality |G|.

Fix a mass level α and δ ∈ (0, 1) and consider the empirical MV-set Ω̂α

solution of (5.5) where the empirical V̂i’s are replaced with Vi’s in the definition
of Φ̂, and where the tolerance is set to

ψk(δ) =

√
d

k

[
2
√

2 ln(|G|) + 3
√

ln(1/δ)
]
.

Then, with probability at least 1− δ, we simultaneously have:{
Φn/k(Ω̂α) ≥ α− 2ψk(δ)

}
and

{
λd(Ω̂α) ≤ inf

Ω∈Gα
λd(Ω)

}
,

where Gα = {Ω ∈ G,Φ(Ω) ≥ α}.
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As expected, the rate of statistical recovery of the solutionB∗α,n/k of (5.4) when
t = n/k is of order OP(

√
1/k), the learning procedure involving the |I| ∈ [k, dk]

most extreme standardized observations only.

Remark 5.2 (On the finite class assumption). The argument originally developed
in Goix et al. (2015) for controlling the accuracy of an empirical estimation of
the STDF is crucially exploited to cope with the dependence structure of the trans-
formed variable V . The finite class assumption fits our purposes in the present
paper, since we consider unions of rectangles paving the sphere as described
below A minor modification of the proof would allow to replace log(|G|) with
VG ln(dke/VG), where VG is the VC-dimension of the class G, and dk is an upper
bound for the average number of points hitting the extreme regions (see the proof
of Lemma 1 in the Supplementary Material of Thomas et al. (2017)). Then the
learning rate bound given by the result above is of order O(

√
(ln k)/k), as ex-

pected, since O(k) observations are actually involved in the learning procedure,
due to the thresholding stage.

Computational aspects We build empirical MV-sets on the sphere by binding
together elementary subsets S of S+ with same volume (i.e. same Lebesgue mea-
sure λd(S)). Again, empirical estimation Φ̂ of the angular measure is based on
the fraction {θ(V̂i)i : i ∈ I} of the transformed data (see Algorithm 3) and we
consider the partition of S+ in dJd−1 hypercubes Sj with same volume as shown
in Figure 5.1.

We therefore consider the class G that corresponds to the class GJ of subsets
obtained as a union of cubes Sj . In this case, |G| = exp(dJd−1 ln 2). Figure 5.1
shows an example of such a partition for d = 3 and J = 5. Sorting the elements by
decreasing order with respect to the number of samples they contain and binding
them together until reaching a mass greater than α − ψk(δ) yields Ω̂α (see Scott
and Nowak (2006a)).

The number of hypercubes of the partition increases exponentially with the
dimension d. Therefore as d increases, most hypercubes will be empty and there
is no need to take them into account when sorting the elements of the partition.
The solution is to rather loop over the samples θ(Vi), i ∈ I and apply a geometric
hash function assigning a signature to each sample. The signature of a sample
θ(V ) characterizes the hypercube it belongs to. Such a signature can be defined as
the sign of 〈ep, θ(V )〉−j/J for p ∈ {1, . . . , d}, j ∈ {1, . . . , J}, where ep denotes
the vector of Rd such that e(`)

p = δi` for all ` ∈ {1, . . . , d}. The hash function thus
takes its values in {−1, 1}dJ . Its computation for one θ(Vi) requires a single loop
over the dimensions ` ∈ {1, . . . , d} and examination of the integer part of Jx(`).
The complexity for m samples is thus O(dm).
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The number of unique signatures is equal to the number of non empty hyper-
cubes of the partition and the number of identical signatures is equal to the number
of samples in the corresponding hypercube. We have therefore identified all the
non empty hypercubes and the number of samples in each of them. Using Algo-
rithm 4 we then obtain an estimated MV-set with level mass α, i.e. , the solution
of (5.5).

Algorithm 4 Solution of (5.5) when G is the regular grid on S+

Sorting: Sort the elementary subsets Sj so that: Φ̂(S(1)) ≥ . . . ≥ Φ̂(S(J)).
Concatenation: Bind together the elementary subsets sequentially, until the
empirical angular measure of the resulting set exceeds α − ψk(δ), yielding the
region

Ω̂J,α =

J(α)⋃
j=1

S(j) , (5.6)

where J(α) = min{j ≥ 1 :
∑J

j=1 Φ̂(S(j)) ≥ α− ψk(δ)}

Remark 5.3. While the complexity of the algorithm is linear in the dimension d,
this approach suffers from the curse of dimensionality. Indeed, as the number of
hypercubes increases exponentially with d, only a small proportion of hypercubes
will be non-empty and the solution will tend to overfit.
Remark 5.4. When implementing the hash function we have to carefully deal with
the samples θ(V ) that are located on the edges of S+, i.e. , such that at least
two of their components are equal to 1. Under assumption A1, the probability
of a sample θ(V ) to be located on an edge of S+ is equal to 0. However it is
not always the case in practice, especially if we use the empirical marginals for
the standardization step. The hash function defined above assigns a signature
to an edge sample θ(V ) that is equal to none of the signatures of the adjacent
hypercubes of θ(V ). Therefore we arbitrarily assign such samples to one of their
adjacent hypercubes.

Remark 5.5 (Bias induced by the finite grid.). Looking for the MV-set in the class
G instead of all the measurable subsets of the sphere induces a bias which can
be controlled with mild assumptions on the angular distribution, such as the box
counting class introduced in Scott and Nowak (2006b).
Remark 5.6 (Model Selection). The resolution level J should be chosen with care
as it can impact significantly the MV-set estimation procedure. This issue can be
addressed through complexity penalization (see Supplementary Material). How-
ever for the numerical experiments we resort to cross validation selecting the reso-
lution level giving an empirical angular mass close to α on a test set. Indeed if the
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Figure 5.1 – Estimated angular MV-set on the sphere based on Gaussian data. In
red, the border of the true MV-set with mass at least 0.9. In gray the estimated
MV-set with relative level mass 0.9 and J = 5.

grid is too coarse, the estimated MV-set should have an empirical measure much
greater than α on a test set. Similarly, if the grid is too fine, the estimated MV-set
will have an empirical measure much smaller than α on a test set.

Application to Anomaly Detection As already mentioned above considering
angular MV-sets only does not yield an optimal decision function, since the density
of the largest observations includes a radial part. the density (with respect to dr⊗
dθ) on the most extreme regions is proportional to 1

r2
φ(θ). A standard approach

in anomaly detection is to define a scoring function ŝ, which should be ideally
proportional to the density, and then to declare as abnormal regions of the kind
{x : ŝ(x) ≤ s0}, where s0 can be tuned so that a given proportion of the samples
are pinned as abnormal. It turns out that as a byproduct of our algorithm, we
can also estimate a scoring function ŝθ on S+, such that the smaller ŝθ(θ) is, the
more abnormal the direction θ. We define ŝθ as the piecewise constant function
defined on each hypercube of the partition of S+ by the number of samples it
contains (see Figure 5.2(a)). One can then consider the scoring function on the
whole space defined by

ŝ(r(V ), θ(V )) = 1/r(V )2 · ŝθ(θ(V )). (5.7)

Again, the smaller ŝ(r(V ), θ(V )) is, the more abnormal (r(V ), θ(V )), i.e. V .
Using such a scoring function, observations with very large sup norm but with
high angular score have a chance to be considered as anomalies, which would not
be the case if the MV-set estimates on S+ only were considered. x

Numerical Experiments We compare our approach to two state-of-the-art un-
supervised anomaly detection algorithms, Isolation Forest (Liu et al., 2008) and
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(a) Angular score on the
sphere

(b) Standardized space (V ) (c) Input space (X).

Figure 5.2 – Illustration of our approach on a sample generated from a logistic
model. Figure (a) shows the angular score obtained with our algorithm. In (b) and
(c) the red contour shows the frontier between abnormal and normal regions. Non
extreme samples are in gray and extreme anomalies are in red.

One-Class SVM (OCSVM) (Schölkopf et al., 2001), on five real data sets (shuttle,
SF, http, ann, forestcover) available on the UCI ML repository. We set k =

√
n in

all experiments. As we do not know the normalization constant Φ(S) of the angu-
lar measure, we use |I| to normalize the empirical angular measure and consider
relative mass levels in (0, 1). The penalty ψk(δ) in (5.5) would require k to be
too large to allow us to consider it in practice. We therefore solve the optimization
problem (5.5) setting ψk(δ) = 0. One may think that the connection with the theo-
retical result would be lost, however by corollary 12 in Scott and Nowak (2006a),
one can solve the empirical minimum volume set optimization problem without
the tolerance parameter in the mass constraint and obtain a theoretical result sim-
ilar to the one of Theorem 5.1. Finally, we use the implementation of Isolation
Forest and OCSVM provided by Scikit-Learn Pedregosa et al. (2011). In all ex-
periments, the suggested algorithm, Isolation Forest and OCSVM are trained on
half of the normal instances, chosen at random. The test set for both algorithms
consists in all instances (normal and abnormal) not used in the training set. This
test set is then restricted to the extreme region in accordance with the thresholding
step of Algorithm 1 and performance is assessed with the available labels. Areas
under the Receiver Operating Characteristic curve (ROC-AUC) obtained on all
data sets show that our approach outperforms Isolation Forest and OCSVM in the
extreme region on three out of five data sets and is never the worst one.

5.3 Clustering and Visualization of tail events
This section presents the work published in Chiapino et al. (2019a) aiming

at clustering and visualizing tail events. The initial motivation of this work is
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an aeronautic application. Here the monitored quantities are various flight data
aiming at building system health indicators. Since any unusual high value is a
potential indicator of a preset or future anomaly, in this particular context all tail
events (i.e. points with a unusually high norm) may be considered as anomalies.
Thus, contrarily to the previous sections of this chapter, the aim is not to differ-
entiate anomalies from normal data in the tail, but rather to identify and visualize
tail patterns in a fully unsupervised manner.

In the unsupervised setting, several extensions of the basic linear Principal
Component Analysis for dimensionality reduction and visualization techniques
have been proposed in the statistics and data-mining literature, accounting for
non linearities or increasing robustness for instance, cf Gorban et al. (2008) and
Kriegel et al. (2008). These approaches intend to describe parsimoniously the
‘center’ of a massive data distribution, see e.g. Naik (2017) and the references
therein. Similarly, for clustering purposes, several multivariate heavy-tailed dis-
tributions have been proposed that are robust to the presence of outliers, see e.g.
Forbes and Wraith (2014), Punzo and Tortora (2018). However the issue of clus-
tering extremes or outliers is only recently receiving attention, at the instigation of
industrial applications such as those mentioned above and because of the increas-
ing availability of extreme observations in databases: generally out-of-sample in
the past, extreme values are becoming observable in the Big Data era. In Chiapino
et al. (2019a) we propose a novel mixture model-based approach for clustering ex-
tremes in the multivariate setup. It relies on a dimensionality reduction technique
of the tail distribution summarized by the DAMEX algorithm fromGoix et al.
(2016, 2017) described in Sections 4.1 and 5.1. In practice, a sparse representa-
tion of the extremal dependence structure is obtained with DAMEX when only a
few such groups of variables can be exhibited (compared to 2d − 1) and/or when
these groups involve a small number of variables (with respect to d). Here we
develop this framework further, in order to propose a (soft) clustering technique
in the region of extremes and derive effective 2-d visual displays, shedding light
on the structure of anomalies/extremes in sparse situations. This is achieved by
modelling the distribution of extremes as a specific mixture model, where each
component generates a different type α of extremes. In this respect, the present
paper may be seen as an extension of Boldi and Davison (2007); Sabourin and
Naveau (2014), where a Bayesian inference framework is designed for moderate
dimensions (d ≤ 10 say) and situations where the sole group of variables with
the potential of being simultaneously large is {1, . . . , d} itself. In the context of
mixture modelling (see e.g. Fruhwirth-Schnatter et al. (2018)), the Expectation-
Maximization algorithm (EM) permits to partition/cluster the set of extremal data
through the statistical recovery of latent observations, as well as posterior prob-
ability distributions (inducing a soft clustering of the data in a straightforward
manner) and, as a by-product, a similarity measure on the set of extremes: the
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higher the probability that their latent variables are equal, the more similar two ex-
treme observations X and X ′ are considered. The similarity matrix thus obtained
naturally defines a weighted graph, whose vertices are the anomalies/extremes ob-
served, paving the way for the use of powerful graph-mining techniques for com-
munity detection and visualization, see e.g. Schaeffer (2007), Hu and Shi (2015)
and the references therein. Beyond its detailed description, the methodology pro-
posed is applied to a real fleet monitoring dataset in the aeronautics domain and
shown to provide useful tools for analyzing and interpreting abnormal data.

A mixture model for high dimensional extremes We place ourselves in the
probabilistic framework presented in Section 4.1, up to a change of norm: to fa-
cilitate probabilistic modeling on the unit sphere – namely the use of Dirichlet
distribution – we use the L1 norm, ‖v‖ =

∑d
1 |vj|. The angular and radial com-

ponents of the transformed variable R = r(V ) = ‖V ‖ and Θ = θ(V ) = V/‖V ‖
are defined accordingly. The positive orthant of the unit sphere is then the unit
simplex with our choice of norm and it is a well known fact that in multivari-
ate EVT that the unit-Pareto standardization combined with the regular variation
assumption (2.5) implies∫

S+
θi dΦ(θ) = 1, for i = 1, . . . , d. (5.8)

In addition, the normalizing constant is explicit:

Φ(S+) =

∫
S+

(θ1 + . . .+ θd) dΦ(θ) = d. (5.9)

Recall from Section 4.1 the notationM = (µ(Ca), ∅ 6= a ⊂ {1, . . . , d}). The
change of norm does not define the set of non-zero entries inM, which we denote
by M. As a first step we develop a novel mixture model for the angular distribution
Φ of the largest instances of the dataset, indexed by a ∈ M. Each component
a ∈ M of the mixture generates instances V such that Vj is likely to be large for
j ∈ a and the latent variables of the model take their values in M. In practice,
we adopt a plug-in approach and identify M with {M̂(a) : M̂(a) 6= 0}, the
output of DAMEX. As the distribution of extremes may be entirely characterized
by the distribution of their angular component Θ = θ(V ) ∈ S+, a natural model
is that of Dirichlet mixtures. We next show how to design a ’noisy’ version of
the model for subasymptotic observations and how to infer it by means of an
EM procedure based on a truncated version of the original dataset, surmounting
difficulties related to the geometry of Φ’s support. Let K denote the number of
subsets a ∈ M of cardinality at least 2 and let d1 ∈ {0, . . . , d} be the number of
singletons {j} ∈ M. Without loss of generality we assume that these singletons
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correspond to the first d1 coordinates, so that M = {a1, . . . , aK , {1}, . . . , {d1}}.
For simplicity, we also suppose that the sets a ∈ M are not nested, an hypothesis
which can be relaxed at the price of additional notational complexity. In view
of (4.2), the angular measure then admits the decomposition

d−1Φ( · ) =
K∑
`=1

π`Φa`( · ) +
∑
j≤d1

πK+jδej( · ),

where Φa` is a probability measure on S+,a` = S+∩{θ ∈ Rd
+ : θj = 0 for j /∈ a`},

the weights π` satisfy
∑

`≤K+d1
π` = 1 and ej = (0, . . . , 1, . . . , 0) is the jth

canonical basis vector of Rd.
The singletons weights derive immediately from the moment constraint (5.8):

for j ≤ d1, it is easily shown that our assumptions imply πK+j = d−1 so that

Φ( · ) = d
K∑
k=1

π`Φa`( · ) +
∑
j≤d1

δej( · ), (5.10)

where the vector π ∈ [0, 1]K+d1 must satisfy

K∑
`=1

π` = 1− d1/d. (5.11)

For likelihood-based inference, a parametric model for each component Φa` of
the angular measure must be specified. One natural model for probability distri-
butions on a simplex is the Dirichlet family, which provides a widely used prior
in Bayesian statistics for data clustering purposes in particular. We recall that the
Dirichlet distribution on a simplex S+,a admits a density ϕa with respect to the
(|a| − 1)-dimensional Lebesgue measure which is denoted by dw for simplic-
ity. It can be parameterized by a mean vector ma ∈ S+,a and a concentration
parameter νa > 0, so that for θ ∈ Sa,

ϕa(θ|ma, νa) =
Γ(νa)∏

j∈a Γ(νama,i)

∏
j∈a

θ
νama,j−1
j .

Refer to e.g. Müller and Quintana (2004) for an account of Dirichlet processes and
mixtures of Dirichlet Processes applied to Bayesian nonparametrics. We empha-
size that our context is quite different: a Dirichlet Mixture is used here as a model
for the angular component of the largest observations, not as a prior on parame-
ters. This modeling strategy for extreme values was first proposed in Boldi and
Davison (2007) and revisited in Sabourin and Naveau (2014) to handle the mo-
ment constraint (5.8) via a model re-parametrization. In both cases, the focus was

64



on moderate dimensions. In particular, both cited references worked under the
assumption that the angular measure concentrates on the central simplex Ω{1,...,d}
only. In this low dimensional context, the main purpose of the cited authors was
to derive the posterior predictive angular distribution in a Bayesian framework,
using a variable number of mixture components concentrating on Ω{1,...,d}. Since
the set of Dirichlet mixture distributions with an arbitrary number of components
is dense among all probability densities on the simplex, this model permits in the-
ory to approach any angular measure for extremes. The scope of the present paper
is different. Indeed we are concerned with high dimensional data (say d ' 100)
and consequently we do not attempt to model the finest details of the angular mea-
sure. Instead we intend to design a model accounting only for information which
is relevant for clustering. Since an intuitive summary of an extreme event in a
high dimensional context is the subset a of features it involves, we assign one
mixture component per sub-simplex Ωa such that a ∈ M. Thus we model each
Φa by a single Dirichlet distribution with unknown parameters ma, νa. Using the
standard fact that for such a distribution,

∫
Sa θϕa(θ|ma, νa) dθ = ma, the moment

constraint (5.8) becomes:

1

d
=

K∑
`=1

π`m`,j, j ∈ {d1 + 1, . . . , d}, (5.12)

wherem` = ma` for ` ≤ K.

Statistical model for large but sub-asymptotic data Recall from (2.7) that Φ
is the limiting distribution of Θ = θ(V ) for large R = r(V ). In practice, we
dispose of no realization of this limit probability measure and the observed angles
corresponding to radii R > r0 follow a sub-asymptotic version of Φ. In partic-
ular, if the margins Vj have a continuous distribution, we have P(Vj 6= 0) = 1
, j ∈ {1, . . . , d} so that all the observations Vi = (Vi,1, . . . , Vi,d), 1 ≤ i ≤ n,
lie in the central cone C{1,...,d}, as already emphasized in Section 4.1. This is also
true using the empirical versions V̂i = T̂ (Vi) defined in (5.1). In the approach
we propose, the deviation of V from its asymptotic support, which is

⋃
a∈M Ca,

is accounted for by a noise ε with light tailed distribution, namely an exponen-
tial distribution. That is, we assume that V = RΘ + ε, see Model 1 below.
As is usual for mixture modeling purposes, we introduce a multinomial latent
variable Z = (Z1, . . . , ZK+d1) such that

∑
` Z` = 1 and Z` = 1 if W has

been generated by the `th component of the angular mixture (5.10). In a nut-
shell, the type of anomaly/extreme is encoded by the latent vector Z. Then, for
` ≤ K, P (Z` = 1) = π`, while, for K < ` ≤ K + d1, P (Z` = 1) = d−1.
The unknown parameters of the model are η = (π,m,ν), where ν` > 0 and
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π = (π1, . . . , πK), m = (m1, . . . ,mK) must satisfy the constraints (5.11) and
(5.12), as well as the exponential rates λ = (λ1, . . . , λK+d1), where λ` > 0.
Figure 5.3 illustrates Model 1 in dimension d = 3.

Model 1 (Sub-asymptotic mixture model).

• Consider a standard regularly varying random vector V satisfying (2.5) with
tail index 1 which margins satisfy limt→∞ tP(Vj > t) = 1, j = 1, . . . , d

(typically Vj = (1− F̂j(Xj)) for F̂j an estimate of the marginal distribution
Fj of Xj

• Let R = ‖V ‖. Fix some high radial threshold r0, typically a large quantile
of the observed radii. Let Z be a hidden variable indicating the mixture
component in (5.10). Conditionally to {R > r0, Z` = 1}, V decomposes as

V = V` + ε` = R`Θ` + ε`, (5.13)

where V` ∈ Ca` , ε` ∈ C⊥a` , R` = ‖V`‖, Θ` = R−1
` V` ∈ Sa` . The components

R`,W`, ε` are independent from each other. The noise’s components are
i.i.d. according to a translated exponential distribution with rate λ`, R` is
Pareto distributed above r0 and W` is distributed as Φ`, that is

P (R` > r) = r0r
−1, r > r0 ,

W` ∼ Φ` ,

εj ∼ 1 + Exp(λ`), j ∈ {1, . . . , d} \ a` ,

with Φ` = ϕ`( · |m`, ν`) if ` ≤ K, and Φ` = δe`−K if K < ` ≤ K + d1.

Statistical inference in Model 1 is carried out using an EM algorithm which
is described at length in Chiapino et al. (2019a). The major issue here is the fact
that the parameters to be optimized are subject to several linear constraints, which
jeopardizes the convergence properties of the algorithm. Indeed the constraints
are

ν` > 0 (1 ≤ ` ≤ K) , λ` > 0 (1 ≤ ` ≤ K + d1), (5.14)

and that π = (π1, . . . , πK) and m = (m1, . . . ,mK) satisfy (5.11) and (5.12).
The latter linear constraint on (π,m) implies that m and π cannot be optimized
independently, which complicates the M-step of an EM-algorithm. This major
drawback has been discussed in Boldi and Davison (2007) and Sabourin and
Naveau (2014) in a a lower dimensional context. In the latter work, which was part
of my PhD thesis, we propose a re-parametrization of the Dirichlet Mixture model
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Figure 5.3 – Trivariate illustration of the sub-asymptotic model 1:
the observed point V has been generated by component a` = {1, 2}. The grey
triangle is the unit simplex, the shaded red area stands for the Dirichlet density ϕ`.

relying on barycenters of decreasing subsets of the mixture components. In the
present work we propose a novel and much simpler re-parametrization which al-
leviates the linear constraints and hugely facilitates numerical optimization. Also,
how to adapt the construction of Sabourin and Naveau (2014) in a high dimen-
sional context where several simplices are involved remains an open question.
The re-parametrization that we propose here consists in working with the prod-
uct parameter ρ`,j = π`m`,j instead of the pair (π`,m`,j). Namely, consider a
K × (d− d1) matrix ρ = (ρ1

>, . . . ,ρK
>) where ρ`,j > 0 for j ∈ a` and ρ`,j = 0

otherwise. Then, for all ` ∈ {1 . . . , K}, set

π` :=
∑
j∈a`

ρ`,j and m`,j :=
ρ`,j
π`
,∀j ∈ a`. (5.15)

Then (5.11) and (5.12) together are equivalent to∑
{`:j∈a`}

ρ`,j =
1

d
, ∀j ∈ {d1 + 1, . . . , d}. (5.16)

Graph clustering and visualization The output of the EM algorithm is a pair
(γ,η) where η gathers all the estimated parameters in the model and γ is a poste-
rior weights matrix,

γi,` = P (Zi,` = 1 | Vi,η) , i ≤ n0, ` ≤ K + d1

where n0 denotes the number of extreme observations.
Beyond the hard clustering that may be straightforwardly deduced from the

computation of the likeliest values z1, . . . , zn0 for the hidden variables given
the Vi’s and the parameter estimates produced by the EM algorithm, the statistical
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model previously introduced defines a natural structure of undirected weighted
graph on the set of observed extremes, which interpretable layouts (graph draw-
ing) can be directly derived using classical solutions. Indeed, a partition (hard
clustering) of the set of (standardized) anomalies/extremes V1, . . . , Vn0 is ob-
tained by assigning membership of each Vi in a cluster (or cone/sub-simplex ) de-
termined by the component of the estimated mixture model from which it arises
with highest probability: precisely, one then considers that the abnormal observa-
tion Vi is in the cluster indexed by

`i = argmax`∈{1, ..., K+d1} γi,`

and is of type a`i . However, our model-based approach brings much more in-
formation and the vector of posterior probabilities (γi,1, . . . , γi,K+d1) output by
the algorithm actually defines soft membership and represent the uncertainty in
whether anomaly Vi is in a certain cluster. It additionally induces a similarity
measure between the anomalies: the higher the probability that two extreme val-
ues arise from the same component of the mixture model, the more similar they
are considered. Hence, consider the undirected graph whose vertices, indexed by
i = 1, . . . , n0, correspond to the extremal observations V1, . . . , Vn0 and whose
edgeweights are wη(Vi, Vj), 1 ≤ i 6= j ≤ n0, where

wη(Vi, Vj) = P (Zi = Zj | Vi Vj, η) =

K+d1∑
`=1

γi,`γj,`.

Based on this original graph description of the set of extremes, it is now possible to
rank all anomalies (i.e. extreme points) by degree of similarity to a given anomaly
Vi

wη(Vi, V(i,1)) ≥ wη(Vi, V(i,2)) ≥ . . . ≥ wη(Vi, V(i,n0))

and extract neighborhoods {V(i,1), . . . , V(i,l)}, l ≤ n0.

Remark 5.7 (Graph-theoretic clustering). We point out that many alternative meth-
ods to that consisting in assigning to each any anomaly/extreme its likeliest com-
ponent (i.e. model-based clustering) can be implemented in order to partition the
similarity graph thus defined into subgraphs whose vertices correspond to similar
anomalies, ranging from tree-based clustering procedures to techniques based on
local connectivity properties through spectral clustering. One may refer to e.g.
Schaeffer (2007) for an account of graph-theoretic clustering methods.

In possible combination with clustering, graph visualization techniques (see
e.g. Hu and Shi (2015)), when the number n0 of anomalies to be analyzed is
large, can also be used to produce informative layouts. Discussing the merits and
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limitations of the wide variety of approaches documented in the literature in this
purpose is beyond the scope of this paper. The usefulness of the weighted graph
representation proposed above combined with state-of-the-art graph-mining tools
is simply illustrated in the experimental sections of Chiapino et al. (2019a). We
point out however that alternatives to the (force-based) graph drawing method
used therein can be naturally considered, re-using for instance the eigenvectors of
the graph Laplacian computed through a preliminary spectral clustering procedure
(see e.g. Athreya et al. (2017) and the references therein for more details on
spectral layout methods).
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Chapter 6

Miscellanea: standardization of
semi-continuous max-stable
processes

This chapter presents a published paper (Sabourin and Segers (2017)) which
is somewhat disconnected in spirit from the rest of this thesis. This publication is
devoted to the study of max-stable upper semi-continuous processes, examples of
which have been exploited in the literature of spatial extremes.

A common way to describe multivariate max-stable distributions is as follows:
their margins are univariate max-stable distributions; after standardization of the
marginal distributions to a common one, the joint distribution has a specific rep-
resentation, describing the dependence structure. The separation into margins and
dependence is in line with Sklar’s theorem Sklar (1959), which provides a de-
composition of a multivariate distribution into its margins and a copula, that is,
a multivariate distribution with standard uniform margins. If the margins of the
original distribution are continuous, the copula is unique and can be found by ap-
plying the probability integral transform to each variable. Conversely, to recover
the original distribution, it suffices to apply the quantile transformation to each
copula variable. Although it is more common in extreme-value theory to stan-
dardize to the Gumbel or the unit-Fréchet distribution rather than to the uniform
distribution, the principle is the same. The advantage of breaking up a distribution
into its margins and a copula is that both components can be modelled separately.

Applications in spatial statistics have spurred the development of extreme-
value theory for stochastic processes. If the trajectories of the process are contin-
uous almost surely, then the process can be reduced to a process with standardized
margins and continuous trajectories via the probability integral transform applied
to each individual variable. Conversely, the original process can be recovered from
the standardized one by applying the quantile transform to each standardized vari-
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able. Moreover, these maps, sending one continuous function to another one, are
measurable with respect to the sigma-field on the space of continuous functions
that is generated by the finite-dimensional cylinders. These results hinge on the
following two properties. First, the marginal distributions of a stochastic process
with continuous trajectories depend continuously on the index variable. Second,
the distribution of the random continuous function associated to the process is
determined by the finite-dimensional distributions.

For stochastic processes with upper semicontinuous (usc) trajectories, how-
ever, the two properties mentioned above do not hold: the marginal distributions
need not depend in a continuous way on the index variable, and the distribution
of path functionals such as the supremum of the process is not determined by the
finite-dimensional distributions of the process. Still, max-stable processes with
usc trajectories have been proposed as models for spatial extremes of environ-
mental variables Davison and Gholamrezaee (2012); Huser and Davison (2014);
Schlather (2002). As in the continuous case, construction of and inference on
such models is carried out by a separation of concerns regarding the margins and
the dependence structure. However, up to date, there is no theoretical foundation
for such an approach. Another possible application of max-stable usc process is
random utility maximization when the alternatives range over a compact metric
space rather than a finite set McFadden (1981, 1989); Resnick and Roy (1991).

The present paper aims to fill the gap in theory and develop a framework for
marginal standardization for stochastic processes with usc trajectories. For the
mathematical framework, we follow Norberg (1987) and Resnick and Roy (1991)
and we work within the space USC(D) of usc functions on a locally compact
subset D of some Euclidean space. The space USC(D) is equipped with the hypo-
topology: a usc function is identified with its hypograph, a closed subset of D×R;
the hypo-topology on USC(D) is then defined as the trace topology inherited from
the Fell hit-and-miss topology on the space F of closed subsets of D×R Salinetti
and Wets (1986); Vervaat (1986).

The theory is specialized to max-stable usc processes. Our definition of max-
stability allows the shape parameter of the marginal distributions to vary with the
index variable of the stochastic process. As a consequence, the stabilizing affine
transformations in the definition of max-stability may depend on the index vari-
able too. However, the coordinatewise affine transformation of a usc function does
not necessarily produce a usc function, so that care is needed in the formulation
of the definition and the results. In de Haan (1984); Resnick and Roy (1991),
in contrast, the marginal distributions are assumed to be Fréchet with unit shape
parameter, so that the stabilizing sequences in the definition of max-stability are
the same for all margins. It is often taken for granted that the general case may be
reduced to this simpler case, but, as argued in the paper, for usc processes, this is
not guaranteed.
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A general class of measurable transformations on the space of usc functions
is first introduced. Under regularity conditions on the marginal distributions, this
class includes the pointwise probability integral transform and its inverse. This
property allows us to state a partial generalization of Sklar’s theorem for usc pro-
cesses in general and for max-stable ones in particular

6.1 usc processes
We first review essential definitions and introduce some notation. The mate-

rial we need on the theory of usc process may for instance be found in Salinetti
and Wets (1986), Beer (1993) (Chapter 5), Vervaat (1988a), Vervaat and Holw-
erda (1997) and Molchanov (2005)(Chapter 1.1 and Appendix B). Let D be a
non-empty, locally compact subset of some finite-dimensional Euclidean space. A
function x : D→ [−∞,∞] is upper semicontinuous (usc) if and only lim supn→∞ x(sn) ≤
x(s) whenever sn → s ∈ D. The hypograph of x is a commonly defined by

hypox = {(s, α) ∈ D× R : α ≤ x(s)}.

Another characterization of upper semicontinuity for a function x as above is that
the hypograph of x is closed. Let USC(D) be the collection of all upper semicon-
tinuous functions from D into [−∞,∞]. By identifying the function x ∈ USC(D)
with the set hypox ⊂ D×R, any topology on the space F = F(D×R) of closed
subsets of D×R results in a trace topology on the space of usc functions. For usc
processes, the theory is built on the use of the The Fell hit-and-miss topology on
F A base for the latter topology is the family of sets of the form

FKG1,...,Gn
= {F ∈ F : F ∩K = ∅, F ∩G1 6= ∅, . . . , F ∩Gn 6= ∅}

for K ∈ K and G1, . . . , Gn ∈ G. Let (Ω,A,P) be a complete probability space.
In this work, a usc process is always a function ξ : D × Ω → [−∞,∞] such that
the map Ω→ F : ω 7→ hypo ξ( · , ω) is Borel measurable.

6.2 Sklar’s theorem for usc processes
A d-variate copula is the cumulative distribution function of a d-dimensional

random vector with standard uniform margins. Sklar’s Sklar (1959) celebrated
theorem states two things:

1. For every copula C and every vector F1, . . . , Fd of univariate distribution
functions, the function (x1, . . . , xd) 7→ C(F1(x1), . . . , Fd(xd)) is a d-variate
distribution function with margins F1, . . . , Fd.
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2. Every d-variate distribution function F can be represented in this way.

Reformulated in terms of random vectors, the two statements read as follows:

1. For every random vector (U1, . . . , Ud) with uniform components and for ev-
ery vector F1, . . . , Fd of univariate distribution functions, the random vector
(Q1(U1), . . . , Qd(Ud)) has marginal distributions F1, . . . , Fd, where Qj is
the (right- or left-continuous) quantile function corresponding to Fj .

2. Every random vector (X1, . . . , Xd) can be represented in this way.

The next results stated and proved in Sabourin and Segers (2017) specify up
to what extent these facts hold for usc processes too.

Proposition 6.1 (à la Sklar I for usc processes). Let Z be a usc process having
standard uniform margins. Let (Fs : s ∈ D) be a family of (right-continuous)
distribution functions and let Qs(p) = sup{x ∈ R : Fs(x) ≤ p} for all (s, p) ∈
D× [0, 1]. Define a stochastic process ξ by ξ(s) = Qs((Z(s) ∨ 0) ∧ 1) for s ∈ D.
Then the following two statements are equivalent:

(i) ξ is a usc process with marginal distributions given by Fs.
(ii) For every p ∈ [0, 1], the function s 7→ Qs(p) is usc.

Proposition 6.2 (à la Sklar II for usc processes). Let ξ be a usc process. Let
Fs(x) = Pr[ξ(s) ≤ x] for x ∈ [−∞,∞] and let Qs(p) = sup{x ∈ R : Fs(x) ≤
p} for p ∈ [0, 1]. Suppose the following two conditions hold:
(a) For every s ∈ D, the distribution of ξ(s) has no atoms in [−∞,∞].
(b) For every x ∈ R ∪ {+∞}, the function s 7→ Fs(x) is usc.
Then the following statements hold:

(i) The process Z defined by Z(s) = Fs(ξ(s)) is a usc process with standard
uniform margins.

(ii) The process ξ̃ defined by ξ̃(s) = Qs(Z(s)) = Qs(Fs(ξ(s)) is a usc process
such that Pr[ξ̃(s) = ξ(s)] = 1 for every s ∈ D. In particular, the finite-
dimensional distributions of ξ̃ and ξ are identical.

6.3 Max-stable usc processes and their standardiza-
tion

In dimension 1, the only possible non degenerate limits in distribution of affine
normalized maxima

∨n
i=1(Xi−bn)/an , with bn ∈ R, an > 0 and (Xi)i≥1 an i .i .d .

sequence, are the generalized extreme-value (GEV) distributions with parameter
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vector η = (γ, µ, σ) ∈ E = R× R× (0,∞) given by

F (x;η) =

{
exp[−{1 + γ(x− µ)/σ}−1/γ] if γ 6= 0 and σ + γ(x− µ) > 0,
exp[− exp{−(x− µ)/σ}] if γ = 0 and x ∈ R.

(6.1)
(see e.g. Beirlant et al. (1996), Chap. 1 for univariate EVT). In fact a distribution
is a GEV if and only if it is max-stable, i.e. for every n, there exist unique scalars
an,η ∈ (0,∞) and bn,η ∈ R such that the following max-stability relation holds:

F n(an,ηx+ bn,η;η) = F (x;η), x ∈ R. (6.2)

This property motivates the use of such distributions for modeling maxima over
many variables. The location and scale sequences are given by

an,η = nγ, bn,η =

{
(σ − γµ)(nγ − 1)/γ if γ 6= 0,
σ log n if γ = 0.

(6.3)

Max-stable usc processes have been defined in the literature Molchanov (2005);
Vervaat (1986, 1988b) as usc processes whose distribution is invariant under the
componentwise maximum operation, up to an affine rescaling involving constants
which are not allowed to depend upon the index variable s ∈ D. Likewise, the
processes in de Haan (1984) and Resnick and Roy (1991) and have marginal dis-
tributions which are Fréchet with shape parameter γ ≡ 1 and lower endpoint
µ − γ/σ ≡ 0, so that the scaling sequences are an ≡ n and bn ≡ 0. Moreover,
max-stability is defined in de Haan (1984) in terms of finite-dimensional distribu-
tions only. Definition 6.3 below extends these previous approaches by allowing
for an index-dependent rescaling, through scaling functions an and bn, and by
viewing the random objects as random elements in USC(D).

Definition 6.3. A usc process ξ is max-stable if, for all integer n ≥ 1, there
exist functions an : D → (0,∞) and bn : D → R such that, for each vector of
n independent and identically distributed (iid) usc processes ξ1, . . . , ξn with the
same law as ξ, we have∨n

i=1 ξi
d
= anξ + bn in USC(D). (6.4)

A max-stable usc process ξ∗ is said to be simple if, in addition, its marginal
distributions are unit-Fréchet, P

(
ξ∗(s) ≤ x = e−1/x

)
, x > 0. In that case, the

norming functions are given by an(s) = n and bn(s) = 0 for all n ≥ 1 and s ∈ D,
i.e., for iid usc processes ξ∗1 , . . . , ξ

∗
n with the same law as ξ∗, we have∨n

i=1 ξ
∗
i
d
= nξ∗ in USC(D). (6.5)

74



In (6.4) and (6.5), the meaning is that the induced probability distributions
on the space USC(D) equipped with the sigma-field of hypo-measurable sets are
equal. In Definition 6.3, it is implicitly understood that the functions an and bn
are such that the right-hand side of (6.4) still defines a usc process. If an is con-
tinuous and bn is usc, then this is automatically the case, see Lemma 3.1 and
Example 3.1 (iii) in the paper.

The evaluation map USC(D) → [−∞,∞] : z 7→ z(s) is hypo-measurable
for all s ∈ D. Equation (6.4) then implies the following distributional equality
between random variables:∨n

i=1 ξi(s)
d
= an(s) ξ(s) + bn(s), s ∈ D.

As a consequence, the marginal distribution of ξ(s) is max-stable and therefore it
is a GEV (Generalized Extreme Value) distribution with some parameter vector
η(s) = (γ(s), µ(s), σ(s)). The normalizing functions an and bn of a max-stable
usc process must then be of the form an(s) = an,η(s) and bn(s) = bn,η(s) as
in (6.3).

We now investigate the relation between general and simple max-stable usc
processes via the pointwise probability integral transform and its inverse. Max-
stability of usc processes is defined in (6.4) via an equality of distributions on
USC(D) rather than of finite-dimensional distributions. It is therefore not clear
from the outset that max-stability is preserved by pointwise transformations.

Proposition 6.4 gives a necessary and sufficient condition on the GEV margins
to be able to construct a general max-stable usc process starting from a simple
one. Proposition 6.5 treats the converse question, that is, when can a max-stable
usc process be first reduced to a simple one and then be reconstructed from it.

Proposition 6.4 (à la Sklar I for max-stable usc processes). Let ξ∗ be a simple
max-stable usc process. Let η : D → E. Define a stochastic process ξ by ξ(s) =
Q(Φ(ξ∗(s));η(s)) for s ∈ D. Then the following two statements are equivalent:

(i) ξ is a usc process with marginal distributions GEV(η(s)).

(ii) For every p ∈ [0, 1], the function s 7→ Q(p;η(s)) is usc.

If these conditions hold, then ξ is a max-stable usc process with normalizing func-
tions an(s) = an,η(s) and bn(s) = bn,η(s).

Proposition 6.5 (à la Sklar II for max-stable processes). Let ξ be a usc process
with GEV(η(s)) margins for s ∈ D. Assume that for every compact K ⊂ D, we
have sups∈K F (ξ(s);η(s)) < 1 with probability one. Define two usc processes
ξ∗ and ξ̃ by ξ∗(s) = −1/ logF (ξ(s);η(s)) and ξ̃(s) = Q(Φ(ξ∗(s));η(s)), for
s ∈ D. Then, almost surely, ξ = ξ̃. Furthermore, the following two statements are
equivalent:

75



(i) The usc process ξ is max-stable.
(ii) The usc process ξ∗ is simple max-stable.

As a conclusion, the aim of the paper has been to extend Sklar’s theorem from
random vectors to usc processes. We have stated necessary and sufficient condi-
tions to be able to construct a usc process with general margins by applying the
pointwise quantile transformation to a usc process with standard uniform mar-
gins (Propositions 6.1 and 6.4). Furthermore, we have stated sufficient conditions
for the pointwise probability integral transform to be possible for usc processes
(Propositions 6.2, 6.5). These conditions imply in particular that the marginal dis-
tribution functions are continuous with respect to the space variable (Lemma 4.1
in the paper). We have also provided several examples of things that can go wrong
when these conditions are not satisfied, which are not presented in the present the-
sis for the sake of concision. However, finding necessary and sufficient conditions
remains an open problem.

The motivation has been to extend the margins-versus-dependence paradigm
used in multivariate extreme-value theory to max-stable usc processes. The next
step is to show that marginal standardization is possible in max-domains of at-
traction too. One question, for instance, is whether the standardized weak limit
of the pointwise maxima of a sequence of usc processes is equal to the weak
limit of the pointwise maxima of the sequence of standardized usc processes
(Resnick (1987), Proposition 5.10). Interesting difficulties arise: weak conver-
gence of finite-dimensional distributions does not imply and is not implied by
weak hypoconvergence; Khinchin’s convergence-of-types lemma does not apply
in its full generality to unions of random closed sets (Molchanov (2005), p. 254,
‘Affine normalization’).
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Chapter 7

Ongoing work and perspectives

The works exposed in the present thesis leave many questions unanswered and
open the road to several research perspectives. This closing chapter lays out the
main directions in which I intend to pursue research in the near future.

First of all, in a multivariate setting, although a standardization step allowing
to work with nearly identical margins is often required, the theoretical guarantees
obtained so far do not always take into account the uncertainty induced by the
use of estimated marginal distributions. More precisely, when the pseudo-polar
decomposition of the exponent measure comes into play in the analysis, e.g. for
classification in Chapter 3 or estimation of MV-sets in Section 5.2, the theoretical
tools presented in this thesis do not allow to take into consideration the standard-
ization step. The missing piece to complete the analysis is a concentration study
of the empirical angular measure. This is the subject of an ongoing work which
main lines are presented in Section 7.1.

Secondly, a central aspect of this thesis is the need for dimensionality reduc-
tion devices for analyzing multivariate extremes. So far we have only considered
the unsupervised setting. Section 7.2 sketches the main ideas of an ongoing work
inspired by inverse regression techniques for dimension reduction, when the focus
is on the tails of the explained variable.

Section 7.3 describes two research projects at a prospective stage. The aim of
the first one (Section 7.3.1) is to investigate in what extent the use of re-sampling
techniques such as the bootstrap or cross-validation can help in choosing hyper-
parameters in various multivariate extreme values context. In the univariate case,
re-sampling has been proved useful to select the number of extreme order statis-
tics. The question of how to use the bootstrap or cross-validation to choose, say,
the tolerance parameter ε in dimensionality reduction algorithms such as DAMEX
(Section 5.1), or the number of order statistics to perform PCA (Section 4.3) re-
mains open. Finally in Section 7.3.2 we are dipping the toe in the time series and
functional data water, with applications to anomaly detection in view.
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7.1 Concentration of the empirical angular measure
Joint work with Stephan Clémençon, Hamid Jalalzai, and Johan Segers, working
paper Clémençon et al. (2021) available arXiv:2104.03966

Throughout this thesis the marginal standardization of the random quantity
under consideration (a random vector or process) is paramount to describe the
dependence structure in the upper tail. The impact of empirical estimation of
margins (which is how one goes from probability integral transform T in (2.4) to
the rank transform (5.1)) is fully taken into account when analyzing the supremum
deviations of the STDF (Section 2.2) and of summaries of the exponent measure,
namely Ma, a ∈ {1, . . . , d} in Section 4.1 and the joint tail coefficients χa in
Section 4.2.

However when we consider classification in extreme regions (Chapter 4), Prin-
cipal Component Analysis (Section 4.3), anomaly detection using MV-sets (Sec-
tion 5.2 and clustering of anomalies (Section 5.3) we either rely on the assumption
that the margin are known, or that the tail index is the same for all components,
which in many practical situations means that some preliminary standardization
has been performed. One main reason why we make such a strong assumption
is the following: the analysis in the latter papers relies heavily on empirical es-
timation of quantities directly related to the angular measure Φ defined in (2.7).
In other words the various estimation steps involve the empirical measure related
to a sample of components θ(Vi), the angles of the considered vectors Vi which
are assumed to satisfy the regular variation condition (2.6). Thus deriving con-
centration guarantees similar to the established ones while taking into account the
impact of the standardization (i.e. using V̂i’s instead of Vi’s) would amount to
establishing concentration inequalities for the empirical angular measure,

Φ̂(A) = µn(CA) =
1

k

n∑
i=1

1{‖V̂i > n/k}δθ(V̂i)(A), A ∈ B(S+).

To this date, the only existing results concerning the empirical angular are stated
and proved in an asymptotic framework for the bivariate case only, with tech-
niques of proof which do not allow for a straightforward generalization to the
general multivariate case. The main difficulty in analyzing the empirical mea-
sure comes from the fact that the errors F̂j − Fj propagate in a non linear fashion
onto the angular error of the rank transformed samples θ(V̂i) − θ(Vi). The proof
of asymptotic normality in the bivariate case relies heavily on rewriting the em-
pirical angular measure in terms of a random set Â accounting from marginal
randomness, δθ(V̂i)(A) = δθ(Vi)(Â). The next step is to construct two determin-

istic framing sets A−, A+ such that A− ⊂ Â ⊂ A+ with high probability. Due
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to non-linearities the expression for these framing sets is somewhat complicated,
whence the difficulty to extend the proof to the multivariate case. It is the purpose
of ongoing work to establish concentration inequalities for the empirical angular
measure in the multivariate case. Our point of departure is the general concentra-
tion inequality for rare classes in Goix et al. (2015) together with the construction
of appropriate framing sets in dimension greater than two. From a technical view-
point, a major advantage of the non-asymptotic approach is that the framing sets
are not required to be ‘tight’, in the sense that the approximation error arising
from such a framing in the error decomposition can be of the same order of mag-
nitude as the other variance terms (i.e. , with a leading term of order O(1/

√
k)),

instead of being negligible compared to the other terms as it is required in the
asymptotic analysis to obtain weak convergence of the empirical process. From
a broader perspective, such concentration results would unblock several bottle-
necks in the statistical learning approach of multivariate extremes, starting with
those mentioned above, namely the assumption of known margins in a classifi-
cation setting (Jalalzai et al. (2018)) and for anomaly detection based on angular
MV-set estimation (Thomas et al. (2017)).

7.2 Sliced Inverse Regression with extreme target
Joint work with Anass Aghbalou, François Portier, and Chen Zhou, working pa-

per Aghbalou et al. (2021) available arXiv:2108.01432

Dimensionality reduction plays an important role in this thesis. It is the main
subject developed in Chapter 4. So far we have only investigated unsupervised
dimensionality reduction techniques, leaving aside supervised problems for such
matter.

In statistical regression, the aim is to predict the response random variable Y
valued in, say, R for simplicity, using a set of predictors or features, represented
by a random vector X . When the dimensionality of X is high, estimating quan-
tities defined through the conditional distribution of Y given X is subject to the
curse of dimensionality. A way around is to rely on the sparsity assumption that
only certain linear combinations of the feature variables are useful to predict Y ,
i.e. that there is an orthogonal projection P onto a subspace E (the central space)
of dimension p < d such that given PX , Y is independent from P⊥X , so that
only the dependence between Y and PX should be examined. This conditional
independence assumption (Constantinou and Dawid (2017)) is at the heart of sev-
eral dimensionality reduction techniques (see e.g. Fukumizu et al. (2004) and the
references therein), including Sliced Inverse Regression (SIR) and Sliced Average
Variance Estimation (SAVE) (Li (1991); Cook and Ni (2005); Zhu et al. (2010);
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Cook and Weisberg (1991); Cook et al. (2002)). The principle behind SIR is that
under a linearity condition,which is satisfied when the distribution of X is ellipti-
cal, E(X|Y ) belongs to the central space. The SAVE method is based on a variant
of this principle and uses second moments.

To my best knowledge, tail dimension reduction for regression has only been
considered in Gardes (2018) in the specific context of extreme quantiles estima-
tion. In that paper, a notion of tail conditional independence is introduced, which
may be rephrased as the fact that the survival function of Y above large thresholds,
conditionally on PX is asymptotically equivalent to the same survival function
conditionally to X . Here P is the projector on a tail dimension reduction sub-
space. The main result of the paper is that the estimated quantile conditional to
the reduced variable PX is asymptotically consistent, with a quantifiable rate of
convergence. However asymptotic results are only proved under the assumption
that the projector P is known. An estimation procedure is proposed together with
a heuristic justification.

It is the purpose of ongoing work to investigate the consequence of a tail con-
ditional independence assumption, to derive workable examples where this condi-
tion is met, and to obtain asymptptotic guarantees regarding the estimation of the
tail dimension reduction subspace using a SIR/SAVE-like method. For such pur-
poses one major technical tool is the framework of classes of functions changing
with n (van der Vaart and Wellner (1996)).

7.3 Perspectives

7.3.1 Re-sampling multivariate extremes
(Part of the ongoing PhD Thesis of Anass Aghbalou, co-supervision with François
Portier and Patrice Bertail)
Bootstrap, subsampling and cross-validation methods are widely used tools in
Machine Learning and statistics. The objective may be depending on the context,
to quantify the uncertainty attached to a statistical procedure (e.g. the width of a
confidence interval) or to select optimal hyper-parameters. The theoretical prop-
erties of the methods based on the bootstrap and cross-validation are well known
when the whole dataset is considered. However when the focus is on the distribu-
tion tails, most analyses conducted so far concern univariate problems (Danielsson
et al. (2001); Kyselỳ (2008); Bertail et al. (2004); Gomes et al. (2016)). The va-
lidity of resampling methods for multivariate problems is a largely unexplored
question, to the exception of the works on the bootstrap for the STDF Peng and Qi
(2008) and on the multiplier bootstrap for extreme value copulas (the counterpart
of the STDF using uniform margins for the standardization step) by Bücher et al.
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(2013). Concerning the use of cross-validation for extreme value analyses, to my
best knowledge there is to this date no theoretical analysis of the optimality prop-
erties of the selected hyper-parameters, e.g. the number of components in PCA,
the number of clusters in k-means, the tolerance parameters for support identi-
fication in Goix et al. (2017) or in Chiapino and Sabourin (2016), the number
of order statistics to be used for tail estimation,. . . . The starting point of the PhD
project is to use existing asymptotic results from Peng and Qi (2008); Bücher et al.
(2013) to propose alternative tests of extremal dependence to the ones proposed
in Chiapino et al. (2019b), based on bootstrap statistics. The next step would be
to investigate the properties of the bootstrap for the angular measure of extremes.
Another direction concerns the use of cross-validation for model and hyper pa-
rameter selection by extending the approaches of Györfi et al. (2006) (chap. 8) or
Arlot et al. (2010) to an extreme value context.

7.3.2 Extremes of time series and functional data, with appli-
cation to anomaly detection

(Joint work with Stephan Clémençon and master student Nathan Huet)
In many industrial contexts the temporal dependence structure cannot be ignored
when identifying the ‘normal’ (=not abnormal) behavior. The data then takes the
form of time series (Malhotra et al. (2015); Wei et al. (2005)) or functional data
(Dai and Genton (2018); Staerman et al. (2019)). Our focus is on the shape of the
normal region associated to a very low false alarm rate α� 1, i.e. quantile regions
in a functional space at level 1−α with α→ 0. For such purpose the tail behavior
(in an adequate representation) of the data is paramount. EVT and the theory
of regular variation (De Haan and Resnick (1987); Hult and Lindskog (2006))
provide a convenient framework for characterizing such probabilistic behaviors,
together with statistical practice allowing estimation. EVT has been successfully
applied to the task of AD in the univariate (Siffer et al. (2017)) and multivariate
cases (Goix et al. (2016, 2017),Thomas et al. (2017), Cai et al. (2011)). To our best
knowledge, using EVT for AD with time series and functional data has not been
addressed in the literature. Extremes of functional data has been the subject of a
recent PhD thesis (Xiong (2018)), two contributions of which relate to our topic:
Kokoszka and Xiong (2018) and Kokoszka et al. (2018), consider the Karhunen
Loeve (KL) expansion of i .i .d . strictly stationary zero mean time series Xi ∈
L2([0, T ]), i ≤ N . They provide sufficient conditions under which it is legitimate
to use the estimated covariance matrix to handle extreme values. In the context
of time series analysis, a series of papers following Basrak and Segers (2009)
characterize multivariate regular variation of strictly stationary time series. The
serial dependence at extreme level is characterized in terms of a tail process Y and
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a spectral tail process Θ, which are respectively the limit distributions of a rescaled
version of the process X , conditionally to ‖X0‖ > u, where the scaling function
is respectively u and the value of ‖X0‖. One major result is that Y = ‖Y0‖Θ
where ‖Y0‖ and Θ are independent. Thus (Y0,Θ) may be seen as a pseudo-polar
decomposition of the tail process Y .

For practical purposes such as AD, one needs a finite dimensional approxi-
mation of the infinite dimensional tail objects Y or Θ. However the viewpoints
developed in the PhD thesis Xiong (2018) and the papers therein on the one hand,
and in the series of papers following Basrak and Segers (2009) on the other hand,
although complementary, have not been connected to each other. In this research
project we shall attempt to bridge this gap between probabilistic analysis of ex-
tremes and machine learning applications. One promising point of departure is
the finite dimensional counterpart of this matter, that is PCA for multivariate
extremes which has been recently considered in the upcoming paper Drees and
Sabourin (2021). The main idea consists in working with the angular component
of the limit distribution of extremes, so that existence of moments is not an is-
sue anymore. We may thus consider KL expansions of the spectral process Θ or
alternatively the spectral process related to the KL expansion of the original series.
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Appendix A

Alternative concentration inequality
for rare classes

Theorem A.1 (Concentration in rare regions: explicit bound. Ongoing joint work
with Johan Segers). Let X1, . . . , Xn be an independent random sample from P .
Let G, A and p be as in Theorem 2.4. For δ ∈ (0, 1), if np ≥ 8 ln(8/δ), then with
probability at least 1− δ,

sup
A∈G
|Pn(A)− P (A)| ≤ 4

√
2p

n

(
ln(8/δ) + ln(SG(8np))

)
.

Proof. Let X1, . . . , Xn, X
′
1, . . . , X

′
n be an independent random sample of size

2n from P . Let Pn and P ′n be the empirical distributions of X1, . . . , Xn and
X ′1, . . . , X

′
n, respectively. By symmetrization (Lemma A.2), we have, for t > 0

such that nt2 ≥ 2 min(1, 4p),

P
[
sup
A∈G
|Pn(A)− P (A)| ≥ t

]
≤ 4P

[
sup
A∈G

(
Pn(A)− P ′n(A)

)
≥ t/2

]
.

We seek t such that the probability on the right-hand side is bounded by δ/4.
By Lemma A.4, this is the case as soon as

t

2
≥ 2

√
2p

n

(
ln(2/(δ/4)) + lnSG(8np)

)
provided np ≥ 8 ln(2/(δ/4)). Simplifying, we find that t must satisfy

t ≥ 4

√
2p

n

(
ln(8/δ) + ln(SG(8np))

)
=: t(δ).

The threshold t(δ) is the bound stated in the theorem. We only need to check
that n(t(δ))2 ≥ 2 min(1, 4p). But this easily holds, since

n(t(δ))2 ≥ n · 16 · 2p

n
ln(8/δ) ≥ 32 ln(8)p.
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The following symmetrization lemma is almost identical to Lemma 2 in Bous-
quet et al. (2003). The difference is that the lower bound on admissible values for
t features p = P(A). This is needed in view of the application of the inequality to
rare event probabilities in the proof of Theorem A.1.

Lemma A.2 (Symmetrization). Let X1, . . . , Xn, X
′
1, . . . , X

′
n be an independent

random sample of size 2n from P . Let Pn and P ′n be the empirical distributions
of X1, . . . , Xn and X ′1, . . . , X

′
n, respectively. Let G, A and p be as in Theorem. If

t ≥ 0 is such that nt2 ≥ 2 min(1, 4p), then

P
[
sup
A∈G

(
Pn(A)− P (A)

)
≥ t

]
P
[
sup
A∈G

(
P (A)− Pn(A)

)
≥ t

]
 ≤ 2P

[
sup
A∈G

(Pn(A)− P ′n(A)) ≥ t/2

]
.

Proof. Only the range of t needs to be widened compared to Lemma 2 in Bousquet
et al. (2003). Following the proof of this result, we see that t needs to be such that

∀A ∈ G, 4Var(1A(X))

nt2
≤ 1

2
.

Now
4Var(1A(X)) = 4P (A)(1− P (A)) ≤ min{1, 4P (A)}.

Since P (A) ≤ P (A) = p, a sufficient condition is thus that nt2 ≥ 2 min(1, 4p).

Lemma A.3 (concentration after symmetrization and conditioning). LetX1, . . . , Xn,
X ′1, . . . , X

′
n be an independent random sample of size 2n from P . Let Pn and P ′n

be the empirical distributions of X1, . . . , Xn and X ′1, . . . , X
′
n, respectively. Let G,

A and p be as in Theorem 2.4. Let K be the number of times the pair Xi, X
′
i hits

the union class A, i.e. the random number of indices i ≤ n such that Xi ∈ A or
X ′i ∈ A. For t > 0 and κ ∈ {0, . . . , n} we have

P
(

sup
1∈G

P ′n(A)− Pn(A) ≥ t | K = κ

)
≤ SG(2κ)e

−n2t2
2κ

Proof. Notice that for κ = 0 both sides of the inequality are zero. For κ ≥ 1
we follow the classical argument yielding concentration of the symmetrized sam-
ple as e.g. in Bousquet et al. (2003), up to a conditioning step upon the num-
ber of pairs (Xi, X

′
i) hitting the class. Let σ1, . . . , σn be an independent random

sample of Rademacher random variables, independent also from the 2n-sample
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X1, . . . , Xn, X
′
1, . . . , X

′
n. By symmetry,

sup
A∈G

(
Pn(A)− P ′n(A)

)
= sup

A∈G

1

n

n∑
i=1

(
1{Xi ∈ A} − 1{X ′i ∈ A}

)
d
= sup

A∈G

1

n

n∑
i=1

σi
(
1{Xi ∈ A} − 1{X ′i ∈ A}

)
.

We now condition on the counting variable

K =
n∑
i=1

1{Xi ∈ A or X ′i ∈ A}

=
n∑
i=1

1{(Xi, X
′
i) ∈ Ã} where Ã = (A×X ) ∪ (X × A).

The law of K is Binomial(n, p̃) with

p̃ = (P ⊗ P )(Ã) = p(2− p).

Let (Y1, Y
′

1), . . . , (Yn, Y
′
n) be an independent random sample from the conditional

distribution of (X1, X
′
1) given that (X1, X

′
1) ∈ Ã. For a fixed i = 1, . . . , n,

the variables Yi and Y ′i are not independent, however they are exchangeable:
(Yi, Y

′
i )

d
= (Y ′i , Yi). Further, let σ1, . . . , σn be an independent sample of Rademacher

variables, independent of (Y1, Y
′

1), . . . , (Yn, Y
′
n). Working conditionally to K = κ

we may write

P

(
sup
A∈G

1

n

n∑
i=1

σi
(
1{Xi ∈ A} − 1{X ′i ∈ A}

)
≥ t | K = κ

)

= P

(
sup
A∈G

1

κ

κ∑
i=1

σi
(
1{Yi ∈ A} − 1{Y ′i ∈ A}

)
≥ n

κ
t

)
.

The remaining of the proof follows the traditional argument: Fix κ pairs of points
(y1, y

′
1), . . . , (yκ, y

′
κ) ∈ X × X . The number of different vectors

(
1{yi ∈ A} −

1{y′i ∈ A}
)k
i=1

that can arise as A ranges over G is bounded by SG(2κ). To each
such vector, apply Hoeffding’s inequality. Since 1{yi ∈ A} − 1{y′i ∈ A} ∈
{−1, 0, 1} ⊂ [−1, 1], we find, for u ≥ 0,

P

[
sup
A∈G

1

κ

κ∑
i=1

σi
(
1{yi ∈ A} − 1{y′i ∈ A}

)
≥ u

]
≤ SG(2κ) exp

(
−κu

2

2

)
.
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Setting u = nt/κ, we obtain for t > 0,

P
(

sup
A∈G

(
Pn(A)− P ′n(A)

)
≥ t | K = κ

)
≤ SG(2κ) exp

(
−n

2t2

2κ

)

Lemma A.4 (Concentration after symmetrization and deconditioning). With the
notations from Lemma A.3, For δ ∈ (0, 1) and if np ≥ 8 ln(2/δ), we have, with
probability at least 1− δ,

sup
A∈G

(
Pn(A)− P ′n(A)

)
≤ 2

√
2p

n

(
ln(2/δ) + lnSG(8np)

)
. (A.1)

Remark A.5. The bound (A.1) can be improved to

2

√
(1 + s(δ))p

n

(
ln(2/δ) + lnSG(4np(1 + s(δ)))

)
with s(δ) = O

(√
ln(2/δ)/(np)

)
, see (A.5).

Proof. We integrate with respect to K the upper bound from Lemma A.3 by con-
sidering whether K is less than 2np(1 + s) or not, with s > 0 to be determined.
Since the integrand is a non-decreasing function of κ, we find

P
[
sup
A∈G

(
Pn(A)− P ′n(A)

)
≥ t

]
≤ P [K > 2np(1 + s)] + SG(4np(1 + s)) exp

(
− nt2

4p(1 + s)

)
. (A.2)

First we choose s > 0 such that the first term on the right-hand side of (A.2) is
bounded by δ/2. Second we choose t such that the second term on the right-hand
side is bounded by δ/2 too.

1. We use the standard Bernstein inequality for a binomial (n, p) random vari-
able: for all t ≥ 0,

P (K − np > t) ≤ exp

(
− t2

2np(1− p) + 2
3
t

)
, (A.3)

equivalently, inverting the upper bound w.r.t. t, with probability greater than
1− δ,

K ≤ np+
2

3
ln(1/δ) +

√
2np(1− p) ln(1/δ). (A.4)
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Since K is Binomial(n, p̃) and p̃ = p(2− p) ≤ 2p, by Bernstein’s inequal-
ity (A.4), with probability greater than 1− δ/2, we have

K ≤ np̃+
2

3
ln(2/δ) +

√
2np̃(1− p̃) ln(2/δ)

≤ 2np+ 2
√
np ln(2/δ) +

2

3
ln(2/δ)

= 2np

(
1 + 2

√
ln(2/δ)

np
+

2

3np
ln(2/δ)

)

Setting

s(δ) = 2

√
ln(2/δ)

np
+

2

3np
ln(2/δ). (A.5)

The first term on the right-hand side of (A.2) is bounded by δ/2.

2. We determine t(δ) > 0 such that the second term on the right-hand side of
(A.2) with s = s(δ) is equal to δ/2. We find

t(δ) = 2

√
p(1 + s(δ))

n

(
ln(2/δ) + lnSG(4np(1 + s(δ)))

)
.

If np ≥ 8 ln(2/δ), then

s(δ) ≤ 1√
2

+ 1
12
< 1

and thus

t(δ) ≤ 2

√
2p

n

(
ln(2/δ) + lnSG(8np)

)
(A.6)

In view of (A.2) and our choice of s(δ) and t(δ), we find that, with probability
1 − δ, the supremum of interest is bounded by the right-hand side of (A.6), as
required.
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Kyselỳ, J. (2008). A cautionary note on the use of nonparametric bootstrap for
estimating uncertainties in extreme-value models. Journal of Applied Meteo-
rology and Climatology, 47(12):3236–3251.

Leadbetter, M. R., Lindgren, G., and Rootzén, H. (1983). Extremes and related
properties of random sequences and processes. Springer Series in Statistics.

Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multi-
variate extreme values. Biometrika, 83(1):169–187.

Lee, H. and Roberts, S. (2008). On-line novelty detection using the Kalman filter
and extreme value theory. In ICPR, pages 1–4.

Lhaut, S., Sabourin, A., and Segers, J. (2021). Uniform concentration bounds for
frequencies of rare events. arXiv preprint arXiv:2110.05826.

95



Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of
the American Statistical Association, 86(414):316–327.

Liu, F., Ting, K., and Zhou, Z. (2008). Isolation Forest. In ICDM, pages 413–422.

Liu, J., Shang, J., Wang, C., Ren, X., and Han, J. (2015). Mining quality phrases
from massive text corpora. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 1729–1744. ACM.

Lugosi, G. (2002). Pattern classification and learning theory. In Principles of
nonparametric learning, pages 1–56. Springer.

Madsen, R. E., Kauchak, D., and Elkan, C. (2005). Modeling word burstiness
using the dirichlet distribution. In Proceedings of the 22nd international con-
ference on Machine learning, pages 545–552.

Malhotra, P., Vig, L., Shroff, G., and Agarwal, P. (2015). Long short term memory
networks for anomaly detection in time series. In Proceedings, volume 89,
pages 89–94. Presses universitaires de Louvain.

Mandelbrot, B. (1953). An informational theory of the statistical structure of
language. Communication theory, 84:486–502.

McAuley, J. and Leskovec, J. (2013). Hidden factors and hidden topics: under-
standing rating dimensions with review text. In Proceedings of the 7th ACM
conference on Recommender systems, pages 165–172. ACM.

McDiarmid, C. (1998). Concentration. In Habib, M., McDiarmid, C., Ramirez-
Alfonsin, J., and Reed, B., editors, Probabilistic Methods for Algorithmic Dis-
crete Mathematics, volume 16 of Algorithms and Combinatorics, pages 195–
248. Springer Berlin Heidelberg.

McFadden, D. (1981). Econometric models of probabilistic choice. In Manski, C.
and McFadden, D., editors, Structural Analysis of Discrete Data with Econo-
metric Applications, pages 198–272. MIT Press, Cambridge, MA.

McFadden, D. (1989). Econometric modeling of locational behavior. Annals of
Operations Research, 18:3–16.

Meyer, N. and Wintenberger, O. (2019). Sparse regular variation. arXiv preprint
arXiv:1907.00686.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of
the ACM, 38(11):39–41.

96



Molchanov, I. (2005). Theory of Random Sets. Probability and its Applications
(New York). Springer-Verlag London, Ltd., London.

Müller, P. and Quintana, F. (2004). Nonparametric bayesian data analysis. Statis-
tical science, pages 95–110.

Naik, G., editor (2017). Advances in Principal Component Analysis. Research
and Development. Springer.

Norberg, T. (1987). Semicontinuous processes in multi-dimensional extreme
value theory. Stochastic Processes and Their Applications, 25:27–55.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dufour, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830.

Peng, L. (1999). Estimation of the coefficient of tail dependence in bivariate
extremes. Statistics & Probability Letters, 43(4):399–409.

Peng, L. and Qi, Y. (2008). Bootstrap approximation of tail dependence function.
Journal of Multivariate Analysis, 99(8):1807–1824.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and
Zettlemoyer, L. (2018). Deep contextualized word representations. In Proc. of
NAACL.

Polonik, W. (1997). Minimum volume sets and generalized quantile processes.
Stochastic Processes and their Applications, 69(1):1–24.

Punzo, A. and Tortora, C. (2018). Multiple scaled contaminated normal distribu-
tion and its application in clustering. arXiv preprint arXiv:1810.08918.

Qi, Y. (1997). Almost sure convergence of the stable tail empirical dependence
function in multivariate extreme statistics. Acta Mathematicae Applicatae
Sinica, 13(2):167–175.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving
language understanding by generative pre-training. unpublished manuscript.

Ramos, A. and Ledford, A. (2009). A new class of models for bivariate joint tails.
Journal of the Royal Statistical Society: Series B, 71(1):219–241.

97



Ratner, A. J., Ehrenberg, H., Hussain, Z., Dunnmon, J., and Ré, C. (2017). Learn-
ing to compose domain-specific transformations for data augmentation. In Ad-
vances in neural information processing systems, pages 3236–3246.

Reiß, M. and Wahl, M. (2020). Nonasymptotic upper bounds for the reconstruc-
tion error of pca. Annals of Statistics, 48(2):1098–1123.

Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes.
Springer Series in Operations Research and Financial Engineering.

Resnick, S. (2007). Heavy-tail phenomena: probabilistic and statistical modeling.
Springer Science & Business Media.

Resnick, S. I. and Roy, R. (1991). Random usc functions, max-stable processes
and continuous choice. The Annals of Applied Probability, pages 267–292.

Roberts, S. (1999). Novelty detection using extreme value statistics. IEE P-VIS
IMAGE SIGN, 146:124–129.

Roberts, S. (2000). Extreme value statistics for novelty detection in biomedical
data processing. IEE P-SCI MEAS TECH, 147:363–367.

Sabourin, A. and Naveau, P. (2014). Bayesian dirichlet mixture model for multi-
variate extremes: A re-parametrization. Comput. Stat. Data Anal., 71:542–567.

Sabourin, A. and Segers, J. (2017). Marginal standardization of upper semicon-
tinuous processes. with application to max-stable processes. Journal of Applied
Probability, 54(3):773–796.

Salinetti, G. and Wets, R. J.-B. (1986). On the convergence in distribution of mea-
surable multifunctions (random sets) normal integrands, stochastic processes
and stochastic infima. Mathematics of Operations Research, 11(3):385–419.

Schaeffer, S. (2007). Graph clustering. Computer Science Review, 1(1):27 – 64.

Schlather, M. (2002). Models for stationary max-stable random fields. Extremes,
5(1):33–44.

Schlather, M. and Tawn, J. A. (2002). Inequalities for the extremal coefficients of
multivariate extreme value distributions. Extremes, 5(1):87–102.

Schlather, M. and Tawn, J. A. (2003). A dependence measure for multivariate and
spatial extreme values: Properties and inference. Biometrika, 90(1):139–156.

98



Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., and Williamson, R. (2001).
Estimating the support of a high-dimensional distribution. Neural Comput.,
13:1443–1471.

Scott, C. and Nowak, R. (2006a). Learning minimum volume sets. JMLR, 7:665–
704.

Scott, C. and Nowak, R. D. (2006b). Minimax-optimal classification with dyadic
decision trees. IEEE transactions on information theory, 52(4):1335–1353.

Shawe-Taylor, J., Williams, C. K., Cristianini, N., and Kandola, J. (2005). On the
eigenspectrum of the gram matrix and the generalization error of kernel-pca.
Information Theory, IEEE Transactions on, 51(7):2510–2522.

Shi, T. and Horvath, S. (2012). Unsupervised learning with random forest predic-
tors. J. Comp. Graph. Stat., 15.

Shyu, M., Chen, S., Sarinnapakorn, K., and Chang, L. (2003). A novel anomaly
detection scheme based on principal component classifier. Technical report,
DTIC Document.

Siffer, A., Fouque, P.-A., Termier, A., and Largouet, C. (2017). Anomaly detection
in streams with extreme value theory. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
1067–1075.

Simpson, E. S., Wadsworth, J. L., and Tawn, J. A. (2020). Determining the de-
pendence structure of multivariate extremes. Biometrika, 107(3):513–532.

Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ.
Inst. Statist. Univ. Paris, 8:229–231.

Smith, R. (1990). Max-stable processes and spatial extremes. Unpublished
manuscript.

Smith, R. (2003). Statistics of extremes, with applications in environment, in-
surance and finance. Extreme values in finance, telecommunications and the
environment, pages 1–78.

Staerman, G., Mozharovskyi, P., Clémençon, S., and d’Alché Buc, F. (2019).
Functional isolation forest. In Asian Conference on Machine Learning, pages
332–347. PMLR.

Steinwart, I., Hush, D., and Scovel, C. (2005). A classification framework for
anomaly detection. JMLR, 6:211–232.

99



Thomas, A., Clemencon, S., Gramfort, A., and Sabourin, A. (2017). Anomaly
detection in extreme regions via empirical mv-sets on the sphere. In AISTATS,
pages 1011–1019.

Tressou, J. (2008). Bayesian nonparametrics for heavy tailed distribution. appli-
cation to food risk assessment. Bayesian Analysis, 3(2):367–391.

van der Vaart, A. W. (1998). Asymptotic Statistics, volume 3 of Cambridge Se-
ries in Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical
Processes. Springer, New York.

Vapnik, V. N. and Chervonenkis, A. Y. (2015). On the uniform convergence of
relative frequencies of events to their probabilities. In Measures of complexity,
pages 11–30. Springer.

Vert, J.-P. and Vert, R. (2006). Consistency and convergence rates of one-class
svms and related algorithms. JMLR, 6:828–835.

Vervaat, W. (1986). Stationary self-similar extremal processes and random semi-
continuous functions. In Dependence in probability and statistics (Oberwol-
fach, 1985), volume 11 of Progr. Probab. Statist., pages 457–473. Birkhäuser
Boston, Boston, MA.

Vervaat, W. (1988a). Narrow and vague convergence of set functions. Statistics
& Probability Letters, 6(5):295–298.

Vervaat, W. (1988b). Random upper semicontinuous functions and extremal pro-
cesses. Department of Mathematical Statistics, R 8801:1–43.

Vervaat, W. and Holwerda, H., editors (1997). Probability and Lattices, volume
110 of CWI Tract. Stichting Mathematisch Centrum, Centrum voor Wiskunde
en Informatica, Amsterdam.

Vignotto, E. and Engelke, S. (2020). Extreme value theory for anomaly detection–
the gpd classifier. Extremes, 23(4):501–520.

Wadsworth, J. L., Tawn, J. A., Davison, A. C., and Elton, D. M. (2017). Modelling
across extremal dependence classes. Journal of the Royal Statistical Society.
Series B (Statistical Methodology), 79(1):149–175.

100



Wang, J. and Perez, L. (2017). The effectiveness of data augmentation in image
classification using deep learning. Convolutional Neural Networks Vis. Recog-
nit.

Wei, J. and Zou, K. (2019). Eda: Easy data augmentation techniques for boosting
performance on text classification tasks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 6383–6389.

Wei, L., Kumar, N., Lolla, V. N., Keogh, E. J., Lonardi, S., and Ratanamahatana,
C. A. (2005). Assumption-free anomaly detection in time series. In SSDBM,
volume 5, pages 237–242.

Xiong, Q. (2018). Methods for extremes of functional data. PhD thesis, Colorado
State University.

Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., Norick, B., and Han,
J. (2014). Personalized entity recommendation: A heterogeneous information
network approach. In Proceedings of the 7th ACM international conference on
Web search and data mining, pages 283–292. ACM.

Zenati, H., Romain, M., Foo, C.-S., Lecouat, B., and Chandrasekhar, V. (2018).
Adversarially learned anomaly detection. In 2018 IEEE International confer-
ence on data mining (ICDM), pages 727–736. IEEE.

Zhou, C. and Paffenroth, R. C. (2017). Anomaly detection with robust deep au-
toencoders. In Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, pages 665–674.

Zhu, L.-P., Zhu, L.-X., and Feng, Z.-H. (2010). Dimension reduction in regres-
sions through cumulative slicing estimation. Journal of the American Statistical
Association, 105(492):1455–1466.

Zwald, L. and Blanchard, G. (2006). On the convergence of eigenspaces in kernel
principal component analysis. In Advances in Neural Information Processing
Systems, pages 1649–1656.

101


	Introduction
	Foreword
	Layout of the thesis
	Selected list of publications

	Statistical learning guarantees for Extreme Value Analysis
	 Concentration inequalities for rare events 
	Statistical learning on VC classes
	Contributions

	Learning guarantees for the dependence structure of extremes 
	Background in Multivariate Extreme Value theory and regular variation
	Contribution: finite sample guarantees on the stdf


	Classification of extreme events
	Classification in the erm paradigm: background
	Binary classification in extreme regions
	Heavy-tailed representations, classification and data augmentation in a NLP framework

	Dimensionality reduction
	Sparse representation of multivariate extremes
	Subspace clustering and hypothesis testing
	Principal Component Analysis for Multivariate extremes

	Anomaly detection, clustering and vizualization
	Anomaly detection via dimensionality reduction of the multivariate tail
	Anomaly detection in moderate dimension using spherical Mass-Volume sets
	Clustering and Visualization of tail events

	Miscellanea: standardization of semi-continuous max-stable processes
	usc processes
	Sklar's theorem for usc processes
	Max-stable usc processes and their standardization

	Ongoing work and perspectives
	Concentration of the empirical angular measure 
	Sliced Inverse Regression with extreme target
	Perspectives
	Re-sampling multivariate extremes
	Extremes of time series and functional data, with application to anomaly detection


	Alternative concentration inequality for rare classes 

