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Generic research goals

• Obtain statistical learning guarantees regarding estimators of standard
quantities issued from extreme value theory (EVT)

• Develop dimensionality reduction tools in order to extend the range of
application of multivariate EVT

• Propose EVT-based solutions to standard machine learning tasks
(classification/anomaly detection)
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Extreme Values: why bother?

‘Il est impossible que l’improbable n’arrive jamais’

Emil Julius Gumbel, 1891-1966 1934 flood at Port Pirie, Australia
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Ideas behind Extreme Value Theory
Theory: Under minimal assumptions, distributions of

maxima/excesses converge to a certain class.

Modelling: Use those limits to model maxima/excesses above large
thresholds.

X: random object (variable / vector/ process) Xi
i .i .d .∼ X.

n
max
i=1

Xi
d
≈ Max-stable (n large)

[
X
∣∣ ‖X‖ ≥ r

] d
≈ Generalized Pareto (r large)

n∑
i=1

δ(i ,Xi )
d
≈ Poisson point process (n large, above large r)
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Multivariate regular variation (MRV) (I)
• A random vector X = (X1, . . . ,Xd) ∈ Rd is regularly varying if there

exists a limit measure µ such that for all set A ⊂ Rd such that
0 /∈ closure(A) and µ(∂A) 6= 0,

P (X ∈ tA)

P (‖X‖ > t)
−−−→
t→∞

µ(A) . (MRV)

• The limit measure is homogeneous: µ(rA) = r−αµ(A) for
some α > 0 (tail index).
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Multivariate regular variation (MRV) (II)
• µ rules the (probabilistic) behaviour of extremes: if A is far from

the origin, then
P(X ∈ A) ≈ µ(A) .

Namely
P (X ∈ tA) = L(t)µ(tA),

with L a slowly varying function, even L(t) −−−→
t→∞

C (Constant) after

suitable marginal standardization.

• Examples: Max stable vectors with standardized margins, multivariate
Student, . . .

• In practice: preliminary componentwise standardization is often
necessary: then (MRV) concerns the standard version V of X ,

Vj := 1/(1− Fj(Xj)), V = (V1, . . . ,Vd).

(using empirical F̂j work well even in theory)
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MRV (III): Angular Measure
• Homogeneity of µ → polar coordinates are convenient

r(x) = ‖x‖ ; θ(x) = r(x)−1x .

(‖ · ‖: any norm, typically ‖ · ‖∞, ‖ · ‖2 or ‖ · ‖1)

• Angular measure Φ on the ‖ · ‖-sphere:

Φ(B) = µ{r > 1, θ ∈ B}.
• Then µ decomposes as a product measure

µ ◦ Polar-transform−1{r > t, θ ∈ B} = t−αΦ(B)

• The angular component Φ only is non-parametric.
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Tail empirical process: asymptotic literature
• Convenient re-writing: (MRV) ⇐⇒ tP

[
b(t) ·

]
→ cµ( · ) (vaguely)

where b(t) = quantile of order 1− 1/t of the norm, c > 0 a constant

Estimating µ ≈ Estimating tP
[
(b(t) ·

]
(up to a vanishing bias term)

• X ,X1, . . . ,Xn
i.i.d.∼ P satisfying (MRV), Pn: empirical measure.

• As n→∞, k →∞, n/k →∞: the ‘tail empirical process’
converges weakly (1D case, α = 1)

√
k
n

k
(Pn − P)

[
b(n/k)y ,∞

)
D(0,∞)−−−−→

w
W (y),

W : brownian motion, see Resnick 2007, thm. 9.1 + references.

In practice: b(n/k)← X(k) (the kth largest order statistic)

• Multivariate extensions are available
(Einmahl et al., 2006, Einmahl & Segers 2009, Einmahl et al. 2012, . . . )
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Bounding the deviations of empirical measures

Key historical result: uniform bound on the deviations of the empirical
measure Pn from the true law P of X , over a class of sets of controlled
complexity

• A: class of subsets of X (= Rd here).

• SA(n) = max(x1,...,xn)∈X n |{A ∩ {x1, . . . , xn : A ∈ A}|
= Shattering coefficient ≤ 2n.

Vapnik-Chervonenkis inequality (probability bound )

(Vapnik, Chervonenkis, 71) with probability ≥ 1− δ,

sup
A∈A
|Pn − P|(A) ≤ 2

√
2

n
[log(4/δ) + log(SA(2n))]

• Vapnik-Chervonenkis dimension dA: complexity control of A

• Sauer ’s lemma : SA(n) ≤ (n + 1)dA � 2n.
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Application to classification

Control of the generalization risk in classification via ERM

• A classifier: a function g : Z 7→ {−1, 1}, Z: feature space.

• Choose a family of such classifiers G (∼ a ‘model’).

• G is 1-to-1 with A = {Ag = {(z , y) : g(z) 6= y}, g ∈ G}

• Empirical risk Rn(g) = 1
n

∑n
i=1 1{g(Zi ) 6= Yi} = Pn(Ag ).

• supg∈G |R − Rn|(g) = supA∈A |Pn − P|(A)

→ upper bounds on the generalization risk R.
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Our wish list
• Recall the asymptotic convergence rate:

√
k
n

k
(Pn − P)(b(n/k)A)→ non degenerate Gaussian r.v.

with P(b(n/k)A) = O(k/n)P(A) , A /∈ Ā, (b is a quantile function)

• in other terms, with p = k/n

√
pn

1

p
(Pn − P)(Ap)→ non degenerate Gaussian r.v.

where
• P(Ap) = O(p)P(A)
• np ≈ number of points Xi in the extreme regions used for estimation.

• Reasonable hope: prove that with high probability,

1

p
sup
A∈Ap

|Pn − P|(A) ≤ O

(√
C or dA log(np)

np

)
where Ap: a class of sets with low probability O(p) and VC-dim dA
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Existing literature: normalized VC inequalities

• Vapnik 2015, Bousquet et al. 2003:
with probability 1− 2δ,

sup
A∈A

∣∣∣∣∣Pn(A)− P(A)√
P(A)

∣∣∣∣∣ ≤ 2

√
log SA(2n) + log 4

δ

n
,

• Consequence, with p = supA∈A P(A)

1

p
sup
A∈A
|Pn(A)− P(A)| ≤ 2

√
log SA(2n) + log 4

δ

np
,

How to replace the SA(n) term with SA(np) or dA log(np) or C?
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A VC-type inequality for rare classes

(Goix, S. , Clémençon, 2015)

Theorem: Supremum deviation on low probability regions

Let X1, . . . ,Xn be i.i.d. realizations of a r.v. X with distribution P and let
A be a VC-class of sets with VC-dimension dA. Consider the class union
A = ∪A∈AA, and let p = P(A). Then there is a universal constant C such
that for all 0 < δ < 1, with probability at least 1− δ,

1

p
sup
A∈A
|Pn(A)− P(A)| ≤ C

[√
dA
np

log
1

δ
+

1

np
log

1

δ

]
. (1)
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Tool #1: ‘Bernstein-bounded difference’ inequality
(Mc Diarmid, 98)

• Recall Bernstein inequality for Z =
∑n

1 Xi , (Xi )i i.i.d.,
v = Var(Z ), |Xi − E (Xi ) | < b,

P (Z − E (Z ) > t) ≤ exp

(
− t2/2

v + bt/3

)

Theorem (Mc Diarmid, 98)

The above inequality is also true for Z = f (X1, . . . ,Xn), with

• Variance term v maximum sum of variances:
v = supx1,...,xn

∑n
k=1 vk(x1, . . . , xk−1), with

vk(x1, . . . , xk−1) = Var
(
E (Z |Xk , x1:k−1)

)
• maximum positive deviation b = supk,x1:k dev

+
k (x1:k−1), with

dev+
k (x1:k−1) = sup

xk

E (Z |Xk = xk , x1:k−1)− E (Z |x1:k−1)

16/34



Mc Diarmid’s Bernstein/Bounded difference inequality
applied to rare classes

• Set Z = supA∈A |Pn − P|(A) , p = P(∪A∈AA).

Lemma (Goix, S. Clémençon, 2015)

The maximum sum of variances v and maximum positive deviation b in-
volved in Mc Diarmid’s bound (in the previous slide) satisfy

v ≤ 2p/n ; b ≤ 1/n

Corollary: concentration of the maximum deviations

With proba ≥ 1− δ, p−1 sup
A∈A
|Pn − P|(A)

≤ E
(
p−1 sup

A∈A
|Pn − P|(A)

)
+

√
4 log(1/δ)

np
+

2

3np
log(1/δ)
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Tool #2: ‘Conditioning trick’
(Lhaut, S., Segers, 21+, Goix, S. Clémençon, 15, see also tail empirical process literature)

• Let K = #{i : Xi ∈ A} ∼ Binomial(n, p).[(
Pn(A)

)
A∈A
| K = k

]
d
=

(
k

n
PY
k (A)

)
A∈A

where PY
k (A) = 1

k

∑k
i=1 1A(Yi ), Yi

i.i.d.∼ P( · ∩ A)/P(A).

Bounding the expected maximal deviations

E
(

supA |Pn − P|(A)

p

)
≤ C

√
dA
np

(GSC15, using chaining results)

(C universal constant)

E
(

supA |Pn − P|(A)

p

)
≤

√
2dA log(2np + 1)

np
+

3
√
np

(LSS21+, using VC inequality for expectation)
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Classification in extreme regions: set up
(Jalalzai, Clémençon, S., 2018)

• Random pair (V ,Y ), V ∈ Rd
+: observed input/features,

Y ∈ {−1, 1}: label to be predicted.

• Assumption (MRV), standard case, for each class:

tP(t−1V ∈ B | Y = ± 1) −−−→
t→∞

µ±(B)

(no standardization required or margins known).

• Classification loss Lt(g) for a classifier g : Rd → {−1, 1} above level t:

Lt(g) = P{Y 6= g(V )| ‖V ‖ > t},
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Main findings (Jalalzai, Clémençon, S., 2018)

1. For an angular classifier g(v) = g
(
θ(v)

)
,

L∞(g) = lim
t→∞

Lt(g) exists.

2. There exists an angular classifier g∗ minimizing lim supt Lt(g) over
all possible classifiers.

3. The ERM strategy for G ⊂ angular classifiers,

min
g∈G

n∑
i=1

1{g(Vi ) 6= Yi , ‖Vi‖ > t̂n/k}

with t̂n/k : 1− k/n empirical quantile of ‖V ‖, yields a ĝ s.t.

L∞(ĝ)− L∞(g∗) ≤ 4C
√
dG ln(1/δ)/k + bias(n, k) + bias(G) + O(1/k).
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Application: Natural Language Processing (NLP)

Jalalzai, Colombo, Clavel, Gaussier, Varni, Vignon, S. (2020)

• Extension of the previous framework to datasets who are
NOT regularly varying.

• Dataset: text embeddings (BERT). X = vector in Rd , d large (768).

• label Y = positive/negative sentiment.

• Two goals:

(i) improved classification in low probability regions of X

(ii) label preserving data augmentation
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Learning a regularly varying representation for NLP
• Key step: adversarial strategy, (Goodfellow et al. 2014) mixed loss

function involving

• 0− 1 loss in extreme/ non-extreme regions

• Jensen-Shannon divergence between the learnt representation and a
Max-stable multivariate Logistic, 6= common practice Gaussian

+

-

• Output: a transformed vector Z̃ = ϕ(X ) which is (experimentally)
regularly varying (low correlations θ(Z̃ )↔ ‖Z̃‖).
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Other related results/applications

• Uniform control of the deviations of the empirical c.d.f. of the limit
measure (=the standard tail dependence function):
Goix, S. Clémençon, 15

• Mass-Volume set estimation of the angular component (angular
measure) for anomaly detection far from the origin:
Thomas, Clémençon, Gramfort, S. 2017

• Uniform deviations of the empirical angular measure of extremes
(unknown marginal distributions): Clémençon, Jalalzai, S. Segers, 21+

→ Extension of the classification set-up to (X ,Y ) with marginal
distribution Xj unknown

• Alternative bounds with explicit constants: Lhaut, Segers, S. 21+
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Motivation
• Multivariate heavy-tailed random vector X = (X1, . . . ,Xd)

e.g. spatial field (temperature, precipitation), asset (negative) prices

• Focus on the tail: {x | ‖x‖ > t), t � 1 with P(‖X‖ > t) small.

Possible goals: modeling and simulation (stress test), anomaly
detection/clustering among extreme values, . . .

• d � 1 : modeling Law(X | ‖X‖ > t) unfeasible.

• Dimension reduction problem(s) :

1. Identify the groups of features J ⊂ {1, . . . d} which may be large
together (while the others stay small), given that one of them is large.

2. Identify a single low dimensional projection subspace S0 such that
Law(X | ‖X‖ > t) ≈ concentrated on S0.
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Sparse support recovery (Goix, S. Clémençon, 2016, 2017)

• Reasonable hope: the groups {Xj , j ∈ J}’s wich may be simultaneously
large are (i) few (ii) small. → sparse angular measure

Our goal: Estimate the (sparse) support of the angular measure
(i.e. the dependence structure).

Full support: Sparse support
anything may happen (X1 not large if X2 or X3 large)
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Identifying non empty subspaces (Goix et al. 2016)

Two parameters: (i) Tolerance parameter ε (otherwise empirical measure
of subspaces = 0) ; (ii) k (number of observations considered as extremes)

Theorem (Goix, S., Clémençon, 2016)

If the margins Fj are continuous and if the density of the angular measure
is bounded by M > 0 on each subface (infinity norm),
There is a constant C s.t. for any n, d , k , δ ≥ e−k , ε ≤ 1/4, w.p. ≥ 1− δ,

max
J⊂{1,...,d}

|µ̂n(CJ)− µ(CJ)| ≤Cd

(√
1

kε
log

d

δ
+ Mdε

)
+ Bias n

k
,ε(F , µ).

Regular variation ⇐⇒ Biast,ε −−−→
t→∞

0
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Application (I): anomaly detection
(Goix, S, Clémençon (2016), similar spirit without dimensionality reduction in Thomas,

Clémençon, Gramfort, S. (2017))

• Training step:
Learn a ‘normal region’ (e.g. approximate support)

• Prediction step: (with new data)
Anomalies = points outside the ‘normal region’

If ‘normal’ data are heavy tailed, Abnormal 6⇔ Extreme .
There may be extreme ‘normal data’.

How to distinguish between large anomalies and normal extremes?
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Application (II): Clustering of anomalies
(Chiapino, Clémençon, Feuillard, S. 2019)

• Motivation: Airbus flight data (times series/logs):
dimension = O(100). How to cluster together similar anomalies to
help interpretation?

• Here: an anomaly = any X such that ‖X‖ is large.

• Idea: Use the subspaces output by DAMEX (or variants) as the
components of a pre-asymptotic mixture model

• Use posterior probabilities P(Xi ∈ Component j) to construct a
pairwise similarity matrix between extreme data.

• Use e.g. graph clustering techniques to issue final clusters
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Dimension reduction: Alternative methods/extensions
• Simpson, Wadsworth, Tawn, 2020: hidden regular variation

• Chiapino, S. , 2018 ; Chiapino, S., Segers 2019: Gathering ‘close’ subspaces
+ asymptotic analysis and statistical tests (different null H0

considered).

• Clustering: Chautru 2015, Janßen & Wan 2020, Jalalzai & Leluc 2021, Fomichov

& Ivanovs 2021+

• Alternative definition of sparsity (Euclidean projections on the
simplex) Meyer & Winterberger 2021+

• Graphical models for extremes (Hitz, Evans, 2016, Engelke, Hitz 2020,

Engelke, Volgushev 2020+)

• PCA: Drees, S. 2021 (some theory) Cooley, Thibaud, 2019 (specific
preliminary transformation, with applications), see also Jiang, Cooley,

Wehner 2020, Rohrbeck, Cooley 2021+

• Review: Engelke, Ivanovs (2021)
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Drees, S. (2021)’s PCA: Context, Motivation
• (X1, . . . ,Xd) a multivariate r. vector with tail index α > 0 and limit

measure µ

Motivating Assumption (not necessary for our results)

The vector space S0 = span(suppµ) generated by the support of µ has
dimension p < d .

• Purpose of this work: Recover S0 from the data, with guarantees
concerning the reconstruction error.
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Toy example
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Uniform risk bound on the L2 reconstruction error
• tn,k : quantile of level 1− k/n for ‖X‖, Θ = ‖X‖−1X

• Ξt := E
(
‖Θ‖4 − πt tr(Σ2

t ) | ‖X‖ > t
)

; Σt = E
(
ΘΘ> | ‖X‖ > t

)
Theorem (Drees, S., 20++), simplified version

With probability at least 1− δ,

sup
S∈Ep
|Rn,k(S)− Rtn,k (S)| ≤

[p ∧ (d − p)

k
Ξtn,k

]1/2
+ . . .

. . .
[8

k
(1 + k/n) log(4/δ)

]1/2
+ . . .

. . .
4 log(4/δ)

3k
.

(tools: McDiarmid, 98’s Bernstein-type bound + arguments from
Blanchard et al. 07)

• NB: unknown term Ξt : an alternative statement is proven with only
empirical quantities in the upper bound.
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Outline

Double background: Extremes, Statistical learning
Extremes
Statistical learning

Satistical learning guarantees for extremes
Finite-sample toolkit for extremes
Application: Classification in extreme regions
Other applications, extensions

Dimensionality reduction in multivariate tails
Identification of multiple subspaces (groups of features)
Principal Component Analysis for Multivariate Extremes

Perspectives
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Perspectives
• Unsupervised dimensionality reduction → supervised? (explain large

values of Y given a low dimensional representation of the multivariate
input X ) (Aghbalou, Portier, S. , Zhou, 21+)

• Alternative concentration tools: Talagrand inequality /Bousquet
inequality could replace McDiarmid’s Bernstein-type one (they have a
variance term)

• Tightness of the bounds? (Lower bounds?)

• Universal upper-bounds → data-dependent bounds?
(e.g.Cross-Validation), algorithmic stability?
ongoing PhD Anass Aghbalou.

→ model selection?

• From multivariate extremes to infinite dimensional one: dimensionality
reduction tools for extremes of time series/ functional data? (ongoing
PhD Nathan Huet) 34/34
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