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Multivariate extreme values

» Risk management: Largest events, largest losses

» Hydrology: ‘flood predetermination’.

» Return levels (extreme quantiles)
» Return periods (1/ probability of occurrence )

— digs, dams, land use plans.

» Simultaneous occurrence of rare events can be catastrophic
» Multivariate extremes:

Probability of jointly extreme events ?



Censored Multivariate extremes: floods in the ‘Gardons’

joint work with Benjamin Renard

v

Daily streamflow data at 4 neighbouring sites :

St Jean du Gard, Mialet, Anduze, Alés.

Joint distributions of extremes ?

— probability of simultaneous floods.

Recent, ‘clean’ series very short

Historical data from archives, depending on ‘perception
thresholds’ for floods (Earliest: 1604). — censored data
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Gard river Neppel et al. (2010)

How to use all different kinds of data ?



Multivariate extremes for regional analysis in hydrology

» Many sites, many parameters for marginal distributions, short
observation period.

> ‘Regional analysis’: replace time with space.
Assume some parameters constant over the region and use
extreme data from all sites.

» Independence between extremes at neighbouring sites ?
Dependence structure ?

» ldea: use multivariate extreme value models



Outline

Multivariate extremes and model uncertainty

Bayesian model averaging (‘Mélange de modéles’)

Dirichlet mixture model (‘Modéle de mélange’):
a re-parametrization

Historical, censored data in the Dirichlet model



Multivariate extremes

» Random vectors Y = (Y1,...,Yy); Y;>0
» Margins: Vi~ F;, 1< <d
(Generalized Pareto above large thresholds)

» Standardization (— unit Fréchet margins)
Xj=—1/log[F;(Y)] i P(Xj<x)=eV*, 1<j<d

» Joint behaviour of extremes: distribution of X above large
thresholds ?

P(X € AlX € Ay)? (A C Ap,0 ¢ Ag), Ao ‘far from the origin’.

X X
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“Extremal region”
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Polar decomposition and angular measure

> Polar coordinates: R = Zj-j:l X;j (L1 norm) ; W = X.
» W esimplex Sg ={w: w;> O,ijj =1}
» Angular probability measure:

H(B) = P(W € B) (B C Sy).




Fundamental RQSUlt de Haan, Resnick, 70's, 80's

» Radial homogeneity (regular variation)

P(R>rWeBIR>r) ~ %OH(B) (r=cr,c>1)
ro—00

v

Above large radial thresholds, R is independent from W
H (4 margins) entirely determines the joint distribution

v
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One condition only for genuine H: moments constraint
1 1

dH(w) = (=,...,>).
JwaHmw) = (5. 5)

Center of mass at the center of the simplex.
» Few constraints: non parametric family !



Estimating the angular measure: non parametric problem

» Non parametric estimation (empirical likelihood, Einmahl et
al., 2001, Einmahl, Segers, 2009, Guillotte et a/, 2011.) No explicit
expression for asymptotic variance, Bayesian inference with
d = 2 only.

» Restriction to parametric family: Gumbel, logistic, pairwise
Beta ... Coles & Tawn, 91, Cooley et al., 2010, Ballani & Schlather,
2011 :

How to take into account model uncertainty ?



Outline

Bayesian model averaging (‘Mélange de modéles’)
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BMA: Averaging estimates from different models

Disjoint union of several parametric models

» Sabourin, Naveau, Fougéres, 2013 (Extremes)

» Package R: ‘BMAmevt’ , available on CRAN repositories

"http://cran.r-project.org/

1
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Outline

Dirichlet mixture model (‘Modéle de mélange’):
a re-parametrization
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Dirichlet distribution

d

o .. r(V) vu;—1

v € S, diri(w | p,v) = ——2— T wi .
H,q:1 M(vui) i=1

o
» € Sy: location parameter (point on the simplex): ‘center’;
» v > 0 : concentration parameter.

0.00 035 o 106 141

w3 wil
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Dirichlet distribution

d
r(U) W}/u,'fl

d
Hi:l M(vwi) i=1 I

o
» € Sy: location parameter (point on the simplex): ‘center’;
» v > 0 : concentration parameter.

Yw € gd, diri(w | p,v) =

13



Dirichlet mixture model Boldi, Davison, 2007
> N:M.71;k:’/:l/1:kv P = P1:k: ¢:(N5P7V)r

k
hoW) = > P liri(w | 12 s i)

m=1

» Moments constraint — on (u, p):

k
11
mz_:lpm“.,m_(dw'-’d)'

Weakly dense family (k € N) in the space of admissible angular
measures
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Bayesian inference and censored data

» Two issues : (i) parameters constraints (ii) censorship

(i) Bayesian framework: MCMC methods to sample the posterior
distribution.
Constraints = Sampling issues for d > 2.

» Re-parametrization: No more constraint, fitting is manageable
for d = 5: Sabourin, Naveau, 2013

(i) Censoring: data# points but segments or boxes in RY.
» Intervals overlapping threshold: extreme or not ?

» Likelihood: density % dH(w) integrated over boxes.

> Sabourin, under review ; Sabourin, Renard, in preparation
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Re-parametrization: intermediate variables (vq,...,v,_1),
partial barycenters

ex: k=4
yO*
Ym : Barycenter of kernels "following pt_p, ™ o piqs- -5 1 k-
~1
Tm=(D_P) " Y pim
j>m j>m

16



~, on a line segment: eccentricity parameter ¢; € (0,1).

ex: k=14

Draw (p. 1 € Sg, e1 € (0,1)) — v, defined by Yo 71 =e;
Yol
YoV1

— pP1= .
K. o171
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~, on a line segment: eccentricity parameter e; € (0,1).

ex: k=14

Draw (p. 5, &) — 7, =—= =&

— P2

18



Last density kernel = last center pu. .

Draw (M,s’ e3) — 73

—P3, B4 =3
— P4

ex: k=14

19



Summary

» Given
(H.,1:k71a 1:k—1) 5
One obtains
(K140 P1:k)-
» The density h may thus be parametrized by

0= (1 1:4—1,€1:k—1, V1:k) -

20



Bayesian model

» Unconstrained parameter space : union of product spaces
(‘rectangles’)

0= ]O_o[ Ok, Or= {(sc,)k*1 x [0,1)K1 x (o,oo]kfl}
k=1

» Inference: Gibbs + Reversible-jumps.

» Restriction (numerical convenience) : k < 15, v < Vmax, €tcC ...

» ‘Reasonable’ prior ~ ‘flat’ and rotation invariant.
Balanced weight and uniformly scattered centers.
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MCMC sampling: Metropolis-within-Gibbs, reversible jumps.

Three transition types for the Markov chain:

» Classical (Gibbs): one p_p,, em or a vp, is modified.

» Trans-dimensional (Green, 1995):
One component (u g, €k, Vk+1) is added or deleted.

» ‘Shuffle: Indices permutation of the original mixture:
Re-allocating mass from old components to new ones.

22



Results: model’'s and algorithm’s consistency
» Ergodicity: The generated MC is ¢-irréducible, aperiodic and

admits 7, (= posterior | Wi.,) as invariant distribution.
» Consequence:

Vg € Cy(© ng ) = En(g)-

» Key point: m, is invariant under the ‘shuffle’ moves.
» Posterior consistency for 7, under ‘weak conditions'?, 7-a.s.,
YU weakly open containing 6g,
ma(U) —— 1.

n—o00

» Consequence:
Er,(8) —— &(6o).
n—oo

» Key: The Euclidian topology is finer than the Kullback
topology in this model.

2|f the prior grants some mass to every Euclidian neighbourhood of © and if
0o is in the Kullback-Leibler closure of ©




Convergence checking (simulated data, d =5, k = 4)

» 0 summarized by a scalar quantity (integrating the DM density
against a test function)

80

40

20

r T T T 1 r T T T 1
10 50007 100005 150002 20405 10 50007 100005 150002 20405

Original algorithm Re-parametrized version

» standard tests:

» Stationarity (Heidelberger & Welch, 83)
» variance ratio (inter/intra chains, Gelman, 92)
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Estimating H in dimension 3, simulated data
MCMC: T, =5010%; T; = 25103.

0.00 0.35 0.71 1.06 141

w3 wil
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Dimension 5, simulated data

Angular measure density for one pair (T, = 200103, T; = 80103).

18

0.0

X2/(X2+X5) X2/(X2+X5)

Gelman ratio: Original version: 2.18; Re-parametrized: 1.07.

Credibility sets (posterior quantiles): wider.
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Bayesian inference and censored data

» Two issues : (i) parameters constraints (ii) censorship

(i) Bayesian framework: MCMC methods to sample the posterior
distribution.
Constraints = Sampling issues for d > 2.

» Re-parametrization: No more constraint, fitting is manageable
for d = 5: Sabourin, Naveau, 2013

(i) Censoring: data# points but segments or boxes in RY.
» Intervals overlapping threshold: extreme or not ?

» Likelihood: density % dH(w) integrated over boxes.

> Sabourin, under review ; Sabourin, Renard, in preparation
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Outline

Historical, censored data in the Dirichlet model

28



Censored data: univariate and pairwise plots
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Censored data: univariate and pairwise plots

Bivariate plots:

1000 1500 2000 2500

1000 1500 2000 2500

500
L

Streamflow at Anduze (m3/s)
3000
Streamflow at Ales (m3/s)
500

Streamflow at Mialet (m3/s)

[
L

————————— ————————— ————————
0 1000 2000 3000 0 1000 2000 3000 o 1000 2000 3000
Streamflow at StJean (m3/s) Streamflow at StJean (m3/s) Streamflow at StJean (m3/s)
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Using censored data: wishes and reality

» Take into account as many data as possible
— Censored likelihood, integration problems

» Information transfer from well gauged to poorly gauged sites
using the dependence structure
— Estimate together marginal parameters 4+ dependence

30



Data overlapping threshold and Poisson model

Xzl n

A : Fixed failure region
u,n
®
®
®e

[ ]
Observed censored regions (variable)
AcC
u,/n| i

A X

u,fn Xiln
How to include the rectangles overlapping threshold in the likelihood ?

t X
{(, t> ,1<t<n } ~ Poisson Process (Lebx\) on [0,1]xA,

n n -

A: ' exponent measure’, with Dirichlet Mixture angular component

dr x dw(r w) = ( ):
Overlapping events appear in Pousson likelihood as
tr t1 1
PIin(2 2L ZAy=0| = —(to — t1)\(A;
W {(E -2y xag —0] —ewl-(n - a)\A)

31



‘Censored’ likelihood: model density integrated over boxes

» Ledford & Tawn, 1996: partially extreme data censored at
threshold,
» GEV models
» Explicit expression for censored likelihood.

» Here: idem + natural censoring
» Poisson model
» No closed form expression for integrated likelihood.

» Two terms without closed form:
» Censored regions A; overlapping threshold:

exp {—(t2 — t1)A(Ai)}

» Classical censoring above threshold

/ dA
censored region dx

32



Data augmentation

One more Gibbs step, no more numerical integration.

v

Objective: sample [0| Obs|  likelihood (censored obs)

v

Additional variables (replace missing data component): Z

v

Full conditionals [Z;|Z;j, 0, Obs], [0|Z, Obs|, . . . explicit
(Thanks Dirichlet): — Gibbs sampling.

v

Sample [z,0|O0bs|. (augmented distribution) on © x Z.

33



Censored regions above threshold

dA
/ . d dXJl :jr
Censored region 94X

Generate missing components under univariate conditional
distributions _
Zjl;, ~ [Xmissing|X0b57 9]

X2 | Augmentation data
2 S0 D

) 6]

Censored interval

Extremal region

X1

Dirichlet = Explicit univariate conditionals
Exact sampling of censored data on censored interval 34



Censored regions overlapping threshold

augmentation Poisson process N; on E; D A;.
e*(fz,i*fl,i))\(Ai) N

Functional ¢(N;)

X | Augmentation o

z =0';F’E(it'>‘) @{points in Ai})
Uy Ai
[ ]
Xa

[z,0]|Obs] [Nile(Ni)

density terms, prior, augmented missing components
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Simulated data (Dirichlet, d = 4, k = 3 components),
same censoring as real data

Pairwise plot and angular measure density
(true/ posterior predictive)

4000
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I
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1000
I

r T T T T 1
0 1000 2000 3000 4000 5000 6000 0.0 0.2 0.4 0.6 0.8 1.0

s3 X3/(X3+X4)
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Simulated data (Dirichlet, d = 4, k = 3 components),

same censoring as real data
Marginal quantile curves: better in joint model.

S3

— = dependent
- =+ independent
— true

13401
1

6700 10051
1 1

discharge :

3350

return period (years, log-scale)



Angular predictive density for Gardons data
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Conditional exceedance probability
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Conclusion

» Building Bayesian multivariate models for excesses:
» Dirichlet mixture family: ‘non’ parametric, Bayesian inference
possible up to re-parametrization

» Censoring — data augmenting (Dirichlet conditioning
properies)
» Two packages R:

> DiriXtremes, MCMC algorithm for Dirichlet mixtures,
» DiriCens, implementation with censored data.

» High dimensional sample space (GCM grid, spatial fields) ?
» Impose reasonable structure (sparse) on Dirichlet parameters

» Dirichlet Process 7 Challenges :
Discrete random measure # continuous framework
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Bayesian Model Averaging: reducing model uncertainty.

» Parametric framework: arbitrary restriction, different models
can yield different estimates.

» First option: Fight !
» Choose one model (Information criterions: BIC/ AIC /AICC)

43
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» Parametric framework: arbitrary restriction, different models
can yield different estimates.
» First option: Fight !
» Choose one model (Information criterions: BIC/ AIC /AICC)

H's family
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Bayesian Model Averaging: reducing model uncertainty.

» Parametric framework: arbitrary restriction, different models

can yield different estimates.
» BMA = averaging predictions based on posterior model

weights

H's family

» Already widely studied and used in several contexts ( weather

forecast ...).
Hoeting et al. (99), Madigan & Raftery (94), Raftery et al. (05) 43



BMA: principle

» J statistical models .#(y), ... .# ), with parametrization
©j, 1 <j < J and priors 7i; defined on ©O;
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BMA: principle
» J statistical models .#(y), ... .# ), with parametrization
©j, 1 <j < J and priors 7i; defined on ©O;
» BMA model = disjoint union: 6 =| |/, ,
with prior p on index set {1,..., J}:
p(.#;) = ‘prior marginal model weight’ for .#;

> prior on O: #(||{ B;) = 31 p(#4) w(B))  (Bj C ©))
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BMA: principle

» J statistical models .#(y), ... .# ), with parametrization
©j, 1 <j < J and priors 7i; defined on ©O;

» BMA model = disjoint union: 6 =| |{ ©;
with prior p on index set {1,..., J}:
p(.#;) = ‘prior marginal model weight’ for .#;

> prior on O: #(||{ B;) = 31 p(#4) w(B))  (Bj C ©))
» posterior (conditioning on data X) = weighted average
posterior in.Z;
i J J .
7 Bi1X) =D p(4; | X) mi(B; | X)
1 1 L TTSN—
posterior marginal model weight

Key: posterior weights. (Laplace approx or standard MC ?)

p( ;| X) x p() /e Likelihood(X |6) d;(6)

44



BMA for multivariate extremes Sabourin, Naveau, Fougéres (2013)

» Background: univariate EVD's of different types Stephenson &
Tawn (04) or multivariate, asymptotically dependent/
independent EVD’s Apputhurai & Stephenson (10)

» Our approach: averaging angular measure models, with
angular data 7.

> Fy,...,F, max-stable distributions — . p;F; not

max-stable.

> Hi,...H; angular measures (moments constraint) — >, pjH;
is a valid angular measure ! (linearity)
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Implementing and scoring BMA for Multivariate extremes

Does the BMA framework perform significantly better than
selecting models based on AIC ?

» Yes, in terms of logarithmic score for the predictive density
(Kullback-Leibler divergence to the truth) Madigan & Raftery (94)

In average over the union model, w.r.t prior !
» Simulation study : Evaluation via proper scoring rules
(Logarithmic + probability of failure regions)
» 2 models of same dimension: Pairwise-Beta / Nested asymmetric
logistic
» 100 data sets simulated from another model
» Results: The BMA framework performs
» consistently (for all scores),
» slightly (1/20 to 1/100),

better than model selection.
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Discussion

» BMA vs selection: Moderate gain for large sample size :
Posterior concentration on ‘asymptotic carrier regions’ =
points (parameters) of minimal KL divergence from truth

» BMA : simple if several models have already been fitted (‘only’
compute posterior weights)

» Way out: Mixture models for increased dimension of the
parameter space. (product)
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