Bayesian model mergings for multivariate extremes

Application to regional predetermination of floods with incomplete data

Anne Sabourin
PhD defense
University of Lyon 1

Committee:
Anthony Davison, Johan Segers (Rapporteurs)
Anne-Laure Fougères (Director), Philippe Naveau (Co-director),
Clémentine Prieur, Stéphane Robin, Éric Sauquet.

September $24^{\text {th }}, 2013$

Multivariate extreme values

- Risk management: Largest events, largest losses
- Hydrology: 'flood predetermination'.
- Return levels (extreme quantiles)
- Return periods (1 / probability of occurrence)
\rightarrow digs, dams, land use plans.
- Simultaneous occurrence of rare events can be catastrophic
- Multivariate extremes:

Probability of jointly extreme events ?

Censored Multivariate extremes: floods in the 'Gardons'

joint work with Benjamin Renard

- Daily streamflow data at 4 neighbouring sites : St Jean du Gard, Mialet, Anduze, Alès.
- Joint distributions of extremes ?
\rightarrow probability of simultaneous floods.
- Recent, 'clean' series very short
- Historical data from archives, depending on 'perception thresholds' for floods (Earliest: 1604). \rightarrow censored data

Gard river Neppel et al. (2010)

Multivariate extremes for regional analysis in hydrology

- Many sites, many parameters for marginal distributions, short observation period.
- 'Regional analysis': replace time with space. Assume some parameters constant over the region and use extreme data from all sites.
- Independence between extremes at neighbouring sites ? Dependence structure?
- Idea: use multivariate extreme value models

Outline

Multivariate extremes and model uncertainty

Bayesian model averaging ('Mélange de modèles')

Dirichlet mixture model ('Modèle de mélange'):
a re-parametrization

Historical, censored data in the Dirichlet model

Multivariate extremes

- Random vectors $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{d,}\right) ; \quad Y_{j} \geq 0$
- Margins: $Y_{j} \sim F_{j}, 1 \leq j \leq d$
(Generalized Pareto above large thresholds)
- Standardization (\rightarrow unit Fréchet margins)

$$
X_{j}=-1 / \log \left[F_{j}\left(Y_{j}\right)\right] ; \quad P\left(X_{j} \leq x\right)=e^{-1 / x}, \quad 1 \leq j \leq d
$$

- Joint behaviour of extremes: distribution of \mathbf{X} above large thresholds ?
$P\left(\mathbf{X} \in A \mid X \in A_{0}\right) ? \quad\left(A \subset A_{0}, \mathbf{0} \notin A_{0}\right), A_{0}$ 'far from the origin'.

Polar decomposition and angular measure

- Polar coordinates: $R=\sum_{j=1}^{d} X_{j}\left(L_{1}\right.$ norm $) ; \mathbf{W}=\frac{\mathbf{x}}{R}$.
- $\mathbf{W} \in \operatorname{simplex} \mathbf{S}_{d}=\left\{\mathbf{w}: \quad w_{j} \geq 0, \sum_{j} w_{j}=1\right\}$.
- Angular probability measure:

$$
H(B)=P(\mathbf{W} \in B) \quad\left(B \subset \mathbf{S}_{d}\right)
$$

1st component

Fundamental Result

- Radial homogeneity (regular variation)

$$
P\left(R>r, \mathbf{W} \in B \mid R \geq r_{0}\right) \underset{r_{0} \rightarrow \infty}{\sim} \frac{r_{0}}{r} H(B) \quad\left(r=c r_{0}, c>1\right)
$$

- Above large radial thresholds, R is independent from W
- H (+ margins) entirely determines the joint distribution

- One condition only for genuine H : moments constraint

$$
\int \mathbf{w} \mathrm{d} H(\mathbf{w})=\left(\frac{1}{d}, \ldots, \frac{1}{d}\right) .
$$

Center of mass at the center of the simplex.

- Few constraints: non parametric family !

Estimating the angular measure: non parametric problem

- Non parametric estimation (empirical likelihood, Einmahl et al., 2001, Einmahl, Segers, 2009, Guillotte et al, 2011.) No explicit expression for asymptotic variance, Bayesian inference with $d=2$ only.
- Restriction to parametric family: Gumbel, logistic, pairwise Beta ... Coles \& Tawn, 91, Cooley et al., 2010, Ballani \& Schlather, 2011:

How to take into account model uncertainty ?

Outline

Multivariate extremes and model uncertainty

Bayesian model averaging ('Mélange de modèles')

Dirichlet mixture model ('Modèle de mélange'):
a re-parametrization

Historical, censored data in the Dirichlet model

BMA: Averaging estimates from different models

Disjoint union of several parametric models

- Sabourin, Naveau, Fougères, 2013 (Extremes)
- Package R: 'BMAmevt', available on CRAN repositories ${ }^{1}$.
${ }^{1}$ http://cran.r-project.org/

Outline

Multivariate extremes and model uncertainty

Bayesian model averaging ('Mélange de modèles')

Dirichlet mixture model ('Modèle de mélange'):
a re-parametrization

Historical, censored data in the Dirichlet model

Dirichlet distribution

$$
\forall \mathbf{w} \in \stackrel{\circ}{\mathbf{S}}_{d}, \operatorname{diri}(\mathbf{w} \mid \boldsymbol{\mu}, \nu)=\frac{\Gamma(\nu)}{\prod_{i=1}^{d} \Gamma\left(\nu \mu_{i}\right)} \prod_{i=1}^{d} w_{i}^{\nu \mu_{i}-1}
$$

- $\boldsymbol{\mu} \in \stackrel{\circ}{\mathbf{S}}_{d}$: location parameter (point on the simplex): 'center';
- $\nu>0$: concentration parameter.

Dirichlet distribution

$$
\forall \mathbf{w} \in \stackrel{\circ}{\mathbf{S}}_{d}, \operatorname{diri}(\mathbf{w} \mid \boldsymbol{\mu}, \nu)=\frac{\Gamma(\nu)}{\prod_{i=1}^{d} \Gamma\left(\nu \mu_{i}\right)} \prod_{i=1}^{d} w_{i}^{\nu \mu_{i}-1}
$$

- $\boldsymbol{\mu} \in \stackrel{\circ}{\mathbf{S}}_{d}$: location parameter (point on the simplex): 'center';
- $\nu>0$: concentration parameter.

- $\boldsymbol{\mu}=\boldsymbol{\mu}_{., 1: k}, \boldsymbol{\nu}=\nu_{1: k}, \mathbf{p}=p_{1: k}$,

$$
\psi=(\boldsymbol{\mu}, \mathbf{p}, \boldsymbol{\nu})
$$

$$
h_{\psi}(\mathbf{w})=\sum_{m=1}^{k} p_{m} \operatorname{diri}\left(\mathbf{w} \mid \boldsymbol{\mu}_{\cdot, m}, \nu_{m}\right)
$$

- Moments constraint \rightarrow on ($\boldsymbol{\mu}, p$):

$$
\sum_{m=1}^{k} p_{m} \mu_{., m}=\left(\frac{1}{d}, \ldots, \frac{1}{d}\right)
$$

Weakly dense family $(k \in \mathbb{N})$ in the space of admissible angular measures

Bayesian inference and censored data

- Two issues: (i) parameters constraints (ii) censorship
(i) Bayesian framework: MCMC methods to sample the posterior distribution.
Constraints \Rightarrow Sampling issues for $d>2$.
- Re-parametrization: No more constraint, fitting is manageable for $d=5$: Sabourin, Naveau, 2013
(ii) Censoring: data \neq points but segments or boxes in \mathbf{R}^{d}.
- Intervals overlapping threshold: extreme or not?
- Likelihood: density $\frac{d r}{r^{2}} \mathrm{~d} H(\mathbf{w})$ integrated over boxes.
- Sabourin, under review ; Sabourin, Renard, in preparation

Bayesian inference and censored data

- Two issues: (i) parameters constraints (ii) censorship
(i) Bayesian framework: MCMC methods to sample the posterior distribution.
Constraints \Rightarrow Sampling issues for $d>2$.
- Re-parametrization: No more constraint, fitting is manageable for $d=5$: Sabourin, Naveau, 2013
(ii) Censoring: data \neq points but segments or boxes in \mathbf{R}^{d}.
- Intervals overlapping threshold: extreme or not?
- Likelihood: density $\frac{\mathrm{dr}}{r^{2}} \mathrm{~d} H(\mathbf{w})$ integrated over boxes.
- Sabourin, under review ; Sabourin, Renard, in preparation

Re-parametrization: intermediate variables $\left(\gamma_{1}, \ldots, \gamma_{k-1}\right)$,

 partial barycenters$$
e x: k=4
$$

γ_{m} : Barycenter of kernels 'following $\boldsymbol{\mu}_{., m}$ ": $\boldsymbol{\mu}_{., m+1}, \ldots, \boldsymbol{\mu}_{., k}$.

$$
\gamma_{m}=\left(\sum_{j>m} p_{j}\right)^{-1} \sum_{j>m} p_{j} \boldsymbol{\mu}_{., j}
$$

γ_{1} on a line segment: eccentricity parameter $e_{1} \in(0,1)$. $e x: k=4$

$\operatorname{Draw}\left(\boldsymbol{\mu}_{\cdot, 1} \in \mathbf{S}_{d}, e_{1} \in(0,1)\right) \longrightarrow \gamma_{1}$ defined by $\frac{\overline{\gamma_{0} \gamma_{1}}}{\overline{\gamma_{0} I_{1}}}=e_{1}$;

$$
\longrightarrow p_{1}=\frac{\overline{\gamma_{0} \gamma_{1}}}{\overline{\mu_{\cdot, 1} \gamma_{1}}} .
$$

γ_{2} on a line segment: eccentricity parameter $e_{2} \in(0,1)$.

$e x: k=4$

$\operatorname{Draw}\left(\boldsymbol{\mu}_{\cdot, 2}, e_{2}\right) \longrightarrow \gamma_{2}: \frac{\overline{\gamma_{1} \gamma_{2}}}{\overline{\gamma_{1} l_{2}}}=e_{2}$ $\longrightarrow p_{2}$

Last density kernel $=$ last center $\boldsymbol{\mu}_{., k}$.

$$
\begin{aligned}
\operatorname{Draw}\left(\mu_{\cdot, 3}, \epsilon_{3}\right) & \longrightarrow \gamma_{3} \\
& \longrightarrow p_{3}, \boldsymbol{\mu}_{\cdot, 4}=\gamma_{3} . \\
& \longrightarrow p_{4}
\end{aligned}
$$

Summary

- Given

$$
\left(\boldsymbol{\mu}_{., 1: k-1}, \Theta_{1: k-1}\right),
$$

One obtains

$$
\left(\boldsymbol{\mu}_{., 1: k}, p_{1: k}\right)
$$

- The density h may thus be parametrized by

$$
\boldsymbol{\theta}=\left(\boldsymbol{\mu}_{., 1: k-1}, \mathbf{e}_{1: k-1}, \nu_{1: k}\right) .
$$

Bayesian model

- Unconstrained parameter space : union of product spaces ('rectangles')

$$
\Theta=\coprod_{k=1}^{\infty} \Theta_{k} ; \quad \Theta_{k}=\left\{\left(\mathbf{S}_{d}\right)^{k-1} \times[0,1)^{k-1} \times(0, \infty]^{k-1}\right\}
$$

- Inference: Gibbs + Reversible-jumps.
- Restriction (numerical convenience) : $k \leq 15, \nu<\nu_{\max }$, etc ...
- 'Reasonable' prior \simeq 'flat' and rotation invariant. Balanced weight and uniformly scattered centers.

MCMC sampling: Metropolis-within-Gibbs, reversible jumps.

Three transition types for the Markov chain:

- Classical (Gibbs): one $\mu_{\text {., }}, e_{m}$ or a ν_{m} is modified.
- Trans-dimensional (Green, 1995):

One component ($\mu_{., k}, e_{k}, \nu_{k+1}$) is added or deleted.

- 'Shuffle': Indices permutation of the original mixture: Re-allocating mass from old components to new ones.

Results: model's and algorithm's consistency

- Ergodicity: The generated MC is ϕ-irréducible, aperiodic and admits π_{n} (= posterior | $W_{1: n}$) as invariant distribution.
- Consequence:

$$
\forall g \in \mathcal{C}_{b}(\Theta), \quad \frac{1}{T} \sum_{t=1}^{T} g\left(\theta_{t}\right) \rightarrow \mathbb{E}_{\pi_{n}}(g)
$$

- Key point: π_{n} is invariant under the 'shuffle' moves.
- Posterior consistency for π_{n} under 'weak conditions'2, π-a.s., $\forall U$ weakly open containing θ_{0},

$$
\pi_{n}(U) \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

- Consequence:

$$
\mathbb{E}_{\pi_{n}}(g) \underset{n \rightarrow \infty}{\longrightarrow} g\left(\theta_{0}\right)
$$

- Key: The Euclidian topology is finer than the Kullback topology in this model.
${ }^{2}$ If the prior grants some mass to every Euclidian neighbourhood of Θ and if θ_{0} is in the Kullback-Leibler closure of Θ

Convergence checking (simulated data, $d=5, k=4$)

- θ summarized by a scalar quantity (integrating the DM density against a test function)

Original algorithm

Re-parametrized version

- standard tests:
- Stationarity (Heidelberger \& Welch, 83)
- variance ratio (inter/intra chains, Gelman, 92)

Estimating H in dimension 3, simulated data
MCMC: $T_{2}=5010^{3} ; T_{1}=2510^{3}$.

Dimension 5, simulated data

Angular measure density for one pair ($T_{2}=20010^{3}, T_{1}=8010^{3}$).

Gelman ratio: Original version: 2.18 ;
Re-parametrized: 1.07. Credibility sets (posterior quantiles): wider.

Bayesian inference and censored data

- Two issues: (i) parameters constraints (ii) censorship
(i) Bayesian framework: MCMC methods to sample the posterior distribution.
Constraints \Rightarrow Sampling issues for $d>2$.
- Re-parametrization: No more constraint, fitting is manageable for $d=5$: Sabourin, Naveau, 2013
(ii) Censoring: data \neq points but segments or boxes in \mathbf{R}^{d}.
- Intervals overlapping threshold: extreme or not?
- Likelihood: density $\frac{d r}{r^{2}} \mathrm{~d} H(\mathbf{w})$ integrated over boxes.
- Sabourin, under review ; Sabourin, Renard, in preparation

Bayesian inference and censored data

- Two issues: (i) parameters constraints (ii) censorship
(i) Bayesian framework: MCMC methods to sample the posterior distribution.
Constraints \Rightarrow Sampling issues for $d>2$.
- Re-parametrization: No more constraint, fitting is manageable for $d=5$: Sabourin, Naveau, 2013
(ii) Censoring: data \neq points but segments or boxes in \mathbf{R}^{d}.
- Intervals overlapping threshold: extreme or not?
- Likelihood: density $\frac{\mathrm{dr}}{r^{2}} \mathrm{~d} H(\mathbf{w})$ integrated over boxes.
- Sabourin, under review ; Sabourin, Renard, in preparation

Outline

Multivariate extremes and model uncertainty

Bayesian model averaging ('Mélange de modèles')

Dirichlet mixture model ('Modèle de mélange'):
a re-parametrization

Historical, censored data in the Dirichlet model

Censored data: univariate and pairwise plots

Univariate time series:

St Jean

Anduze

Mialet

Ales

Censored data: univariate and pairwise plots

Bivariate plots:

Using censored data: wishes and reality

- Take into account as many data as possible
\rightarrow Censored likelihood, integration problems
- Information transfer from well gauged to poorly gauged sites using the dependence structure
\rightarrow Estimate together marginal parameters + dependence

Data overlapping threshold and Poisson model

How to include the rectangles overlapping threshold in the likelihood?
$\left\{\left(\frac{t}{n}, \frac{\mathbf{X}_{t}}{n}\right), 1 \leq t \leq n\right\} \sim$ Poisson Process $(\operatorname{Leb} \times \lambda)$ on $[0,1] \times A_{u, n}$
λ : ' exponent measure', with Dirichlet Mixture angular component

$$
\frac{\mathrm{d} \lambda}{\mathrm{~d} r \times \mathrm{d} \mathbf{w}}(r, \mathbf{w})=\frac{d}{r^{2}} h(\mathbf{w})
$$

Overlapping events appear in Poisson likelihood as

$$
\mathbf{P}\left[N\left\{\left(\frac{t_{2}}{n}-\frac{t_{1}}{n}\right) \times \frac{1}{n} A_{i}\right\}=0\right]=\exp \left[-\left(t_{2}-t_{1}\right) \lambda\left(A_{i}\right)\right]
$$

'Censored' likelihood: model density integrated over boxes

- Ledford \& Tawn, 1996: partially extreme data censored at threshold,
- GEV models
- Explicit expression for censored likelihood.
- Here: idem + natural censoring
- Poisson model
- No closed form expression for integrated likelihood.
- Two terms without closed form:
- Censored regions A_{i} overlapping threshold:

$$
\exp \left\{-\left(t_{2}-t_{1}\right) \lambda\left(A_{i}\right)\right\}
$$

- Classical censoring above threshold

$$
\int_{\text {censored region }} \frac{\mathrm{d} \lambda}{\mathrm{dx}} .
$$

Data augmentation

One more Gibbs step, no more numerical integration.

- Objective: sample $[\theta \mid O b s] \propto$ likelihood (censored obs)
- Additional variables (replace missing data component): \mathcal{Z}
- Full conditionals $\left[Z_{i} \mid Z_{j \neq j}, \theta, O b s\right],[\theta \mid \mathbf{Z}, O b s], \ldots$ explicit (Thanks Dirichlet): \rightarrow Gibbs sampling.
- Sample $[z, \theta \mid O b s]_{+}$(augmented distribution) on $\Theta \times \mathcal{Z}$.

Censored regions above threshold

$$
\int_{\text {Censored region }} \frac{\mathrm{d} \lambda}{\mathrm{~d} x} \mathrm{~d} x_{j_{1}: j_{r}}:
$$

Generate missing components under univariate conditional distributions

$$
\mathbf{Z}_{1: r}^{j} \sim\left[X_{\text {missing }} \mid X_{o \mathrm{os}}, \theta\right]
$$

Dirichlet \Rightarrow Explicit univariate conditionals Exact sampling of censored data on censored interval

Censored regions overlapping threshold

$$
e^{-\left(t_{2, i}-t_{1, i}\right) \lambda\left(A_{i}\right)} \Leftrightarrow\left\{\begin{array}{l}
\text { augmentation Poisson process } N_{i} \text { on } E_{i} \supset A_{i} . \\
+ \\
\text { Functional } \varphi\left(N_{i}\right)
\end{array}\right.
$$

$[z, \theta \mid O b s] \propto$

$\left[N_{i}\right] \varphi\left(N_{i}\right)$
density terms, prior, augmented missing components

Simulated data (Dirichlet, $d=4, k=3$ components), same censoring as real data

Pairwise plot and angular measure density (true/ posterior predictive)

Simulated data (Dirichlet, $d=4, k=3$ components),

same censoring as real data Marginal quantile curves: better in joint model.

S3

Angular predictive density for Gardons data

Conditional exceedance probability

Conclusion

- Building Bayesian multivariate models for excesses:
- Dirichlet mixture family: 'non' parametric, Bayesian inference possible up to re-parametrization
- Censoring \rightarrow data augmenting (Dirichlet conditioning properies)
- Two packages R:
- DiriXtremes, MCMC algorithm for Dirichlet mixtures,
- DiriCens, implementation with censored data.
- High dimensional sample space (GCM grid, spatial fields) ?
- Impose reasonable structure (sparse) on Dirichlet parameters
- Dirichlet Process ? Challenges :

Discrete random measure \neq continuous framework

Bibliographie I

M.-O. Boldi and A. C. Davison.

A mixture model for multivariate extremes.
JRSS: Series B (Statistical Methodology), 69(2):217-229, 2007.

Coles, SG and Tawn, JA
Modeling extreme multivariate events
JR Statist. Soc. B, 53:377-392, 1991
Gómez, G., Calle, M. L., and Oller, R.
Frequentist and bayesian approaches for interval-censored data.
Statistical Papers, 45(2):139-173, 2004.
Hosking, J.R.M. and Wallis, J.R..
Regional frequency analysis: an approach based on L-moments
Cambridge University Press, 2005.
\square Ledford, A. and Tawn, J. (1996).
Statistics for near independence in multivariate extreme values.
Biometrika, 83(1):169-187.

Neppel, L., Renard, B., Lang, M., Ayral, P., Coeur, D., Gaume, E., Jacob, N., Payrastre, O., Pobanz, K., and Vinet, F. (2010).
Flood frequency analysis using historical data: accounting for random and systematic errors.
Hydrological Sciences Journal-Journal des Sciences Hydrologiques, 55(2):192-208.

Resnick, S. (1987).
Extreme values, regular variation, and point processes, volume 4 of Applied Probability. A Series of the Applied Probability Trust.
Springer-Verlag, New York.

Bibliographie II

Sabourin, A., Naveau, P. and Fougères, A-L. (2013)
Bayesian model averaging for multivariate extremes.
Extremes, 16(3) 325-350
Sabourin, A., Naveau, P. (2013)
Bayesian Dirichlet mixture model for multivariate extremes: a re-parametrization.
Computation. Stat and Data Analysis
Schnedler, W. (2005).
Likelihood estimation for censored random vectors.
Econometric Reviews, 24(2):195-217.

Tanner, M. and Wong, W. (1987).
The calculation of posterior distributions by data augmentation.
Journal of the American Statistical Association, 82(398):528-540.

Van Dyk, D. and Meng, X. (2001).
The art of data augmentation.
Journal of Computational and Graphical Statistics, 10(1):1-50.

Outline

Multivariate extremes and model uncertainty

Bayesian model averaging ('Mélange de modèles')

Dirichlet mixture model ('Modèle de mélange'):
a re-parametrization

Historical, censored data in the Dirichlet model

Bayesian Model Averaging: reducing model uncertainty.

- Parametric framework: arbitrary restriction, different models can yield different estimates.
- First option: Fight!
- Choose one model (Information criterions: BIC/ AIC /AICC)

Bayesian Model Averaging: reducing model uncertainty.

- Parametric framework: arbitrary restriction, different models can yield different estimates.
- First option: Fight!
- Choose one model (Information criterions: BIC/ AIC /AICC)

Bayesian Model Averaging: reducing model uncertainty.

- Parametric framework: arbitrary restriction, different models can yield different estimates.
- BMA = averaging predictions based on posterior model weights

- Already widely studied and used in several contexts (weather forecast...).

Hoeting et al. (99), Madigan \& Raftery (94), Raftery et al. (05)

BMA: principle

- J statistical models $\mathscr{M}_{(1)}, \ldots \mathscr{M}_{(J)}$, with parametrization $\Theta_{j}, 1 \leq j \leq J$ and priors π_{j} defined on Θ_{j}

BMA: principle

- J statistical models $\mathscr{M}_{(1)}, \ldots \mathscr{M}_{(J)}$, with parametrization $\Theta_{j}, 1 \leq j \leq J$ and priors π_{j} defined on Θ_{j}
- BMA model $=$ disjoint union: $\tilde{\Theta}=\bigsqcup_{1}^{J} \Theta_{j}$, with prior p on index set $\{1, \ldots, J\}$: $p\left(\mathscr{M}_{j}\right)=$ 'prior marginal model weight' for \mathscr{M}_{j}
- prior on $\tilde{\Theta}: \tilde{\pi}\left(\bigsqcup_{1}^{J} B_{j}\right)=\sum_{1}^{J} p\left(\mathscr{M}_{j}\right) \pi_{j}\left(B_{j}\right) \quad\left(B_{j} \subset \Theta_{j}\right)$

BMA: principle

- J statistical models $\mathscr{M}_{(1)}, \ldots \mathscr{M}_{(J)}$, with parametrization $\Theta_{j}, 1 \leq j \leq J$ and priors π_{j} defined on Θ_{j}
- BMA model = disjoint union: $\tilde{\Theta}=\bigsqcup_{1}^{J} \Theta_{j}$, with prior p on index set $\{1, \ldots, J\}$: $p\left(\mathscr{M}_{j}\right)=$ 'prior marginal model weight' for \mathscr{M}_{j}
- prior on $\tilde{\Theta}: \tilde{\pi}\left(\bigsqcup_{1}^{J} B_{j}\right)=\sum_{1}^{J} p\left(\mathscr{M}_{j}\right) \pi_{j}\left(B_{j}\right) \quad\left(B_{j} \subset \Theta_{j}\right)$
- posterior (conditioning on data X) $=$ weighted average

$$
\tilde{\pi}\left(\bigsqcup_{1}^{J} B_{j} \mid X\right)=\sum_{1}^{J} \underbrace{p\left(\mathscr{M}_{j} \mid X\right)}_{\text {posterior }} \overbrace{\pi_{j}\left(B_{j} \mid X\right)}^{\text {posterior inal model weight }}
$$

Key: posterior weights. (Laplace approx or standard MC ?)

$$
p\left(\mathscr{M}_{j} \mid X\right) \propto p\left(\mathscr{M}_{j}\right) \int_{\Theta_{j}} \text { Likelihood }(X \mid \theta) \mathrm{d} \pi_{j}(\theta)
$$

- Background: univariate EVD's of different types Stephenson \& Tawn (04) or multivariate, asymptotically dependent/ independent EVD's Apputhurai \& Stephenson (10)
- Our approach: averaging angular measure models, with angular data \mathscr{W}.
- $\mathbf{F}_{1}, \ldots, \boldsymbol{F}_{J}$ max-stable distributions $\rightarrow \sum_{j} p_{j} \mathbf{F}_{j}$ not max-stable.
- $H_{1}, \ldots H_{J}$ angular measures (moments constraint) $\rightarrow \sum_{j} p_{j} H_{j}$ is a valid angular measure! (linearity)
- Background: univariate EVD's of different types Stephenson \& Tawn (04) or multivariate, asymptotically dependent/ independent EVD's Apputhurai \& Stephenson (10)
- Our approach: averaging angular measure models, with angular data \mathscr{W}.
- $\mathbf{F}_{1}, \ldots, \mathbf{F}_{J}$ max-stable distributions $\rightarrow \sum_{j} p_{j} \mathbf{F}_{j}$ not max-stable.
- $H_{1}, \ldots H_{J}$ angular measures (moments constraint) $\rightarrow \sum_{j} p_{j} H_{j}$ is a valid angular measure! (linearity)

Implementing and scoring BMA for Multivariate extremes

Does the BMA framework perform significantly better than selecting models based on AIC ?

- Yes, in terms of logarithmic score for the predictive density (Kullback-Leibler divergence to the truth) Madigan \& Raftery (94) In average over the union model, w.r.t prior!
- Simulation study : Evaluation via proper scoring rules (Logarithmic + probability of failure regions)
- 2 models of same dimension: Pairwise-Beta / Nested asymmetric logistic
- 100 data sets simulated from another model
- Results: The BMA framework performs
- consistently (for all scores),
- slightly (1/20 to 1/100),
better than model selection.

Implementing and scoring BMA for Multivariate extremes

Does the BMA framework perform significantly better than selecting models based on AIC ?

- Yes, in terms of logarithmic score for the predictive density (Kullback-Leibler divergence to the truth) Madigan \& Raftery (94) In average over the union model, w.r.t prior !
- Simulation study : Evaluation via proper scoring rules (Logarithmic + probability of failure regions)
- 2 models of same dimension: Pairwise-Beta / Nested asymmetric logistic
- 100 data sets simulated from another model
- Results: The BMA framework performs
- consistently (for all scores),
- slightly (1/20 to $1 / 100$),
better than model selection.

Implementing and scoring BMA for Multivariate extremes

Does the BMA framework perform significantly better than selecting models based on AIC ?

- Yes, in terms of logarithmic score for the predictive density (Kullback-Leibler divergence to the truth) Madigan \& Raftery (94) In average over the union model, w.r.t prior !
- Simulation study : Evaluation via proper scoring rules (Logarithmic + probability of failure regions)
- 2 models of same dimension: Pairwise-Beta / Nested asymmetric logistic
- 100 data sets simulated from another model
- Results: The BMA framework performs
- consistently (for all scores),
- slightly (1/20 to $1 / 100$),
better than model selection.

Implementing and scoring BMA for Multivariate extremes

Does the BMA framework perform significantly better than selecting models based on AIC ?

- Yes, in terms of logarithmic score for the predictive density (Kullback-Leibler divergence to the truth) Madigan \& Raftery (94)

In average over the union model, w.r.t prior!

- Simulation study : Evaluation via proper scoring rules (Logarithmic + probability of failure regions)
- 2 models of same dimension: Pairwise-Beta / Nested asymmetric logistic
- 100 data sets simulated from another model
- Results: The BMA framework performs
- consistently (for all scores),
- slightly (1/20 to $1 / 100$),
better than model selection.

Discussion

- BMA vs selection: Moderate gain for large sample size : Posterior concentration on 'asymptotic carrier regions' = points (parameters) of minimal KL divergence from truth
- BMA : simple if several models have already been fitted ('only' compute posterior weights)
- Way out: Mixture models for increased dimension of the parameter space. (product)

