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Multivariate extreme values

I Risk management: Largest events, largest losses

I Hydrology: `�ood predetermination'.
I Return levels (extreme quantiles)
I Return periods (1 / probability of occurrence )

→ digs, dams, land use plans.

I Simultaneous occurrence of rare events can be catastrophic

I Multivariate extremes:

Probability of jointly extreme events ?
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Censored Multivariate extremes: �oods in the `Gardons'
joint work with Benjamin Renard

I Daily stream�ow data at 4 neighbouring sites :
St Jean du Gard, Mialet, Anduze, Alès.

I Joint distributions of extremes ?

→ probability of simultaneous �oods.
I Recent, `clean' series very short
I Historical data from archives, depending on `perception

thresholds' for �oods (Earliest: 1604). → censored data

Gard river Neppel et al. (2010)

How to use all di�erent kinds of data ? 3



Multivariate extremes for regional analysis in hydrology

I Many sites, many parameters for marginal distributions, short
observation period.

I `Regional analysis': replace time with space.
Assume some parameters constant over the region and use
extreme data from all sites.

I Independence between extremes at neighbouring sites ?
Dependence structure ?

I Idea: use multivariate extreme value models
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Outline

Multivariate extremes and model uncertainty

Bayesian model averaging (`Mélange de modèles')

Dirichlet mixture model (`Modèle de mélange'):
a re-parametrization

Historical, censored data in the Dirichlet model
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Multivariate extremes
I Random vectors Y = (Y1, . . . ,Yd ,) ; Yj ≥ 0
I Margins: Yj ∼ Fj , 1 ≤ j ≤ d

(Generalized Pareto above large thresholds)

I Standardization (→ unit Fréchet margins)

Xj = −1/ log [Fj(Yj)] ; P(Xj ≤ x) = e−1/x , 1 ≤ j ≤ d

I Joint behaviour of extremes: distribution of X above large
thresholds ?

P(X ∈ A|X ∈ A0)? (A ⊂ A0, 0 /∈ A0), A0 `far from the origin'.

u
1 X1

X2

u
2

A
0
 : 

“Extremal region”

A 

X
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Polar decomposition and angular measure

I Polar coordinates: R =
∑d

j=1 Xj (L1 norm) ; W = X

R
.

I W ∈ simplex Sd = {w : wj ≥ 0,
∑

j wj = 1}.
I Angular probability measure:

H(B) = P(W ∈ B) (B ⊂ Sd ).
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Fundamental Result de Haan, Resnick, 70's, 80's

I Radial homogeneity (regular variation)

P(R > r ,W ∈ B|R ≥ r0) ∼
r0→∞

r0
r
H(B) (r = c r0, c > 1)

I Above large radial thresholds, R is independent from W
I H (+ margins) entirely determines the joint distribution
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I One condition only for genuine H: moments constraint∫
w dH(w) = (

1

d
, . . . ,

1

d
).

Center of mass at the center of the simplex.
I Few constraints: non parametric family !

8



Estimating the angular measure: non parametric problem

I Non parametric estimation (empirical likelihood, Einmahl et

al., 2001, Einmahl, Segers, 2009, Guillotte et al, 2011.) No explicit
expression for asymptotic variance, Bayesian inference with
d = 2 only.

I Restriction to parametric family: Gumbel, logistic, pairwise
Beta . . . Coles & Tawn, 91, Cooley et al., 2010, Ballani & Schlather,

2011 :

How to take into account model uncertainty ?
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Outline

Multivariate extremes and model uncertainty

Bayesian model averaging (`Mélange de modèles')

Dirichlet mixture model (`Modèle de mélange'):
a re-parametrization

Historical, censored data in the Dirichlet model
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BMA: Averaging estimates from di�erent models

Disjoint union of several parametric models

I Sabourin, Naveau, Fougères, 2013 (Extremes)

I Package R: `BMAmevt' , available on CRAN repositories 1.

1http://cran.r-project.org/
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Outline

Multivariate extremes and model uncertainty

Bayesian model averaging (`Mélange de modèles')

Dirichlet mixture model (`Modèle de mélange'):
a re-parametrization

Historical, censored data in the Dirichlet model

12



Dirichlet distribution

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)∏d
i=1 Γ(νµi )

d∏
i=1

wνµi−1
i .

I µ ∈
◦
Sd : location parameter (point on the simplex): `center';

I ν > 0 : concentration parameter.

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

ex: µ = (0.15, 0.35, 0.5), ν = 9.
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Dirichlet distribution

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)∏d
i=1 Γ(νµi )

d∏
i=1

wνµi−1
i .

I µ ∈
◦
Sd : location parameter (point on the simplex): `center';

I ν > 0 : concentration parameter.

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

H valid: µ = (1/3, 1/3, 1/3).
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Dirichlet mixture model Boldi, Davison, 2007

I µ = µ · ,1:k , ν = ν1:k , p = p1:k , ψ = (µ,p,ν),

hψ(w) =
k∑

m=1

pm diri(w | µ · ,m, νm)

I Moments constraint → on (µ, p):

k∑
m=1

pm µ.,m = (
1

d
, . . . ,

1

d
) .

Weakly dense family (k ∈ N) in the space of admissible angular
measures
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Bayesian inference and censored data

I Two issues : (i) parameters constraints (ii) censorship

(i) Bayesian framework: MCMC methods to sample the posterior
distribution.
Constraints ⇒ Sampling issues for d > 2.

I Re-parametrization: No more constraint, �tting is manageable
for d = 5: Sabourin, Naveau, 2013

(ii) Censoring: data6= points but segments or boxes in Rd .
I Intervals overlapping threshold: extreme or not ?

I Likelihood: density dr
r2

dH(w) integrated over boxes.

I Sabourin, under review ; Sabourin, Renard, in preparation
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Re-parametrization: intermediate variables (γ1, . . . ,γk−1),
partial barycenters

ex: k = 4

γ0

γm : Barycenter of kernels 'following µ.,m �: µ.,m+1, . . . ,µ.,k .

γm =
(∑
j>m

pj
)−1 ∑

j>m

pj µ.,j

16



γ1 on a line segment: eccentricity parameter e1 ∈ (0, 1).

ex: k = 4

γ0

I1

µ1

γ1

Draw (µ · ,1 ∈ Sd , e1 ∈ (0, 1)) −→ γ1 de�ned by
γ0 γ1

γ0 I1
= e1 ;

−→ p1 =
γ0 γ1

µ · ,1 γ1

.

17



γ2 on a line segment: eccentricity parameter e2 ∈ (0, 1).

ex: k = 4

γ0

I1

γ1 I2

µ

µ

1

2 γ2

Draw (µ · ,2, e2) −→ γ2 :
γ1 γ2

γ1 I2
= e2

−→ p2

18



Last density kernel = last center µ · ,k .

ex: k = 4

γ0

I1

γ1 I2γ2

I3

µ

µ

µ

1

2

3

µ4

Draw (µ · ,3, e3) −→ γ3

−→ p3 , µ.,4 = γ3.

−→ p4

19



Summary

γ0

I1

γ1 I2γ2

I3

µ

µ

µ

1

2

3

µ4

I Given
(µ.,1:k−1, e1:k−1) ,

One obtains
(µ.,1:k , p1:k).

I The density h may thus be parametrized by

θ = (µ.,1:k−1, e1:k−1, ν1:k) .
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Bayesian model

I Unconstrained parameter space : union of product spaces
(`rectangles')

Θ =
∞∐
k=1

Θk ; Θk =
{

(Sd )k−1 × [0, 1)k−1 × (0,∞]k−1
}

I Inference: Gibbs + Reversible-jumps.

I Restriction (numerical convenience) : k ≤ 15, ν < νmax, etc ...

I `Reasonable' prior ' `�at' and rotation invariant.
Balanced weight and uniformly scattered centers.
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MCMC sampling: Metropolis-within-Gibbs, reversible jumps.

Three transition types for the Markov chain:

I Classical (Gibbs): one µ.,m, em or a νm is modi�ed.

I Trans-dimensional (Green, 1995):
One component (µ.,k , ek , νk+1) is added or deleted.

I `Shu�e': Indices permutation of the original mixture:
Re-allocating mass from old components to new ones.

22



Results: model's and algorithm's consistency
I Ergodicity: The generated MC is φ-irréducible, aperiodic and

admits πn (= posterior | W1:n) as invariant distribution.
I Consequence:

∀g ∈ Cb(Θ),
1

T

T∑
t=1

g(θt)→ Eπn
(g) .

I Key point: πn is invariant under the `shu�e' moves.

I Posterior consistency for πn under `weak conditions'2, π-a.s.,
∀U weakly open containing θ0,

πn(U) −−−→
n→∞

1 .

I Consequence:
Eπn

(g) −−−→
n→∞

g(θ0) .

I Key: The Euclidian topology is �ner than the Kullback
topology in this model.

2If the prior grants some mass to every Euclidian neighbourhood of Θ and if
θ0 is in the Kullback-Leibler closure of Θ
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Convergence checking (simulated data, d = 5, k = 4)
I θ summarized by a scalar quantity (integrating the DM density

against a test function)

Original algorithm Re-parametrized version

I standard tests:
I Stationarity (Heidelberger & Welch, 83)
I variance ratio (inter/intra chains, Gelman, 92)
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Estimating H in dimension 3, simulated data
MCMC: T2 = 50 103; T1 = 25 103.

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

0.00 0.35 0.71 1.06 1.41
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Dimension 5, simulated data

Angular measure density for one pair (T2 = 200 103, T1 = 80 103).

X2/(X2+X5)

0 1

0.
0

1.
8

X2/(X2+X5)

0 1

0.
0

1.
8

Gelman ratio: Original version: 2.18 ; Re-parametrized: 1.07.

Credibility sets (posterior quantiles): wider.
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Bayesian inference and censored data

I Two issues : (i) parameters constraints (ii) censorship

(i) Bayesian framework: MCMC methods to sample the posterior
distribution.
Constraints ⇒ Sampling issues for d > 2.

I Re-parametrization: No more constraint, �tting is manageable
for d = 5: Sabourin, Naveau, 2013

(ii) Censoring: data6= points but segments or boxes in Rd .
I Intervals overlapping threshold: extreme or not ?

I Likelihood: density dr
r2

dH(w) integrated over boxes.

I Sabourin, under review ; Sabourin, Renard, in preparation
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Censored data: univariate and pairwise plots

Univariate time series:
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Censored data: univariate and pairwise plots

Bivariate plots:

0 1000 2000 3000

0
50

0
10

00
15

00
20

00
25

00

Streamflow at  StJean (m3/s)

S
tr

ea
m

flo
w

 a
t M

ia
le

t (
m

3/
s)

●

●

●
●

●

●●

●

●
●●

●

●

●

●●
●

●

●●

●

●

●

● ●
● ●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

0 1000 2000 3000

0
10

00
30

00
50

00

Streamflow at  StJean (m3/s)

S
tr

ea
m

flo
w

 a
t A

nd
uz

e 
(m

3/
s)

●
●

●
●●●

●

●●●
●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●●

0 1000 2000 3000

0
50

0
10

00
15

00
20

00
25

00

Streamflow at  StJean (m3/s)

S
tr

ea
m

flo
w

 a
t A

le
s 

(m
3/

s)

●

●

●

●
●●

●

●

●

●

●
●

●

29



Using censored data: wishes and reality

I Take into account as many data as possible
→ Censored likelihood, integration problems

I Information transfer from well gauged to poorly gauged sites
using the dependence structure

→ Estimate together marginal parameters + dependence

30



Data overlapping threshold and Poisson model

How to include the rectangles overlapping threshold in the likelihood ?{(
t

n
,
Xt

n

)
, 1 ≤ t ≤ n

}
∼ Poisson Process (Leb×λ) on [0, 1]×Au,n

λ: ` exponent measure', with Dirichlet Mixture angular component

dλ
dr × dw

(r ,w) =
d

r2
h(w) .

Overlapping events appear in Poisson likelihood as

P

[
N

{
(
t2
n
− t1

n
)× 1

n
Ai

}
= 0

]
= exp [−(t2 − t1)λ(Ai )]

31



`Censored' likelihood: model density integrated over boxes
I Ledford & Tawn, 1996: partially extreme data censored at

threshold,
I GEV models
I Explicit expression for censored likelihood.

I Here: idem + natural censoring
I Poisson model
I No closed form expression for integrated likelihood.

I Two terms without closed form:
I Censored regions Ai overlapping threshold:

exp {−(t2 − t1)λ(Ai )}

I Classical censoring above threshold∫
censored region

dλ

dx
.

32



Data augmentation

One more Gibbs step, no more numerical integration.

I Objective: sample [θ|Obs] ∝ likelihood (censored obs)

I Additional variables (replace missing data component): Z

I Full conditionals [Zi |Zj 6=j , θ,Obs], [θ|Z,Obs], . . . explicit
(Thanks Dirichlet): → Gibbs sampling.

I Sample [z , θ|Obs]+ (augmented distribution) on Θ×Z.
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Censored regions above threshold∫
Censored region

dλ

dx
dxj1:jr :

Generate missing components under univariate conditional
distributions

Z
j
1:r ∼ [Xmissing|Xobs, θ]

u
1 
/n x1

x2

u
2
/n

Censored interval

Augmentation data
 Zj  = [X

censored
 | X

observed
, θ]

Extremal region

Dirichlet ⇒ Explicit univariate conditionals

Exact sampling of censored data on censored interval 34



Censored regions overlapping threshold

e−(t2,i−t1,i )λ(Ai ) ⇔


augmentation Poisson process Ni on Ei ⊃ Ai .

+

Functional ϕ(Ni )

u
1 
/n X1

X2

u
2
/n

U'
1

U'
2

A
iE

i

Censored region

Augmentation 
 Zi = PP(τ.λ) 

on E
i 

 φ(#{points in Ai})

[z , θ|Obs] ∝ . . .︸︷︷︸
density terms, prior, augmented missing components

[Ni ]ϕ(Ni )

35



Simulated data (Dirichlet, d = 4, k = 3 components),
same censoring as real data

Pairwise plot and angular measure density
(true/ posterior predictive)

0 1000 2000 3000 4000 5000 6000

0
10

00
20

00
30

00
40

00

S3

S
4

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

X3/( X3 + X4 )

h

36



Simulated data (Dirichlet, d = 4, k = 3 components),
same censoring as real data

Marginal quantile curves: better in joint model.
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Angular predictive density for Gardons data
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Conditional exceedance probability
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Conclusion

I Building Bayesian multivariate models for excesses:
I Dirichlet mixture family: `non' parametric, Bayesian inference

possible up to re-parametrization

I Censoring → data augmenting (Dirichlet conditioning
properies)

I Two packages R:
I DiriXtremes, MCMC algorithm for Dirichlet mixtures,
I DiriCens, implementation with censored data.

I High dimensional sample space (GCM grid, spatial �elds) ?
I Impose reasonable structure (sparse) on Dirichlet parameters
I Dirichlet Process ? Challenges :

Discrete random measure 6= continuous framework
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Outline

Multivariate extremes and model uncertainty

Bayesian model averaging (`Mélange de modèles')

Dirichlet mixture model (`Modèle de mélange'):
a re-parametrization

Historical, censored data in the Dirichlet model
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Bayesian Model Averaging: reducing model uncertainty.

I Parametric framework: arbitrary restriction, di�erent models
can yield di�erent estimates.

I First option: Fight !

I Choose one model (Information criterions: BIC/ AIC /AICC)
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Bayesian Model Averaging: reducing model uncertainty.
I Parametric framework: arbitrary restriction, di�erent models

can yield di�erent estimates.
I BMA = averaging predictions based on posterior model

weights

H's family

M
1

M
2

Models' 
average

I Already widely studied and used in several contexts ( weather
forecast . . . ).

Hoeting et al. (99), Madigan & Raftery (94), Raftery et al. (05)
I Applicability to extreme value theory ?
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BMA: principle

I J statistical models M(1), . . .M(J), with parametrization
Θj , 1 ≤ j ≤ J and priors πj de�ned on Θj

I BMA model = disjoint union: Θ̃ =
⊔J

1 Θj ,
with prior p on index set {1, . . . , J}:
p(Mj) = `prior marginal model weight' for Mj

I prior on Θ̃: π̃(
⊔J

1 Bj) =
∑J

1 p(Mj) πj(Bj) (Bj ⊂ Θj)

I posterior (conditioning on data X ) = weighted average

π̃(
J⊔
1

Bj |X ) =
J∑
1

p(Mj |X )︸ ︷︷ ︸
posterior marginal model weight

posterior inMj︷ ︸︸ ︷
πj(Bj |X )

Key: posterior weights. (Laplace approx or standard MC ?)

p(Mj |X ) ∝ p(Mj)

∫
Θj

Likelihood(X |θ) dπj(θ)
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BMA for multivariate extremes Sabourin, Naveau, Fougères (2013)

I Background: univariate EVD's of di�erent types Stephenson &

Tawn (04) or multivariate, asymptotically dependent/
independent EVD's Apputhurai & Stephenson (10)

I Our approach: averaging angular measure models, with
angular data W .

I F1, . . . ,FJ max-stable distributions →
∑

j pjFj not

max-stable.

I H1, . . .HJ angular measures (moments constraint) →
∑

j pjHj

is a valid angular measure ! (linearity)
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Implementing and scoring BMA for Multivariate extremes

Does the BMA framework perform signi�cantly better than

selecting models based on AIC ?

I Yes, in terms of logarithmic score for the predictive density
(Kullback-Leibler divergence to the truth) Madigan & Raftery (94)

In average over the union model, w.r.t prior !

I Simulation study : Evaluation via proper scoring rules
(Logarithmic + probability of failure regions)

I 2 models of same dimension: Pairwise-Beta / Nested asymmetric
logistic

I 100 data sets simulated from another model

I Results: The BMA framework performs
I consistently (for all scores),
I slightly (1/20 to 1/100),

better than model selection.
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Discussion

I BMA vs selection: Moderate gain for large sample size :
Posterior concentration on `asymptotic carrier regions' =
points (parameters) of minimal KL divergence from truth

I BMA : simple if several models have already been �tted (`only'
compute posterior weights)

I Way out: Mixture models for increased dimension of the
parameter space. (product)
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