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Why?
• Earth sciences, Finance, Insurance, Telecommunications: unusually
large values of (Rain - Temperature - Wind - Sea levels - Streamflow -
Traffic - Negative log-returns - Insurance Claims), devastating impacts.

• Such events hard to “predict” (proba. of occurrence hard to estimate)
due to

• Small sample sizes

• Potentially heavy tails, not satisfying convenient ’Boundedness -
subgaussianity - subsomething’ assumptions.

• Anomaly detection (all sectors): Anomalies often in the tails.
Distinguish ’normal’ extreme values from ’abnormal’ ones? 2/98



Extreme Value Theory: textbook story
Probability Theory: Under minimal assumptions, distributions of

maxima/excesses converge to a certain class. Early works

Fréchet (1927), Fisher, Tipett (1928), Karamata (1930), Gumbel

(1935), Gnedenko (1943), . . .

Modelling: Use those limits to model maxima/excesses above large
thresholds.

X: random object (variable / vector/ process) Xi
i .i .d .∼ X.

n
max
i=1

Xi
d≈ Max-stable (n large)

[
X
∣∣ ∥X∥ ≥ r

] d≈ Generalized Pareto (r large)

n∑
i=1

δ(i ,Xi )
d≈ Poisson point process (n large, above large r)
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Peaks-Over-Threshold and out-of-domain generalization

• Goal: learn µ/Φ

• Use P̂k : empirical distribution of k largest observations (1≪ k ≪ n)
(w.r.t. their norm) as a proxi for

Pt1−k/n
= Law

(
X | ∥X∥ > t(1− k/n)

)
where t1−p true (1− p)-quantile of the “radial variable” ∥X∥

• Hope that Pt1−k/n
is close to P∞
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Machine Learning / AI/ High dimensions + Extremes since
2015

• (Many environmental) applications with Deep Learning involved for
parameter fitting, generative modelling, auto-encoding, Neural Bayes
. . . Lafon et al. (2023); Dahal et al. (2024); De Monte et al. (2025);
Richards et al. (2024), recent special issue in ‘Extremes’, . . .

• Graphical models and causality Velthoen et al. (2023); Gnecco et al.
(2024, 2021), some finite sample error bounds (Engelke et al., 2021)

• Sparse support identification Goix et al. (2016, 2017); Meyer and
Wintenberger (2021, 2024), feature clustering Chiapino and Sabourin
(2016); Chiapino et al. (2019, 2020), Dimension selection Butsch and
Fasen-Hartmann (2024, 2025) Supervised dimension reduction: for
high dimensional tail index estimation (Chen and Zhou, 2024),
identification of tail conditional independence (extreme
targets/covariates) (Gardes, 2018; Aghbalou et al., 2024b; Gardes and
Podgorny, 2024; Girard and Pakzad, 2024)
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Generic research goals and bottlenecks (This talk)

• Develop non-asymptotic guarantees for Extreme Value
estimators/learning algorithms, in a non-parametric framework, with
minimal assumptions, robust to ill-behaved bias

How to avoid “second order” assumptions that traditionally control
bias decrease in CLT’s ?
Until ≈ 2015, literature exclusively asymptotic.

• Bridge the gap (Extremes| |High dimensional statistics)

Back in 2015: multivariate modeling envisioned for d ≤ 5 or 10,
except for spatial extremes with parametric spatial structure or
parametric models wih fixed, low number of parameters
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Generic strategy for statistical analysis (This talk)

• Error analysis (in spirit: “k-NN at infinity” / local method)

Error(P̂k , µ) ≤ Error(P̂k ,Pt(1−k/n))︸ ︷︷ ︸
Variance(k)

+Error(Pt(1−k/n), µ)︸ ︷︷ ︸
Bias(k/n)

• Obvious Bottlenecks:

Bias (k/n <∞) or Variance (k ≪ n)

Heavy-tails

X(1), . . . ,X(k) are not i.i.d. data
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Ingredients
• Survey paper (preprint) Clémençon and Sabourin (2025)

• Joint works with many colleagues (chronological order): Stephan
Clémençon, Alexandre Gramfort, Chloé Clavel, Eric Gaussier, Johan
Segers, François Portier, Patrice Bertail, Philippe Naveau;
and students: Nicolas Goix, Maël Chiapino, Hamid Jalalzai, Anass
Aghbalou, Nathan Huet + Pierre Colombo, Stéphane Lhaut

• Just released

SOFTWARE
MLExtreme Python Package

https://github.com/hi-paris/MLExtreme/

• Unsupervised: anomaly scoring with MV sets, support identification
(feature clustering), PCA

• Supervised: Classification, Regression (compatible with any learner with
a fit and predict method, à la scikit-learn)

• Data generation + basic EVT tools
• Tutorial notebooks

8/98
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Multivariate Regular Variation I

X : Ω→ Rd is regularly varying (Resnick (2008); Hult and Lindskog
(2006), . . . ) if

• ∃ scaling b(t)→∞,

• ∃µ a non-zero limit measure on Rd \ {0}, s.t. as t →∞, for any A
bounded away from 0 with µ(∂A) = 0,

b(t)P (X ∈ t A)→ µ(A) <∞ (1)

t 1
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Multivariate Regular Variation II

Then for some α > 0, for all x > 0,

b(tx)

b(t)
→ x−α (regularly varying scaling) and

µ(tA) = t−αµ(A) (homogeneous limit measure).

t 1
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Multivariate Regular Variation III

• µ rules the (probabilistic) behaviour of extremes: if A is far from
the origin, then

P(X ∈ A) ≈ µ(A) .
Namely

P (X ∈ tA) = L(t)µ(tA),

with L a slowly varying function.

• Examples: Max stable vectors with standardized margins,
multivariate Student, . . .
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Angular Measure
• Homogeneity of µ ⇒ polar coordinates are convenient

r(x) = ∥x∥ ; θ(x) = r(x)−1x .

• Angular measure Φ on the ∥ · ∥-sphere: Φ(B) = µ{r > 1, θ ∈ B}.

• Then µ decomposes as a product measure

µ ◦ Polar-transform−1{r > t, θ ∈ B} = t−αΦ(B)

MRV ⇐⇒
[
θ(X )

∣∣ r(X ) > t
]

w−→ Φ( · )

and P (r(X ) > t) = t−αL(t)
12/98



General domain of attraction, marginal standardization

• Different Xj ’s may have different ’tail indices’ or even ’domains of
attraction’ (Weibull/Gumbel/Fréchet), while still, for some vectors
(an, bn), an ≻ 0 there is convergence in distribution of

Mn − bn
an

, or equivalently

[
X − bn

an

∣∣ X ̸⪯ bn

]
.

• Luckily, the above 2 equivalent conditions are also equivalent to

1. Marginal convergence of margins Xj , j ≤ d ;
2. Convergence on the standard scale of the conditional distribution[

t−1V
∣∣ ∥V ∥ > t

]
with V = v(X ), and vj(xj) =

1
1−Fj (xj ))

, j ≤ d .
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Equivalent statements, on standard scale
1. [

t−1V
∣∣ ∥V ∥ > t

]
w−→ Z∞,

where

Z∞
d
= R∞Θ∞

R∞ ∼ Pareto(1) ⊥⊥ Θ∞ ∼ Φ

2. [
(t−1∥V ∥, θ(V ))

∣∣ ∥V ∥ > t
]

w−→ (R∞,Θ∞)

3. [
t−1V

∣∣ V ∈ tA
]

w−→ µ( · )
µ(Ac)

for all set A s.t. 0 /∈ A, µ(∂A) = 0, and

dµ ” = ”
dr

r2
dΦ in polar coodinates
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Related frameworks I

• Multivariate Generalized Pareto Rootzén and Tajvidi (2006); Rootzén
et al. (2018a,b); Kiriliouk et al. (2019)

• Same working assumptions (multivariate max-domain of attraction)

• Different Standardization choice (“Standard” = Exponential)

• Different affine transformations

(X − b)/a not just X/a

• Different typical conditioning events

“∃j ≤ d : Xj > b′′j not “∥V ∥ > t ′′

• Different representation of the limit

E + S not R × Θ
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Related frameworks II

• Asymptotically independent components

• Concomitant extremes have negligible probability compared with
isolated ones.

• Angular measure / limit measure concentrated on the axes: not
informative about subasymptotic dependence

• Long history of models allowing for asymptotic independence: Ledford
and Tawn (1996) . . . Heffernan and Resnick (2007). . .Wadsworth et al.
(2017) . . . Huser and Wadsworth (2019)

• (not today)
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Complexity controls of classes of sets I

• A: class of subsets of X (= Rd here).

• Dn = x1, . . . , xn is “fully shattered” if all possible subsets of Dn can be
selected by applying a mask from A, i.e.∣∣∣{A ∩ {x1, . . . , xn} : A ∈ A}∣∣∣ = 2n.

• Shattering coefficient of the class: the maximum cardinality of the
above family of subset, as Dn varies.

SA(n) = max
(x1,...,xn)∈X n

|{A ∩ {x1, . . . , xn : A ∈ A}| ≤ 2n
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Complexity controls of classes of sets II

• VC dimension: complexity control of A. The maximum size n such
that ∃Dn that can be shattered by A

VA = sup{n : SA(n) ≤ 2n}

• Also used in Asymptotic Statistics, see van der Vaart (1998); van der
Vaart and Wellner (1996)

• “Standard assumption” in statistical ML, a good starting point,
maybe not the endpoint.
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VC-dimension of Hyperplanes I

• What is the VC-dimension of hyperplanes in R2 (denoted H2)?

• Obviously VCdim(H2) ≥ 2

• Let us try with 3 points:
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VC-dimension of Hyperplanes II

• Thus VCdim(H2) ≥ 3

• For any set of 4 points, either 3 of them (at least) are aligned or no
triplet of points is aligned.

It is not possible for H2 to shatter 4 points.

• Thus VCdim(H2) = 3.
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VC-dimension of Hyperplanes III

• More generally, one can prove :

VCdim(Hd) = d + 1
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Vapnik Chervonenkis inequality (71)

• X ,X1, . . . ,Xn
i.i.d.∼ P; Pn: empirical measure.

• Key historical result: uniform bound on the deviations of the
empirical measure Pn from the true law P of X , over a class of sets of
controlled complexity

• Sauer’s lemma: polynomial growth of shattering coefficients for
VC classes.

SA(n) ≤ (n + 1)VA ≪n large ,VA<∞ 2n

Vapnik and Chervonenkis (1971)’s inequality

With probability ≥ 1− δ,

sup
A∈A
|Pn − P|(A) ≤ 2

√
2

n
[log(4/δ) + log(SA(2n))]
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Classification, Empirical Risk Minimization (ERM)

• A classifier: a function g : X 7→ {−1, 1}, X : feature space.

• Choose a family of such classifiers G (∼ a ‘model’).

• G is 1-to-1 with A = {Ag = {(x , y) : g(x) ̸= y}, g ∈ G}

• Empirical risk Rn(g) =
1
n

∑n
i=1 1{g(Xi ) ̸= Yi} = Pn(Ag ).

• Upper bound the generalization (excess) risk R via

R(ĝ) ≤ R(g∗) + 2 sup
g∈G
|R(g)− Rn(g)|︸ ︷︷ ︸

=supA∈A |P(A)−Pn(A)|≲
√

VA
n
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Supremum deviations: Classical proofs (no EVT) I

Lugosi (2002); Bousquet et al. (2003); Boucheron et al. (2005), . . .

• (random) supremum absolute deviations:

Z = sup
A∈A

∣∣∣Pn(A)− P(A)
∣∣∣

• “Obvious” decomposition

Z ≤ E (Z )︸ ︷︷ ︸
I: Symmetrization → Rademacher process

+ Z − E (Z )︸ ︷︷ ︸
II: Concentration / Mc Diarmid
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I: About EZ (Boucheron et al., 2005; Lugosi, 2002;
Bousquet et al., 2003). . .

• Symmetrization and Rademacher complexity:

• ghost sample X ′
1,...,n

• fA(x) = 21A(x)− 1 ∈ {±1}

EZ ≤ 1

2
E sup

f

∣∣∣Pnf − E
(
P ′
nf | X1,...,n

) ∣∣∣
≤ 1

2n
E sup

f

∣∣∣∣∑
i≤n

σi
(
f (Xi )− f (X ′

i )
)∣∣∣∣

≤ E sup
f

∣∣∣∣1n∑
i≤n

σi f (Xi )

∣∣∣∣ σi ∈ {±1} white noise

:= Rademacher complexity, RAD(n)

(How well can the class fit arbitrary random labels)
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I: About EZ (Boucheron et al., 2005; Lugosi, 2002;
Bousquet et al., 2003)

• Rademacher bound (projection on X1:n)

RAD(n) ≤
√

2 log SA(n)

n
≤ Sauer’s Lemma

√
2VA log(n + 1)

n
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II: Concentration around E(Z )

• Recall Z = supA |Pn(A)− P(A)| = φ(X1, . . . ,Xn) where φ has the
stability property (’bounded differences’)∣∣ φ(x1, . . . , xi , . . . , xn)− φ(x1, . . . , x ′i , . . . , xn) ∣∣ ≤ 1

n
.

• McDiarmid’s inequality (McDiarmid, 1998):

P ( Z− E (Z) > ε ) ≤ e−2nϵ2 .

Solving δ = 2e−2nε: with probability at least 1− δ,

Z− E (Z) ≤
√

log(1/δ)

2n
.
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The case of rare classes (I) relative deviations

• Anthony and Shawe-Taylor (1993): with probability 1− 2δ,

sup
A∈A

P(A)− Pn(A)√
P(A)

≤ 2

√
log SA(2n) + log 4

δ

n
,

• Consequence, with p = supA∈A P(A)

1

p
sup
A∈A

P(A)− Pn(A) ≤ 2

√
log SA(2n) + log 4

δ

np
,

How to replace the SA(n) term with SA(np) or V log(np) or C?
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Other central topics

• Regression problems: Y ∈ [−M,M], prediction function
f : X → [−M,M]

min
f ∈F

E
(
(Y − f (X ))2

)
Under (different but related) complexity controls of the class F

• Regularization:
min
g

Rn(g) + λ Complexity (g)

• Beyond the ERM paradigm:

• Local methods (k-nn, trees)
• Aggregation
• Stable aglorithms
• . . .

• Neural Networks
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Tail empirical process: asymptotic literature

• Convenient re-writing: (1) ⇐⇒ tP
(
U(t) ·

)
→ cµ( · ) (vaguely)

where U(t) = quantile of order 1− 1/t of the norm, c > 0 a constant

Estimating µ ≈ Estimating tP
(
U(t) ·

)
(up to a vanishing bias term)

• As n→∞, k →∞, n/k →∞: the ‘tail empirical process’
converges weakly (1D case, α = 1)

√
k
n

k
(Pn − P)

[
U(n/k)y ,∞

)
D(0,∞)−−−−→

w
W (y),

W : brownian motion, see Resnick 2007, thm. 9.1 + references

In practice: U(n/k)← X(k) (the kth largest order statistic)

• Multivariate extensions Einmahl et al. (2006); Einmahl and Segers
(2009); Einmahl et al. (2012); Aghbalou et al. (2024b); Lhaut and
Segers (2024). . .
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Low probability classes in EVT I

• A: a VC-class of sets VC-dimVA, A =
⋃

A∈A A, with P (A) ≤ p.

• p ≈ k/n, where k is the (componentwise) number of extreme samples
used for inference

• Motivating example: Stable tail dependence function in Rd (cdf-type
characterization of µ), ℓ(x) = limt tP (∃j : Vj ≥ t/xj) , x ⪰ 0, x ̸= 0.
Empirical version: involves in particular

PU ,n

(
{y ∈ Rd | ∃j ≤ d : yj < (k/n)xj}︸ ︷︷ ︸

A(x)

)
, 0 ≤ xj ≤ T

where PU ,n: empirical measure associated with Ui = (Fj(Xi ,j))
n
j=1,

with
PU

( ⋃
∥x∥∞≤T

A(x)
)
≤ dkT/n
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Low probability classes in EVT II

• Follow-up applications:

• limit support identification (Goix et al., 2016, 2017; Chiapino and
Sabourin, 2016; Simpson et al., 2020)

• Anomaly detection in mutlivariate tails via mass-volume sets estimation
(Thomas et al., 2017)

• Empirical angular measure (Clémençon et al., 2023), out-of-domain
classification Jalalzai et al. (2018), . . .
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Supremum deviations on low probability classes

• In Goix et al. (2015) (with universal constant) and Lhaut et al. (2022)

(variants, explicit constants), we show

sup
A∈A
|Pn(A)− P(A)| ≤

√
2p

n

(√
2 log(1/δ)+

. . .
√

log 2 + VA log(2np + 1) +
√
2/2
)

· · ·+ 2

3n
log(1/δ)

• Recall: existing normalized VC inequalities had an extra
√
log n factor

(Vapnik and Chervonenkis, 2015; Anthony and Shawe-Taylor, 1993).
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Key argument I: conditioning trick, control of E (Z)
• K ∼ Binomial(n, p): random number of extreme points Xi ∈ A

• Conditionally on K :[
Pn(A),A ∈ A |K = k

]
d
=
(k
n
P ′
A,k(A),A ∈ A

)
where P ′

A,k : empirical sample of an independant sample (Yi , i ≤ k)
following P( · |Y ∈ A)

• Consequence

E
(
sup
A
|Pn − P|(A)

)
︸ ︷︷ ︸

E(Z)

≤ E
(
E
(
K

n
sup
A
|P ′

A,K − PA(A)|
∣∣∣ K))+

√
p/n

. . .VC inequality conditional on K + concavity

≤
√

2p

n
(log 2 + VA log(2np + 1)) +

√
p/n
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Key argument II: Concentration with small variance

Z− E (Z)?

• use Var(1A(Xi )) ≤ p ≪ 1

• Replace the bounded difference inequality with a Bernstein-like
uniform bound, also proved in McDiarmid (1998) incorporating Var, by
martingale arguments

• Result: with proba 1− δ,

Z− E (Z) ≤ 2

√
p

n
log(1/δ) +

2 log(1/δ)

3n

• Possible improvement (factor
√
2) using Bousquet-Talagrand

inequality (in preparation with B. Leroux, A. Marchina)
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Empirical Angular Measure of extremes
Xi

i.i.d.∼ F in Rd , 1≪ k ≪ n to be ’chosen by the user’ (choice of k . . . )

Rank-transformed variables:

V̂i ,j =
1

1− n
n+1 F̂j(Xi ,j)

(j ≤ d , i ≤ n)

”Radial” order statistics:

V̂(1), . . . , V̂(n) such that ∥V̂(1)∥ ≥ ∥V̂(2) ≥ · · · ≥ ∥V̂(n)∥
Empirical Angular measure:

Φ̂(A) =
1

k

∑
i≤k

1A(∥V̂(i)∥−1V̂(i))

Existing guarantees < 2023: Asymptotic, 2nd order assumptions, d = 2
only. (Einmahl et al., 2001; Einmahl and Segers, 2009)
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Concentration of the empirical angular measure
In Clémençon et al. (2023) we assume:

• A a class of sets on S+ (positive orthant of the sphere) with some
regularity assumptions

• A is uniformly bounded away from the boundary of the positive
orthant

• One can construct “framing ” classes of sets accounting for the
propagation of uncertainty due to marginal standardization,

and we show:

sup
A∈A
|Φ̂(A)− Φ(A)| ≤ C1(δ, d ,VΓ, k)√

k
+

C2(δ, d ,VΓ, k)
k

+ Bias(k , n),

where Bias(k , n)→ 0 as k/n→ 0 under RV assumptions; VΓ is the VC
dimension of the framing sets; C1(δ, d ,VΓ, k),C2(δ, d ,VΓ, k) are explicit
and have logarithmic dependence on (k , 1/δ), and polynomial dependence
on d ,VΓ.
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Anomaly detection

(Goix et al., 2016; Thomas et al., 2017)

• Training step:
Learn a ‘normal region’ (e.g. approximate support)

• Prediction step: (with new data)
Anomalies = points outside the ‘normal region’

If ‘normal’ data are heavy tailed, Abnormal ̸⇔ Extreme .
There may be extreme ‘normal data’.

How to distinguish between large anomalies and normal extremes?
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Anomaly detection and Minimum Volume sets (no EVT)
• Multivariate generalizations of quantiles, Scott and Nowak (2006);
Polonik (1997); Cai et al. (2011)

• At fixed ’level’ α (=1-false positive), G a class of subsets of X :

Ω∗
α ∈ argmin

Ω∈G
λ(Ω) s. t. P(Ω) ≥ α.

• new Xtest flagged as abnormal if Xtest /∈ Ω∗
α

• Ω∗
α is the ’best’ normality set (Neyman Pearson) if anomalies are

uniformly distributed according to reference measure λ.

• Ω∗
α is a level set of the density if G = all measurable sets

• non asymptotic bounds for λ(Ω̂) (false negative) and P[Ω̂] (true
negative) in Scott and Nowak (2006).
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Angular MV sets for extremes Thomas et al. (2017)
• G class of subsets of the sphere
• Construct angular MV sets for extremes, based on Φ̂

Ω̂α = argmin
G

λ(Ω) s.t. Φ̂(Ω) ≥ α− ψ(δ)

where ψ: tolerance ≥ (supremum) error bound for Φ̂.
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Angular Guarantees and heuristic strategy

With probability 1− δ, (radially integrated) error rates are controlled,

Φ(Ω̂α) ≥ α− 2ψ , and

λ(Ω̂α) ≤ inf {λ(A) : A ∈ A, Φ(A) ≥ α} .

• Heuristic tail scoring function

ŝ(v) = ŝθ(θ(v)) ∗ r(v)−2

where ŝθ(θ(v)) is constructed from a family of nested angular volume
sets (Ω̂α(1), . . . , Ω̂α(J))

• (Justified when ŝθ estimates in fact the density of V )
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Anomaly detection in the tail
• Xnew → rank-transform V̂

• If ∥V̂ ∥∞ ≤ training threshold for Φ̂, use an AD algorithm for the bulk

• Otherwise score abnormality of Xnew among extremes using ŝ(V )

• Further guarantees in terms of Neyman Pearson as in Clémençon and
Jakubowicz (2013); Clémençon and Thomas (2018)?

score on the transformed scale/original scale
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Learning on extreme covariates

• X : Heavy tailed random covariates, Y : bounded target to be
predicted, Y ∈ I = {−1, 1} (Jalalzai et al., 2018, Binary classification) or
I = [−M,M] (Huet et al., 2023, Regression)

• Goal: make acurate prediction in ‘crisis scenarios’ where new
observed covariable are (unusally) large

• Example 1: X = (temperature, air quality ), Y = daily proportion of
admissions to the pneumology department in a hospital.
Covariate shifts with climate change

• Example 2: Prediction of an unobserved component in (X̃1, . . . , X̃d+1)
a heavy-tailed r.v.

X = (X̃1, . . . , X̃d) ; Y = X̃d+1/∥X̃∥ or Y = 1{X̃d+1 ≥ c∥X∥}
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Learning on extremes: Meta-algorithm

1. Pick your favorite predictor (random forest, SVM, logistic regression,
deep neural network, . . . )

2. Train it on a fraction of your data (those with the largest norm)

3. For a new (unlabelled) point xnew :
• If ∥xnew∥ is small, use an of-the-shelf ML predictor
• If ∥xnew∥ is large, use the predictor dedicated to extremes.
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Conditional risk minimization, obvious issues

• Learning task (first naive attempt): minimize over f ∈ F for “large t”

Rt(f ) = E (c(f (X ),Y ) | ∥X∥ > t) .

• Since P (∥X∥ > t) is small, even though R(f̂ ) is ≈ optimal, Rt(f̂ ) may
not be so (negligible weight for Rt in the law of total expectations).

• Even though Rt(f̂t) is ≈ optimal for some t, no guarantee for t ′ ≫ t.

• For fixed, arbitrary predictor f , the conditional risk Rt(f ) may not
converge as t →∞
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Asymptotic risk and learning problem

• Issues in previous slide → change of focus

R∞(f ) = lim sup
t→∞

Rt(f ).

• Learning problem:

Minimize R∞(f ) over f ∈ F a class of prediction functions,
based on i.i.d. data (Xi ,Yi )i≤n ∼ (X ,Y )

• Done (and shown today): Stylized settings. F a VC class, 0-1 loss
and squared error loss, no penalization term (except for XLASSO, talk
later this week), no convexification. . . .

• Work in progress: quantile regression, unbounded targets, more
realistic algorithm (With C. Dombry, B. Leroux’s intenship).
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Conditional/One component Regular Variation

• Some stability assumptions regarding dependence Y ∼ X necessary
for extrapolation

• Classification: in Jalalzai et al. (2018) and Clémençon et al. (2023)
with standardization step, we assume:

b(t)P(t−1X ∈ ( · ) | Y = ±1) −−−→
t→∞

µ( · )

(same tail index: no class becomes a minority as ∥X∥ → ∞)

• Regression (Huet et al., 2023): simplification with “one-component
regular variation”:

b(t)P((t−1X ,Y ) ∈ ( · ) ) −−−→
t→∞

µ( · )
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Consequences: extreme pair (X∞,Y∞)
• Scaling function b may be chosen as P (∥X∥ > t)−1, so that
µ{(x , y) : ∥x∥ ≥ 1} = 1 (probability measure).

• Define
(X∞,Y∞) ∼ µ|{∥x∥≥1,y∈I} = limP ((X/t,Y ) ∈ ( · ) | ∥X∥ ≥ t) .

• Let Θ∞ = θ(X∞). Then (by homogeneneity again)

(Y∞,Θ∞) ⊥⊥ ∥X∞∥.
• Consequence on the extreme Bayes regression function

f ∗∞(x) := E (Y∞ | X∞ = x) a.s.

= E (Y∞ | Θ∞ = θ(x), ∥X∞∥ = r(x))

= f ∗∞(θ(x)).

The Bayes regression function for the extreme pair is ‘angular’, i.e. it
depends only on θ(x).
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Meta-Algorithm

Prediction based on angles of observations with largest radii

Input: Training dataset Dn = {(X1,Y1), . . . , (Xn,Yn)} in Rd × R;
Class H of predictive functions S→ R; number k ≤ n of ‘extremes’;
Norm ∥ · ∥ on Rd .
Selection of extremes: Sort the training data by decreasing radial
order, ||X(1)|| ≥ . . . ≥ ||X(n)|| and form a set of k extreme training
observations {(

X(1),Y(1)

)
, . . . ,

(
X(k),Y(k)

)}
.

Empirical risk minimization: Solve

min
h∈H

1

k

k∑
i=1

(
Y(i) − h

(
θ
(
X(i)

)))2
, (2)

where θ(x) = ∥x∥−1x . producing the solution ĥ.

Output: Predictive function (ĥ ◦ θ)(x), to be used for predicting Y
based on new examples X such that ∥X∥ ≥ ∥X(k)∥.
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DEMO 2: Classification/Regression
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Stability of solutions: additional assumptions

Additional working assumptions

classification sup
{x∈Rd

+:∥x∥≥t}
|f ∗(x)− f ∗∞(x)| −−−→

t→∞
0.

regression E
(
|f ∗(X )− f ∗∞(X )|

∣∣ ∥X∥ > t
)
→ 0.

Satisfied under (classical) assumptions of regular variation of densities,
similar to De Haan and Resnick (1987); Cai et al. (2011)
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Main structural results (classification/regression)

(i) Under one-component RV assumption, for any angular function
f (x) = h ◦ θ(x), where h is continuous on S, the conditional risk
converges

Rt(f ) −−−→
t→∞

RP∞(f ),

so that R∞(f ) = limt→+∞ Rt(f ) = RP∞(f ).

If the above additional assumption (convergence of regression function)
holds, then also

(ii) As t → +∞, the minimum value of Rt converges to that of RP∞ , i.e.
R∗
t −→t→+∞

R∗
P∞

.

(iii) The minimum values of R∞ and RP∞ coincide, i.e. R∗
∞ = R∗

P∞
.

(iv) The regression function f ∗P∞
minimizes the asymptotic conditional risk:

R∗
∞ = R∞(f ∗P∞).
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Statistical guarantees: classification
• Preliminary covariate rank transformation is performed (to Pareto
margins)

• Leveraging concentration of empirical angular measure, in Clémençon

et al. (2023) we show: with proba. 1− δ,

sup
h∈H
|R̂>τ (h)− Rτ

∞(h)| ≤ C1(δ/2, d ,VĀ, k)√
k

+
C2(δ/2, d ,VĀ, k)

k

+ Bias(k, n),

R̂>τ , Rτ
∞ restrictions of risks to x ’s such that min θ(v̂(x)) > τ , resp.

min θ(v(x)) > τ

• τ is not an artifact from the proof, see simulations in Clémençon et al.

(2023)

• Stylized setting in Jalalzai et al. (2018) with marginal distribution known:
same rate 1/

√
k, τ restriction not required
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Statistical guarantees: Regression

Huet et al. (2023); Aghbalou et al. (2024a)

• Same spirit, different proof techniques and bottlenecks (e.g. How to
control error due to rank transformation: open question). Standard
assumption that H is “VC subgraph” → Localization arguments
(conditioning) leveraging Giné and Guillou (2001)’s control of expected
sup deviations

• Under standard pointwise measurability assumptions, with proba 1− δ,

sup
h∈H

∣∣∣R̂k(h ◦ θ)− Rt(n,k)(h ◦ θ)
∣∣∣ ≤ 8M2

√
2 log(3/δ) + C

√
VH√

k

+
16M2 log(3/δ)/3 + 4M2VH

k
,
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Extreme sea levels reconsruction

Huet et al. (2025)

• Extreme surges (tidal component removed)

• Goal: reconstruct missing coastal gauges records from nearby stations
with longer historical records

• Input stations: Brest, St Nazaire; output: Port Tudy, Concarneau, and
Le Crouesty.
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Methodology

• Implementation of the ’learning on extreme covariates’ meta-algorithm
(instances: Random Forest, OLS)

• Sanity check: Comparison with a parametric plug-in method
(Multivariate Generalized Pareto families, similar working assumptions,
different marginal standardization and methodology), “distributional
regression” of the conditional distribution at one gauge given an
extreme value at another gauge.

• Comparable performance in terms of mean square errors and
qualitative behavior from visual inspection
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Predicted skew surge exceedances at Port Tudy station for the years 1989 (left), 1978

(middle), 1977 (right). Red curves represent the true values; purple curves represent the

predicted values by the ROXANE procedure with OLS algorithm; orange curves represent

the predicted values by MGPRED with bootstrap 0.95 confidence bands (lightorange).
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Application to Natural Language Processing with GAN’s

Jalalzai et al. (2020)

• Extension of the previous framework to datasets who are
NOT regularly varying.

• Dataset: text embeddings (BERT). X = vector in Rd , d large (768).

• label Y = positive/negative sentiment.

• Two goals:

(i) improved classification in low probability regions of X

(ii) label preserving data augmentation
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Learning a regularly varying representation for NLP
• Key step: adversarial, GAN-like strategy, (Goodfellow et al. 2014) mixed
loss function involving

• 0− 1 loss in extreme/ non-extreme regions

• Jensen-Shannon divergence between the learnt representation and a
Max-stable multivariate Logistic, ̸= common practice Gaussian

+

-

• Output: a transformed vector Z̃ = φ(X ) which is (experimentally)
regularly varying (low correlations θ(Z̃ )↔ ∥Z̃∥).
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Starting point of Aghbalou et al. (2024a): facts and wishes
• Cross-Validation (CV): widely used (even in extremes) for

1. Model or Hyper-parameter selection

2. Estimating the generalisation risk (= expected error on new
examples) of a learning algorithm/estimator.

Arlot&Celisse, 2010; Wager, 2020; Bates et al., 2023.

Theoretically analysed in a variety of settings: density estimation Arlot,

2008; Arlot&Lerasle, 2016 or least-squares regression
Homrighausen&McDonald, 2013; Xu et al., 2020, . . .

• Our wish: Make a first step towards theoretical guarantees for CV in
an EVT framework (existing works:∅).

• Main challenge: statistical properties of CV are hard to analyze in
general (dependence between folds / bias).
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Motivating examples for using CV in EVA
• Unsupervised:

• Parametric modeling of multivariate tail dependence Einmahl et al.

(2012, 2018, 2016); Kiriliouk et al. (2019), . . . : CV for goodness-of-fit
assessment on model selection?

• Dimension reduction in Multivariate Extremes: Support identification
Goix et al. 2017: Choosing the number of subcones in Rd supporting the
tail measure? PCA Cooley & Thibaud, 2019; Jiang et al., 2020; Drees and

S.,2021: Estimating the reconstruction error for dimensionality
selection? Clustering Janssen&Wan, 2020; Jalalzai&Leluc, 2021: Number
of clusters?

• Supervised:
• Extreme Quantile Regression Chernozhukov et al. 2017: Choice of Kernel

bandwidth? Trees Farkas et al., 2021: number of splits? Gradient
boosting Velthoen et al., 2023, Random Forests Gnecco et al.,2023:
number of trees and minimum node size?

• Classification/Regression on extreme covariates Jalalzai et al. 2018,

Jalalzai et al. 2020, Clémençon et al. 2022, Huet et al. 2022: Penalty level?

• Choice of k (?)
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Considered framework (again)

• Leading example: Classification setup, constrained Logistic-LASSO
regression

min
β∈Rd

∑
i≤k

c(gβ(X(i)),Y(i)) subject to ∥β∥1 ≤ u,

where u > 0 is a hyper-parameter to be selected by CV,
gβ(x) = β⊤θ(x) following Jalalzai et al. (2018)

• Why not regression? Because it was not ready yet.

• Why not (unconstained) Lasso? Because —//—

• More generally: ERM machine learning algorithms minimizing
empirical versions of the risk:

R(g ,Z ) = E (c(g ,Z )|∥Z∥ > tp) ,

∥ · ∥ is a semi-norm on Z, and tp is the 1− p quantile of ∥Z∥.
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CV for ERM generalization risk on covariate tails

• Focus: learning rules Ψ that take a sample S as input and return the
ERM solution Ψ(S) = ĝ(S) = argming∈G R̂(g ,S).

• Goal: estimate generalization risk R(ĝn) of the ERM predictor
ĝn = Ψ({1, . . . , n}) trained on the full dataset.

• CV estimator

R̂CV,p(Ψ,V1:K ) =
1

K

K∑
j=1

R̂(Ψ(Tj),Vj),

where (Vj , j ≤ K ) are validation sets and Tj = {1, . . . , n} \ Vj are
training sets.
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Main results
Working assumptions

• Loss class {z 7→ c(g , z), g ∈ G} associated with the predictor class G
is VC subgraph

• Bounded cost function
• Balance condition on the CV scheme (met by K fold, lpo, loo)

Exponential error bound, w.p. 1− 15δ,

∣∣R̂CV,p(Ψ,V1:K )− R
(
ĝn
)∣∣ ≤ ECV (nT , nV , p) +

20

3np
log(1/δ)+

20

√
2

np
log(1/δ),

where ECV (nT , nV , p) = C
√VG(1/

√
nV p + 4/

√
nTp) + 5/(nTp).

Applicable to K-fold, not l.o.o because of 1/
√
nT

NB: also a polynomial bound, applicable to loo but not suitable for
parameter selection guarantees via union bounds 65/98



Application to constrained LASSO problem

• grid search over a range U of plausible values for u, union bound:
With proba 1− 15δ

∣∣R̂CV,p(Ψû,V1:K )− R
(
ĝn
)∣∣ ≤ max(U)

[
2E (n,K , p) +

40

3np
log (|U|/δ)) · · ·

· · ·+ 40

√
2

np
log (|U|/δ)

]
,

where û is the minimizer of the CV risks R̂CV,p(ΨuV1:K ), u ∈ U, and
E (n,K , p) = 5C

√
(d + 1)K/(np) + 5K/((K − 1)np).
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Risk estimation error |R̂CV,p(Ψα,V1:K )− Rα({1, . . . , n})|:
rate 1/

√
nα ?

• Toy example: simulated data, dimension 1,
Class distributions: Student, threshold classifier, Hamming loss

• n = 2.104, α ∈ [1%, 20%]
• Average absolute error of the K-fold (K = 10) and upper quantile at
level 0.90, logarithmic scale, over 104 experiments.

28 29 210 211 212

nα

2−7

2−6

2−5

2−4 CV error − average
1/
√
nα

CV error − q90%

67/98



Logistic-LASSO: excess risk Rα(ĝλ̂)− Rα(ĝλ∗)

• Penalized version of the LASSO: R + λ∥β∥1: computationally (much)
easier and strong connections with constrained version.

• data: X ∈ R50, Y ∼ Bernoulli(0.5), class distribution: multivariate
student, same tail index + scale but different centers.

• α ∈ [0.01, 0.1], n = 104, with 2000 repetitions

• grid λi = 10i/30 − 1, i ≤ 30.
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CV on extremes: Discussion, perspectives

• Replacing ERM assumption with algorithmic stability → wider class of
algorithms and improved bounds for the l-p-o.

• Extension to other rare events (imbalanced classification)?

• Beyond sanity check bounds? (even for α = 1?)

• Extension to other EVA settings by relaxing the bounded loss
assumption?
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Dimension reduction in EVA - overview

• First work (tmbk) Chautru et al. (2015): Assuming some mixture
model for the angular measure, where each component is ’low
dimensional’.

• Goix et al. (2016, 2017): notion of ‘sparse’ angular measure,
determining which subgroups of components ‘may’ be simultaneously
large. Finite sample error bounds. Applications to Anomaly Detection.
Variants with alternative definitions of sparsity Meyer and
Wintenberger (2021, 2024)

• In Janßen and Wan (2020); Jalalzai and Leluc (2021): clustering of
extremes; with temporal dependence in Boulin et al. (2025b,a)
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Sparse support recovery (Goix, S. Clémençon, 2016, 2017)

• Reasonable hope: the groups {Xj , j ∈ J}’s wich may be simultaneously
large are (i) few (ii) small. → sparse angular measure

Our goal: Estimate the (sparse) support of the angular measure
(i.e. the dependence structure).

Full support: Sparse support
anything may happen (X1 not large if X2 or X3 large)
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Identifying non empty subspaces (Goix et al. 2016)

Two parameters: (i) Tolerance parameter ε (otherwise empirical measure
of subspaces = 0) ; (ii) k (number of observations considered as extremes)

Theorem (Goix, S., Clémençon, 2016)

If the margins Fj are continuous and if the density of the angular measure
is bounded by M > 0 on each subface (infinity norm),
There is a constant C s.t. for any n, d , k , δ ≥ e−k , ε ≤ 1/4, w.p. ≥ 1− δ,

max
J⊂{1,...,d}

|µ̂n(CJ)− µ(CJ)| ≤Cd
(√

1

kε
log

d

δ
+Mdε

)
+ Bias n

k
,ε(F , µ).

Regular variation ⇐⇒ Biast,ε −−−→
t→∞

0
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Related works

• Relaxed problem and feature clustering (Chiapino and Sabourin,
2016), statistical tests, Chiapino et al. (2019)

• link with hidden regular variation (Simpson et al., 2020)

• Modeling on multiple subspaces (Mourahib et al., 2024),
(brand new) penalized method, mixture model (Mourahib et al., 2025)

• Clustering (Janßen and Wan, 2020), Spatial clustering and time series
(Boulin et al., 2025a)

73/98



DEMO 3: DAMEX / CLEF

74/98



Outline
Multivariate Extreme Values, Heavy-Tails, Machine Learning: Why, What,
How?

Overview
Multivariate Extremes
Statistical Learning Theory, Machine Learning

Tail processes, Non-asymptotic deviation bounds
Maximal deviations on classes of rare events
Applications to multivariate EVT

Learning on extreme covariates for out-of-domain generalization
Classification and Regression on Extremes
Applications
Cross-Validation

Dimension reduction
Identification of multiple subspaces (groups of features)
PCA, functional extensions

74/98



Principal Component Analysis for Extremes

• Motivation: assume that µ concentrates on S∗ ⊂ Rd of dimension p.

• Consequence: Extreme shocks ’mostly’ happen along directions u ∈ S ,
whyle for u /∈ S , P (⟨u,X ⟩ ≫ 1) is comparatively negligible

• How can PCA recover the ’tail support’ (= S∗)?

• Error control requires in theory 4th moments → what with heavy tails?
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Angular PCA of extremes
• Main idea (Drees and S., 2021; Cooley and Thibaud, 2019): eigen
decomposition of

Σt = E
(
ΘΘ⊤ | ∥X∥ > t

)
with Θ = θ(X ) = ∥X∥−1X , Euclidean norm.

• Upcoming chapter (Drees & S.) in upcoming ‘Handbook of Statistics
of Extremes’: a posteriori merging of independent similar ideas

• If X is regularly varying, then Σ = limt→∞Σt exists and

Σ∞ = E
(
Θ∞Θ⊤

∞

)
,

where Θ∞ ∼ Φ, with Φ = limLaw(Θ | ∥X∥ > t).

• Applications to rainfall data (Jiang et al., 2020), flood simulation
(Rohrbeck and Cooley, 2023), follow-up work (faster rates) (Drees, 2025)
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Angular PCA of extremes: in practice
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Reconstruction risk analysis Drees and S. (2021)

• S : p-dim subspace, Π⊥
S (Θ): orth. projection on S⊥ (angular residual).

• Reconstruction Risk Rt(S) = E
(
∥Π⊥

S Θ∥2 | ∥X∥ > t
)

• Risk Minimization over Sp := p-dim subspaces → solution S∗
t,p

generated by first p eigenvectors of Σt (with distinct eignevalues).

Limit support recovery (Lemma 2.5)

If µ is concentrated on a p-dim subspace S∗, then S∗ minimizes R∞ over
Sp

Eigenspaces stability (Theorem 2.4)

operator.norm.distance(S∗
t,p, S

∗
∞,p)→ 0
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Guarantees for empirical versions Drees and S. (2021)

• Empirical angular 2nd moments matrix Σ̂k with k largest
observations, eigenspaces Ŝk,p. We show

Consistency

ρ(Ŝk,p,Sp) −→ 0 as k, n→∞, k/n→ 0 in probability

Finite sample bounds on the reconstruction error

sup
S∈Sp

|R̂k(S)− Rt(n,k)(S)| ≤

√
min(p, d − p)(1− k/n) tr(Σ2

t(n,k))

k
+ . . .√

8(1 + k/n) log(4/δ)

k
+

4 log(1/δ)

3k
.
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Functional extension (Clémençon et al., 2024)

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20

t  in  [0,1]

X
(t

)

• Focus: ‘High energy’ functional data (measured with L2 norm)

• How to adapt functional PCA to heavy-tailed functions and
obtain a finite-dimensional representation for the tail angular process
limL(X/∥X∥ | ∥X∥ > t) with ∥X∥ = (

∫
X 2(s)ds)1/2?

• Statistical guarantees under regular variation in H = L2([0, 1])

80/98



From finite dim Drees and S. (2021) to L2: bottlenecks

• Proofs in Drees and S. (2021) use compactness of the sphere: for
stability and consistency of estimators V̂k .

• Excess risk bounds depend on the dimension (factor min(p, d − p))

Solution: convergence of covariance operators (in the HS norm)

• Useful reference for FDA Hsing and Eubank (2015)
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Covariance operator in H
• Generalization of rank-1 matrix gf ⊤ in Rd : For f , g ∈ H,

f ⊗ g : H→ H
h 7→ ⟨h, f ⟩g

• Covariance operator of Z a random element in H, with E (Z ) = 0:

C = E (Z ⊗ Z ) : H→ H
h 7→ C h = E (⟨X , h⟩X )

N.B. E is in the Bochner sense.

• C is a Hilbert-Schmidt, self adjoint operator ⇒ spectral theorem

C =
∑
i∈N

λjvj ⊗ vj

λ1 ≥ λ2 ≥ · · · ≥ 0: eigenvalues, (vj)j eigenfunctions, form a CONS.
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Conditional angular covariance operator in H
• For extreme value analysis,

Ct = E (Θ⊗Θ | ∥X∥ > t) ; C∞ = E (Θ∞ ⊗Θ∞) .

Theorem Clémençon et al. (2024)

As t →∞, ∥Ct − C∞∥HS(H) → 0

Proof Short!
weak convergence of Θt ⊗Θt + Skorohod’s representation theorem
(separability) + Jensen inequality (Bochner sense) + Dominated
convergence (boundedness of Θt).

Corollary

If δp = λp − λp+1 > 0, then ρ(Sp,t , Sp,∞)→ 0,
where ρ(E ,F ) = ∥ΠE − ΠF∥HS(H).

Proof: perturbation theory: deviations of eigen spaces/values of C + δ are
controlled by ∥δ∥HS(H).
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Covariance Estimation and support recovery in H
Theorem: Concentration of the empirical covariance

Let δ ∈ (0, 1). With probability at least 1− δ, we have

∥Ĉk − Ctn,k∥HS ≤
1√
k
+ 6

√
log(2/δ)

k
+ O

( log(2/δ)
k

)
.

Corollary: ρ(Ŝp
t̂n,k
,Sp

tn,k ) ≤ 1
spectral.gap(p,tn,k )

×
(
latter bound

)
(with multiplicative factor: spectral gap)

Corollary: Consistent estimation of Sp if γp > 0.
(Consequence of Weyl’s inequality)

Tools for the proof
(i) ‘Luckily’ (boundedness) E∥Ĉk − Ctn,k∥ ≤ 1/

√
k

(ii) Mc Diarmid’s Bernstein -type inequality applied to
φ(X1, . . . ,Xn) = ∥C̄k − Ctn,k∥
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First eigenvector: real and simulated data
Black: Using all angles Red: Using extreme angles.
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real (left) and simulated (right) data.

real data pm 10 gr sqrt Half-hour(squared-root) measurements of
concentration in particulate matter, over 24h. Package ftsa. n = 182,
d = 48.
simulated data X =

∑4
1 Ajej , with

ej : trigonometric polynomials ; Aj : Pareto variables.
A1,A2 have common (heavier) tail index than (A3,A4), all have
comparable variance. n = 500.
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Reconstruction Error above large t, Cross-Validation

• Reconstruction of extreme angles above radial quantile
1− k/n = 0.78 (real data) or 0.9 (simulated data)

• Comparison: train on
(i) extreme angles, (ii) all angles, (iii) subsample of size k among all
angles.

extreme train set full train set reduced full train set

0.
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0.
20
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0.
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35

Cross−validation reconstruction error of angles

extreme train set full train set reduced full train set

4
6

8
10

12

Cross−validation reconstruction error of angles

real data (left) ; simulated data (right)
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The End

• This talks: contributions to setting up a theoretical grounding for ML
approaches in EVA, proof techniques, implementation with illustrative
purpose

• More open (theoretical and applied) questions than answers

• Not shown:

Choice of k , without second order assumptions → Lederer et al.
(2025) for tail index estimation.

Applications of rare classes arguments to imbalanced classification
Aghbalou et al. (2024c).

Supervised dimension reduction Gardes (2018); Aghbalou et al.
(2024b); Bousebata et al. (2023); Girard and Pakzad (2024)
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Boulin, A., Di Bernardino, E., Laloë, T., and Toulemonde, G. (2025a). High-dimensional
variable clustering based on maxima of a weakly dependent random process. Journal
of the American Statistical Association, (just-accepted):1–21.
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Clémençon, S., Jalalzai, H., Lhaut, S., Sabourin, A., and Segers, J. (2023).
Concentration bounds for the empirical angular measure with statistical learning
applications. Bernoulli, 29(4):2797–2827.
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Goix, N., Sabourin, A., and Clémençon, S. (2017). Sparse representation of multivariate
extremes with applications to anomaly detection. Journal of Multivariate Analysis,
161:12–31.

Heffernan, J. E. and Resnick, S. I. (2007). Limit laws for random vectors with an
extreme component. The Annals of Applied Probability, 17(2):537–571.

Hsing, T. and Eubank, R. (2015). Theoretical foundations of functional data analysis,
with an introduction to linear operators. John Wiley & Sons.

93/98



References VII
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