
Statistical learning viewpoints on extreme value analysis

Anne Sabourin
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Why?
• Earth sciences, Finance, Insurance, Telecommunications: unusually
large values of (Rain - Temperature - Wind - Sea levels - Streamflow -
Traffic - Negative log-returns - Insurance Claims), devastating impacts.

• Such events hard to “predict” (proba. of occurrence hard to estimate)
due to

• Small sample sizes

• Potentially heavy tails, not satisfying convenient ’Boundedness -
subgaussianity - subsomething’ assumptions.

• Anomaly detection (all sectors): Anomalies often in the tails.
Distinguish ’normal’ extreme values from ’abnormal’ ones? 2/51



Extreme Value Theory: textbook story
Probability Theory: Under minimal assumptions, distributions of

maxima/excesses converge to a certain class. Early works

Fréchet (1927), Fisher, Tipett (1928), Karamata (1930), Gumbel

(1935), Gnedenko (1943), . . .

Modelling: Use those limits to model maxima/excesses above large
thresholds.

X: random object (variable / vector/ process) Xi
i .i .d .∼ X.

n
max
i=1

Xi
d≈ Max-stable (n large)

[
X

∣∣ ∥X∥ ≥ r
] d≈ Generalized Pareto (r large)

n∑
i=1

δ(i ,Xi )
d≈ Poisson point process (n large, above large r)
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Peaks-Over-Threshold and out-of-domain generalization

• Goal: learn µ/Φ.

• Use P̂k : empirical distribution of k largest observations (1 ≪ k ≪ n)
(w.r.t. their norm) as a proxi for

Pt1−k/n
= Law

(
X | ∥X∥ > t(1− k/n)

)
where t1−p true (1− p)-quantile of the “radial variable” ∥X∥

• Hope that Pt1−k/n
is close to P∞
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Generic strategy for statistical analysis

• Error analysis (in spirit: “k-NN at infinity” / local method)

Error(P̂k , µ) ≤ Error(P̂k ,Pt(1−k/n))︸ ︷︷ ︸
Variance(k)

+Error(Pt(1−k/n), µ)︸ ︷︷ ︸
Bias(k/n)

• Obvious Bottlenecks:

Bias (k/n < ∞) or Variance (k ≪ n)

Heavy-tails

X(1), . . . ,X(k) are not i.i.d. data
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Machine Learning / AI / High dimensions + Extremes
since 2015

• (Many environmental) applications with Deep Learning involved for
parameter fitting, generative modelling, auto-encoding, Neural Bayes
. . . Lafon et al. (2023); Dahal et al. (2024); De Monte et al. (2025);
Richards et al. (2024), ...

• Graphical models and causality Velthoen et al. (2023); Gnecco et al.
(2024, 2021), some finite sample error bounds (Engelke et al., 2021)

• Sparse support identification Goix et al. (2016, 2017); Meyer and
Wintenberger (2021, 2024), feature clustering Chiapino and Sabourin
(2016); Chiapino et al. (2019, 2020), Dimension selection Butsch and
Fasen-Hartmann (2024, 2025) Supervised dimension reduction: for
high dimensional tail index estimation (Chen and Zhou, 2024),
identification of tail conditional independence (extreme
targets/covariates) (Gardes, 2018; Aghbalou et al., 2024b; Gardes and
Podgorny, 2024; Girard and Pakzad, 2024)
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Generic research goals and bottlenecks

• Develop non-asymptotic guarantees for Extreme Value
estimators/learning algorithms, in a non-parametric framework, with
minimal assumptions, robust to ill-behaved bias

How to avoid “second order” assumptions that traditionally control
bias decrease in CLT’s ?
Until ≈ 2015, literature exclusively asymptotic.

• Bridge the gap (Extremes| |High dimensional statistics)

Back in 2015: multivariate modeling envisioned for d ≤ 5 or 10,
except for spatial extremes with parametric spatial structure or
parametric models wih fixed, low number of parameters

7/51



Ingredients for this talk

• Survey paper (preprint) Clémençon and Sabourin (2025)

• Joint works with several colleagues: Patrice Bertail, Chloé Clavel, Eric
Gaussier, Philippe Naveau, François Portier, Johan Segers; and
students: Nicolas Goix, Hamid Jalalzai, Anass Aghbalou, Nathan Huet
(chron. order)+ Pierre Colombo, Stéphane Lhaut
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Multivariate Regular Variation in two slides I
X : Ω → Rd is regularly varying if ∃ scaling b(t) → ∞, and
∃µ a non-zero limit measure on Rd \ {0}, finite on sets bounded away
from 0, s.t. as t → ∞, (Resnick, 2008; Hult and Lindskog, 2006)

b(t)P (X ∈ t A) → µ(A), A measurable, 0 /∈ ∂A. (1)

t 1

Then for some α > 0, for all x > 0,

b(tx)

b(t)
→ x−α (regularly varying scaling) and

µ(tA) = t−αµ(A) (homogeneous limit measure).
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Multivariate regular variation in two slides II
• µ rules the (probabilistic) behaviour of extremes: if A is far from
the origin, then

P(X ∈ A) ≈ µ(A) .

Namely
P (X ∈ tA) = L(t)µ(tA),

with L a slowly varying function.

• Examples: Max stable vectors with standardized margins,
multivariate Student, . . .

• Preliminary componentwise standardization is often necessary: then
(1) concerns the standard version V of X ,

Vj := 1/(1− Fj(Xj)), V = (V1, . . . ,Vd).

In practice: empirical F̂j . In spirit ≈ empirical copula, but non-linear

(unstable propagation of |F̂j − Fj |)
10/51



Angular Measure (a third slide was needed)
• Homogeneity of µ ⇒ polar coordinates are convenient

r(x) = ∥x∥ ; θ(x) = r(x)−1x .

• Angular measure Φ on the ∥ · ∥-sphere: Φ(B) = µ{r > 1, θ ∈ B}.

• Then µ decomposes as a product measure

µ ◦ Polar-transform−1{r > t, θ ∈ B} = t−αΦ(B)

Multiv. reg. var. ⇐⇒ Law(θ(X ) | r(X ) > t)
w−→ Φ( · )(

+ P (r(X ) > t) = t−αL(t)
)
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Supremum deviations on low probability classes
A: a VC-class of sets with VC-dimension VA, with P

(⋃
A∈A A

)
≤ p.

• In Goix et al. (2015) (with universal constant) and Lhaut et al. (2022)

(variants, explicit constants), we show

sup
A∈A

|Pn(A)− P(A)| ≤
√

2p

n

(√
2 log(1/δ)+

. . .
√

log 2 + VA log(2np + 1) +
√
2/2

)
· · ·+ 2

3n
log(1/δ)

- Existing normalized VC inequalities had an extra
√
log n factor, see

Vapnik and Chervonenkis (2015); Anthony and Shawe-Taylor (1993).
- Tools: McDiarmid (1998)’s Bernstein type concentration inequality +
conditioning trick to control Rademacher average
- Possible improvement (factor

√
2) using Bousquet-Talagrand

inequality (in preparation with B. Leroux, A. Marchina)
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Empirical Angular Measure of extremes
Xi

i.i.d.∼ F in Rd , 1 ≪ k ≪ n to be ’chosen by the user’ (choice of k . . . )

Rank-transformed variables:

V̂i ,j =
1

1− n
n+1 F̂j(Xi ,j)

(j ≤ d , i ≤ n)

”Radial” order statistics:

V̂(1), . . . , V̂(n) such that ∥V̂(1)∥ ≥ ∥V̂(2) ≥ · · · ≥ ∥V̂(n)∥
Empirical Angular measure:

Φ̂(A) =
1

k

∑
i≤k

1A(∥V̂(i)∥−1V̂(i))

Existing guarantees < 2023: Asymptotic, 2nd order assumptions, d = 2
only. (Einmahl et al., 2001; Einmahl and Segers, 2009)
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Concentration of the empirical angular measure
In Clémençon et al. (2023) we assume:

• A a class of sets on S+ (positive orthant of the sphere) with some
regularity assumptions

• A is uniformly bounded away from the boundary of the positive
orthant

• One can construct “framing ” classes of sets accounting for the
propagation of uncertainty due to marginal standardization,

and we show:

sup
A∈A

|Φ̂(A)− Φ(A)| ≤ C1(δ, d ,VΓ, k)√
k

+
C2(δ, d ,VΓ, k)

k
+ Bias(k , n),

where Bias(k , n) → 0 as k/n → 0 under RV assumptions; VΓ is the VC
dimension of the framing sets; C1(δ, d ,VΓ, k),C2(δ, d ,VΓ, k) are explicit
and have logarithmic dependence on (k , 1/δ), and polynomial dependence
on d ,VΓ.
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Learning on extreme covariates

• X : Heavy tailed random covariates, Y : bounded target to be
predicted, Y ∈ I = {−1, 1} (Jalalzai et al., 2018, Binary classification) or
I = [−M,M] (Huet et al., 2023, Regression)

• Goal: make acurate prediction in ‘crisis scenarios’ where new
observed covariable are (unusally) large

• Example 1: X = (temperature, air quality ), Y = daily proportion of
admissions to the pneumology department in a hospital.
Covariate shifts with climate change

• Example 2: Prediction of an unobserved component in (X̃1, . . . , X̃d+1)
a heavy-tailed r.v.

X = (X̃1, . . . , X̃d) ; Y = X̃d+1/∥X̃∥ or Y = 1{X̃d+1 ≥ c∥X∥}
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Learning on extremes: Meta-algorithm

1. Pick your favorite predictor (random forest, SVM, logistic regression,
deep neural network, . . . )

2. Train it on a fraction of your data (those with the largest norm)

3. For a new (unlabelled) point xnew :
• If ∥xnew∥ is small, use an of-the-shelf ML predictor
• If ∥xnew∥ is large, use the predictor dedicated to extremes.
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Conditional risk minimization, obvious issues

• Learning task (first naive attempt): minimize over f ∈ F for “large t”

Rt(f ) = E (c(f (X ),Y ) | ∥X∥ > t) .

• Since P (∥X∥ > t) is small, even though R(f̂ ) is ≈ optimal, Rt(f̂ ) may
not be so (negligible weight for Rt in the law of total expectations).

• Even though Rt(f̂t) is ≈ optimal for some t, no guarantee for t ′ ≫ t.

• For fixed, arbitrary predictor f , the conditional risk Rt(f ) may not
converge as t → ∞
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Asymptotic risk and learning problem

• Issues in previous slide → change of focus

R∞(f ) = lim sup
t→∞

Rt(f ).

• Learning problem:

Minimize R∞(f ) over f ∈ F a class of prediction functions,
based on i.i.d. data (Xi ,Yi )i≤n ∼ (X ,Y )

• Done (and shown today): Stylized settings. F a VC class, 0-1 loss
and squared error loss, no penalization term (except for XLASSO), no
convexification. . . .

• TODO: quantile regression, unbounded targets, more realistic
algorithm: work in progress, (With C. Dombry, B. Leroux’s intenship).
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Conditional/One component Regular Variation

• Some stability assumptions regarding dependence Y ∼ X necessary
for extrapolation

• Classification: in Jalalzai et al. (2018) and Clémençon et al. (2023)
with standardization step, we assume:

b(t)P(t−1X ∈ ( · ) | Y = ±1) −−−→
t→∞

µ( · )

(same tail index: no class becomes a minority as ∥X∥ → ∞)

• Regression (Huet et al., 2023): simplification with “one-component
regular variation”:

b(t)P((t−1X ,Y ) ∈ ( · ) ) −−−→
t→∞

µ( · )

19/51



Consequences: extreme pair (X∞,Y∞)
• Scaling function b may be chosen as a quantile function of ∥X∥, so
that µ{(x , y) : ∥x∥ ≥ 1} = 1 (probability measure).

• Define
(X∞,Y∞) ∼ µ|{∥x∥≥1,y∈I} = limP ((X/t,Y ) ∈ ( · ) | ∥X∥ ≥ t) .

• Let Θ∞ = θ(X∞). Then (by homogeneneity again)

(Y∞,Θ∞) ⊥⊥ ∥X∞∥.
• Consequence on the extreme Bayes regression function

f ∗∞(x) := E (Y∞ | X∞ = x) a.s.

= E (Y∞ | Θ∞ = θ(x), ∥X∞∥ = r(x))

= f ∗∞(θ(x)).

The Bayes regression function for the extreme pair is ‘angular’, i.e. it
depends only on θ(x).
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Meta-Algorithm

Prediction based on angles of observations with largest radii

Input: Training dataset Dn = {(X1,Y1), . . . , (Xn,Yn)} in Rd × R;
Class H of predictive functions S → R; number k ≤ n of ‘extremes’;
Norm ∥ · ∥ on Rd .
Selection of extremes: Sort the training data by decreasing radial
order, ||X(1)|| ≥ . . . ≥ ||X(n)|| and form a set of k extreme training
observations {(

X(1),Y(1)

)
, . . . ,

(
X(k),Y(k)

)}
.

Empirical risk minimization: Solve

min
h∈H

1

k

k∑
i=1

(
Y(i) − h

(
θ
(
X(i)

)))2
, (2)

where θ(x) = ∥x∥−1x . producing the solution ĥ.

Output: Predictive function (ĥ ◦ θ)(x), to be used for predicting Y
based on new examples X such that ∥X∥ ≥ ∥X(k)∥.
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Stability of solutions: additional assumptions

Additional working assumptions

classification sup
{x∈Rd

+:∥x∥≥t}
|f ∗(x)− f ∗∞(x)| −−−→

t→∞
0.

regression E
(
|f ∗(X )− f ∗∞(X )|

∣∣ ∥X∥ > t
)
→ 0.

Satisfied under (classical) assumptions of regular variation of densities,
similar to De Haan and Resnick (1987); Cai et al. (2011)
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Main structural results (classification/regression)

(i) Under one-component RV assumption, for any angular function
f (x) = h ◦ θ(x), where h is continuous on S, the conditional risk
converges

Rt(f ) −−−→
t→∞

RP∞(f ),

so that R∞(f ) = limt→+∞ Rt(f ) = RP∞(f ).

If the above additional assumption (convergence of regression function)
holds, then also

(ii) As t → +∞, the minimum value of Rt converges to that of RP∞ , i.e.
R∗
t −→

t→+∞
R∗
P∞

.

(iii) The minimum values of R∞ and RP∞ coincide, i.e. R∗
∞ = R∗

P∞
.

(iv) The regression function f ∗P∞
minimizes the asymptotic conditional risk:

R∗
∞ = R∞(f ∗P∞).
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Statistical guarantees: classification
• Preliminary covariate rank transformation is performed (to Pareto
margins)

• Leveraging concentration of empirical angular measure, in Clémençon

et al. (2023) we show: with proba. 1− δ,

sup
h∈H

|R̂>τ (h)− Rτ
∞(h)| ≤ C1(δ/2, d ,VĀ, k)√

k
+

C2(δ/2, d ,VĀ, k)

k

+ Bias(k, n),

R̂>τ , Rτ
∞ restrictions of risks to x ’s such that min θ(v̂(x)) > τ , resp.

min θ(v(x)) > τ

• τ is not an artifact from the proof, see simulations in Clémençon et al.

(2023)

• Stylized setting in Jalalzai et al. (2018) with marginal distribution known:
same rate 1/

√
k, τ restriction not required
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Statistical guarantees: Regression

Huet et al. (2023); Aghbalou et al. (2024a)

• Same spirit, different proof techniques and bottlenecks (e.g. How to
control error due to rank transformation: open question). Standard
assumption that H is “VC subgraph” → Localization arguments
(conditioning) leveraging Giné and Guillou (2001)’s control of expected
sup deviations

• Under standard pointwise measurability assumptions, with proba 1− δ,

sup
h∈H

∣∣∣R̂k(h ◦ θ)− Rt(n,k)(h ◦ θ)
∣∣∣ ≤ 8M2

√
2 log(3/δ) + C

√
VH√

k

+
16M2 log(3/δ)/3 + 4M2VH

k
,
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XLASSO: LASSO on extreme covariates

Section 5 in Clémençon and Sabourin (2025):

min
β∈Rd ,

1

2k

k∑
i=1

(Y(i) − hβ ◦ θ(X(i)))
2 + λ∥β∥1.

• Design matrix of extreme angles

Z = (θ(X(1))
⊤, . . . , θ(X(k))

⊤)⊤ ∈ Rk×p;

Target y = (Y(1), . . . ,Y(k)) ∈ Rk , residual vector w = y − Zβ∗.
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Asymptotic linear Model
• Assumption: For some β∗ ∈ Rd ,

Y = θ(X )⊤β∗ + b(X ) + ε,

where ε is a bounded noise, |ε| ≤ Mϵ almost surely, and b : Rd → R is
a bounded function that vanishes at infinity,

b̄(t) := sup
x :r(x)>t

|b(x)| −−−→
t→∞

0.

• Ensures required assumptions for regression on extremes Huet et al.

(2023) are met.

• Example: regularly varying pair (X ,Z ) such that X is regul. varying.
and

Z = X⊤β∗ + B(X ) + ϵ∥X∥︸ ︷︷ ︸
todo: simplify

, Y = Z/∥X∥,

where perturbation function B s.t. supx∈Rd |B(x)|/∥x∥ = MB < ∞
and sup∥x∥>t |B(x)|/∥x∥ → 0; ϵ: centered noise s.t. |ϵ| ≤ Mϵ
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XLASSO: Main result: minimal prediction guarantees

Theorem (XLASSO: prediction error guarantees)

Let

λ ≥ Mε

√
log(4d/δ)

2k
+ b̄(t1−k̃(δ/2)/n),

where k̃(δ) ≈ k , k̃(δ) = k
(
1 +

√
3 log(1/δ)

k
+

3 log(1/δ)
k

)
, and b̄(t) = sup∥x∥>t b(x).

Then w.p. at least 1− δ,

k−1∥Z⊤(β̂ − β∗)∥22 ≤ 12∥β∗∥1λ.
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Experiments: Simulated data

• Y = ⟨θ(X ), β0⟩+ 1
log(1+∥X∥)⟨θ(X ), β1⟩+ ϵ, with β1 ≡ 1 and β0

5-sparse, d = 100, n = 104, d = 100. k ∈ [0.011n, 0.05n]. Test set
radial quantile: 1− 0.01. 20 replications

Red dots: XLASSO; Blue dots: linear regression
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Experiments: Real data

• Industry Portfolio Dataset (Meyer and Wintenberger, 2024; Huet
et al., 2023). Target: Z = “Transportation sector”, d = 49,
n = 13577.

• Target rescaling: Y = Z/∥X∥, X : other variables.

• Threshold for ∥X∥: 1− 0.005 quantile for test, 1− [0.05, 0.5] for train.

• left panel: boundedness of Y ?
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Extreme sea levels reconsruction

Huet et al. (2025)

• Extreme surges (tidal component removed)

• Goal: reconstruct missing coastal gauges records from nearby stations
with longer historical records

• Input stations: Brest, St Nazaire; output: Port Tudy, Concarneau, and
Le Crouesty.

31/51



Methodology

• Implementation of the ’learning on extreme covariates’ meta-algorithm
(instances: Random Forest, OLS)

• Sanity check: Comparison with a parametric plug-in method
(Multivariate Generalized Pareto families, similar working assumptions,
different marginal standardization and methodology), “distributional
regression” of the conditional distribution at one gauge given an
extreme value at another gauge.

• Comparable performance in terms of mean square errors and
qualitative behavior from visual inspection
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Predicted skew surge exceedances at Port Tudy station for the years 1989 (left), 1978

(middle), 1977 (right). Red curves represent the true values; purple curves represent the

predicted values by the ROXANE procedure with OLS algorithm; orange curves represent

the predicted values by MGPRED with bootstrap 0.95 confidence bands (lightorange).
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Application to Natural Language Processing

Jalalzai et al. (2020)

• Extension of the previous framework to datasets who are
NOT regularly varying.

• Dataset: text embeddings (BERT). X = vector in Rd , d large (768).

• label Y = positive/negative sentiment.

• Two goals:

(i) improved classification in low probability regions of X

(ii) label preserving data augmentation
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Learning a regularly varying representation for NLP
• Key step: adversarial strategy, (Goodfellow et al. 2014) mixed loss
function involving

• 0− 1 loss in extreme/ non-extreme regions

• Jensen-Shannon divergence between the learnt representation and a
Max-stable multivariate Logistic, ̸= common practice Gaussian

+

-

• Output: a transformed vector Z̃ = φ(X ) which is (experimentally)
regularly varying (low correlations θ(Z̃ ) ↔ ∥Z̃∥).
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Starting point of Aghbalou et al. (2024a): facts and wishes
• Cross-Validation (CV): widely used (even in extremes) for

1. Model or Hyper-parameter selection

2. Estimating the generalisation risk (= expected error on new
examples) of a learning algorithm/estimator.

Arlot&Celisse, 2010; Wager, 2020; Bates et al., 2023.

Theoretically analysed in a variety of settings: density estimation Arlot,

2008; Arlot&Lerasle, 2016 or least-squares regression
Homrighausen&McDonald, 2013; Xu et al., 2020, . . .

• Our wish: Make a first step towards theoretical guarantees for CV in
an EVT framework (existing works:∅).

• Main challenge: statistical properties of CV are hard to analyze in
general (dependence between folds / bias).
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Motivating examples for using CV in EVA
• Unsupervised:

• Parametric modeling of multivariate tail dependence Einmahl et al.

(2012, 2018, 2016); Kiriliouk et al. (2019), . . . : CV for goodness-of-fit
assessment on model selection?

• Dimension reduction in Multivariate Extremes: Support identification
Goix et al. 2017: Choosing the number of subcones in Rd supporting the
tail measure? PCA Cooley & Thibaud, 2019; Jiang et al., 2020; Drees and

S.,2021: Estimating the reconstruction error for dimensionality
selection? Clustering Janssen&Wan, 2020; Jalalzai&Leluc, 2021: Number
of clusters?

• Supervised:
• Extreme Quantile Regression Chernozhukov et al. 2017: Choice of Kernel

bandwidth? Trees Farkas et al., 2021: number of splits? Gradient
boosting Velthoen et al., 2023, Random Forests Gnecco et al.,2023:
number of trees and minimum node size?

• Classification/Regression on extreme covariates Jalalzai et al. 2018,

Jalalzai et al. 2020, Clémençon et al. 2022, Huet et al. 2022: Penalty level?

• Choice of k (?)
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Considered framework (l’art de la répétition)

• Leading example: Classification setup, constrained Logistic-LASSO
regression

min
β∈Rd

∑
i≤k

c(gβ(X(i)),Y(i)) subject to ∥β∥1 ≤ u,

where u > 0 is a hyper-parameter to be selected by CV,
gβ(x) = β⊤θ(x) following Jalalzai et al. (2018)

• Why not regression? Because it was not ready yet.

• Why not (unconstained) Lasso? Because —//—

• More generally: ERM machine learning algorithms minimizing
empirical versions of the risk:

R(g ,Z ) = E (c(g ,Z )|∥Z∥ > tp) ,

∥ · ∥ is a semi-norm on Z, and tp is the 1− p quantile of ∥Z∥.

38/51



CV for ERM generalization risk on covariate tails

• Focus: learning rules Ψ that take a sample S as input and return the
ERM solution Ψ(S) = ĝ(S) = argming∈G R̂(g ,S).

• Goal: estimate generalization risk R(ĝn) of the ERM predictor
ĝn = Ψ({1, . . . , n}) trained on the full dataset.

• CV estimator

R̂CV,p(Ψ,V1:K ) =
1

K

K∑
j=1

R̂(Ψ(Tj),Vj),

where (Vj , j ≤ K ) are validation sets and Tj = {1, . . . , n} \ Vj are
training sets.
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Main results
Working assumptions

• Loss class {z 7→ c(g , z), g ∈ G} associated with the predictor class G
is VC subgraph

• Bounded cost function
• Balance condition on the CV scheme (met by K fold, lpo, loo)

Exponential error bound, w.p. 1− 15δ,

∣∣R̂CV,p(Ψ,V1:K )− R
(
ĝn
)∣∣ ≤ ECV (nT , nV , p) +

20

3np
log(1/δ)+

20

√
2

np
log(1/δ),

where ECV (nT , nV , p) = C
√VG(1/

√
nV p + 4/

√
nTp) + 5/(nTp).

Applicable to K-fold, not l.o.o because of 1/
√
nT

NB: also a polynomial bound, applicable to loo but not suitable for
parameter selection guarantees via union bounds 40/51



Application to constrained LASSO problem

• grid search over a range U of plausible values for u, union bound:
With proba 1− 15δ

∣∣R̂CV,p(Ψû,V1:K )− R
(
ĝn
)∣∣ ≤ max(U)

[
2E (n,K , p) +

40

3np
log (|U|/δ)) · · ·

· · ·+ 40

√
2

np
log (|U|/δ)

]
,

where û is the minimizer of the CV risks R̂CV,p(ΨuV1:K ), u ∈ U, and
E (n,K , p) = 5C

√
(d + 1)K/(np) + 5K/((K − 1)np).
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Risk estimation error |R̂CV,p(Ψα,V1:K )− Rα({1, . . . , n})|:
rate 1/

√
nα ?

• Toy example: simulated data, dimension 1,
Class distributions: Student, threshold classifier, Hamming loss

• n = 2.104, α ∈ [1%, 20%]
• Average absolute error of the K-fold (K = 10) and upper quantile at
level 0.90, logarithmic scale, over 104 experiments.

28 29 210 211 212

nα

2−7

2−6

2−5

2−4 CV error − average
1/
√
nα

CV error − q90%
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Logistic-LASSO: excess risk Rα(ĝλ̂)− Rα(ĝλ∗)

• Penalized version of the LASSO: R + λ∥β∥1: computationally (much)
easier and strong connections with constrained version.

• data: X ∈ R50, Y ∼ Bernoulli(0.5), class distribution: multivariate
student, same tail index + scale but different centers.

• α ∈ [0.01, 0.1], n = 104, with 2000 repetitions

• grid λi = 10i/30 − 1, i ≤ 30.
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CV on extremes: Discussion, perspectives

• Replacing ERM assumption with algorithmic stability → wider class of
algorithms and improved bounds for the l-p-o.

• Extension to other rare events (imbalanced classification)?

• Beyond sanity check bounds? (even for α = 1?)

• Extension to other EVA settings by relaxing the bounded loss
assumption?
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• This talks: contributions to setting up a theoretical grounding for ML
approaches in EVA

• Field still emerging, more open questions than answers

• Not shown: Choice of k, without second order assumptions → Lederer
et al. (2025) for tail index estimation. Applications of rare classes
arguments to imbalanced classification Aghbalou et al. (2024c).

• Just released

SOFTWARE
MLExtreme Python Package

https://github.com/hi-paris/MLExtreme/

• Unsupervised: anomaly scoring with MV sets, support identification
(feature clustering), PCA

• Supervised: Classification, Regression (compatible with any learner with
a fit and predict method, à la scikit-learn)

• Tutorial notebooks
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