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Material for this talk

e Final two sections of the survey paper:
S. Clémencon, A. S., Weak signals and heavy tails: Machine-learning
meets extreme value theory,
arXiv preprint arXiv:2504.06984

e Focus of this talk: regression on extreme covariates (Huet et al., 2023)

e What's new today:
e High dimension, how to add a penalty term (LASSO) with (some)

guarantees
e Further discussion of (apparently) limitative boundedness assumption

on the target
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Learning on extreme covariates

e X: Heavy tailed random covariates, Y: target to be predicted,
Y € | = {—1,1} (Jalalzai et al., 2018, Binary classification) or | C R (Huet
et al., 2023, Regression)

e Goal: make acurate prediction in ‘crisis scenarios’ where new
observed covariable are (unusally) large

e General motivations Covariate shifts with climate change, risk
management in worst case events, ...

View?

Tail training set Out-of-Domain
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1D covariate 2D covariate
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Related work
e Already done: stylized setting, no penalty, VC class of sets/functions

e Jalalzai et al. (2018); Clémencgon et al. (2023) for classification, with
CV evaluation / hyperparameter selection in Aghbalou et al. (2024).

e Least squares regression (Huet et al., 2023), continuous target

e Other related:

e Buriticd and Engelke (2024): similar goal, different choices: Quantile
regression, 1D, wide range of tail models.

e “Cascading extremes” de Carvalho et al. (2025), regression models
de Carvalho et al. (2022)

e Vast literature around the Heffernan-Tawn-Resnick model

e OQutside EVT, in ML: “Out-of-Domain generalization”, “Transfer
learning”, “ few shots learning”, ...
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heavy-tailed covariates, but targets?

e First picture in mind
YﬂEW“’
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heavy-tailed covariates, but targets?

e First picture in mind
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e But: boundedness of Y is mathematically (very) convenient for
statistical guarantees beyond consistency

e Let's work with this 'bounded target' assumption (for the moment),

Bulk |Tail training set Out-of-Domain
{Xw,Ya)i<k} X,

NB: with multivariate X, more complex than this picture.
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EVA use cases for binary targets

e Predicting a relative excess (Aghbalou et al., 2024):

X =(X1,...,Xy:1) € RT  heavy-tailed,

V= 1{Xg = e (X0 XD} X = (X X)

e focus: (unbounded) X, .1 but binary classification predicts whether

“some component will be large, given that the others are”.
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EVA use cases for bounded, real valued targets

e Continuous target:
X = (temperature, air quality ), Y = daily proportion of admissions
to the pneumology department in a hospital.

e Predicting a relative value

X =(X1,...,Xq41) € R heavy-tailed,

Y = Xd+1/H(X1:d+1)H ; X = Xi.4 (Huet et al., 2023)
or
Y = Xas1/||(Xr:a)ll 7 X =X1.g (Aghbalou et al., 2024)

Again, interest lies in X1, but bounded Y carries information
More formalism later
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Regression framework and existing results
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Conditional risk minimization, asymptotic risk, learning
problem (Jalalzai et al., 2018; Huet et al., 2023)

e Conditional risk (finite threshold)
Re(f) = E(c(f(X), Y) | IX][ > t).
e Out-of-domain risk

Rso(f) = limsup R:(f).

t—o0

e Learning task for out-of-domain extrapolation:

Minimize R (f) over f € F a class of prediction functions,
based on i.i.d. data (X;, Y;)i<, ~ (X,Y)
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Stability assumptions for extrapolation

Bounded target |Y| < M

Main assumption: “One component regular variation” or “regular
variation with respect to the covariate”:

[E2XY) 1 IXI > ] 2 (Koo, Yeo)

e Additional stability assumption

E ([f*(X) = LX) IX] > t) =0 (1)

Satisfied under (classical) regular variation of densities, similar to
De Haan and Resnick (1987); Cai et al. (2011)
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Angular regression function in the tails

e Let O, = || Xso| 1 Xso. Then by homogeneneity
(Yoo; Oco) L [[Xoo|-

e Consequence: the Bayes regression function for the limit pair
(Xoos Yoo):

fp (x) =E (Yoo | Xo = x) = E(Yoo | Oc6 = 0(x))
e Depends on the angle only

e Minimizes R, under additional stability assumption (1)
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Empirical tail risk minimization (Huet et al., 2023)

Input: Xi.,, Y1, i.id
e Choose a class of prediction function  , with h: R — R

e Choose k
e Empirical Risk Minimization, NO COMPLEXITY PENALTY:
minimize _(Y(;) — h(0(X(»)))?

heH
i<k

Output h

o Use h(x) to predict Y if ||x|| is large.
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Excess risk guarantees: (Huet et al., 2023)

e Standard assumption that H is “VC subgraph”, bounded + standard
“pointwise measurability” assumptions

e Then, at finite level (quantile 1 — k/n of the norm)

k

log(1/0
ZUZ Ri(ho ) — Re(n,k)(h o 0) wIPlJDk—O< g(/)>
c

Also at infinity,
Roo(fi) = R < Dic+ Bk, n) + Ba(H)
Where B (k, n) is sub-asymptotic bias — 0 with additional total

boundedness assumption on the class OR bounded angular density
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Normalization trick (Clémenc¢on and S., 2025), Proposition
4.1-3

e (X,Z) € R? x R, where Z: target

e Assume (X, Z) multivariate heavy-tailed, P(X =0) =0,
P(ri(X,2)e - | I(X,2)] > r) = Noo()
Moo{(x,2) : [Ix|| > 1} # 0!

e Y=2/|X] .

e Then (X, Y) satisfies the 'one component RV' assumption.

1Z cannot be an order of magnitude larger than || X]||
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Normalization trick (Clémengon and S., 2025)

e If in addition: the density of (X, T) is is regularly varying, with some
uniform convergence (Cai et al., 2011), and if the x-marginal of the
limit density is lower bounded,

Then also the regression function converges (in expectation) as in (1)
and existing theory applies.

e This extends (simplifies) previous findings of Huet et al. (2023) who
consider nonlinear transform Z/||(X, Z)|l.
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High dimensional issues

e Covariate dimension d large — typical class of predictors (e.g. linear
predictors and variants) have complexity (VC dimension) growing
above reasonable levels

e Of course, one should (and can easily) regularize the least-squares
problem. This has been discussed at length in the high-dimnsional
statistics literature.

e Question: Can we do this in our 'tail meta-algorithm’, with some
kind of guarantees? How difficult is it to adapt standard arguments
(Hastie et al., 2015; Biihlmann and Van De Geer, 2011)? What kind
of assumptions are necessary?
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XLASSO: LASSO on extreme covariates

Section 5 in Clémengon and S. (2025).

e Choose a class of linear predictors

H - {h/B X = <67X>7 6 eRd}a

e This is a VC subgraph class of dimension d + 1

e Solve the angular LASSO problem on extremes:

1
min —— Z(Y(i) — hg 0 0(X())* + AlIBl1-
-1
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Related work (Aghbalou et al., 2024)

e 'Hard constrained LASSO’, logistic regression (=binary classification)
e Focus: guarantees for risk estimation via Cross Validation

Logistic loss (classification) c(hg(x,y)) = log(1 + exp(—B"0(x)y),
y e {_17 1}

Hard constrained ERM problem

mﬁinﬁk(hg) s.t. |8l < C.

Key differences:

e Soft constraints (penalized loss) require more involved and
LASSO-specific analysis

e Binary target in Aghbalou et al. (2024) # Regression
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Asymptotic linear Model |

e Qutside EVT, some modeling assumptions are typically required for
LASSO guarantees (Hastie et al., 2015)

e It would be surprising not to need such assumptions in extrapolation
settings

e Assumption: For some 3* € RY,

Y = (0(X), ") + b(X) + o(x)e,

where ¢ unit noise, |o(x)| < M, almost surely, and b : RY — R is a
bounded function that vanishes at infinity,

b(t) := sup |b(x)] — 0.

x:r(x)>t =89

e In this model: the required assumptions for regression on extremes

Huet et al. (2023) are met.
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Asymptotic linear Model II: unbounded target
(informal version)

Linear heteroscedastic model with homogeneous variance:

S(x) = lIxllsa(6(x)),

X multivariate heavy tailed, and Target Z:

Z = (X,5") + 5(X)e + o([I X]])

Rescaled target
Y =2z/(|X]v1)
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Asymptotic linear Model Ill: unbounded target
(formal version)

X multivariate regularly varying, and

Z=XT8+BX)+0:(X)e i Y =2/(IX][V1),

where perturbation function B s.t.
® sup,cge |B(x)|/||x]| = Mg < o0
® supj >t B/l — 0 [large noise allowed in the tail]

e o(x)/||x|l = o9(0(x)) uniformly, sup, o(x)/(|]|x|| V1) = M. < 00
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Notations, familiar objects (but in the tails)

e “Design matrix" of extreme angles

W = (0(X)) ", 0(Xpy) 1) T € R,

e Targety = (Y(1),---, Y(k)) € R¥

e Residual vector e =y — W™ (includes a bias term b).
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Key Lemma

Prediction error, Bunea et al. (2007), Theorem 11.2-a in
Hastie et al. (2015)

Assume A > 2k~ !||WTe||o. The (tail, in-sample) prediction error of the
XLASSO estimator then satisfies

k~HIW(B — 893 < 12[|8*[lL A (2)

v

e Non random result: thus, it also applies to the top k order statistics
e “Prediction error?”: ZB: Y, and (Z287)i = £55(Xiy)
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Key steps to next results

e Standard in lasso analysis: because A > 2k~1||W el is necessary,
one must control the latter 'empirical process’ term to ensure that A
can be chosen small enough of order 1/v/k

e W is bounded! matrix of angular variables.

e Working conditionally to the X's, then integrating out, removes the
problem of 'non-independence of top-k order statistics.

e With bounded noise (recall this is not so restrictive), McDiarmid
inequalities works.

e Subgaussian noise would also be doable
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XLASSO: Main result: minimal prediction guarantees
Theorem (XLASSO: prediction error guarantees)

Let

log(4d/d) -

where k(8) ~ k, i) - k(1+ /200 | 250/0)) and b(t) = SUP|x||>¢ D(X)-

Then w.p. at least 1 — 4,

KW (B = 87113 < 12]18%[J1\-

Yiew?
new -
Prediction errors:
(vertical lines / X_i)

Prediction errors:
(vertical lines)? 7
A A A

Tail training set Out-of-Domain Tail training set Out-of-Domain

{(X@), Yy),4 < k} Xnew {XapYa)i<k} X, o
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Experiments: Simulated data

o Y =(0(X), Bo) + rogrryxyy (0(X), Bu) + €,
e 31 =1 and By 5-sparse, d = 100, n = 10*, d = 100.
k € [0.011n,0.05n].

e Test set radial quantile: 0.99 ; 20 replications
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Red dots: XLASSO; Blue dots: linear regression,

Generalization prediction error on extreme test set:

Ntest R
Neesr > (Vi = Yi)?

i=1
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Experiments: Real data

e Industry Portfolio Dataset (Meyer and Wintenberger, 2024; Huet
et al., 2023). Target: Z = "Transportation sector”, d = 49,
n = 13577.

e Target rescaling: Y = Z/||X||, X: other variables.
e Threshold for || X]|: 1—0.005 quantile for test, 1 —[0.05, 0.5] for train.
e left panel: boundedness of Y7
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Conclusion
XLASSO: many more open questions than answer.
e One answer: Basic 'consistency result’ (Biihimann and Van De Geer,
2011): prediction error on the training data

e Out-of-sample (on new data point) prediction/estimation error?

e Estimation error control: conditions required about W'™W
eigenvalues: realistic for extremes? Further work

e Just released
SOFTWARE
MLExtreme Python Package
https://github.com/hi-paris/MLExtreme/

e Unsupervised: anomaly scoring with MV sets, support identification
(feature clustering), PCA

e Supervised: Classification, Regression (compatible with any learner with
a fit and predict method, a la scikit-learn)

e Tutorial notebooks
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