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Material for this talk

• Final two sections of the survey paper:
S. Clémençon, A. S., Weak signals and heavy tails: Machine-learning
meets extreme value theory,
arXiv preprint arXiv:2504.06984

• Focus of this talk: regression on extreme covariates (Huet et al., 2023)

• What’s new today:
• High dimension, how to add a penalty term (LASSO) with (some)

guarantees
• Further discussion of (apparently) limitative boundedness assumption

on the target

2/29



Learning on extreme covariates
• X : Heavy tailed random covariates, Y : target to be predicted,
Y ∈ I = {−1, 1} (Jalalzai et al., 2018, Binary classification) or I ⊂ R (Huet

et al., 2023, Regression)

• Goal: make acurate prediction in ‘crisis scenarios’ where new
observed covariable are (unusally) large

• General motivations Covariate shifts with climate change, risk
management in worst case events, . . .
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Related work
• Already done: stylized setting, no penalty, VC class of sets/functions

• Jalalzai et al. (2018); Clémençon et al. (2023) for classification, with
CV evaluation / hyperparameter selection in Aghbalou et al. (2024).

• Least squares regression (Huet et al., 2023), continuous target

• Other related:
• Buriticá and Engelke (2024): similar goal, different choices: Quantile

regression, 1D, wide range of tail models.

• “Cascading extremes” de Carvalho et al. (2025), regression models
de Carvalho et al. (2022)

• Vast literature around the Heffernan-Tawn-Resnick model

• Outside EVT, in ML: “Out-of-Domain generalization”, “Transfer
learning”, “ few shots learning”, . . .
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heavy-tailed covariates, but targets?
• First picture in mind

Bulk Tail training set Out-of-Domain

• But: boundedness of Y is mathematically (very) convenient for
statistical guarantees beyond consistency

• Let’s work with this ’bounded target’ assumption (for the moment),

Bulk Tail training set Out-of-Domain

NB: with multivariate X , more complex than this picture.
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EVA use cases for binary targets

• Predicting a relative excess (Aghbalou et al., 2024):

X̃ = (X1, . . . ,Xd+1) ∈ Rd+1 heavy-tailed,

Y = 1
{
Xd+1 ≥ c∥(X1, . . . ,Xd)∥

}
; X = (X1, . . . ,Xd)

• focus: (unbounded) Xd+1 but binary classification predicts whether

“some component will be large, given that the others are”.
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EVA use cases for bounded, real valued targets

• Continuous target:
X = (temperature, air quality ), Y = daily proportion of admissions
to the pneumology department in a hospital.

• Predicting a relative value

X̃ = (X1, . . . ,Xd+1) ∈ Rd+1 heavy-tailed,

Y = Xd+1/∥(X1:d+1)∥ ; X = X1:d (Huet et al., 2023)

or

Y = Xd+1/∥(X1:d)∥ ; X = X1:d (Aghbalou et al., 2024)

Again, interest lies in Xd+1, but bounded Y carries information
More formalism later
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Conditional risk minimization, asymptotic risk, learning
problem (Jalalzai et al., 2018; Huet et al., 2023)

• Conditional risk (finite threshold)

Rt(f ) = E (c(f (X ),Y ) | ∥X∥ > t) .

• Out-of-domain risk

R∞(f ) = lim sup
t→∞

Rt(f ).

• Learning task for out-of-domain extrapolation:

Minimize R∞(f ) over f ∈ F a class of prediction functions,
based on i.i.d. data (Xi ,Yi )i≤n ∼ (X ,Y )
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Stability assumptions for extrapolation

• Bounded target |Y | < M

• Main assumption: “One component regular variation” or “regular
variation with respect to the covariate”:[

(t−1X ,Y ) | ∥X∥ > t
]

w−−−→
t→∞

(X∞,Y∞)

• Additional stability assumption

E
(
|f ∗(X )− f ∗∞(X )|

∣∣ ∥X∥ > t
)
→ 0 (1)

• Satisfied under (classical) regular variation of densities, similar to
De Haan and Resnick (1987); Cai et al. (2011)
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Angular regression function in the tails

• Let Θ∞ = ∥X∞∥−1X∞. Then by homogeneneity

(Y∞,Θ∞) ⊥⊥ ∥X∞∥.

• Consequence: the Bayes regression function for the limit pair
(X∞,Y∞):

f ∗P∞(x) := E (Y∞ | X∞ = x) = E (Y∞ | Θ∞ = θ(x))

• Depends on the angle only

• Minimizes R∞ under additional stability assumption (1)
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Empirical tail risk minimization (Huet et al., 2023)

Input: X1:n,Y1:n i.i.d

• Choose a class of prediction function H , with h : Rd → R

• Choose k

• Empirical Risk Minimization, NO COMPLEXITY PENALTY:

minimize
h∈H

∑
i≤k

(Y(i) − h(θ(X(i))))
2

Output ĥ

• Use ĥ(x) to predict Y if ∥x∥ is large.
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Excess risk guarantees: (Huet et al., 2023)

• Standard assumption that H is “VC subgraph”, bounded + standard
“pointwise measurability” assumptions

• Then, at finite level (quantile 1− k/n of the norm)

sup
h∈H

∣∣∣R̂k(h ◦ θ)− Rt(n,k)(h ◦ θ)
∣∣∣ ≤w .P.1−δ Dk = O

(√
log(1/δ)

k

)
Also at infinity,

R∞(f̂k)− R∗
∞ ≤ Dk + B1(k , n) + B2(H)

Where B1(k , n) is sub-asymptotic bias → 0 with additional total
boundedness assumption on the class OR bounded angular density
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Normalization trick (Clémençon and S., 2025), Proposition
4.1-a

• (X ,Z ) ∈ Rd × R, where Z : target

• Assume (X ,Z ) multivariate heavy-tailed, P (X = 0) = 0 ,

P
(
r−1(X ,Z ) ∈ · | ∥(X ,Z )∥ > r

)
→ Π∞( · )

Π∞{(x , z) : ∥x∥ > 1} ≠ 0 1

• Y = Z/∥X∥ .

• Then (X ,Y ) satisfies the ’one component RV’ assumption.

1Z cannot be an order of magnitude larger than ∥X∥
13/29



Normalization trick (Clémençon and S., 2025)

• If in addition: the density of (X ,T ) is is regularly varying, with some
uniform convergence (Cai et al., 2011), and if the x-marginal of the
limit density is lower bounded,

Then also the regression function converges (in expectation) as in (1)
and existing theory applies.

• This extends (simplifies) previous findings of Huet et al. (2023) who
consider nonlinear transform Z/∥(X ,Z )∥.
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High dimensional issues

• Covariate dimension d large → typical class of predictors (e.g. linear
predictors and variants) have complexity (VC dimension) growing
above reasonable levels

• Of course, one should (and can easily) regularize the least-squares
problem. This has been discussed at length in the high-dimnsional
statistics literature.

• Question: Can we do this in our ’tail meta-algorithm’, with some
kind of guarantees? How difficult is it to adapt standard arguments
(Hastie et al., 2015; Bühlmann and Van De Geer, 2011)? What kind
of assumptions are necessary?
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XLASSO: LASSO on extreme covariates

Section 5 in Clémençon and S. (2025).

• Choose a class of linear predictors

H = {hβ : x 7→ ⟨β, x⟩, β ∈ Rd},

• This is a VC subgraph class of dimension d + 1

• Solve the angular LASSO problem on extremes:

min
β∈Rd ,

1

2k

k∑
i=1

(Y(i) − hβ ◦ θ(X(i)))
2 + λ∥β∥1.
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Related work (Aghbalou et al., 2024)

• ’Hard constrained LASSO’, logistic regression (=binary classification)

• Focus: guarantees for risk estimation via Cross Validation

• Logistic loss (classification) c(hβ(x , y)) = log(1 + exp(−β⊤θ(x)y),
y ∈ {−1, 1}

• Hard constrained ERM problem

min
β

R̂k(hβ) s.t. ∥β∥1 ≤ C .

• Key differences:

• Soft constraints (penalized loss) require more involved and
LASSO-specific analysis

• Binary target in Aghbalou et al. (2024) ̸= Regression
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Asymptotic linear Model I
• Outside EVT, some modeling assumptions are typically required for
LASSO guarantees (Hastie et al., 2015)

• It would be surprising not to need such assumptions in extrapolation
settings

• Assumption: For some β∗ ∈ Rd ,

Y = ⟨θ(X ), β∗⟩+ b(X ) + σ(x)ε,

where ε: unit noise, |σ(x)| ≤ Mϵ almost surely, and b : Rd → R is a
bounded function that vanishes at infinity,

b̄(t) := sup
x :r(x)>t

|b(x)| −−−→
t→∞

0.

• In this model: the required assumptions for regression on extremes
Huet et al. (2023) are met.
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Asymptotic linear Model II: unbounded target
(informal version)

Linear heteroscedastic model with homogeneous variance:

S(x) = ∥x∥sθ(θ(x)),

X multivariate heavy tailed, and Target Z :

Z = ⟨X , β∗⟩+ S(X )ε+ o(∥X∥)

Rescaled target
Y = Z/(∥X∥ ∨ 1)
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Asymptotic linear Model III: unbounded target
(formal version)

X multivariate regularly varying, and

Z = X⊤β∗ + B(X ) + σz(X )ϵ ; Y = Z/(∥X∥ ∨ 1),

where perturbation function B s.t.

• supx∈Rd |B(x)|/∥x∥ = MB < ∞

• sup∥x∥>t |B(x)|/∥x∥ → 0 [large noise allowed in the tail]

• σ(x)/∥x∥ → σθ(θ(x)) uniformly, supx σ(x)/(∥x∥ ∨ 1) = Mε < ∞
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Notations, familiar objects (but in the tails)

• “Design matrix” of extreme angles

W = (θ(X(1))
⊤, . . . , θ(X(k))

⊤)⊤ ∈ Rk×p;

• Target y = (Y(1), . . . ,Y(k)) ∈ Rk

• Residual vector e = y −Wβ∗ (includes a bias term b).
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Key Lemma

Prediction error, Bunea et al. (2007), Theorem 11.2-a in
Hastie et al. (2015)

Assume λ ≥ 2k−1∥W⊤e∥∞. The (tail, in-sample) prediction error of the
XLASSO estimator then satisfies

k−1∥W(β̂ − β∗)∥22 ≤ 12∥β∗∥1λ. (2)

• Non random result: thus, it also applies to the top k order statistics

• “Prediction error?”: Zβ̂ = Ŷ , and (Zβ∗)i = f ∗∞(X(i))
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Key steps to next results

• Standard in lasso analysis: because λ ≥ 2k−1∥W⊤e∥∞ is necessary,
one must control the latter ’empirical process’ term to ensure that λ
can be chosen small enough of order 1/

√
k

• W is bounded! matrix of angular variables.

• Working conditionally to the X ′
i s, then integrating out, removes the

problem of ’non-independence of top-k order statistics.

• With bounded noise (recall this is not so restrictive), McDiarmid
inequalities works.

• Subgaussian noise would also be doable
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XLASSO: Main result: minimal prediction guarantees

Theorem (XLASSO: prediction error guarantees)

Let

λ ≥ Mε

√
log(4d/δ)

2k
+ b̄(t1−k̃(δ/2)/n),

where k̃(δ) ≈ k , k̃(δ) = k
(
1 +

√
3 log(1/δ)

k
+

3 log(1/δ)
k

)
, and b̄(t) = sup∥x∥>t b(x).

Then w.p. at least 1− δ,

k−1∥W⊤(β̂ − β∗)∥22 ≤ 12∥β∗∥1λ.

Bulk Tail training set Out-of-Domain

Prediction errors:
(vertical lines)²    

Bulk Tail training set Out-of-Domain

Prediction errors:
(vertical lines / X_i)²    
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Experiments: Simulated data

• Y = ⟨θ(X ), β0⟩+ 1
log(1+∥X∥)⟨θ(X ), β1⟩+ ϵ,

• β1 ≡ 1 and β0 5-sparse, d = 100, n = 104, d = 100.
k ∈ [0.011n, 0.05n].

• Test set radial quantile: 0.99 ; 20 replications

Red dots: XLASSO; Blue dots: linear regression,
Generalization prediction error on extreme test set:

n−1
test

ntest∑
i=1

(Yi − Ŷi )
2
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Experiments: Real data

• Industry Portfolio Dataset (Meyer and Wintenberger, 2024; Huet
et al., 2023). Target: Z = “Transportation sector”, d = 49,
n = 13577.

• Target rescaling: Y = Z/∥X∥, X : other variables.

• Threshold for ∥X∥: 1− 0.005 quantile for test, 1− [0.05, 0.5] for train.

• left panel: boundedness of Y ?
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Conclusion
XLASSO: many more open questions than answer.

• One answer: Basic ’consistency result’ (Bühlmann and Van De Geer,
2011): prediction error on the training data

• Out-of-sample (on new data point) prediction/estimation error?

• Estimation error control: conditions required about W⊤W
eigenvalues: realistic for extremes? Further work

• Just released

SOFTWARE
MLExtreme Python Package

https://github.com/hi-paris/MLExtreme/
• Unsupervised: anomaly scoring with MV sets, support identification

(feature clustering), PCA
• Supervised: Classification, Regression (compatible with any learner with

a fit and predict method, à la scikit-learn)
• Tutorial notebooks
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