Rigorous derivation of the Fick cross-diffusion system from the multi-species Boltzmann equation in the diffusive scaling

Bérénice ${\rm GREC}^1$

in collaboration with M. Briant

¹MAP5 – Université Paris Cité, France

ABPDE, Lille, June 6th, 2023

Outline of the talk

Introduction

- 2 Kinetic setting
- 3 Formal derivation of the Fick equation
- Perturbative Cauchy theory for the Fick equation
- 5 Rigorous convergence in a perturbative setting
- 6 Conclusion and prospects

Context of the study

- Non-reactive mixture of p monoatomic gases
- Isothermal setting T > 0 uniform and constant
- Two different scales for the description of the mixture
 - mesoscopic scale (kinetic model): species i described by its distribution function f_i(t, x, v)
 - macroscopic scale: species i described by the physical observables
 - number density n_i(t, x)
 - velocity u_i(t, x)

 \rightsquigarrow flux of species i: $J_i(t, x) = n_i(t, x)u_i(t, x)$

$$\rightsquigarrow \text{ vectorial quantities } \mathbf{n} = \begin{bmatrix} n_1 \\ \vdots \\ n_p \end{bmatrix}, \ \mathbf{J} = \begin{bmatrix} J_1 \\ \vdots \\ J_p \end{bmatrix}$$

- Link between the two scales in the diffusive scaling
 - Formal and theoretical convergence

Diffusion models for mixtures: Maxwell-Stefan/Fick

Mass conservation:

 $\partial_t \mathbf{n} + \nabla \cdot \mathbf{J} = \mathbf{0}$

Diffusion process (link between J and ∇n):

- ▶ $A(\mathbf{n})$ and $B(\mathbf{n})$ are not invertible (rank p-1)
- Using pseudo-inverse: structural similarity [GIOVANGIGLI '91, '99]
- ► Equimolar diffusion setting [BOTHE], [JÜNGEL, STELZER]

Formal analogy of the two systems, different ways of obtaining Fick and Maxwell-Stefan equations

Mesoscopic point of view

Hydrodynamic limit

- Obtention of these two equations from the kinetic description?
- Obtention of closure relations?

Moment method (Maxwell-Stefan)

- ▶ [LEVERMORE], [MÜLLER, RUGGIERI]
- Ansatz that the distribution functions are at local Maxwellian states
- Assumption: different species have different macroscopic velocities on macroscopic time scales
- ▶ Rigorous convergence [BONDESAN, BRIANT]

Perturbative method (Fick)

- ▶ [Bardos, Golse, Levermore], [Bisi, Desvillettes]
- Based on the Chapman-Enskog expansion
- ► Formal and rigorous convergence [BRIANT, G.]

Outline of the talk

Introduction

3 Formal derivation of the Fick equation

Perturbative Cauchy theory for the Fick equation

5 Rigorous convergence in a perturbative setting

6 Conclusion and prospects

Kinetic setting

▶ Boltzmann equations for mixtures on $\mathbb{R}_+ \times \mathbb{T}^d \times \mathbb{R}^d$

$$arepsilon \partial_t f_i + \mathbf{v} \cdot
abla_{\mathsf{x}} f_i = rac{1}{arepsilon} \sum_{j=1}^p \mathcal{Q}_{ij}(f_i, f_j), \qquad 1 \leq i \leq p$$

[Desvillettes, Monaco, Salvarani, '05]

 \blacktriangleright Diffusive scaling: small mean free path and Mach number: Kn \sim Ma $\sim \varepsilon$

• Boltzmann collision operator, for $v \in \mathbb{R}^d$

$$Q_{ij}(f_i, f_j)(\mathbf{v}) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} \mathcal{B}_{ij}(\mathbf{v}, \mathbf{v}_*, \sigma) \Big[f_i(\mathbf{v}') f_j(\mathbf{v}'_*) - f_i(\mathbf{v}) f_j(\mathbf{v}_*) \Big] \mathrm{d}\sigma \mathrm{d}\mathbf{v}_*$$

Elastic collision rules¹

Cross sections²

¹for
$$\sigma \in \mathbb{S}^{d-1}$$

$$\begin{cases} v' = (m_i v + m_j v_* + m_j | v - v_* | \sigma) / (m_i + m_j) \\ v'_* = (m_i v + m_j v_* - m_i | v - v_* | \sigma) / (m_i + m_j) \end{cases}$$

 $^{2}\mathcal{B}_{ij}=\mathcal{B}_{ji}>0$ (hard or Maxwell potentials with Grad's cutoff assumption)

Equilibrium: Maxwellian with same bulk velocity and temperature

$$n_i(t,x)\left(\frac{m_i}{2\pi k_B T}\right)^{d/2} \exp\left(-\frac{m_i|v-u(t,x)|^2}{2k_B T}\right)$$

▶ Conservation property of the collision operator for $1 \le i, j \le p$

$$\int_{\mathbb{R}^d} Q_{ij}(f_i,f_j)(v) \,\mathrm{d} v = 0$$

In the following, bold notation for vectors: $\mathbf{f} = (f_i)_i$, $\mathbf{m} = (m_i)_i$

Linearized Boltzmann operator

Expansion around the global Maxwellian with zero bulk velocity (equilibrium) with number density n_i

$$f_i = M_i + \varepsilon g_i = n_i \mu_i + \varepsilon g_i$$

$$\mu_i = (m_i/2\pi k_B T)^{d/2} e^{-m_i|v|^2/2k_B T}$$

• Linearization of the collision operator, for $\mathbf{g} = (g_i)_i$

$$\mathcal{L}_i(\mathbf{g}) = \sum_j Q_{ij}(n_i \mu_i, g_j) + Q_{ji}(g_i, n_j \mu_j)$$

 \rightsquigarrow defines the linearized Boltzmann operator $\mathbf{L} = (\mathcal{L}_i)_i$ around $\mathbf{M} = \mathbf{n} \boldsymbol{\mu}$

• Ker L is spanned by p + d + 1 explicit functions:

 $\sim M_k \mathbf{e}_k, \ \mathbf{v}_\ell \mathbf{m} \mathbf{M}, \ |\mathbf{v}|^2 \mathbf{m} \mathbf{M}$

Denote by \(\pi_L(\cdot)\) the projection on Ker L

Definition of L^{-1}

L is a closed, self-adjoint operator in $L^2_{\nu}(\mathbf{M}^{-1/2})$, which is bounded and displays a spectral gap (with a gain of weight). [BRIANT, DAUS]

 \bm{L}^{-1} is a self-adjoint operator on $({\rm Ker}\,\bm{L})^\perp$ which is bounded and displays a spectral gap

$$\langle \mathbf{g}, \mathbf{L}^{-1}\mathbf{g} \rangle_{\mathbf{M}} \leq -\lambda \|\mathbf{g}\|_{\mathbf{M}}$$

with the shortcut $\|\cdot\|_{\mathbf{M}} = \|\cdot\|_{L^2_{\nu}(\mathbf{M}^{-1/2})}$.

Remark

Since $\mathbf{M} = \mathbf{n}\mu$ depends on \mathbf{n} , the linearized operator \mathbf{L} , and thus \mathbf{L}^{-1} , also do. \rightsquigarrow track explicit computations of boundedness and spectral gap constants w.r.t. \mathbf{n} [BARANGER, MOUHOT], [BRIANT, DAUS]

Outline of the talk

Introduction

- 2 Kinetic setting
- 3 Formal derivation of the Fick equation
 - Perturbative Cauchy theory for the Fick equation
 - 5 Rigorous convergence in a perturbative setting
 - 6 Conclusion and prospects

Formal obtention of the diffusion equations

$$\varepsilon \partial_t f_i + \mathbf{v} \cdot \nabla_x f_i = \frac{1}{\varepsilon} \sum_{j=1}^{p} Q_{ij}(f_i, f_j)$$

Moments of the distribution functions

Number density of species i

$$n_i(t,x) = \int_{\mathbb{R}^d} f_i(t,x,v) \mathrm{d}v$$

Flux of species i

$$J_i(t,x) = rac{1}{arepsilon} \int_{\mathbb{R}^d} v f_i(t,x,v) \mathrm{d} v$$

Mass conservation : moment of order 0 of the equation

$$\varepsilon \frac{\partial}{\partial t} \int_{\mathbb{R}^3} f_i(\mathbf{v}) \, \mathrm{d}\mathbf{v} + \nabla_{\mathbf{x}} \cdot \left(\int_{\mathbb{R}^3} \mathbf{v} \, f_i(\mathbf{v}) \, \mathrm{d}\mathbf{v} \right) = \varepsilon \Big(\partial_t n_i + \nabla_{\mathbf{x}} \cdot J_i \Big) = \mathbf{0},$$

where the collision term vanishes (conservation property).

Perturbative method

Inject expansion $\mathbf{f} = \mathbf{n}\boldsymbol{\mu} + \varepsilon \mathbf{g}$ in the Boltzmann equation, at leading order (ε^0)

$$\mu_i \mathbf{v} \cdot
abla_{\mathbf{x}} \mathbf{n}_i = \mathcal{L}_i(\mathbf{g})$$

and $J_i = rac{1}{arepsilon} \int \mathbf{v} \ f_i \mathrm{d} \mathbf{v} = \int \mathbf{v} \ g_i \mathrm{d} \mathbf{v}.$

▶ In a vectorial form, defining $W_i = \mu_i v \cdot \nabla_x n_i$ and $\mathbf{W} = (W_i)_i$

$$\mathsf{W} = \mathsf{L}(\mathsf{g}) \qquad \mathop{\leadsto}\limits_{(\star)} \qquad \mathsf{g} = \mathsf{L}^{-1}\mathsf{W}$$

Inversion (*) only valid if the LHS $W_i = \mu_i v \cdot \nabla_x n_i \in (\text{Ker } \mathbf{L})^{\perp}$

$$J_i = \int v [\mathbf{L}^{-1} \mathbf{W}]_i \mathrm{d} v = \int \mathbf{n}_i \mu_i v [\mathbf{L}^{-1} \mathbf{W}]_i \mathbf{M}_i^{-1} \mathrm{d} v$$

• With $\mathbf{C}_i = (\mu_i v \delta_{ij})_j$, we get

$$J_i = n_i \langle \mathbf{C}, \mathbf{L}^{-1} \mathbf{W} \rangle_{\mathbf{M}}$$

▶ L^{-1} is self-adjoint on $(\text{Ker } L)^{\perp}$. Let $\Gamma = \pi_L(C)$. Thus

$$J_i = n_i \sum_j \langle [\mathbf{L}^{-1} (\mathbf{C} - \mathbf{\Gamma})]_j, W_j \rangle_{\mathsf{M}}$$

• Since $W_j = \mu_j \mathbf{v} \cdot \nabla_{\mathbf{x}} n_j = \mathbf{C}_j \cdot \nabla_{\mathbf{x}} n_j$ "

$$J_i = \sum_j \underbrace{n_i \langle [\mathbf{L}^{-1} (\mathbf{C} - \mathbf{\Gamma})]_j, \mathbf{C}_j \rangle_{\mathbf{M}}}_{a_{ij}} \nabla_{\mathbf{X}} n_j$$

\rightarrow Fick equation: $\mathbf{J} = A(\mathbf{n})\nabla_{\mathbf{x}}\mathbf{n}$

$$J_i = \int v[\mathbf{L}^{-1}\mathbf{W}]_i \mathrm{d}v = \int \mathbf{n}_i \mu_i v[\mathbf{L}^{-1}\mathbf{W}]_i \mathbf{M}_i^{-1} \mathrm{d}v$$

• With $\mathbf{C}_i = (\mu_i v \delta_{ij})_j$, we get

$$J_i = n_i \langle \mathbf{C}, \mathbf{L}^{-1} \mathbf{W} \rangle_{\mathbf{M}}$$

▶ L^{-1} is self-adjoint on $(\text{Ker } L)^{\perp}$. Let $\Gamma = \pi_L(C)$. Thus

$$J_i = n_i \sum_j \langle [\mathbf{L}^{-1} (\mathbf{C} - \mathbf{\Gamma})]_j, W_j \rangle_{\mathbf{M}}$$

• Since $W_j = \mu_j \mathbf{v} \cdot \nabla_{\mathbf{x}} n_j = \mathbf{C}_j \cdot \nabla_{\mathbf{x}} n_j$ "

$$J_i = \sum_j \underbrace{n_i \langle [\mathbf{L}^{-1} (\mathbf{C} - \mathbf{\Gamma})]_j, \mathbf{C}_j \rangle_{\mathbf{M}}}_{a_{ij}} \nabla_{\mathbf{X}} n_j$$

\rightarrow Fick equation: $\mathbf{J} = A(\mathbf{n})\nabla_{\mathbf{x}}\mathbf{n}$

$$J_i = \int v[\mathbf{L}^{-1}\mathbf{W}]_i \mathrm{d}v = \int \mathbf{n}_i \mu_i v[\mathbf{L}^{-1}\mathbf{W}]_i \mathbf{M}_i^{-1} \mathrm{d}v$$

• With $\mathbf{C}_i = (\mu_i v \delta_{ij})_j$, we get

$$J_i = n_i \langle \mathbf{C}, \mathbf{L}^{-1} \mathbf{W} \rangle_{\mathbf{M}}$$

▶ L^{-1} is self-adjoint on $(\text{Ker } L)^{\perp}$. Let $\Gamma = \pi_L(C)$. Thus

$$J_i = n_i \sum_j \langle [\mathbf{L}^{-1} (\mathbf{C} - \mathbf{\Gamma})]_j, W_j \rangle_{\mathbf{M}}$$

• Since $W_j = \mu_j \mathbf{v} \cdot \nabla_x \mathbf{n}_j = \mathbf{C}_j \cdot \nabla_x \mathbf{n}_j$ "

$$J_i = \sum_j \underbrace{n_i \langle [\mathsf{L}^{-1}(\mathsf{C} - \mathsf{\Gamma})]_j, \mathsf{C}_j \rangle_{\mathsf{M}}}_{a_{ij}} \nabla_{\mathsf{x}} n_j$$

\rightarrow Fick equation: $\mathbf{J} = A(\mathbf{n})\nabla_{\mathbf{x}}\mathbf{n}$

$$J_i = \int v [\mathbf{L}^{-1} \mathbf{W}]_i \mathrm{d} v = \int \mathbf{n}_i \mu_i v [\mathbf{L}^{-1} \mathbf{W}]_i \mathbf{M}_i^{-1} \mathrm{d} v$$

• With $\mathbf{C}_i = (\mu_i \mathbf{v} \delta_{ij})_j$, we get

$$J_i = n_i \langle \mathbf{C}, \mathbf{L}^{-1} \mathbf{W} \rangle_{\mathbf{M}}$$

▶ L^{-1} is self-adjoint on $(\text{Ker } L)^{\perp}$. Let $\Gamma = \pi_L(C)$. Thus

$$J_i = n_i \sum_j \langle [\mathbf{L}^{-1} (\mathbf{C} - \mathbf{\Gamma})]_j, W_j
angle_{\mathbf{M}}$$

• Since $W_j = \mu_j \mathbf{v} \cdot \nabla_x \mathbf{n}_j = \mathbf{C}_j \cdot \nabla_x \mathbf{n}_j$ "

$$J_i = \sum_j \underbrace{n_i \langle [\mathbf{L}^{-1} (\mathbf{C} - \mathbf{\Gamma})]_j, \mathbf{C}_j \rangle_{\mathbf{M}}}_{a_{ij}} \nabla_{\mathbf{x}} n_j$$

 \rightsquigarrow Fick equation: $\mathbf{J} = A(\mathbf{n}) \nabla_x \mathbf{n}$

Fick equation

• $A = (a_{ij})$ is not symmetric. Introduce $N(\mathbf{n}) = (n_i \delta_{ij})$, so that

 $A(\mathbf{n})=N(\mathbf{n})\bar{A}(\mathbf{n}).$

Properties of A
(n)
A
(n) is symmetric
A
(n) depends on n via L⁻¹ and the weight M
Ker A
(n) = Span(nm)
Denote π_A the projection on Ker A
, π_A[⊥] on (Ker A)[⊥]
Coercivity of A
(n) outside its kernel

• Combine $\mathbf{J} = N(\mathbf{n})\overline{A}(\mathbf{n})\nabla_{\mathbf{x}}\mathbf{n}$ with mass conservation

$$\partial_t \mathbf{n} + \nabla_x \cdot (N(\mathbf{n})\overline{A}(\mathbf{n})\nabla_x \mathbf{n}) = 0;$$

Closure relation for Fick equations

• Integrating the equation gives $\frac{d}{dt} \int \sum_{i} m_i n_i dx = 0$

• Inversion (*):
$$W_i = \mu_i v \cdot \nabla_x n_i \in (\text{Ker } \mathbf{L})^{\perp}$$
.

• Ker L spanned by $M_k \mathbf{e}_k$, $v_k \mathbf{m} \mathbf{M}$, $|v|^2 \mathbf{m} \mathbf{M}$

Orthogonality

$$0 = \langle \mu_i \mathbf{v} \cdot \nabla_{\mathbf{x}} n_i, m_i M_i \mathbf{v} \rangle_{\mathbf{M}} = \sum_i \int \mu_i \mathbf{v} \cdot \nabla_{\mathbf{x}} n_i m_i \mathbf{v} \mathrm{d} \mathbf{v} \propto \nabla_{\mathbf{x}} \sum_i m_i n_i$$

• \rightsquigarrow Constant mass $\sum_i m_i n_i$

Closure relation inherent to the perturbative setting

$$\begin{cases} \partial_t \mathbf{n} + \nabla_x \cdot (N(\mathbf{n})\bar{A}(\mathbf{n})\nabla_x \mathbf{n}) = 0, \\ \langle \mathbf{m}, \mathbf{n} \rangle_{\mathbb{R}^p} = cst. \end{cases}$$

Outline of the talk

Introduction

- 2 Kinetic setting
- 3 Formal derivation of the Fick equation
- Perturbative Cauchy theory for the Fick equation
 - 5 Rigorous convergence in a perturbative setting
 - 6 Conclusion and prospects

Perturbative Cauchy theory for the Fick equation

Fix a constant global equilibrium $\boldsymbol{n}_{\infty}>$ 0, and write

$$\mathbf{n}(t,x) = \mathbf{n}_{\infty} + \tilde{\mathbf{n}}(t,x) \tag{(\bullet)}$$

Fick equation

$$\begin{cases} \partial_t \tilde{\mathbf{n}} + \nabla_x \cdot (N(\mathbf{n}_\infty) \bar{A}(\mathbf{n}_\infty + \tilde{\mathbf{n}}) \nabla_x \tilde{\mathbf{n}}) = -\nabla_x \cdot (N(\tilde{\mathbf{n}}) \bar{A}(\mathbf{n}_\infty + \tilde{\mathbf{n}}) \nabla_x \tilde{\mathbf{n}}), \\ \langle \mathbf{m}, \tilde{\mathbf{n}} \rangle = 0. \end{cases}$$

Theorem

Let s > d/2. For $\|\tilde{\mathbf{n}}^{(in)}\|_{H^s_{x}}$ compatible and sufficiently small, there exists a unique solution of the form (•) to the Fick equation, and it satisfies

$$\|\mathbf{\tilde{n}}\|_{H^s_x} \leq \|\mathbf{\tilde{n}}^{(\mathrm{in})}\|_{H^s_x} e^{-\lambda_s t}$$

Without nonlinear terms, standard a priori estimate with the weight $\mathit{N}(\mathbf{n}_{\infty})^{-1/2}$

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\tilde{\mathbf{n}}\|_{L^2_x(N(\mathbf{n}_\infty)^{-1/2})}^2 = \langle \bar{A}\nabla_x\tilde{\mathbf{n}}, \nabla_x\tilde{\mathbf{n}}\rangle_{L^2_x} \leq C \|\pi_{\bar{A}}^{\perp}(\nabla_x\tilde{\mathbf{n}})\|_{L^2_x}^2$$

No control of the kernel part $\pi_{\bar{A}}(\nabla_x \tilde{\mathbf{n}})$: $\langle \mathbf{nm}, \nabla_x \tilde{\mathbf{n}} \rangle$ even at the main order

$$\begin{bmatrix} \tilde{\eta}_i(t,x) = \tilde{n}_i(n_{\infty i}^a t, n_{\infty i}^b x) \end{bmatrix}$$
$$\begin{cases} \frac{1}{n_{\infty i}^a} \partial_t \tilde{\eta}_i + \nabla_x \cdot \left(\sum_j \frac{n_{\infty i}}{n_{\infty j}^b n_{\infty j}^b} \bar{a}_{ij}(\dots) \nabla_x \tilde{\eta}_j \right) = -\nabla_x \cdot \left(\tilde{\eta}_i \sum_j \frac{n_{\infty i}^a}{n_{\infty i}^b n_{\infty j}^b} \bar{a}_{ij}(\dots) \nabla_x \tilde{\eta}_j \right) \\ \langle \mathbf{m}, \tilde{\boldsymbol{\eta}} \rangle = 0. \end{cases}$$

• Choice $a = -1 \rightsquigarrow$ use the coercivity of \overline{A}

$$\begin{split} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| \tilde{\eta} \|_{L_{x}^{2}}^{2} &= \left\langle \bar{A} \nabla_{x} \left(\frac{\tilde{\eta}}{\mathbf{n}_{\infty}^{b}} \right), \nabla_{x} \left(\frac{\tilde{\eta}}{\mathbf{n}_{\infty}^{b}} \right) \right\rangle + \left\langle \bar{A} \nabla_{x} \left(\frac{\tilde{\eta}}{\mathbf{n}_{\infty}^{b}} \right), \tilde{\eta} \nabla_{x} \left(\frac{\tilde{\eta}}{\mathbf{n}_{\infty}^{b+1}} \right) \right\rangle \\ &\leq -C \left\| \pi_{\bar{A}}^{\perp} \left[\nabla_{x} \left(\frac{\tilde{\eta}}{\mathbf{n}_{\infty}^{b}} \right) \right] \right\|_{L_{x}^{2}}^{2} + \left\langle \ldots \right\rangle \end{split}$$

• Control of the kernel part: $\pi_{\bar{A}} \left[\nabla_{x} \left(\frac{\tilde{\eta}}{n_{\infty}^{b}} \right) \right]$ colinear to

$$\left<(\mathsf{n}_{\infty}+ ilde{\eta})\mathsf{m},
abla_{\mathsf{x}}\Big(rac{ ilde{\eta}}{\mathsf{n}_{\infty}^{b}}\Big)
ight>=$$

$$\begin{bmatrix} \tilde{\eta}_i(t,x) = \tilde{n}_i(n_{\infty i}^a t, n_{\infty i}^b x) \end{bmatrix} \\ \begin{cases} \partial_t \tilde{\eta}_i + \nabla_x \cdot \left(\frac{1}{n_{\infty i}^b} \sum_j \bar{a}_{ij}(\dots) \nabla_x \frac{\tilde{\eta}_j}{n_{\infty j}^b} \right) = -\nabla_x \cdot \left(\frac{\tilde{\eta}_i}{n_{\infty i}^b} \sum_j \bar{a}_{ij}(\dots) \nabla_x \frac{\tilde{\eta}_j}{n_{\infty j}^b} \right), \\ \langle \mathbf{m}, \tilde{\boldsymbol{\eta}} \rangle = 0. \end{bmatrix}$$

• Choice $a = -1 \rightsquigarrow$ use the coercivity of \overline{A}

$$\begin{split} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| \tilde{\boldsymbol{\eta}} \|_{L_x^2}^2 &= \left\langle \bar{A} \nabla_x \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^b} \right), \nabla_x \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^b} \right) \right\rangle + \left\langle \bar{A} \nabla_x \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^b} \right), \tilde{\boldsymbol{\eta}} \nabla_x \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{b+1}} \right) \right\rangle \\ &\leq -C \left\| \pi_{\bar{A}}^{\perp} \left[\nabla_x \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^b} \right) \right] \right\|_{L_x^2}^2 + \left\langle \ldots \right\rangle \end{split}$$

• Control of the kernel part: $\pi_{\bar{A}} \left[\nabla_x \left(\frac{\tilde{\eta}}{n_{\infty}^b} \right) \right]$ colinear to

$$\left<(\mathsf{n}_\infty+ ilde{oldsymbol{\eta}})\mathsf{m},
abla_{\scriptscriptstyle X}\!\left(rac{ ilde{oldsymbol{\eta}}}{\mathsf{n}_\infty^b}
ight)
ight>=$$

$$\begin{bmatrix} \tilde{\eta}_i(t,x) = \tilde{n}_i(n_{\infty i}^a t, n_{\infty i}^b x) \\ \\ \partial_t \tilde{\eta}_i + \nabla_x \cdot \left(\frac{1}{n_{\infty i}^b} \sum_j \bar{a}_{ij}(\dots) \nabla_x \frac{\tilde{\eta}_j}{n_{\infty j}^b} \right) = -\nabla_x \cdot \left(\frac{\tilde{\eta}_i}{n_{\infty i}^b} \sum_j \bar{a}_{ij}(\dots) \nabla_x \frac{\tilde{\eta}_j}{n_{\infty j}^b} \right), \\ \\ \langle \mathbf{m}, \tilde{\boldsymbol{\eta}} \rangle = 0. \end{bmatrix}$$

• Choice $a = -1 \rightsquigarrow$ use the coercivity of \bar{A}

$$\begin{split} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| \tilde{\boldsymbol{\eta}} \|_{L_{x}^{2}}^{2} &= \left\langle \bar{A} \nabla_{x} \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{b}} \right), \nabla_{x} \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{b}} \right) \right\rangle + \left\langle \bar{A} \nabla_{x} \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{b}} \right), \tilde{\boldsymbol{\eta}} \nabla_{x} \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{b+1}} \right) \right\rangle \\ &\leq -C \left\| \pi_{\bar{A}}^{\perp} \left[\nabla_{x} \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{b}} \right) \right] \right\|_{L_{x}^{2}}^{2} + \left\langle \dots \right\rangle \end{split}$$

• Control of the kernel part: $\pi_{\bar{A}}\left[\nabla_{x}\left(\frac{\tilde{\eta}}{\mathbf{n}_{\infty}^{b}}\right)\right]$ colinear to

$$\left\langle (\mathbf{n}_{\infty} + \tilde{\boldsymbol{\eta}})\mathbf{m}, \nabla_{x} \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{b}}\right) \right\rangle = \left\langle \mathbf{n}_{\infty}\mathbf{m}, \nabla_{x} \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{b}}\right) \right\rangle + \left\langle \tilde{\boldsymbol{\eta}}\mathbf{m}, \nabla_{x} \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{b}}\right) \right\rangle$$

$$\begin{split} & \left[\begin{split} \tilde{\eta}_{i}(t,x) = \tilde{n}_{i}(n_{\infty i}^{a}t,n_{\infty i}^{b}x) \\ \left\{ \partial_{t}\tilde{\eta}_{i} + \nabla_{x} \cdot \left(\frac{1}{n_{\infty i}^{b}} \sum_{j} \bar{a}_{ij}(\ldots) \nabla_{x} \frac{\tilde{\eta}_{j}}{n_{\infty j}^{b}} \right) = -\nabla_{x} \cdot \left(\frac{\tilde{\eta}_{i}}{n_{\infty i}^{b}} \sum_{j} \bar{a}_{ij}(\ldots) \nabla_{x} \frac{\tilde{\eta}_{j}}{n_{\infty j}^{b}} \right), \\ \langle \mathbf{m},\tilde{\eta} \rangle = 0. \end{split} \\ \blacktriangleright \quad \text{Choice } \mathbf{a} = -1 \rightsquigarrow \text{ use the coercivity of } \bar{A} \\ & \frac{1}{2} \frac{d}{dt} \| \tilde{\eta} \|_{L_{x}^{2}}^{2} = \left\langle \bar{A} \nabla_{x} \left(\frac{\tilde{\eta}}{n_{\infty}^{b}} \right), \nabla_{x} \left(\frac{\tilde{\eta}}{n_{\infty}^{b}} \right) \right\rangle + \left\langle \bar{A} \nabla_{x} \left(\frac{\tilde{\eta}}{n_{\infty}^{b}} \right), \tilde{\eta} \nabla_{x} \left(\frac{\tilde{\eta}}{n_{\infty}^{b+1}} \right) \right\rangle \\ & \leq -C \left\| \pi_{\bar{A}}^{\perp} \left[\nabla_{x} \left(\frac{\tilde{\eta}}{n_{\infty}^{b}} \right) \right] \right\|_{L_{x}^{2}}^{2} + \left\langle \ldots \right\rangle \\ \blacktriangleright \quad \text{Control of the kernel part: } \pi_{\bar{A}} \left[\nabla_{x} \left(\frac{\tilde{\eta}}{n_{\infty}^{b}} \right) \right] \text{ colinear to} \\ & \left\langle \left(\mathbf{n}_{\infty} + \tilde{\eta} \right) \mathbf{m}, \nabla_{x} \left(\frac{\tilde{\eta}}{n_{\infty}^{b}} \right) \right\rangle = \underbrace{\langle \mathbf{m}, \nabla_{x} \tilde{\eta} \rangle}_{=0} + \left\langle \tilde{\eta} \mathbf{m}, \nabla_{x} \left(\frac{\tilde{\eta}}{n_{\infty}} \right) \right\rangle \end{split}$$

End of the proof

Lower order term

$$\left\langle \tilde{\boldsymbol{\eta}} \mathbf{m}, \nabla_{\mathsf{x}} \left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}} \right) \right\rangle \leq C \| \tilde{\boldsymbol{\eta}} \|_{L^{2}_{\mathsf{x}}} \| \nabla_{\mathsf{x}} \tilde{\boldsymbol{\eta}} \|_{L^{2}_{\mathsf{x}}}$$

• Nonlinear terms: control on $\bar{A}(\tilde{\eta})$

$$\|ar{A}(ilde{\eta})\|_{H^s_x} \leq CP^s(\| ilde{\eta}\|_{H^s_x})$$

• A priori estimate in H_x^s , with some polynomial P^s such that $P^s(0) = 0$

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\boldsymbol{\tilde{\eta}}\|_{H_x^s}^2 \leq -C\Big(1-CP^s(\|\boldsymbol{\tilde{\eta}}\|_{H_x^s})\Big)\|\nabla_{\!\scriptscriptstyle X}\boldsymbol{\tilde{\eta}}\|_{H_x^s}^2$$

For small initial datum, $CP^{s}(\|\tilde{\eta}\|_{H^{s}_{x}}) \leq 1/2$ & Poincaré + Grönwall

Outline of the talk

Introduction

- 2 Kinetic setting
- 3 Formal derivation of the Fick equation
- Perturbative Cauchy theory for the Fick equation
- 5 Rigorous convergence in a perturbative setting
 - 6 Conclusion and prospects

Rigorous convergence in a perturbative setting I

Expansion $\mathbf{f}^{\varepsilon} = \mathbf{M}^{\varepsilon} + \varepsilon \mathbf{g}^{\varepsilon}$ in the Boltzmann equation

Use of the result (for Maxwell-Stefan) of [BONDESAN, BRIANT]

Simpler setting since

- ▶ \mathbf{M}^{ε} has equal velocities for all species (= 0) \rightsquigarrow equilibrium of Q_{ij}
- possibility to get rid of the fluxes and have a parabolic setting

Main ingredients

- Choice of the Maxwellian $\mathbf{M}^{\varepsilon}(t, x, v) = (\mathbf{n}_{\infty} + \varepsilon \tilde{\mathbf{n}}(t, x)) \mu(v)$ [Caflisch], [De Masi, Esposito, Lebowitz]
- ▶ Spectral gap on L \rightsquigarrow control of the microscopic part of \mathbf{g}^{ε} (in $(\operatorname{Ker} \mathbf{L})^{\perp}$)
- Control of the fluid part with a hypocoercive norm depending on ε (via the commutator [ν · ∇_x, ∇_ν] = −∇_x) [MOUHOT, NEUMANN], [BRIANT]

$$\|\cdot\|_{\mathcal{H}_{\varepsilon}^{s}}^{2}\sim\sum_{|\ell|\leq s}\|\partial_{x}^{\ell}\cdot\|_{L^{2}_{x,\nu}(\boldsymbol{\mu}^{-1/2})}+\varepsilon^{2}\sum_{\substack{|\ell|+|j|\leq s\\|j|\geq 1}}\|\partial_{x}^{\ell}\partial_{\nu}^{j}\cdot\|_{L^{2}_{x,\nu}(\boldsymbol{\mu}^{-1/2})}$$

Theorem (Briant, G.)

With suitable assumptions on the cross sections, if $\mathbf{g}^{(\mathrm{in})}$ and $\tilde{\mathbf{n}}^{(\mathrm{in})}$ are small enough, the multispecies Boltzmann equation admits a unique global perturbative solution $\mathbf{f}^{\varepsilon}(t, x, v) = \mathbf{M}^{\varepsilon}(t, x) + \varepsilon \mathbf{g}^{\varepsilon}(t, x, v) \geq 0$, and

$$\|\mathbf{f}^{\varepsilon}-\mathbf{M}^{\varepsilon}\|_{\mathcal{H}^{s}_{\varepsilon}}(t)\leq C\varepsilon.$$

Satisfy assumptions of the result in [BONDESAN, BRIANT]:

Perturbative framework

• Control of
$$\mathbf{S}^{\varepsilon} = \frac{1}{\varepsilon} \partial_t \mathbf{M}^{\varepsilon} + \frac{1}{\varepsilon^2} \mathbf{v} \cdot \nabla_{\mathbf{x}} \mathbf{M}^{\varepsilon}$$
:

$$\pi_{\mathsf{L}}(\mathbf{S}^{\varepsilon}) = 0 \quad \text{and} \quad \pi_{\mathsf{L}}^{\perp}(\mathbf{S}^{\varepsilon}) \leq \frac{\delta}{\varepsilon}.$$

The second estimate corresponds to the control of $\varepsilon \|\partial_t \tilde{\mathbf{n}}\|_{H^s} + \|\nabla_x \tilde{\mathbf{n}}\|_{H^s}$: Cauchy theory for $\tilde{\mathbf{n}}$ and estimates on $A(\mathbf{n})$ via P^s

Outline of the talk

Introduction

- 2 Kinetic setting
- 3 Formal derivation of the Fick equation
- Perturbative Cauchy theory for the Fick equation
- 5 Rigorous convergence in a perturbative setting
- 6 Conclusion and prospects

Conclusion and prospects

Conclusions

- Derivation of Fick equations from the Boltzmann equation for mixtures in the diffusive regime in a perturbative setting
- ▶ Formal obtention of the diffusion coefficients and closure relation
- Cauchy theory in Sobolev spaces for the Fick sytem
- Stability of the Fick system in the Boltzmann equation

Prospects

- Non perturbative setting?
- Other mixtures: non isothermal, polyatomic gases
- AP numerical scheme
- Compare experimental and theoretical relaxation times

Thank you for your attention!

HI

Derivation of the Fick cross-diffusion system

Fick diffusion coefficients

We had $a_{ij} = n_i \langle [\mathbf{L}^{-1} (\mathbf{C} - \mathbf{\Gamma})]_j, \mathbf{C}_j \rangle_{\mathbf{M}}$. More precisely

$$J_i^{(k)} = n_i \sum_{j=1}^p \sum_{\ell=1}^d \langle \mathbf{L}^{-1} (\mathbf{C}_i^{(k)} - \mathbf{\Gamma}_i^{(k)}), \mathbf{C}_j^{(\ell)} \rangle_{M_j} \partial_{x_\ell} n_j$$

Properties of the term in red

- ▶ is zero if $k \neq \ell$
- ▶ is independent of $k = \ell$

Thus, it depends only on i, j and allows to define the diffusion coefficients.

Definition of C_i^(k) = (μ_iν^(k)δ_{ij})_j → choice of any velocity component ν̄
 Use that Γ ∈ (Ker L)

$$\mathbf{a}_{ij} = \mathbf{n}_i \left\langle \mathbf{L}^{-1} \Big(\pi_{\mathbf{L}}^{\perp} (\bar{\mathbf{v}} \mu_i \mathbf{e}_i) \Big), \pi_{\mathbf{L}}^{\perp} (\bar{\mathbf{v}} \mu_j \mathbf{e}_j) \right\rangle_{\mathbf{M}}$$