A numerical scheme for a kinetic model for mixtures in the diffusive limit using the moment method

Bérénice GREC ${ }^{1}$
in collaboration with A. Bondesan, L. Boudin
$$
{ }^{1} \text { MAP5 - Université Paris Descartes, France }
$$

Workshop "Analytical and Computational Problems for Mixtures and Plasma Dynamics"

June 17th, 2019

UNIVERSITÉ
PARIS
DESCARTES

Outline of the talk

(1) Introduction

- Kinetic setting
- Moment method
- Maxwell-Stefan equations
- Towards an Asymptotic-Preserving scheme?
(2) Description of the scheme
(3) Properties of the scheme
- A priori properties
- Matrix form of the scheme
- Existence of a solution

4 Numerical results

- Parameters and diffusive behavior
- Investigating the assumptions made in the scheme
- Cross-diffusion for mixtures \& AP-like behavior

Kinetic setting

- Non-reactive mixture of p monoatomic gases
- Species i described by its distribution function $f_{i}(t, x, v)$
- Elastic collision rules, for $\sigma \in \mathbb{S}^{d-1}$

$$
\left\{\begin{array}{l}
v^{\prime}=\left(m_{i} v+m_{k} v_{*}+m_{k}\left|v-v_{*}\right| \sigma\right) /\left(m_{i}+m_{k}\right) \\
v_{*}^{\prime}=\left(m_{i} v+m_{k} v_{*}-m_{i}\left|v-v_{*}\right| \sigma\right) /\left(m_{i}+m_{k}\right)
\end{array}\right.
$$

- Boltzmann collision operator, for $v \in \mathbb{R}^{d}$

$$
Q_{i k}\left(f_{i}, f_{k}\right)(v)=\int_{\mathbb{R}^{d}} \int_{\mathbb{S}^{d-1}} \mathcal{B}_{i k}\left(v, v_{*}, \sigma\right)\left[f_{i}\left(v^{\prime}\right) f_{k}\left(v_{*}^{\prime}\right)-f_{i}(v) f_{k}\left(v_{*}\right)\right] \mathrm{d} \sigma \mathrm{~d} v_{*}
$$

- Cross sections $\mathcal{B}_{i k}=\mathcal{B}_{k i}>0$
- Maxwell molecules, for $\theta \in[0, \pi]$ the deviation angle between $v-v_{*}$ and σ

$$
\mathcal{B}_{i k}\left(v, v_{*}, \sigma\right)=b_{i k}\left(\frac{v-v_{*}}{\left|v-v_{*}\right|} \cdot \sigma\right)=b_{i k}(\cos \theta), \quad 1 \leq i, k \leq p
$$

- Boltzmann equations for mixtures

$$
\partial_{t} f_{i}+v \cdot \nabla_{x} f_{i}=\sum_{k=1}^{p} Q_{i k}\left(f_{i}, f_{k}\right), \quad \text { on } \mathbb{R}_{+} \times \Omega \times \mathbb{R}^{d}, \quad 1 \leq i \leq p
$$

Properties of the collision operator \& Diffusive scaling

- Equilibrium: Maxwellian with same bulk velocity and temperature
- The collision operator satisfies conservation properties [Desvillettes, Monaco, Salvarani, ’05]

$$
\begin{array}{ll}
\int_{\mathbb{R}^{d}} Q_{i k}\left(f_{i}, f_{k}\right)(v) m_{i} \mathrm{~d} v=0, & 1 \leq i, k \leq p, \\
\int_{\mathbb{R}^{d}} Q_{i i}\left(f_{i}, f_{i}\right)(v) m_{i} v \mathrm{~d} v=0, & 1 \leq i \leq p .
\end{array}
$$

- Isothermal setting $T>0$ uniform and constant

Properties of the collision operator \& Diffusive scaling

- Equilibrium: Maxwellian with same bulk velocity and temperature
- The collision operator satisfies conservation properties [Desvillettes, Monaco, Salvarani, ’05]

$$
\begin{array}{ll}
\int_{\mathbb{R}^{d}} Q_{i k}\left(f_{i}, f_{k}\right)(v) m_{i} \mathrm{~d} v=0, & 1 \leq i, k \leq p, \\
\int_{\mathbb{R}^{d}} Q_{i i}\left(f_{i}, f_{i}\right)(v) m_{i} v \mathrm{~d} v=0, & 1 \leq i \leq p .
\end{array}
$$

- Isothermal setting $T>0$ uniform and constant

Diffusive scaling

Small mean free path and Mach number: $\mathrm{Kn} \sim \mathrm{Ma} \sim \varepsilon$

$$
\varepsilon \partial_{t} f_{i}^{\varepsilon}+v \cdot \nabla_{\chi} f_{i}^{\varepsilon}=\frac{1}{\varepsilon} \sum_{k=1}^{p} Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right), \quad 1 \leq i \leq p
$$

Moment method

Moments of the distribution functions

- Concentration of species i

$$
c_{i}^{\varepsilon}(t, x)=\int_{\mathbb{R}^{d}} f_{i}^{\varepsilon}(t, x, v) \mathrm{d} v
$$

- Flux of species i

$$
F_{i}^{\varepsilon}(t, x)=c_{i}^{\varepsilon}(t, x) u_{i}^{\varepsilon}(t, x)=\frac{1}{\varepsilon} \int_{\mathbb{R}^{d}} v f_{i}^{\varepsilon}(t, x, v) \mathrm{d} v
$$

Ansatz

The distribution function of each species i is at a local Maxwellian state with a small velocity of order ε for any $(t, x) \in \mathbb{R}_{+} \times \Omega$

$$
f_{i}^{\varepsilon}(t, x, v)=c_{i}^{\varepsilon}(t, x)\left(\frac{m_{i}}{2 \pi k_{B} T}\right)^{d / 2} \exp \left(-\frac{m_{i}\left|v-\varepsilon u_{i}^{\varepsilon}(t, x)\right|^{2}}{2 k_{B} T}\right)
$$

Macroscopic diffusion equations

$$
\varepsilon \partial_{t} f_{i}^{\varepsilon}+v \cdot \nabla_{x} f_{i}^{\varepsilon}=\frac{1}{\varepsilon} \sum_{k} Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right), \quad \forall i
$$

- Mass conservation: moment of order 0

$$
\varepsilon \frac{\partial}{\partial t}\left(\int_{\mathbb{R}^{3}} f_{i}^{\varepsilon}(v) \mathrm{d} v\right)+\nabla_{x} \cdot\left(\int_{\mathbb{R}^{3}} v f_{i}^{\varepsilon}(v) \mathrm{d} v\right)=0
$$

where the collision operator $Q_{i k}\left(f_{i}, f_{k}\right)$ vanishes by invariance.

$$
\partial_{t} c_{i}^{\varepsilon}+\nabla_{x} \cdot\left(c_{i}^{\varepsilon} u_{i}^{\varepsilon}\right)=0 .
$$

- Momentum equation: moment of order 1

$$
\varepsilon \frac{\partial}{\partial t} \int_{\mathbb{R}^{3}} v f_{i}^{\varepsilon}(v) \mathrm{d} v+\int_{\mathbb{R}^{3}} v\left(v \cdot \nabla_{x} f_{i}^{\varepsilon}(v)\right) \mathrm{d} v=\frac{1}{\varepsilon} \sum_{k \neq i} \int_{\mathbb{R}^{3}} v Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)(v) \mathrm{d} v
$$

where the mono-species collision term vanishes by invariance.

Computations of the different terms

- Divergence term: use of the Ansatz, translation in $v+$ parity argument

$$
\begin{aligned}
\nabla \cdot\left(\int v \otimes v f_{i}^{\varepsilon}(v) \mathrm{d} v\right) & \propto \nabla \cdot\left(c_{i}^{\varepsilon} \int\left(v \otimes v+\varepsilon^{2} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right) e^{-m_{i}|v|^{2} / 2 k T} \mathrm{~d} v\right) \\
& =\frac{k T}{m_{i}} \nabla c_{i}^{\varepsilon}+\varepsilon^{2} \nabla \cdot\left(c_{i}^{\varepsilon} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right)
\end{aligned}
$$

- Collision term: explicit computations or algebraic arguments [Boudin, G.
- For Maxwell molecules: weak form, collision rules, symmetry and parity arguments:

In terms of macroscopic quantities

Computations of the different terms

- Divergence term: use of the Ansatz, translation in $v+$ parity argument

$$
\begin{aligned}
\nabla \cdot\left(\int v \otimes v f_{i}^{\varepsilon}(v) \mathrm{d} v\right) & \propto \nabla \cdot\left(c_{i}^{\varepsilon} \int\left(v \otimes v+\varepsilon^{2} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right) e^{-m_{i}|v|^{2} / 2 k T} \mathrm{~d} v\right) \\
& =\frac{k T}{m_{i}} \nabla c_{i}^{\varepsilon}+\varepsilon^{2} \nabla \cdot\left(c_{i}^{\varepsilon} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right)
\end{aligned}
$$

- Collision term: explicit computations or algebraic arguments [Boudin, G., Salvarani, '15], [Hutridurga, Salvarani, '17], [Boudin, G., Pavan, '17]
- For Maxwell molecules: weak form, collision rules, symmetry and parity arguments:
$\int v Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)(v) \mathrm{d} v=\frac{m_{k}}{m_{i}+m_{k}} \int b_{i k}(\cos \theta) f_{i}^{\varepsilon} f_{k *}^{\varepsilon}\left(v_{*}-v+\left|v-v_{*}\right| \sigma\right) \mathrm{d} \sigma \mathrm{d} v_{*} \mathrm{~d} v$
In terms of macroscopic quantities

$$
\frac{1}{\varepsilon} \sum_{k \neq i} \int v Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)(v) \mathrm{d} v=\sum_{k \neq i} \underbrace{\frac{2 \pi m_{k}\left\|b_{i j}\right\|_{L^{1}}}{m_{i}+m_{k}}}_{D_{i j}^{-1}}\left(c_{i}^{\varepsilon} c_{k}^{\varepsilon} u_{k}^{\varepsilon}-c_{k}^{\varepsilon} c_{i}^{\varepsilon} u_{i}^{\varepsilon}\right)
$$

Maxwell-Stefan equations

Collecting all terms, introducing $\mu_{i k}$ the reduced mass

$$
\varepsilon^{2} m_{i}\left(\partial_{t}\left(c_{i}^{\varepsilon} u_{i}^{\varepsilon}\right)+\nabla_{x} \cdot\left(c_{i}^{\varepsilon} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right)\right)+k_{B} T \nabla_{x} c_{i}^{\varepsilon}=\sum_{k \neq i} \mu_{i k} B_{i k}\left(c_{i}^{\varepsilon} c_{k}^{\varepsilon} u_{k}^{\varepsilon}-c_{k}^{\varepsilon} c_{i}^{\varepsilon} u_{i}^{\varepsilon}\right)
$$

- Need of a closure relation in the limit $\varepsilon \rightarrow 0$
- Equimolar diffusion: $\sum_{i} c_{i}$ constant (or $\sum_{i} F_{i}=0$)
- Matrix form of the Maxwell-Stefan equations (limit $\varepsilon \rightarrow 0$)

$$
k_{B} T \nabla_{x} c_{i}=-[A(\mathcal{C}) \mathcal{F}]_{i}
$$

where $\mathcal{C}=\left(c_{i}\right)_{1 \leq i \leq p}, \mathcal{F}=\left(F_{i}\right)_{1 \leq i \leq p}=\left(c_{i} u_{i}\right)_{1 \leq i \leq p}$ and

$$
A_{i k}= \begin{cases}-\mu_{i k} B_{i k} c_{i}, & \text { if } i \neq k \\ \sum_{\ell \neq i} \mu_{i \ell} B_{i \ell} c_{\ell}, & \text { if } i=k\end{cases}
$$

Towards an Asymptotic-Preserving scheme?

- Numerical scheme capturing the behavior of both
- solutions to the Boltzmann equations in a rarefied regime
- solutions of the Maxwell-Stefan equations in the fluid regime.
- Difficulties: the collision term (and the transport term) becomes stiffer when $\varepsilon \rightarrow 0$
- Need to use time and space steps independent of the parameter ε (AP behavior) [Filbet, Jin, '10], [Jin, '12], [Jin, Shi, '10], [Jin, Li, '13].
- Following [Jin, Li, '13], penalize the Boltzmann operator with a linear BGK operator: IMEX scheme

$$
\varepsilon \frac{f_{i}^{\varepsilon, n+1}-f_{i}^{\varepsilon, n}}{\Delta t}+v \cdot \nabla_{x} f_{i}^{\varepsilon, n}=\frac{Q_{i}^{\varepsilon, n}-P_{i}^{\varepsilon, n}}{\varepsilon}+\frac{P_{i}^{\varepsilon, n+1}}{\varepsilon},
$$

BGK operator: $P_{i}^{\varepsilon}=\beta_{i}\left(M_{i}-f_{i}^{\varepsilon}\right)$, where M_{i} is the global Maxwellian with concentration c_{i} and zero bulk velocity [Andries, Aoki, Perthame, '02]

- Issue: numerical instability caused by the discretization of the transport term $\frac{1}{\varepsilon} v \cdot \nabla_{x} f_{i}^{\varepsilon, n} \Rightarrow$ CFL condition: $C \frac{\Delta t}{\varepsilon \Delta x}<1$!

Outline of the talk

(1) Introduction

- Kinetic setting
- Moment method
- Maxwell-Stefan equations
- Towards an Asymptotic-Preserving scheme?

(2) Description of the scheme

(3) Properties of the scheme

- A priori properties
- Matrix form of the scheme
- Existence of a solution

4 Numerical results

- Parameters and diffusive behavior
- Investigating the assumptions made in the scheme
- Cross-diffusion for mixtures \& AP-like behavior
(5) Conclusion and prospects

Moment method

- 1D in space and velocity $(d=1)$
- Maxwell molecules
- Ansatz $f_{i}^{\varepsilon}(t, x, v)=c_{i}^{\varepsilon}(t, x)\left(\frac{m_{i}}{2 \pi k_{B} T}\right)^{1 / 2} \exp \left\{-m_{i} \frac{\left|v-\varepsilon \varepsilon \varepsilon_{i}^{\varepsilon}(t, x)\right|^{2}}{2 k_{B} T}\right\}$
- Computation of the moments, with $F_{i}^{\varepsilon}=c_{i}^{\varepsilon} u_{i}^{\varepsilon}$

$$
\begin{gathered}
\partial_{t} c_{i}^{\varepsilon}+\partial_{x} F_{i}^{\varepsilon}=0 \\
\varepsilon^{2} m_{i}\left(\partial_{t} F_{i}^{\varepsilon}+\partial_{x}\left(c_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}\right)\right)+k_{B} T \partial_{x} c_{i}^{\varepsilon}=\sum_{k \neq i} \mu_{i k} B_{i k}\left(c_{i}^{\varepsilon} F_{k}^{\varepsilon}-c_{k}^{\varepsilon} F_{i}^{\varepsilon}\right)=-\left[A^{\varepsilon} \mathcal{F}^{\varepsilon}\right]_{i}
\end{gathered}
$$

- Dirichlet boundary conditions on the fluxes $F_{i}^{\varepsilon}(t, \cdot)=0$ on $\partial \Omega$
- Let $\Delta t>0$ and $\Delta x>0$ the time and space steps, and $\lambda=\Delta t / \Delta x$
- $c_{i, j}^{n} \approx c_{i}^{\varepsilon}\left(t^{n}, x_{j}\right)=c_{i}^{\varepsilon}(n \Delta t, j \Delta x)$
- $F_{i, j+\frac{1}{2}}^{n} \approx F_{i}^{\varepsilon}\left(t^{n}, x_{j+\frac{1}{2}}\right)=F_{i}^{\varepsilon}\left(n \Delta t,\left(j+\frac{1}{2}\right) \Delta x\right)$.

Discretization of the equations

$$
\begin{aligned}
& c_{i, j}^{n+1}+\lambda\left(F_{i, j+\frac{1}{2}}^{n+1}-F_{i, j-\frac{1}{2}}^{n+1}\right)=c_{i, j}^{n} \\
& \left(-\Delta t \sum_{k \neq i} \mu_{i k} B_{i k} c_{k, j+\frac{1}{2}}^{n+1}-\varepsilon^{2} m_{i}\right) F_{i, j+\frac{1}{2}}^{n+1}+\Delta t c_{i, j+\frac{1}{2}}^{n+1} \sum_{k \neq i} \mu_{i k} B_{i k} F_{k, j+\frac{1}{2}}^{n+1} \\
& =k_{B} T \lambda\left(c_{i, j+1}^{n+1}-c_{i, j}^{n+1}\right)+\varepsilon^{2} m_{i}\left(\lambda R_{i, j+\frac{1}{2}}^{n}-F_{i, j+\frac{1}{2}}^{n}\right)
\end{aligned}
$$

- Choice of c_{i} at the center of the cells: $c_{i, j+\frac{1}{2}}^{n+1}:=\min \left\{c_{i, j}^{n+1}, c_{i, j+1}^{n+1}\right\}$
- Discretization of the nonlinear term $R_{i, j+\frac{1}{2}}^{n}=\left[\partial_{x}\left(c_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}\right)\right]_{i, j+\frac{1}{2}}^{n}$: centered discretization with $c_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}=\left(F_{i}^{\varepsilon}\right)^{2} / c_{i}^{\varepsilon}$ for $c_{i}^{\varepsilon} \neq 0$
- Boundary conditions taken into account via ghost cells: $F_{i,-\frac{1}{2}}^{n+1}=F_{i, N-\frac{1}{2}}^{n+1}=0$

Vectorial form of the momentum equation

$$
A \mathcal{F}=k_{B} T \lambda\left(\mathcal{C}_{j+1}^{n+1}-\mathcal{C}_{j}^{n+1}\right)+\varepsilon^{2} \mathcal{S}_{j+\frac{1}{2}}^{n}
$$

where $\mathcal{C}_{j}^{n+1}=\left(c_{i, j}^{n+1}\right)_{i}, \mathcal{S}_{j+\frac{1}{2}}^{n}$ is the vector of the terms in blue, and A is the matrix of the LHS

Outline of the talk

(1) Introduction

- Kinetic setting
- Moment method
- Maxwell-Stefan equations
- Towards an Asymptotic-Preserving scheme?
(2) Description of the scheme
(3) Properties of the scheme
- A priori properties
- Matrix form of the scheme
- Existence of a solution
(4) Numerical results
- Parameters and diffusive behavior
- Investigating the assumptions made in the scheme
- Cross-diffusion for mixtures \& AP-like behavior

Mass conservation and nonnegativity

Mass conservation

Sum the continuity equations to get

$$
\sum_{j=0}^{N} c_{i, j}^{n+1}=\sum_{j=0}^{N} c_{i, j}^{n}, \quad \forall n \in \mathbb{N}
$$

Nonnegativity of the concentrations

- Use of an auxiliary scheme for the momentum equation

- Definition of the corresponding modified matrix $\tilde{A}=\left([\tilde{A}]_{i k}\right)_{1 \leq i, k \leq p}$

Mass conservation and nonnegativity

Mass conservation

Sum the continuity equations to get

$$
\sum_{j=0}^{N} c_{i, j}^{n+1}=\sum_{j=0}^{N} c_{i, j}^{n}, \quad \forall n \in \mathbb{N}
$$

Nonnegativity of the concentrations

- Use of an auxiliary scheme for the momentum equation [ANAYA, Bendahmane, Sepúlveda, '15]

$$
\begin{aligned}
\left(-\Delta t \sum_{k \neq i} \mu_{i k} B_{i k}\left[c_{k, j+\frac{1}{2}}^{n+1}\right]^{+}\right. & \left.-\varepsilon^{2} m_{i}\right) F_{i, j+\frac{1}{2}}^{n+1}+\Delta t\left[c_{i, j+\frac{1}{2}}^{n+1}\right]^{+} \sum_{k \neq i} \mu_{i k} B_{i k} F_{k, j+\frac{1}{2}}^{n+1} \\
& =k_{B} T \lambda\left(c_{i, j+1}^{n+1}-c_{i, j}^{n+1}\right)+\varepsilon^{2} m_{i} \lambda R_{i, j+\frac{1}{2}}^{n}-\varepsilon^{2} m_{i} F_{i, j+\frac{1}{2}}^{n}
\end{aligned}
$$

- Definition of the corresponding modified matrix $\tilde{A}=\left([\tilde{A}]_{i k}\right)_{1 \leq i, k \leq p}$

Properties of the matrix \tilde{A}

- \tilde{A} is invertible and has positive eigenvalues
- All coefficients of \tilde{A}^{-1} are nonnegative, and $\left[\left(\tilde{A}_{j+\frac{1}{2}}^{n+1}\right)^{-1}\right]_{i k}$ contains a factor $\left[c_{i, j+\frac{1}{2}}^{n+1}\right]^{+}$if $k \neq i$.

Proof of nonnegativity of the concentrations

- By induction on n, base case obviously true
- The momentum equation gives

$$
\mathcal{F}_{j+\frac{1}{2}}^{n+1}=-\left(\tilde{A}_{j+\frac{1}{2}}^{n+1}\right)^{-1}\left(k_{B} T \lambda\left(\mathcal{C}_{j+1}^{n+1}-\mathcal{C}_{j}^{n+1}\right)+\varepsilon^{2} \mathcal{S}_{j+\frac{1}{2}}^{n}\right) .
$$

- Substitution into the continuity equation

$$
\begin{aligned}
\frac{\mathcal{C}_{j}^{n+1}-\mathcal{C}_{j}^{n}}{\lambda}=\left(\tilde{A}_{j+\frac{1}{2}}^{n+1}\right)^{-1}(& \left.k_{B} T \lambda\left(\mathcal{C}_{j+1}^{n+1}-\mathcal{C}_{j}^{n+1}\right)+\varepsilon^{2} \mathcal{S}_{j+\frac{1}{2}}^{n}\right) \\
& -\left(\tilde{A}_{j-\frac{1}{2}}^{n+1}\right)^{-1}\left(k_{B} T \lambda\left(\mathcal{C}_{j}^{n+1}-\mathcal{C}_{j-1}^{n+1}\right)+\varepsilon^{2} \mathcal{S}_{j-\frac{1}{2}}^{n}\right)
\end{aligned}
$$

- Similar relations for the boundary terms $j=0$ and $j=N$
- Scalar product (in \mathbb{R}^{p}) with $\left[\mathcal{C}_{j}^{n}\right]^{-}$, discrete integration by parts using the BC

$$
\begin{aligned}
& \sum_{j=0}^{N}\left\langle\frac{\mathcal{C}_{j}^{n+1}-\mathcal{C}_{j}^{n}}{\lambda},\left[\mathcal{C}_{j}^{n+1}\right]^{-}\right\rangle_{p} \\
= & -\sum_{j=0}^{N}\left\langle\left(\tilde{A}_{j+\frac{1}{2}}^{n+1}\right)^{-1}\left(k_{B} T \lambda\left(\mathcal{C}_{j+1}^{n+1}-\mathcal{C}_{j}^{n+1}\right)+\varepsilon^{2} \mathcal{S}_{j+\frac{1}{2}}^{n}\right),\left(\left[\mathcal{C}_{j+1}^{n+1}\right]^{-}-\left[\mathcal{C}_{j}^{n+1}\right]^{-}\right)\right\rangle_{p}
\end{aligned}
$$

Component-wise, we consider

$$
\left[\left(\tilde{A}_{j+\frac{1}{2}}^{n+1}\right)^{-1}\right]_{i k}\left(k_{B} T \lambda\left(c_{k, j+1}^{n+1}-c_{k, j}^{n+1}\right)+\varepsilon^{2} \mathcal{S}_{k, j+\frac{1}{2}}^{n}\right)\left(\left[c_{i, j+1}^{n+1}\right]^{-}-\left[c_{i, j}^{n+1}\right]^{-}\right)
$$

- if $k \neq i$, these terms contain a factor $\left[c_{i, j+\frac{1}{2}}^{n+1}\right]^{+}$; the definition of $c_{i, j+\frac{1}{2}}$ implies that they contain a factor $\min \left\{\left[c_{i, j}^{n+1}\right]^{+},\left[c_{i, j+1}^{n+1}\right]^{+}\right\}\left(\left[c_{i, j+1}^{n+1}\right]^{-}-\left[c_{i, j}^{n+1}\right]^{-}\right)=0$.
- the terms in red are nonpositive, since $\left[\left(\tilde{A}_{j+\frac{1}{2}}^{n+1}\right)^{-1}\right] \geq 0$ and
the terms in blue have an undefined sign: uniform boundedness assumption of \mathcal{S} with respect to ε ensures that they are controlled by the red terms for ε small enough

$$
\begin{aligned}
& \sum_{j=0}^{N}\left\langle\frac{\mathcal{C}_{j}^{n+1}-\mathcal{C}_{j}^{n}}{\lambda},\left[\mathcal{C}_{j}^{n+1}\right]^{-}\right\rangle_{p} \\
= & -\sum_{j=0}^{N}\left\langle\left(\tilde{A}_{j+\frac{1}{2}}^{n+1}\right)^{-1}\left(k_{B} T \lambda\left(\mathcal{C}_{j+1}^{n+1}-\mathcal{C}_{j}^{n+1}\right)+\varepsilon^{2} \mathcal{S}_{j+\frac{1}{2}}^{n}\right),\left(\left[\mathcal{C}_{j+1}^{n+1}\right]^{-}-\left[\mathcal{C}_{j}^{n+1}\right]^{-}\right)\right\rangle_{p}
\end{aligned}
$$

Component-wise, we consider

$$
\left[\left(\tilde{A}_{j+\frac{1}{2}}^{n+1}\right)^{-1}\right]_{i k}\left(k_{B} T \lambda\left(c_{k, j+1}^{n+1}-c_{k, j}^{n+1}\right)+\varepsilon^{2} \mathcal{S}_{k, j+\frac{1}{2}}^{n}\right)\left(\left[c_{i, j+1}^{n+1}\right]^{-}-\left[c_{i, j}^{n+1}\right]^{-}\right)
$$

- if $k \neq i$, these terms contain a factor $\left[c_{i, j+\frac{1}{2}}^{n+1}\right]^{+}$; the definition of $c_{i, j+\frac{1}{2}}$ implies that they contain a factor $\min \left\{\left[c_{i, j}^{n+1}\right]^{+},\left[c_{i, j+1}^{n+1}\right]^{+}\right\}\left(\left[c_{i, j+1}^{n+1}\right]^{-}-\left[c_{i, j}^{n+1}\right]^{-}\right)=0$.
- if $k=i$
- the terms in red are nonpositive, since $\left[\left(\tilde{A}_{j+\frac{1}{2}}^{n+1}\right)^{-1}\right]_{i j} \geq 0$ and

$$
(a-b)\left(a^{-}-b^{-}\right) \leq 0
$$

- the terms in blue have an undefined sign: uniform boundedness assumption of \mathcal{S} with respect to ε ensures that they are controlled by the red terms for ε small enough

Conclusion of the proof

For ε small enough, we thus have, using that $\mathcal{C}_{j}^{n+1}=\left[\mathcal{C}_{j}^{n+1}\right]^{+}-\left[\mathcal{C}_{j}^{n+1}\right]^{-}$

$$
\sum_{j=0}^{N}\left\langle\left[\mathcal{C}_{j}^{n+1}\right]^{-},\left[\mathcal{C}_{j}^{n+1}\right]^{-}\right\rangle_{p} \leq-\sum_{j=0}^{N}\left\langle\mathcal{C}_{j}^{n},\left[\mathcal{C}_{j}^{n+1}\right]^{-}\right\rangle_{p}
$$

Since $c_{i, j}^{n} \geq 0$ by induction hypothesis, this implies that

$$
\sum_{j=0}^{N}\left\|\left[\mathcal{C}_{j}^{n+1}\right]^{-}\right\|_{p}^{2} \leq 0
$$

Therefore $c_{i, j}^{n+1} \geq 0$ for any i, j, n.

Remark

Because of the nonnegativity of the concentrations, a solution $\left(c_{i, j}^{n}\right)_{j},\left(F_{i, j+\frac{1}{2}}^{n}\right)_{j}$ of the auxiliary scheme is also solution of the initial system.

Matrix form of the scheme

Introduce the following vector of unknowns $y^{n}=\binom{\mathrm{y}_{1}^{n}}{\mathrm{y}_{2}^{n}} \in \mathbb{R}^{p(2 N+1)}$, where

$$
\begin{aligned}
& \mathrm{y}_{1}^{n}=\left(c_{1,0}^{n}, \cdots, c_{1, N}^{n}, \cdots, c_{p, 0}^{n}, \cdots, c_{p, N}^{n}\right)^{\top} \in \mathbb{R}^{p(N+1)}, \\
& \mathrm{y}_{2}^{n}=\left(F_{1, \frac{1}{2}}^{n}, \cdots, F_{1, N-\frac{1}{2}}^{n}, \cdots, F_{p, \frac{1}{2}}^{n}, \cdots, F_{p, N-\frac{1}{2}}^{n}\right)^{\top} \in \mathbb{R}^{p N} .
\end{aligned}
$$

The system becomes

$$
\mathbb{S}^{\varepsilon}\left(\mathrm{y}_{1}^{n+1}\right) \mathrm{y}^{n+1}=\mathrm{b}^{n}
$$

The matrix form of the system is solved numerically by a Newton method.

Auxiliary system

Let $\tilde{\mathrm{y}}=\left(\tilde{\mathrm{y}}_{1}, \mathrm{y}_{2}\right)^{\top}=\left(\left[c_{1,0}\right]^{+}, \cdots,\left[c_{1, N}\right]^{+}, \cdots,\left[c_{p, 0}\right]^{+}, \cdots,\left[c_{p, N}\right]^{+}, \mathrm{y}_{2}\right)^{\top}$.

$$
\tilde{\mathbb{S}}^{\varepsilon}\left(\tilde{y}_{1}^{n+1}\right) \tilde{y}^{n+1}=\mathrm{b}^{n} \text {, where } \tilde{\mathbb{S}}^{\varepsilon}\left(\tilde{\mathrm{y}}_{1}\right)=\left[\begin{array}{cc}
\mathbb{I} & \mathbb{S}_{12} \\
\mathbb{S}_{21} & \tilde{\mathbb{S}}_{22}^{\varepsilon}\left(\tilde{y}_{1}\right)
\end{array}\right]
$$

Existence of a solution

- Use of block determinant computation and the Schur complement: $\tilde{\mathbb{S}}^{\varepsilon}\left(\tilde{\mathrm{y}}_{1}^{n+1}\right)$ is invertible

$$
\tilde{\mathrm{y}}^{n+1}=\left(\mathbb{S}^{\varepsilon}\left(\tilde{\mathrm{y}}_{1}^{n+1}\right)\right)^{-1} \mathrm{~b}^{n}
$$

- Use of Schaefer's fixed-point theorem on the first part \tilde{y}_{1} of \tilde{y}, by exploring the structure of $\left(\mathbb{S}^{\varepsilon}\left(\tilde{\mathrm{y}}_{1}^{n+1}\right)\right)^{-1}$

$$
\tilde{\mathrm{y}}_{1}^{n+1}=f\left(\tilde{\mathrm{y}}_{1}^{n+1}\right)=\mathrm{b}_{1}^{n}+\mathbb{S}_{12}\left(\tilde{\mathbb{P}}^{\varepsilon}\left(\tilde{\mathrm{y}}_{1}^{n+1}\right)\right)^{-1} \mathbb{S}_{21} \mathrm{~b}_{1}^{n}-\mathbb{S}_{12}\left(\tilde{\mathbb{P}}^{\varepsilon}\left(\tilde{\mathrm{y}}_{1}^{n+1}\right)\right)^{-1} \mathrm{~b}_{2}^{n}
$$

where $\tilde{\mathbb{P}}^{\varepsilon}\left(\tilde{\mathrm{y}}_{1}\right)=\tilde{\mathbb{S}}_{22}^{\varepsilon}\left(\tilde{\mathrm{y}}_{1}\right)-\mathbb{S}_{21} \mathbb{S}_{12}$ and $\mathrm{y}_{2}^{n+1}=g\left(\tilde{\mathrm{y}}_{1}^{n+1}\right)$.

- $f: \mathbb{R}_{+}^{p(N+1)} \rightarrow \mathbb{R}_{+}^{p(N+1)}$ (nonnegativity), continuous thus compact.
- Prove that the set E is bounded, where

$$
E=\left\{\tilde{\mathrm{y}}_{1} \in\left(\mathbb{R}_{+}\right)^{p(N+1)} \mid \exists \xi \in[0,1] \text { such that } \tilde{\mathrm{y}}_{1}=\xi f\left(\tilde{\mathrm{y}}_{1}\right)\right\}
$$

- Sum the continuity equations to obtain an a priori estimate in L^{1} : $\left\|\tilde{y}_{1}^{n+1}\right\|_{L^{1}} \leq\left\|\tilde{y}_{1}^{n}\right\|_{L^{1}}$ and conclude the existence.
- By nonnegativity, a solution to the auxiliary system is also solution of the initial system.

Outline of the talk

(1) Introduction

- Kinetic setting
- Moment method
- Maxwell-Stefan equations
- Towards an Asymptotic-Preserving scheme?
(2) Description of the scheme
(3) Properties of the scheme
- A priori properties
- Matrix form of the scheme
- Existence of a solution

4 Numerical results

- Parameters and diffusive behavior
- Investigating the assumptions made in the scheme
- Cross-diffusion for mixtures \& AP-like behavior

Parameters of the scheme and validation

- 3 species: $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and CO_{2} with respective molar masses $M_{1}=2, M_{2}=28$ and $M_{3}=44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
- Cross sections computed from the binary diffusive coefficients $D_{i j}$

$$
B_{i j}=\frac{\left(m_{i}+m_{j}\right) k_{B} T}{4 \pi m_{i} m_{j} D_{i j}}
$$

- Rescaling of the cross sections by a factor 10^{5}
- $\Omega=[-1,1], \Delta t=\Delta x^{2}=10^{-4}$

Validation

Preservation of constant states with zero initial fluxes

Diffusion of two species

- Diffusion of H_{2} and CO_{2} for $\varepsilon=10^{-2}$
- No cross-diffusion effects in the Maxwell-Stefan equations due to the symmetry of the binary diffusion coefficients
- Plots of the concentrations for $t=0, t=10^{-2}, t=10^{-1}, t=1$ and $t=10$

Discussion on the closure relation for Maxwell-Stefan and the smallness assumption on the source terms

- Initial conditions compatible with $\sum_{i} c_{i}=1$ and $\sum_{i} F_{i}=0$ (equimolar diffusion)
- We observe numerically that $c=1+O\left(\varepsilon^{2}\right)$
- Uniform boundedness assumption of the source terms with respect to ε numerically verified

Reconstruction of the velocity distribution

- Species H_{2} at $x=-0.21$ (concentration initially equal to 1 , decreasing)
- Use of the Ansatz (local Maxwellian)
- Plots of the velocity distribution for $t=0,10^{-2}, 10^{-1}, 1$ and $t=10$
- $\varepsilon=10^{-2}$, so that $\varepsilon u_{i}=O\left(10^{-2}\right)$

Cross-diffusion for mixtures I

- 3 species test case, appearance of uphill diffusion

Cross-diffusion for mixtures II

- N_{2}, although being at equilibrium, moves because of the movement of other species
- Diffusion barrier: classical diffusion takes over

AP-like behavior

- Fixed discretization parameters for arbitrary small values of ε
- Convergence of the concentrations to the solutions of Maxwell-Stefan

- Influence of the value of ε on the diffusion process

Outline of the talk

(1) Introduction

- Kinetic setting
- Moment method
- Maxwell-Stefan equations
- Towards an Asymptotic-Preserving scheme?
(2) Description of the scheme
(3) Properties of the scheme
- A priori properties
- Matrix form of the scheme
- Existence of a solution
(4) Numerical results
- Parameters and diffusive behavior
- Investigating the assumptions made in the scheme
- Cross-diffusion for mixtures \& AP-like behavior
(5) Conclusion and prospects

Conclusion and prospects

Conclusions

- Suitable numerical scheme able to capture the Maxwell-Stefan diffusion asymptotic of Boltzmann equation for mixtures, via the moment method
- A priori nonnegativity of the concentrations, existence of a solution to the scheme
- A posteriori validation of the assumptions (closure relation, smallness assumption)

Prospects

- Uniqueness of the scheme
- L^{2} a priori estimates
- AP-property
- Higher space and velocity dimensions

Thank you for your attention!

Properties of \tilde{A}

- \tilde{A} diagonally dominant \Rightarrow invertible

$$
\left|[\tilde{A}]_{i i}\right|=\Delta t \sum_{\ell \neq i} \mu_{i \ell} B_{i \ell}\left[c_{\ell}\right]^{+}+\varepsilon^{2} m_{i}>\Delta t \sum_{\ell \neq i} \mu_{i \ell} B_{i \ell}\left[c_{\ell}\right]^{+}=\sum_{\ell \neq i}\left|[\tilde{A}]_{i \ell}\right|,
$$

- Positivity of the eigenvalues of \tilde{A}
- if all $\left[c_{i}\right]^{+}>0$, the matrix \tilde{A} can be written $\tilde{A}=\Delta S \Delta^{-1}+D$, where $D=\varepsilon^{2} \operatorname{diag}\left(m_{1}, \cdots, m_{p}\right), \Delta=\operatorname{diag}\left(\sqrt{\left[c_{1}\right]^{+}}, \cdots, \sqrt{\left[c_{p}\right]^{+}}\right)$and $S=\left(S_{i k}\right)_{1 \leq i, k \leq p}$ is symmetric

$$
S_{i k}= \begin{cases}-\Delta t \mu_{i k} B_{i j} \sqrt{\left[c_{i}\right]^{+}\left[c_{k}\right]^{+}}, & \text {if } i \neq k, \\ \Delta t \sum_{\ell \neq i} \mu_{i \ell} B_{i \ell}\left[c_{\ell}\right]^{+}, & \text {if } i=k .\end{cases}
$$

and also positive semidefinite

- if $\left[c_{p}\right]^{+}=0,[\tilde{A}]_{p k}=0$, for any $1 \leq k \leq p-1$, and the cofactor expansion of the determinant gives

$$
\operatorname{det}\left(\tilde{A}-\sigma \mathbb{I}_{\rho}\right)=\left(\Delta t \sum_{k \neq p} \mu_{\rho k} B_{\rho k}\left[c_{k}\right]^{+}+\varepsilon^{2} m_{\rho}-\sigma\right) \pi(\sigma),
$$

$\pi(\sigma)$: characteristic polynomial of the first $p-1$ lines and columns of \tilde{A}

- backward induction reasoning if more than one $\left[c_{i}\right]^{+}$is equal to zero

Properties of $\tilde{A}^{-1} \&$ Matrix form of the scheme

- Non-singular M-matrices theory for matrices with nonpositive extra-diagonal terms
- \tilde{A} has positive eigenvalues $\Rightarrow \tilde{A}^{-1} \geq 0$
- Determinant formula for inversion: $\left[\tilde{A}^{-1}\right]_{i k}=\AA_{\AA_{k i}} / \operatorname{det}(\tilde{A}), \AA_{k i}$ being the cofactor of matrix \tilde{A}, thus contains $\left[c_{i}\right]^{+}$

$$
\mathbb{S}^{\varepsilon}\left(\mathrm{y}_{1}^{n+1}\right) \mathrm{y}^{n+1}=\mathrm{b}^{n}, \text { where } \mathbb{S}^{\varepsilon}\left(\mathrm{y}_{1}^{n+1}\right)=\left[\begin{array}{cc}
\mathbb{I} & \mathbb{S}_{12} \\
\mathbb{S}_{21} & \mathbb{S}_{22}^{\varepsilon}\left(\mathrm{y}_{1}^{n+1}\right)
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbb{S}_{12}=\operatorname{Diag}\left(S_{12}\right)=\lambda\left[\begin{array}{lll}
S_{12} & & \\
& & \\
& & S_{12}
\end{array}\right] \text {, where }\left(S_{12}\right)_{i j}=\delta_{i j}-\delta_{i, j+1}, \mathbb{S}_{21}=k_{B} T \mathbb{S}_{12} . \\
& \mathbb{S}_{22}^{\varepsilon}\left(\mathrm{y}_{1}\right)=\left[\begin{array}{ccc}
\mathbb{B}_{11}^{\varepsilon}\left(\mathrm{y}_{1}\right) & \cdots & \mathbb{B}_{1 p}\left(\mathrm{y}_{1}\right) \\
\vdots & \ddots & \vdots \\
\mathbb{B}_{p 1}\left(\mathrm{y}_{1}\right) & \cdots & \mathbb{B}_{p p}^{\varepsilon}\left(\mathrm{y}_{1}\right)
\end{array}\right],\left\{\begin{array}{l}
\mathbb{B}_{i j}=\Delta t \mu_{i j} B_{i j} \operatorname{Diag}\left(c_{i, \ell+\frac{1}{2}}^{n+1}\right) \\
\mathbb{B}_{i i}^{\varepsilon}=-\Delta t \operatorname{Diag}\left(\sum_{k \neq i} \mu_{i k} B_{i k} c_{k, \ell+\frac{1}{2}}^{n+1}+\varepsilon^{2} \frac{m_{i}}{\Delta t}\right)
\end{array}\right.
\end{aligned}
$$

