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Core of a Pressurized Water Reactor
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Core at Pressurized Water Reactor

Nominal regime1
I Inlet velocity: |ue | ≈ 5m · s−1
I At p0 = 155 bar and T = 300 °C: speed of sound c∗` ' 1.0× 103m · s−1

I Mach number (measure of compressibility) M = |ue |
c∗`
' 5× 10−3 � 1

Model with acoustics (M = O(1)) and heat transfers  Compressible Navier-Stokes/Euler system

I Acoustics negligible (no shock waves) M� 1
I High heat transfers: ∇·u 6= 0  An asymptotic low Mach number model

A model without acoustics M = 0 and ∇·u = 0  Incompressible model

1and some incidental/accidental regimes
Bérénice Grec Two-phase flow model with a nonlinear degenerate diffusion 3 / 25



Core at Pressurized Water Reactor

Nominal regime1
I Inlet velocity: |ue | ≈ 5m · s−1
I At p0 = 155 bar and T = 300 °C: speed of sound c∗` ' 1.0× 103m · s−1

I Mach number (measure of compressibility) M = |ue |
c∗`
' 5× 10−3 � 1

Model with acoustics (M = O(1)) and heat transfers  Compressible Navier-Stokes/Euler system

I Acoustics negligible (no shock waves) M� 1
I High heat transfers: ∇·u 6= 0  An asymptotic low Mach number model

A model without acoustics M = 0 and ∇·u = 0  Incompressible model

1and some incidental/accidental regimes
Bérénice Grec Two-phase flow model with a nonlinear degenerate diffusion 3 / 25



From Compressible Navier-Stokes-Fourier System to the LMNC model

Compressible Navier-Stokes-Fourier system  a Low Mach number model
∂tρ+∇ · (ρu) = 0
∂t(ρu) +∇ · (ρu⊗ u) +∇p = ρg +∇ · σ(u)
∂t(ρh) +∇ · (ρhu) = Φ +∇ ·

(
ω∇T

)
+ σ(u) : ∇u + ∂tp + u · ∇p

In Low Mach number regime M � 1 we have p(t, x) = p∗ + M2p̄(t, x)
Unknowns:
I u(t, x) velocity field
I h(t, x) enthalpy
I p(t, x) perturbational pressure

Given quantities:
I Φ(t, x) ≥ 0 power density modelling the heating
I g gravity field, σ(u) viscous effects
I p∗ > 0 thermodynamic pressure (constant)

Equation of state
Density ρ(h, p) and temperature T (h, p)

[S. Dellacherie, On A Low Mach Nuclear Core Model,
ESAIM: Proc., 35 (2012)]
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The model
When neglecting the viscous terms, the model becomes

∂tρ+∇ · (ρu) = 0
∂t(ρu) +∇ · (ρu⊗ u) +∇p̄ = ρg
∂t(ρh) +∇ · (ρhu) = Φ +∇ ·

(
ω∇T

)
Unknowns:
I u(t, x) velocity field
I h(t, x) enthalpy
I p̄(t, x) perturbational pressure

Given quantities:
I Φ > 0 constant power density
I g gravity field

Low Mach setting  no hyperbolic structure! v can be interpreted as a Lagrange multiplier.

Closure: equation of state

I ρ(h) specific density I T (h) temperature I ω(h) heat conductivity

Without diffusion, many references (analytical solutions, numerical schemes, EoS, relaxation model...)
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Diphasic equation of state with phase transition

Diffuse Interface Framework:
the (compressible) fluid can exist in liquid (`) or vapor (g) phase or as a mixture of both

I Pure phase κ ∈ {`, g} is described by a
given (complete) EoS

(h, p) 7→ Tκ(h, p)

I Mixture: at saturation (same pressure p,
temperature T , chemical potential µ)

µ`(T , p) = µg (T , p) p 7→ T s(p)
temperature at saturation

Transition pure phase/mixture: hs
κ(p) def= hκ(T s(p), p) the enthalpy of the phase κ at saturation

At pressure p, the fluid is
I in the liquid phase if h ≤ hs

`(p)
I a mixture at saturation if hs

`(p) < h < hs
g (p)

I in the vapor phase if h ≥ hs
g (p)
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Thermal diffusion term

I In our EDP system, p∗ is constant
I T is piecewise defined w.r.t. hs

κ

T (h) =


T`(h), if h ≤ hs

`

T s , if hs
` < h < hs

g
Tg (h), if h ≥ hs

g

liq. gas
mix.

h

T

T s

hs
` hs

g

T (h, p∗)

LMNC model ∂t(ρh) +∇ · (ρhu) = Φ(t, y) +∇·
(
ω(h, p∗)∇T (h, p∗)

)
I ω constant in each phase & ∇T vanishes in the mixture  

ω(h)∇T (h) =


λ`∇h, if h ≤ hs

`,

0, if hs
` < h < hs

g ,

λg∇h, if h ≥ hs
g ,

λκ
def= ωκ

cp,κ

cp,κ
def= ∂h

∂T
∣∣
p isobar heat capacity
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The 1D model
1 In 1D, v and h are solutions of the following system

{
∂t%+ ∂y (%v) = 0
∂t(%h) + ∂y (%hv) = [Φ + ∂y (λ(h)∂yh)]

λ(h) =


λ` if h ≤ hs

`

0 if hs
` < h < hs

g
λg if h ≥ hs

g

I ρ(h) given by the EoS

I Constants: Φ > 0, De
def= ve%(he) > 0

I Initial condition: h(0, y) = he liquid phase

y

0
v = ve > 0
h = he < hs

`

lim
y→+∞

∂yh(t, y) = Φ/De

2 Additionally, p̄ is a solution of

∂y p̄ = −%g − ∂t(%v)− ∂y (%v2)
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The 1D steady-state model



∂y (%v) = 0
∂y (%vh) =

[
Φ + ∂y

(
λ(h)∂yh

)]
y ∈ [0; +∞)

(%v)(0) = %(he)ve
def= De > 0 constant

lim
y→+∞

∂yh(y) = Φ
De

⇓

(%v)(y) = De  v(y) = De
%(h(y))

De∂yh =
[
Φ + ∂y

(
λ(h)∂yh

)]
independent of %(h)

h(0) = he

lim
y→+∞

∂yh(y) = Φ
De
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The 1D steady-state model

Notation: h′ = ∂yh

EDO

Deh′(y)−
(
λ(h)h′(y)

)′
= Φ

Diffusion

λ(h) =


λ` if h ≤ hs

`

λm if hs
` < h < hs

g
λg if h ≥ hs

g

Different configurations:
I λ` = λm = λg = 0: no diffusion  h(y) = he + Φ

De
y

I λ`, λm, λg > 0  continuous explicit h, defined piecewise
I λm = 0 and λ`, λg > 0: model with a degenerate diffusion

If λ was degenerate in space but not on h, the solution would be continuous.

Remark
Due to the discontinuities in λ, the ODE should be interpreted as follows:

Deh′ − (L(h))′′ = Φ with L′(h) = λ(h)
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Solution with λm = 0 and λ`, λg > 0 (degenerate diffusion)

Proposition
When the mixture zone is presenta, the unique steady-state solution is discontinuous at y s

g :

h(y) =



h`(y) def= C`,1 + Φ
De

y + C`,2 exp
(

y
λ`/De

)
if y ≤ y s

`

hm(y) def= hs
` + Φ

De
(y − y s

` ) if y s
` ≤ y < y s

g

hg (y) def= hs
g + Φ

De
(y − y s

g ) if y ≥ y s
g

I The constants C`,1 and C`,2 depend on y s
` , implicitly defined by h`(y s

` ) = hs
` and h′`(y s

` ) = 0.
I The position y s

g is computed w.r.t. y s
` by y s

g = y s
` + De

Φ (hs
g − hs

`)−
λg
De
.

aThis is the case when λg Φ/D2
e < hs

g − hs
`
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Liquid/mixture/gas

Proof – Solution on each region
I Given Φ > 0, De > 0, we can prove that h increases. This leads to the division of space into three

regions, ordered from low to high y values:

0 κ = `

Liquid

y s
`

κ = m
Mixture

y s
g

κ = g
Gas

I In pure phase regions, we solve Deh′κ(y)− λκh′′κ(y) = Φ, yielding
hκ(y) = Cκ,1 + Φ

De
y + Cκ,2 exp

(
y

λκ/De

)
I The boundary conditions give two relations:

I Liquid region: h`(0) = he  C`,2 = he − C`,1
I Vapor region: limy→∞ h′g (y) = Φ

De
 Cg,2 = 0

I In mixture region, we solve Deh′m(y) = Φ, yielding hκ(y) = Cm + Φ
De
y

I We need to compute C`,1, Cm, Cg,1 and the transition points y s
` , y s

g .
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Liquid/mixture/gas

Proof – Jump relations JDehK− Jλ(h)h′K = 0.
I Liquid/Mixture transition: jump relation at y s

` :

DeJh(y s
` )K︸ ︷︷ ︸

≥0

−0× h′(y s,+
` ) + λ`h′(y s,−

` )︸ ︷︷ ︸
≥0

= 0  

{
Jh(y s

` )K = 0
h′(y s,−

` ) = 0

I Mixture/Gas transition: jump relation at y s
g :

DeJh(y s
g )K− λgh′(y s,+

g ) + 0× h′(y s,−
g ) = 0  Jh(y s

g )K = λg
De

Φ
De

I Jump in the mixture, since at a discontinuity point y∗:
I JL(h)K(y∗) = 0  hs

` ≤ h(y−∗ ) < h(y+
∗ ) ≤ hs

g
I J(L(h))′K(y∗) > 0  h(y+

∗ ) = hs
g or h(y−∗ ) = hs

`

yy s
`

λ` λm = 0

yy s
g

λgλm = 0

h

L(h)

λ
(̀h
−
hs )̀

λ g(h
−
hs g

)

hs
` hs

g
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Sharp interface models

What about if the condition λg
De

Φ
De
≤ hs

g − hs
` is not met?

A direct transition from liquid to gas must be considered.
It is a sharp interface model since no mixture region is present.

Link with the generalized stationary Stefan problem on temperature
Free boundary problem: find y s such that

cp,`DeT ′ − ω`T ′′ = Φ
T (0) = Te < T s ,

T (y s,−) = T s ,

in ]0, y s [,


cp,gDeT ′ − ωgT ′′ = Φ
T (y s,+) = T s ,

lim
y→∞

T ′(y) = Φ
cp,g De

,

in ]y s ,+∞[

& Interface condition: ωgT ′(y s,+)− ω`T ′(y s,−) = De(hs
g − hs

`)
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Sharp interface models
Stefan problem
I Sharp interface framework (no mixture

allowed).
I By assumption, jump equals to hs

g − hs
`.

Our model
I Diffuse interface framework allowing for

mixture.
I Jump equals to min

{
λg
De

Φ
De
, hs

g − hs
`

}

Same model when λg
De

Φ
De
≥ hs

g − hs
`.

When our model involves a mixture, the Stefan problem yields non-physical solution
The last relation in the temperature formulation gives

ωgT ′(y s,+)− ω`T ′(y s,−) = De(hs
g − hs

`)  ω`T ′(y s,−) = λg
Φ
De
− De(hs

g − hs
`).

If λg
De

Φ
De
< hs

g − hs
` (indicating the presence of the mixture in our model): T ′(y s,−) < 0 and thus the

temperature must have exceeded T s within the liquid phase.
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Time-dependent model

XDynamical jump relations with or without the mixture zone

Travelling wave solutions
Let c < 0. We can construct the unique travelling wave solution with velocity c of the system with
compatible initial conditions h0(y), v0(y) and boundary conditions he(t) = h0(−ct),
ve(t) = c + De/%(he(t)) by

h(t, y) = h0(y − ct), v(t, y) = c + De/%(h(t, y)).

We can construct h0 using the steady-state solution in both cases
I when the mixture zone is present
I when there is a liquid-gas transition
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Challenges with the model
The steady solution exhibits. . .

a jump in h  a jump in %(h)  a jump in v

We cannot work with the non-conservative form, keep the conservative one{
∂t%+ ∂y (%v) = 0
∂t(%h) + ∂y (%hv)− ∂yyL(h) = Φ

Numerical schemes
I Spatial discretization:

Gradient scheme: avoid writing the diffusion term as ∂y (λκ∂yh) 1

I Time discretization:

Full explicit schemes are prohibited (no explicit time derivative of v , the system is not hyperbolic)
1[R. Eymard, P. Féron, T. Gallouët, R. Herbin, C. Guichard, Gradient schemes for the Stefan problem, Int. J. Finite

Volumes, 2013]
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Numerical schemes
{
∂t%+ ∂y (%v) = 0
∂t(%h) + ∂y (%hv)− ∂yyL(h) = Φ

1 Explicit predictor-corrector approach
I Observe that h 7→ %(h)h can be non invertible (depending on the EoS)
I Combine the two equations: R = Q%− %h(%), Q > 0 such that % 7→ R invertible

∂tR + ∂y (Rv)− ∂yyL(h) = −Φ
I Predictor step: compute Rn+1

i from
Rn+1

i − Rn
i

∆t + (Rv)n
i − (Rv)n

i−1

∆y + L(hn
i+1)− 2L(hn

i ) + L(hn
i−1)

∆y 2 = −Φ

Deduce %n+1
i by inversion of R, and hn+1

i by the EoS
I Corrector step: compute vn+1

i from

%n+1
i − %n

i
∆t +

(%v)n+1
i − (%v)n+1

i−1

∆y = 0

2 Full implicit scheme
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Validation of the schemes

Discrete jump relations
I Computed for both schemes, mimic the continuous ones
I At most one point in the jump

I EoS : Stiffened gas law in all phases
%κ(h) = ζκ

h − qκ
I Dimensionless setting
I Different configurations, depending on the presence of the different phases:
 adjust boundary conditions, power density, diffusion coefficients

I Constrained CFL for the explicit scheme (diffusion)
I Convergence of the Newton fixed point for the implicit scheme:  adaptive time step
I Coarse grid (61 points)
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Travelling wave solution with mixture phase
I Exact solution of velocity c = −5

I Comparison of the discrete displacement velocities of the interface: e.g. −c%Jw%Kn+1
i + J%vKn+1

i = 0
Mean values c% ' −4.97, c%h ' −4.97

I Maximal error on the reconstructed position y s
g of the jump < 0.07 (cf. ∆y = 0.15)
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Transient regime – Numerical results
I L = 12, ∆y = 0.2, De = 20
I Other parameters vary depending on the scenario

I Check grid convergence (error on h and v)
I Check precision of the transition points y s

` and y s
g

0 1 2 3 4 5 6 7

4

5

6

7

8

9

Steady ysg = 7.4

Steady ys` = 3.8

Time 7→ Interfaces positions

ysg(t) with δy = 0.05

ys`(t) with δy = 0.05

ysg(t) with δy = 0.025

ys`(t) with δy = 0.025

ysg(t) with δy = 0.0125

ys`(t) with δy = 0.0125
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Appearance of phases

Scenario 1: coexistence of all three phases 1

1Parameters he ' 0.89, λ` ' 67.65, λg ' 71.05, Φ ' 2.56
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Appearance of phases
Scenario 2: disappearance of the mixture phase, zero slope of the enthalpy at the liquid-gas transition
point2

2Parameters he ' 0.92, λ` ' 67.65, λg ' 143.05, Φ ' 2.56
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Appearance of phases
Scenario 3: disappearance of the mixture phase, positive slope of the enthalpy at the liquid-gas
transition point3

3Parameters he ' 0.81, λ` ' 67.65, λg ' 185.97, Φ ' 2.56
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Conclusion and prospects

Conclusion
I 1D LMNC model with phase change and degenerate thermal diffusion
I Steady-state and travelling wave solutions with/without mixture zone
I Two numerical schemes which capture correctly the discontinuities at phase boundaries

Prospects
I Extension to 2D/3D

I No post-processing for the equation on the pressure
I Navier-Stokes-like equation but in conservative form

I Extension to the viscous case
I Discontinuous solution in 1D
I Low Mach number hypothesis not satisfied locally at phase change?
I Relaxation from a more complex model describing non-instantaneous mass transfers between phases
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Thank you for your attention!
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