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Outline of the presentation

© Introduction
o Context
@ The low Mach number hypothesis
@ A Low Mach number model for a heat exchanger
@ Diphasic equation of state with phase transition
@ The final model
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Pressurized Water Reactor

Water coolant
(output temp.: 330°C)
Pressurizer

Control
Reactor vessel
rods
Reactor
core
(155 bar)

Water Coolant
(input temp.: 290°C) Pump

Bérénice GREC

Two-phase flow model with a nonlinear degenerate diffusion

2/25



Core of a Pressurized Water Reactor
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Core at Pressurized Water Reactor

Nominal regime?

» Inlet velocity: |ue| ~5m-s!

» At pg = 155bar and T = 300°C: speed of sound ¢; ~ 1.0 x 103m -s~!

» Mach number (measure of compressibility) M = @ ~5x1073«1
e

Model with acoustics (M = O(1)) and heat transfers ~ ~» Compressible Navier-Stokes/Euler system J

A model without acoustics M =0 and V-u =20 ~> Incompressible model J

land some incidental/accidental regimes
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Core at Pressurized Water Reactor

Nominal regime?

» Inlet velocity: |ue| ~5m-s!

» At pg = 155bar and T = 300°C: speed of sound ¢; ~ 1.0 x 103m -s~!

» Mach number (measure of compressibility) M = @ ~5x1073«1
e

Model with acoustics (M = O(1)) and heat transfers ~ ~» Compressible Navier-Stokes/Euler system J

» Acoustics negligible (no shock waves) M « 1

A totic low Mach b del
» High heat transfers: V-u #0 "7 7N asymprotic fow Wiach number moder

A model without acoustics M =0 and V-u =20 ~> Incompressible model J

Land some incidental/accidental regimes
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From Compressible Navier-Stokes-Fourier System to the LMNC model

Compressible Navier-Stokes-Fourier system

th+V-(pu):O
d¢(pu) + V- (pu@u)+Vp =pg + V- o(u)
de(ph) + V- (phu) = ® + V- (wVT) +o(u): Vu+dp +u-Vp

Unknowns: Given quantities:
> u(t,x) velocity field » &(t,x) > 0 power density modelling the heating
> h(t,x) enthalpy > g gravity field, o(u) viscous effects
> p(t,x) pressure

Equation of state
Density p(h, p) and temperature T (h, p)
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From Compressible Navier-Stokes-Fourier System to the LMNC model

~~ a Low Mach number model

8tP+V'(pU)=O
d¢(pu) + V- (pu®@u)+Vp = pg + V- o(u)

:(ph) + V - (phu) = & + V - (wV T) + o(u) : Vu + Oepet<u=Vp,

In Low Mach number regime M < 1 we have p(t,x) = p. + M2p(t,x)

Unknowns: Given quantities:
> u(t,x) velocity field » &(t,x) > 0 power density modelling the heating
> h(t,x) enthalpy » g gravity field, o(u) viscous effects
» p(t,x) perturbational pressure » p. > 0 thermodynamic pressure (constant)
Eq uation of state [S. Dellacherie, On A Low Mach Nuclear Core Model,

ESAIM: Proc.
Density p(h, p.) and temperature T (h, p;) S roc., 35 (2012)]

Bérénice GREC Two-phase flow model with a nonlinear degenerate diffusion 4/25



The model

When neglecting the viscous terms, the model becomes

Op+V-(pu)=0
O(pu) +V - (pu@u) +Vp = pg
Oe(ph) + V - (phu) = ¢+ V- (wVT)

Unknowns:
> u(t,x) velocity field
» h(t,x) enthalpy

» p(t,x) perturbational pressure

Given quantities:
» & > 0 constant power density
» g gravity field

Low Mach setting ~~ no hyperbolic structure! v can be interpreted as a Lagrange multiplier.

Closure: equation of state

» p(h) specific density > T(h) temperature » w(h) heat conductivity

Without diffusion, many references (analytical solutions, numerical schemes, EoS, relaxation model...)
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Diphasic equation of state with phase transition

Diffuse Interface Framework:
the (compressible) fluid can exist in liquid (¢) or vapor (g) phase or as a mixture of both

» Mixture: at saturation (same pressure p,

> Pure phase x € {(, g} is described by a temperature T, chemical potential ;)
given (complete) EoS

11e(T,p) = pg(T,p) ~ p+> T(p)

(h,p) = Ti(h,p) rom .

perature at saturation

Transition pure phase/mixture: h%(p) = h.(T°(p), p) the enthalpy of the phase « at saturation

At pressure p, the fluid is
» in the liquid phase if h < h3(p)
> a mixture at saturation if hj(p) < h < hz(p)
> in the vapor phase if h > hz(p)
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Thermal diffusion term

T(h,ps)

» In our EDP system, p, is constant

» T is piecewise defined w.r.t. h;,
Ti(h), if h<hj

T(hy={T%  ifhi<h<h
Te(h), if h>hS

lig. hy hZ' gas h
LMNC model 9,(ph) + V - (phu) = &(t,y) + V- (w(h, p )V T(h, p*))

» w constant in each phase & V T vanishes in the mixture ~

AeVh, if h < h, 3\, def
w(h)VT(h) = <o, if hs < h < hs, " e
(h) (h) \Vh !f he> bs € Cp.i S g—? , isobar heat capacity
g ’ ! = Vg
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The 1D model

@ In 1D, v and h are solutions of the following system

N ifh<hg
3t9+ay(9V) =0 i
A(h)=<S0 if i <h<h;
_ o, h ¢
{at(gh) + 0y (ohv) = [® + 0, (A(h)0, h)] Ag ifh>hE

y y—||>Too Oy h(t,y) = /D,
» p(h) given by the EoS
> Constants: ® >0, D. = veg(he) > 0

» Initial condition: h(0,y) = he liquid phase v=ve>0
T h=h.<hs

@ Additionally, p is a solution of
Oyp = —0g — Or(ov) — 8y(QV2)
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Outline of the presentation

© Steady-state model
@ The 1D steady-state model
@ Steady-state solution
@ Sharp interface models
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The 1D steady-state model

dy(ov) =0
9, (ovh) = [cb +9, <)\(h)6yh>] y € [0; +00)

(ov)(0) = o(he)ve = D. > 0 constant

i —_—
Jim_0,h(y) =
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The 1D steady-state model

dy(ov) =0
9, (ovh) = [cb +9, <)\(h)6yh>] y € [0; +00)

(ov)(0) = o(he)ve = D. > 0 constant

i —_—
Jim_0,h(y) =

(ov)(y) = De ~v(y) =

Dedyh = [¢ +0, (A(h)ayh)} independent of o(h)
h(0) = he
lim 9,h(y) = 2

y—+o00 De
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The 1D steady-state model

Notation: h" = d,h

EDO X ifh<h
! R H S 5]
Det(y) ~ (MR () = o MEY= 4 dm 0 < BB
Ag ifh=>hg
Different configurations:
> X = Am = Ag = 0: no diffusion ~ h(y) = he + 5y
> X, Am, Ag > 0 ~» continuous explicit h, defined piecewise
> M\ =0and Ay, Ay > 0: model with a degenerate diffusion
If X\ was degenerate in space but not on h, the solution would be continuous. )

Remark
Due to the discontinuities in A, the ODE should be interpreted as follows:

Dt — (L(h))" =&  with L'(h) = A(h)
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Solution with A\, = 0 and Az, Ay > 0 (degenerate diffusion)

Proposition

When the mixture zone is present®, the unique steady-state solution is discontinuous at yg:

» The constants Cy1 and C;» depend on y;, implicitly defined by he(y;) = h; and hy(y;) = 0.

o O]
ho(y)E Con + R4 + Croexp (

ify <y;

A ;De )

def

¢ )
hm(y) = hi + 5-(v = 7) ify; <y <y
e

et s (D s 9 s
he(y) = by + 5-(v = %3) ify >y
e

» The position y; is computed w.r.t. y; by y; = y; + %(hg — h3) — %i'

3This is the case when A\, /D2 < h§ — h}
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Liquid /mixture/gas

Proof — Solution on each region

» Given & > 0, D, > 0, we can prove that h increases. This leads to the division of space into three

regions, ordered from low to high y values:

Liquid | Mixture | Gas
U kK=m k=g
% Vs

|
6 k=1

» In pure phase regions, we solve D.hl.(y) — A hll(y) = @, yielding
he(y) = Ceg + 2y + Cepexp (ﬁ)

» The boundary conditions give two relations:
> Liquid region: hy(0) = he ~ Cp2 = he — Co1
» Vapor region: lim, o hy(y) = E)% ~ Cg2=0

» In mixture region, we solve D.h/ (y) = ®, yielding h.(y) = Cn + b%y

» We need to compute Cy 1, Cn, G 1 and the transition points y7, y;.
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Liquid /mixture/gas

Proof — Jump relations [D.h] — [A(h)A'] = 0.

» Liquid/Mixture transition: jump relation at y;:

A Am =0
— h 7 &S O }
De[h(y{)] =0 x H(y; ") + Aeh'(y; ) =0~ H,(yﬁ,)j] :
——— ———— h (}/g ) =0 Ve
>0 >0
Am =0 Ag
» Mixture/Gas transition: jump relation at yg: *
Ye
DA~ A () +0x W) =0~ Tyl = o
elNYg g Vg Ye )= Ye)l = D. D, L(h) <9
N
» Jump in the mixture, since at a discontinuity point y,: /
> [L(M)](y+) =0 ~ h < h(y.") < h(yl) < hg S he h
> [(L(M)T(y=) >0 ~ h(y) = hg or h(y.”) = h; - .
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Sharp interface models

Ay ©
What about if the condition =& — < kS — hj is not met?

=g
e e
A direct transition from liquid to gas must be considered.

It is a sharp interface model since no mixture region is present.

Link with the generalized stationary Stefan problem on temperature
Free boundary problem: find y° such that

ijDe T —w,T" =0 Cp,gDe T — Wg T'=09¢
T(0)=T. < T°, in 10, y°[, T(y>")=T¢, in Jy®, +oo|
)= T i T0)= %

& Interface condition: wg T'(y*") —we T'(y>~) = De(h; — h})
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Sharp interface models

Stefan problem Our model
» Sharp interface framework (no mixture » Diffuse interface framework allowing for
allowed). mixture.
» By assumption, jump equals to hg — hj. » Jump equals to min { B D, ,hz, — hs}

Same model when Hgbi > hg — hy. J

When our model involves a mixture, the Stefan problem yields non-physical solution

The last relation in the temperature formulation gives
(0}
wgT'(y"") —weT'(y*7) = De(by = hj)  ~  weT'(y*7) = Ag 5~ — De(h — hp).
e

If %% < hg — hj (indicating the presence of the mixture in our model): T'(y*~) < 0 and thus the

temiaerature must have exceeded T° within the liquid phase.
v
15/25
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Outline of the presentation

© The full time-dependent model
@ Travelling wave solutions
@ Numerical approaches
@ Numerical results
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Time-dependent model

v'Dynamical jump relations with or without the mixture zone

Travelling wave solutions

Let ¢ < 0. We can construct the unique travelling wave solution with velocity ¢ of the system with
compatible initial conditions ho(y), vo(y) and boundary conditions he(t) = ho(—ct),
ve(t) = c + De/o(he(t)) by

h(t,y) = holy —ct),  v(t,y) = c+ De/o(h(t,y)).

We can construct hg using the steady-state solution in both cases
» when the mixture zone is present

» when there is a liquid-gas transition
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Challenges with the model

The steady solution exhibits. . .

ajumpin h ~> a jump in g(h) ~ a jumpin v

We cannot work with the non-conservative form, keep the conservative one

00+ 0,(ov) =0
O¢(oh) + 0, (ohv) — 0, L(h) = &

Numerical schemes

» Spatial discretization:

Gradient scheme: avoid writing the diffusion term as 8, (A0, h) * )

» Time discretization:

Full explicit schemes are prohibited (no explicit time derivative of v, the system is not hyperbolic) J

1[R. Eymard, P. Féron, T. Gallouét, R. Herbin, C. Guichard, Gradient schemes for the Stefan problem, Int. J. Finite
Volumes, 2013]
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Numerical

schemes

{

0o+ 9,(ov) =0
d¢(oh) + 0, (ohv)

— O, L(h) =0

@ Explicit predictor-corrector approach
» Observe that h — o(h)h can be non invertible (depending on the EoS)
» Combine the two equations: R = Qo — oh(g), Q@ > 0 such that ¢ — R invertible

OR + 8y (Rv) — d,, L(h) = —®

> Predictor step: compute R/ from

RIL— R (R = (RV)L, | () = 2L(HY) + L(H) _

At

Deduce o™ by inversion of R, and h™™ by the EoS
> Corrector step: compute v/ from

@ Full implicit scheme

Ay Ay?
gt =gl () (e
At Ay
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Validation of the schemes

Discrete jump relations

» Computed for both schemes, mimic the continuous ones

» At most one point in the jump

» EoS : Stiffened gas law in all phases

» Dimensionless setting

» Different configurations, depending on the presence of the different phases:
~ adjust boundary conditions, power density, diffusion coefficients

» Constrained CFL for the explicit scheme (diffusion)
» Convergence of the Newton fixed point for the implicit scheme: ~+ adaptive time step

» Coarse grid (61 points)
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Travelling wave solution with mixture phase

» Exact solution of velocity ¢ = —5
Enthalpy Velocity
22
80
s
2.0%%
18 60
= 1.6 =
40
1.4
1.2 2
o
1.0 0
0 2 4 6 8 0 2 4 6 8

Play/Pause

» Comparison of the discrete displacement velocities of the interface: e.g. fcgﬂwg]]}”’l +[ov]™t =0
Mean values ¢, >~ —4.97, ¢, >~ —4.97
» Maximal error on the reconstructed position y, of the jump < 0.07 (cf. Ay = 0.15)
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Transient regime — Numerical results

> [ =12, Ay=0.2, D. =20
» Other parameters vary depending on the scenario

> Check grid convergence (error on h and v)

> Check precision of the transition points y; and y,

Time — Interfaces positions

—e— y;(t) with oy = 0.05
ué(l with §y = 0.05
with dy = 0.025

)

)

—— ()
—o— yi(t) with 5y = 0.025

)

)

74 —e— yi(t) with 5y = 0.0125 Steady Yy =4
—— y;(t) with dy = 0.0125

Steady y; = 3.8

0 1 2 3 4 5 6 7
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Appearance of phases

Scenario 1: coexistence of all three phases !

Enthal Velocit;
Py 40 y
2504 Asymptotic . —— Asymptotic
35
2.25 30
s
2.001%g 25
= 1.75 =20
1.50 15
1.25 10
¢
1.00 °
0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Yy Yy

Play/Pause

!Parameters he ~ 0.89, \; ~ 67.65, \g ~ 71.05, ® ~ 2.56
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Appearance of phases

Scenario 2: disappearance of the mixture phase, zero slope of the enthalpy at the liquid-gas transition
-
point

Enthalpy Velocity
—— Asymptotic —— Asymptotic
3.0 i
50
2.5 40
5 30
= 2.01% B
20
1.5
10
?
1.0
0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Y Yy

Play/Pause

2Parameters he ~ 0.92, \; ~ 67.65, Ag ~ 143.05, & ~ 2.56
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Appearance of phases

Scenario 3: disappearance of the mixture phase, positive slope of the enthalpy at the liquid-gas
transition point3

Enthalpy Velocity
—— Asymptotic —— Asymptotic
3.0
50
2.5 40
5
= 2,01y = 30
20
1.5
s 10
1.0 4
0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Y Yy

Play/Pause

3Parameters he ~ 0.81, \; ~ 67.65, Ag >~ 185.97, & ~ 2.56
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Outline of the presentation

@ Conclusion
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Conclusion and prospects

Conclusion
» 1D LMNC model with phase change and degenerate thermal diffusion
> Steady-state and travelling wave solutions with /without mixture zone

» Two numerical schemes which capture correctly the discontinuities at phase boundaries

Prospects

» Extension to 2D/3D

» No post-processing for the equation on the pressure
» Navier-Stokes-like equation but in conservative form
» Extension to the viscous case
» Discontinuous solution in 1D
» Low Mach number hypothesis not satisfied locally at phase change?
» Relaxation from a more complex model describing non-instantaneous mass transfers between phases
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Thank you for your attention!

= == bt | --n.-—'a"r
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