Derivation of cross-diffusion models
 from the multi-species Boltzmann equation in the diffusive scaling

Bérénice GREC ${ }^{1}$
in collaboration with A. Bondesan, L. Boudin, M. Briant, V. Pavan, F. Salvarani
${ }^{1}$ MAP5 - Université de Paris, France

Séminaire Analyse numérique - Equations aux dérivées partielles, Lille, 2 décembre 2021

Université de Paris

Context of the study

- Non-reactive mixture of p monoatomic gases
- Isothermal setting $T>0$ uniform and constant
- Two different scales for the description of the mixture
- mesoscopic scale (kinetic model): species i described by its distribution function $f_{i}(t, x, v)$
- macroscopic scale: species i described by the physical observables
- number density $n_{i}(t, x)$
- velocity $u_{i}(t, x)$
\rightsquigarrow flux of species $i: J_{i}(t, x)=n_{i}(t, x) u_{i}(t, x)$
\rightsquigarrow vectorial quantities $\mathbf{n}=\left[\begin{array}{c}n_{1} \\ \vdots \\ n_{p}\end{array}\right], \mathbf{J}=\left[\begin{array}{c}J_{1} \\ \vdots \\ J_{p}\end{array}\right]$
- Link between the two scales in the diffusive scaling
- Formal and theoretical convergence
- Numerical scheme describing both scales

Diffusion models for mixtures: Maxwell-Stefan/Fick

Mass conservation:

$$
\partial_{t} \mathbf{n}+\nabla \cdot \mathbf{J}=0
$$

Diffusion process (link between \mathbf{J} and $\nabla \mathbf{n}$):
Maxwell-Stefan equations

$$
-\nabla \mathbf{n}=A(\mathbf{n}) \mathbf{J}
$$

Fick equations

$$
\mathbf{J}=-B(\mathbf{n}) \nabla \mathbf{n}
$$

- $A(\mathbf{n})$ and $B(\mathbf{n})$ are not invertible (rank $p-1$)
- Using Moore-Penrose pseudo-inverse: structural similarity [Giovangigli '91, '99]

Formal analogy of the two systems, but Fick and Maxwell-Stefan are not obtained in the same way

Maxwell-Stefan vs. Fick (macroscopic point of view)

Obtention of the Maxwell-Stefan equations

- Mechanical considerations on forces (balance of pressure and friction forces)
- Assumption: different species have different macroscopic velocities on macroscopic time scales

Obtention of the Fick equations

- Thermodynamics of irreversible processes (entropy decay) [Onsager]
- Thermodynamical considerations on fluxes, written (close to equilibrium) as linear combinations of potential gradients
- nonreactive isothermal setting \rightsquigarrow chemical potential gradients
- ideal gases \rightsquigarrow (number) density gradients

Mesoscopic point of view

- How to justify these two (different) equations from the (same) kinetic description?
- In which regime are these macroscopic models valid?

Moment method (Maxwell-Stefan)

- Based on the ansatz that the distribution functions are at local Maxwellian states [Levermore], [Müller, Ruggieri]

Perturbative method (Fick)

- Based on the Chapman-Enskog expansion [Bardos, Golse, Levermore], [Bisi, Desvillettes]

Kinetic setting

- Boltzmann equations for mixtures on $\mathbb{R}_{+} \times \Omega \times \mathbb{R}^{d}$

$$
\partial_{t} f_{i}+v \cdot \nabla_{x} f_{i}=\sum_{k=1}^{p} Q_{i k}\left(f_{i}, f_{k}\right), \quad 1 \leq i \leq p
$$

[Desvillettes, Monaco, Salvarani, '05]

- Boltzmann collision operator, for $v \in \mathbb{R}^{d}$

$$
Q_{i k}\left(f_{i}, f_{k}\right)(v)=\int_{\mathbb{R}^{d}} \int_{\mathbb{S}^{d-1}} \mathcal{B}_{i k}\left(v, v_{*}, \sigma\right)\left[f_{i}\left(v^{\prime}\right) f_{k}\left(v_{*}^{\prime}\right)-f_{i}(v) f_{k}\left(v_{*}\right)\right] \mathrm{d} \sigma \mathrm{~d} v_{*}
$$

- Elastic collision rules, for $\sigma \in \mathbb{S}^{d-1}$

$$
\left\{\begin{array}{l}
v^{\prime}=\left(m_{i} v+m_{k} v_{*}+m_{k}\left|v-v_{*}\right| \sigma\right) /\left(m_{i}+m_{k}\right) \\
v_{*}^{\prime}=\left(m_{i} v+m_{k} v_{*}-m_{i}\left|v-v_{*}\right| \sigma\right) /\left(m_{i}+m_{k}\right)
\end{array}\right.
$$

- Cross sections $\mathcal{B}_{i k}=\mathcal{B}_{k i}>0$

Properties of the collision operator

- Equilibrium: Maxwellian with same bulk velocity and temperature

$$
n_{i}(t, x)\left(\frac{m_{i}}{2 \pi k_{B} T}\right)^{d / 2} \exp \left(-\frac{m_{i}|v-u(t, x)|^{2}}{2 k_{B} T}\right)
$$

- Conservation properties of the collision operator for $1 \leq i, k \leq p$

$$
\begin{gathered}
\int_{\mathbb{R}^{d}} Q_{i k}\left(f_{i}, f_{k}\right)(v) \mathrm{d} v=0 \\
\int_{\mathbb{R}^{d}} Q_{i i}\left(f_{i}, f_{i}\right)(v) v \mathrm{~d} v=0 \\
\int_{\mathbb{R}^{d}}\left(m_{i} Q_{i k}\left(f_{i}, f_{k}\right)(v)+m_{k} Q_{k i}\left(f_{k}, f_{i}\right)(v)\right) v \mathrm{~d} v=0
\end{gathered}
$$

- Weak form:

$$
\int Q_{i k}\left(f_{i}, f_{k}\right)(v) \psi(v) d v=\iiint \mathcal{B}_{i k} f_{i}(v) f_{k}\left(v_{*}\right)\left[\psi\left(v^{\prime}\right)-\psi(v)\right] d \sigma d v_{*} d v
$$

Outline of the talk

(1) Introduction

(2) Moment method

- Moment method
- Asymptotic-Preserving numerical scheme
- Numerical results
(3) Perturbative method

4 Stiff dissipative hyperbolic formalism
(5) Conclusion and prospects

Moment method

Diffusive scaling: small mean free path and Mach number: $\mathrm{Kn} \sim \mathrm{Ma} \sim \varepsilon$
Moments of the distribution functions

- Number density of species i

$$
n_{i}^{\varepsilon}(t, x)=\int_{\mathbb{R}^{d}} f_{i}^{\varepsilon}(t, x, v) \mathrm{d} v
$$

- Flux of species i

$$
J_{i}^{\varepsilon}(t, x)=n_{i}^{\varepsilon}(t, x) u_{i}^{\varepsilon}(t, x)=\frac{1}{\varepsilon} \int_{\mathbb{R}^{d}} v f_{i}^{\varepsilon}(t, x, v) \mathrm{d} v
$$

Ansatz: the distribution function of each species i is at a local Maxwellian state with a small velocity of order ε for any $(t, x) \in \mathbb{R}_{+} \times \Omega$

$$
f_{i}^{\varepsilon}(t, x, v)=n_{i}^{\varepsilon}(t, x)\left(\frac{m_{i}}{2 \pi k_{B} T}\right)^{d / 2} \exp \left(-\frac{m_{i}\left|v-\varepsilon u_{i}^{\varepsilon}(t, x)\right|^{2}}{2 k_{B} T}\right)
$$

Macroscopic diffusion equations

Diffusive scaling: small mean free path and Mach number: $\mathrm{Kn} \sim \mathrm{Ma} \sim \varepsilon$

$$
\varepsilon \partial_{t} f_{i}^{\varepsilon}+v \cdot \nabla_{x} f_{i}^{\varepsilon}=\frac{1}{\varepsilon} \sum_{k=1}^{p} Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right), \quad 1 \leq i \leq p
$$

- Mass conservation: moment of order 0

$$
\varepsilon \frac{\partial}{\partial t}\left(\int_{\mathbb{R}^{3}} f_{i}^{\varepsilon}(v) \mathrm{d} v\right)+\nabla_{x} \cdot\left(\int_{\mathbb{R}^{3}} v f_{i}^{\varepsilon}(v) \mathrm{d} v\right)=0,
$$

where the collision term vanishes (conservation property).
Formal limit

$$
n_{i}(t, x)=\lim _{\varepsilon \rightarrow 0} n_{i}^{\varepsilon}(t, x), \quad J_{i}(t, x)=\lim _{\varepsilon \rightarrow 0} n_{i}^{\varepsilon}(t, x) u_{i}^{\varepsilon}(t, x)
$$

$$
\rightsquigarrow \partial_{t} n_{i}+\nabla_{x} \cdot J_{i}=0
$$

Computation of the divergence term

- Momentum equation: moment of order 1

$$
\varepsilon \frac{\partial}{\partial t} \int_{\mathbb{R}^{3}} v f_{i}^{\varepsilon}(v) \mathrm{d} v+\int_{\mathbb{R}^{3}} v\left(v \cdot \nabla_{x} f_{i}^{\varepsilon}(v)\right) \mathrm{d} v=\frac{1}{\varepsilon} \sum_{k \neq i} \int_{\mathbb{R}^{3}} v Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)(v) \mathrm{d} v
$$

where the mono-species collision term vanishes (conservation property).

- Use of the Ansatz, translation in v

$$
\nabla_{x} \cdot\left(\int v \otimes v f_{i}^{\varepsilon}(v) \mathrm{d} v\right) \propto \nabla_{x} \cdot\left(n_{i}^{\varepsilon} \int\left(v+\varepsilon u_{i}^{\varepsilon}\right) \otimes\left(v+\varepsilon u_{i}^{\varepsilon}\right) e^{-m_{i}|v|^{2} / 2 k T} \mathrm{~d} v\right)
$$

- In terms of macroscopic quantities

$$
\nabla_{x} \cdot\left(\int v \otimes v f_{i}^{\varepsilon}(v) \mathrm{d} v\right)=\frac{k_{B} T}{m_{i}} \nabla_{x} n_{i}^{\varepsilon}+\varepsilon^{2} \nabla_{x} \cdot\left(n_{i}^{\varepsilon} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right)
$$

Computation of the divergence term

- Momentum equation: moment of order 1

$$
\varepsilon \frac{\partial}{\partial t} \int_{\mathbb{R}^{3}} v f_{i}^{\varepsilon}(v) \mathrm{d} v+\int_{\mathbb{R}^{3}} v\left(v \cdot \nabla_{\chi} f_{i}^{\varepsilon}(v)\right) \mathrm{d} v=\frac{1}{\varepsilon} \sum_{k \neq i} \int_{\mathbb{R}^{3}} v Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)(v) \mathrm{d} v
$$

where the mono-species collision term vanishes (conservation property).

- Use of the Ansatz, translation in $v+$ parity argument

$$
\nabla_{x} \cdot\left(\int v \otimes v f_{i}^{\varepsilon}(v) \mathrm{d} v\right) \propto \nabla_{x} \cdot\left(n_{i}^{\varepsilon} \int\left(v \otimes v+\varepsilon^{2} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right) e^{-m_{i}|v|^{2} / 2 k T} \mathrm{~d} v\right)
$$

- In terms of macroscopic quantities

$$
\nabla_{x} \cdot\left(\int v \otimes v f_{i}^{\varepsilon}(v) \mathrm{d} v\right)=\frac{k_{B} T}{m_{i}} \nabla_{x} n_{i}^{\varepsilon}+\varepsilon^{2} \nabla_{x} \cdot\left(n_{i}^{\varepsilon} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right)
$$

Computation of the collision term

For Maxwell molecules : $\mathcal{B}_{i k}\left(v, v_{*}, \sigma\right)=b_{i k}(\theta)$

- Weak form with $\psi(v)=v+$ collision rules
$\int v Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)(v) \mathrm{d} v=\frac{m_{k}}{m_{i}+m_{k}} \iiint b_{i k}(\theta) f_{i}^{\varepsilon} f_{k_{*}}^{\varepsilon}\left(v_{*}-v+\left|v-v_{*}\right| \sigma\right) \mathrm{d} \sigma \mathrm{d} v_{*} \mathrm{~d} v$
- Symmetry and parity arguments: cancellation of the term in blue
- In terms of macroscopic quantities

$$
\frac{1}{\varepsilon} \sum_{k \neq i} \int v Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)(v) \mathrm{d} v=\sum_{k \neq i} \underbrace{\frac{2 \pi m_{i} m_{k}\left\|b_{i k}\right\|_{L^{1}}}{\left(m_{i}+m_{k}\right) k_{B} T}}_{D_{i k}^{-1}} \frac{k_{B} T}{m_{i}}\left(n_{i}^{\varepsilon} J_{k}^{\varepsilon}-n_{k}^{\varepsilon} J_{i}^{\varepsilon}\right)
$$

$$
\varepsilon^{2} \frac{m_{i}}{k_{B} T}\left(\partial_{t}\left(n_{i}^{\varepsilon} u_{i}^{\varepsilon}\right)+\nabla_{x} \cdot\left(n_{i}^{\varepsilon} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right)\right)+\nabla_{x} n_{i}^{\varepsilon}=\sum_{k \neq i} \frac{n_{i}^{\varepsilon} J_{k}^{\varepsilon}-n_{k}^{\varepsilon} J_{i}^{\varepsilon}}{D_{i k}}
$$

$$
\rightsquigarrow-\nabla_{x} n_{i}=\sum_{k \neq i} \frac{n_{k} J_{i}-n_{i} J_{k}}{D_{i k}}
$$

Asymptotic-Preserving numerical scheme

- Capture the behavior of the solutions to both
- the Boltzmann equations in a rarefied regime
- the Maxwell-Stefan equations in the fluid regime with fixed discretization parameters (independent of ε): AP behavior [Filbet, Jin, '10], [Jin, '12], [Jin, Shi, '10], [Jin, Li, '13]

Difficulties

- The collision (and the transport) term in the Boltzmann equation are stiff when $\varepsilon \rightarrow 0$

$$
\varepsilon \partial_{t} f_{i}^{\varepsilon}+v \cdot \nabla_{x} f_{i}^{\varepsilon}=\frac{1}{\varepsilon} \sum_{k} Q_{i j}\left(f_{i}^{\varepsilon}, f_{j}^{\varepsilon}\right)
$$

- At the limit, the Maxwell-Stefan equations are not invertible

$$
\left\{\begin{array}{l}
\partial_{t} n_{i}^{\varepsilon}+\nabla_{x} \cdot J_{i}^{\varepsilon}=0 \\
\varepsilon^{2} m_{i}\left(\partial_{t}\left(n_{i}^{\varepsilon} u_{i}^{\varepsilon}\right)+\nabla_{x} \cdot\left(n_{i}^{\varepsilon} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right)\right)+k_{B} T \nabla_{x} n_{i}^{\varepsilon}=\sum_{k \neq i} \mu_{i k}\left(n_{i}^{\varepsilon} J_{k}^{\varepsilon}-n_{k}^{\varepsilon} J_{i}^{\S}\right)
\end{array}\right.
$$

Towards an Asymptotic-Preserving (AP) scheme?

Ideas

(1) Following [Jin, Li, '13], penalize the Boltzmann operator with a linear BGK operator (IMEX scheme)

$$
\frac{f_{i}^{\varepsilon, n+1}-f_{i}^{\varepsilon, n}}{\Delta t}+\frac{1}{\varepsilon} v \cdot \nabla_{x} f_{i}^{\varepsilon, n}=\frac{Q_{i}^{\varepsilon, n}-P_{i}^{\varepsilon, n}}{\varepsilon^{2}}+\frac{P_{i}^{\varepsilon, n+1}}{\varepsilon^{2}}
$$

BGK operator: $P_{i}^{\varepsilon}=\beta_{i}\left(M_{i}-f_{i}^{\varepsilon}\right)$, where M_{i} is the global Maxwellian Issue: discretization of the transport term \Rightarrow restrictive CFL condition
(2) Moment method, in order to mimic the proof of the formal convergence

- Same ansatz:

$$
f_{i}^{\varepsilon}(t, x, v)=n_{i}^{\varepsilon}(t, x)\left(\frac{m_{i}}{2 \pi k_{B} T}\right)^{1 / 2} \exp \left\{-m_{i} \frac{\left|v-\varepsilon u_{i}^{\varepsilon}(t, x)\right|^{2}}{2 k_{B} T}\right\}
$$

- Computation of the moments

Description of the 1D scheme

$$
\begin{gathered}
\partial_{t} n_{i}^{\varepsilon}+\partial_{x} J_{i}^{\varepsilon}=0 \\
\varepsilon^{2} m_{i}\left(\partial_{t} J_{i}^{\varepsilon}+\partial_{x}\left(\frac{\left(J_{i}^{\S}\right)^{2}}{n_{i}^{\varepsilon}}\right)\right)+k_{B} T \partial_{x} n_{i}^{\varepsilon}=\sum_{k \neq i} \mu_{i k}\left(n_{i}^{\varepsilon} J_{k}^{\varepsilon}-n_{k}^{\varepsilon} J_{i}^{\S}\right)
\end{gathered}
$$

- Choice: $n_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}=\left(J_{i}^{\varepsilon}\right)^{2} / n_{i}^{\varepsilon}$ for $n_{i}^{\varepsilon} \neq 0$
- Implicit treatment of the linear and the Maxwell-Stefan terms (in red)
- $\Delta t, \Delta x>0$: time and space steps, $\lambda=\Delta t / \Delta x$
- $n_{i, j}^{n} \approx n_{i}^{\varepsilon}(n \Delta t, j \Delta x), J_{i, j \frac{1}{2}}^{n} \approx J_{i}^{\xi}\left(n \Delta t,\left(j+\frac{1}{2}\right) \Delta x\right)$
- Dirichlet boundary conditions on the fluxes

Description of the 1D scheme

$$
\begin{aligned}
\partial_{t} n_{i}^{\varepsilon}+\partial_{x} J_{i}^{\varepsilon} & =0 \\
\varepsilon^{2} m_{i}\left(\partial_{t} J_{i}^{\varepsilon}+\partial_{x}\left(\frac{\left(J_{i}^{\varepsilon}\right)^{2}}{n_{i}^{\varepsilon}}\right)\right)+k_{B} T \partial_{x} n_{i}^{\varepsilon} & =\sum_{k \neq i} \mu_{i k}\left(n_{i}^{\varepsilon} J_{k}^{\varepsilon}-n_{k}^{\varepsilon} J_{i}^{\delta}\right)
\end{aligned}
$$

- Choice: $n_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}=\left(J_{i}^{\varepsilon}\right)^{2} / n_{i}^{\varepsilon}$ for $n_{i}^{\varepsilon} \neq 0$
- Implicit treatment of the linear and the Maxwell-Stefan terms (in red)
$\Rightarrow \Delta t, \Delta x>0$: time and space steps, $\lambda=\Delta t / \Delta x$ $n_{i, j}^{n} \approx n_{i}^{\varepsilon}(n \Delta t, j \Delta x), J_{i, j+\frac{1}{2}}^{n} \approx J_{i}^{\xi}\left(n \Delta t,\left(j+\frac{1}{2}\right) \Delta x\right)$
- Dirichlet boundary conditions on the fluyes
- taken into account via ghost cells: $J_{i,-\frac{1}{2}}^{n+1}=J_{i, N-\frac{1}{2}}^{n+1}=0$

Description of the 1D scheme

$$
\begin{aligned}
\partial_{t} n_{i}^{\varepsilon}+\partial_{x} J_{i}^{\varepsilon} & =0 \\
\varepsilon^{2} m_{i}\left(\partial_{t} J_{i}^{\varepsilon}+\partial_{x}\left(\frac{\left(J_{i}^{\varepsilon}\right)^{2}}{n_{i}^{\varepsilon}}\right)\right)+k_{B} T \partial_{x} n_{i}^{\varepsilon} & =\sum_{k \neq i} \mu_{i k}\left(n_{i}^{\varepsilon} J_{k}^{\varepsilon}-n_{k}^{\varepsilon} J_{i}^{\delta}\right)
\end{aligned}
$$

- Choice: $n_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}=\left(J_{i}^{\varepsilon}\right)^{2} / n_{i}^{\varepsilon}$ for $n_{i}^{\varepsilon} \neq 0$
- Implicit treatment of the linear and the Maxwell-Stefan terms (in red)
- $\Delta t, \Delta x>0$: time and space steps, $\lambda=\Delta t / \Delta x$
- $n_{i, j}^{n} \approx n_{i}^{\varepsilon}(n \Delta t, j \Delta x), J_{i, j+\frac{1}{2}}^{n} \approx J_{i}^{\varepsilon}\left(n \Delta t,\left(j+\frac{1}{2}\right) \Delta x\right)$
- Dirichlet boundary conditions on the fluxes
- taken into account via ghost cells: $J_{i,-\frac{1}{2}}^{n+1}=J_{i, N-\frac{1}{2}}^{n+1}=0$

Description of the 1D scheme

$$
\begin{aligned}
\partial_{t} n_{i}^{\varepsilon}+\partial_{x} J_{i}^{\varepsilon} & =0 \\
\varepsilon^{2} m_{i}\left(\partial_{t} J_{i}^{\varepsilon}+\partial_{x}\left(\frac{\left(J_{i}^{\varepsilon}\right)^{2}}{n_{i}^{\varepsilon}}\right)\right)+k_{B} T \partial_{x} n_{i}^{\varepsilon} & =\sum_{k \neq i} \mu_{i k}\left(n_{i}^{\varepsilon} J_{k}^{\varepsilon}-n_{k}^{\varepsilon} J_{i}^{\delta}\right)
\end{aligned}
$$

- Choice: $n_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}=\left(J_{i}^{\varepsilon}\right)^{2} / n_{i}^{\varepsilon}$ for $n_{i}^{\varepsilon} \neq 0$
- Implicit treatment of the linear and the Maxwell-Stefan terms (in red)
- $\Delta t, \Delta x>0$: time and space steps, $\lambda=\Delta t / \Delta x$
- $n_{i, j}^{n} \approx n_{i}^{\varepsilon}(n \Delta t, j \Delta x), J_{i, j+\frac{1}{2}}^{n} \approx J_{i}^{\varepsilon}\left(n \Delta t,\left(j+\frac{1}{2}\right) \Delta x\right)$
- Dirichlet boundary conditions on the fluxes
- taken into account via ghost cells: $J_{i,-\frac{1}{2}}^{n+1}=J_{i, N-\frac{1}{2}}^{n+1}=0$

Discretization of the equations

$$
\begin{aligned}
& n_{i, j}^{n+1}+\lambda\left(J_{i, j+\frac{1}{2}}^{n+1}-J_{i, j-\frac{1}{2}}^{n+1}\right)=n_{i, j}^{n} \\
&\left(-\Delta t \sum_{k \neq i} \mu_{i k} n_{k, j+\frac{1}{2}}^{n+1}-\varepsilon^{2} m_{i}\right) J_{i, j+\frac{1}{2}}^{n+1}+\Delta t n_{i, j+\frac{1}{2}}^{n+1} \sum_{k \neq i} \mu_{i k} J_{k, j+\frac{1}{2}}^{n+1} \\
&=k_{B} T \lambda\left(n_{i, j+1}^{n+1}-n_{i, j}^{n+1}\right)+\varepsilon^{2} m_{i}\left(\lambda R_{i, j+\frac{1}{2}}^{n}-J_{i, j+\frac{1}{2}}^{n}\right)
\end{aligned}
$$

- Choice of n_{i} at the center of the cells: $n_{i, j+\frac{1}{2}}^{n+1}:=\min \left\{n_{i, j}^{n+1}, n_{i, j+1}^{n+1}\right\}$ [Anaya, Bendahmane, Sepúlveda, '15]
Matrix form of the scheme
Vector of unknowns $\mathcal{Y}^{n}=\binom{\mathcal{N}^{n}}{\mathcal{J}^{n}} \in \mathbb{R}^{p(2 N+1)}$, where

$$
\mathcal{N}^{n}=\left(n_{1,0}^{n}, \cdots, n_{1, N}^{n}, \cdots, n_{p, 0}^{n}, \cdots, n_{p, N}^{n}\right)^{\top}, \quad \mathcal{J}^{n}=\left(J_{1, \frac{1}{2}}^{n}, \cdots, J_{p, N-\frac{1}{2}}^{n}\right)^{\top}
$$

The system becomes

$$
\mathbb{S}^{\varepsilon}\left(\mathcal{N}^{n+1}\right) \mathcal{Y}^{n+1}=\mathrm{b}^{n}
$$

Existence of a solution

$$
\mathbb{S}^{\varepsilon}\left(\mathcal{N}^{n+1}\right) \mathcal{Y}^{n+1}=\mathrm{b}^{n}, \text { where } \mathbb{S}^{\varepsilon}\left(\mathcal{N}^{n+1}\right)=\left[\begin{array}{cc}
\mathbb{I} & \mathbb{S}_{12} \\
\mathbb{S}_{21} & \mathbb{S}_{22}^{\varepsilon}\left(\mathcal{N}^{n+1}\right)
\end{array}\right]
$$

The matrix form of the system is solved numerically by a Newton method.

Fixed-point argument: existence of a solution \mathcal{Y}^{n+1} to the system

- Auxiliary system: replace the number densities \mathcal{N}^{n+1} by their positive parts $\tilde{\mathcal{N}}^{n+1}$
- $\mathbb{S}^{\varepsilon}\left(\tilde{\mathcal{N}}^{n+1}\right)$ is invertible

Existence of a solution

$$
\mathbb{S}^{\varepsilon}\left(\mathcal{N}^{n+1}\right) \mathcal{Y}^{n+1}=\mathrm{b}^{n}, \text { where } \mathbb{S}^{\varepsilon}\left(\mathcal{N}^{n+1}\right)=\left[\begin{array}{cc}
\mathbb{I} & \mathbb{S}_{12} \\
\mathbb{S}_{21} & \mathbb{S}_{22}^{\varepsilon}\left(\mathcal{N}^{n+1}\right)
\end{array}\right]
$$

The matrix form of the system is solved numerically by a Newton method.

Fixed-point argument: existence of a solution \mathcal{Y}^{n+1} to the system

- Auxiliary system: replace the number densities \mathcal{N}^{n+1} by their positive parts $\tilde{\mathcal{N}}^{n+1}$
- $\mathbb{S}^{\varepsilon}\left(\tilde{\mathcal{N}}^{n+1}\right)$ is invertible
- Write $\tilde{\mathcal{N}}^{n+1}=f\left(\tilde{\mathcal{N}}^{n+1}\right)$, with f continuous and compact
- Bound on any ξf, for $\xi \in[0,1]$, by using a L^{1}-estimate: $\left\|\tilde{\mathcal{N}}^{n+1}\right\|_{L^{1}} \leq\left\|\tilde{\mathcal{N}}^{n}\right\|_{L^{1}}$
- Schaefer's fixed-point theorem: existence of $\tilde{\mathcal{N}}^{n+1}$, and thus of $\mathcal{J}^{n+1}=g\left(\tilde{\mathcal{N}}^{n+1}\right)$

Existence of a solution

$$
\mathbb{S}^{\varepsilon}\left(\mathcal{N}^{n+1}\right) \mathcal{Y}^{n+1}=b^{n}, \text { where } \mathbb{S}^{\varepsilon}\left(\mathcal{N}^{n+1}\right)=\left[\begin{array}{cc}
\mathbb{I} & \mathbb{S}_{12} \\
\mathbb{S}_{21} & \mathbb{S}_{22}^{\varepsilon}\left(\mathcal{N}^{n+1}\right)
\end{array}\right]
$$

The matrix form of the system is solved numerically by a Newton method.

Fixed-point argument: existence of a solution \mathcal{Y}^{n+1} to the system

- Auxiliary system: replace the number densities \mathcal{N}^{n+1} by their positive parts $\tilde{\mathcal{N}}^{n+1}$
- $\mathbb{S}^{\varepsilon}\left(\tilde{\mathcal{N}}^{n+1}\right)$ is invertible
- Write $\tilde{\mathcal{N}}^{n+1}=f\left(\tilde{\mathcal{N}}^{n+1}\right)$, with f continuous and compact
- Bound on any ξf, for $\xi \in[0,1]$, by using a L^{1}-estimate: $\left\|\tilde{\mathcal{N}}^{n+1}\right\|_{L^{1}} \leq\left\|\tilde{\mathcal{N}}^{n}\right\|_{L^{1}}$
- Schaefer's fixed-point theorem: existence of $\tilde{\mathcal{N}}^{n+1}$, and thus of $\mathcal{J}^{n+1}=g\left(\tilde{\mathcal{N}}^{n+1}\right)$
- By nonnegativity, a solution to the auxiliary system is also solution of the initial system.

Parameters of the scheme and diffusion of two species

- 3 species: $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and CO_{2}, molar masses $M_{1}=2, M_{2}=28$ and $M_{3}=44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
- $B_{i j}$ computed from the binary diffusive coefficients: $B_{i j}=\frac{\left(m_{i}+m_{j}\right) k_{B} T}{4 \pi m_{i} m_{j} D_{i j}}$, rescaled by a factor 10^{5}
- $\Omega=[-1,1], \Delta t=\Delta x^{2}=10^{-4}$
- Diffusion of two species
- Diffusion of H_{2} and CO_{2} for $\varepsilon=10^{-2}$
- Plots of the concentrations for $t=0,10^{-2}, 10^{-1}, 1,10$

Cross-diffusion for mixtures

3 species test case, classical diffusion H_{2} and CO_{2}
$>N_{2}$, although being at equilibrium, moves (uphill diffusion)

- Diffusion barrier: classical diffusion takes over

Cross-diffusion for mixtures

- 3 species test case, classical diffusion H_{2} and CO_{2}
- N_{2}, although being at equilibrium, moves (uphill diffusion)
- Diffusion barrier: classical diffusion takes over

AP behavior

- Fixed discretization parameters for arbitrary small values of ε
- Convergence of the number densities to the solutions of Maxwell-Stefan

- Influence of the value of ε on the diffusion process (plot at $t=10^{-2}$)

Outline of the talk

(1) Introduction
(2) Moment method

- Moment method
- Asymptotic-Preserving numerical scheme
- Numerical results
(3) Perturbative method

4. Stiff dissipative hyperbolic formalism
(5) Conclusion and prospects

Perturbative method

$$
\varepsilon \partial_{t} f_{i}^{\varepsilon}+v \cdot \nabla_{x} f_{i}^{\varepsilon}=\frac{1}{\varepsilon} \sum_{k} Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)
$$

- Expansion around the global Maxwellian with zero bulk velocity (equilibrium) with number density n_{i}

$$
f_{i}^{\varepsilon}=n_{i} \mu_{i}+\varepsilon g_{i}^{\varepsilon}
$$

$$
\mu_{i}=\left(m_{i} / 2 \pi k_{B} T\right)^{d / 2} e^{-m_{i}|v|^{2} / 2 k_{B} T}
$$

- Moments

$$
J_{i}(t, x)=\frac{1}{\varepsilon} \int v f_{i}^{\varepsilon}(t, x, v) \mathrm{d} v=\int v g_{i}^{\varepsilon}(t, x, v) \mathrm{d} v
$$

- Mass conservation, order $\varepsilon: \partial_{t} n_{i}+\nabla_{x} \cdot J_{i}=0$
- Inject expansion in the Boltzmann equation, order ε^{0}

$$
\mu_{i} v \cdot \nabla_{x} n_{i}=\sum_{k} Q_{i k}\left(n_{i} \mu_{i}, g_{k}^{\varepsilon}\right)+Q_{k i}\left(g_{i}^{\varepsilon}, n_{k} \mu_{k}\right)=: \mathcal{L}_{i}\left(\mathbf{g}^{\varepsilon}\right),
$$

where $\mathbf{g}^{\varepsilon}=\left(g_{i}^{\varepsilon}\right)_{i} \rightsquigarrow$ defines the linearized Boltzmann operator $\mathbf{L}=\left(\mathcal{L}_{i}\right)_{i}$

- In a vectorial form, defining $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i}$ and $\mathbf{W}=\left(W_{i}\right)_{i}$

$$
\mathbf{W}=\mathbf{L}\left(\mathbf{g}^{\varepsilon}\right) \quad \underset{((t)}{\rightsquigarrow} \quad \mathbf{g}^{\varepsilon}=\mathbf{L}^{-1} \mathbf{W}
$$

- Inject this expression for g_{i}^{ε} in the definition of J_{i}

$$
J_{i}=\int v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} \mathrm{~d} v=\int n_{i} \mu_{i} v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i}\left(n_{i} \mu_{i}\right)^{-1} \mathrm{~d} v
$$

- With $\mathbf{C}_{i}=\left(\mu_{k} \vee \delta_{i k}\right)_{k}$, we get

$$
J_{i}=n_{i}\left\langle\mathrm{C}, \mathrm{~L}^{-1} \mathrm{~W}\right\rangle_{L^{2}\left((n \mu)^{-1 / 2}\right)}
$$

- \mathbf{L}^{-1} is self-adjoint on $(\operatorname{Ker} \mathbf{L})^{\perp}$. Let $\boldsymbol{\Gamma}$ be the projection of \mathbf{C} on $\operatorname{Ker} \mathbf{L}$. Thus

- Since $W_{j}=\mu_{j} v \cdot \nabla_{x} n_{j}=" \mathbf{C}_{j} \cdot \nabla_{x} n_{j} "$

Pick equation: $\mathrm{J}=-B(\mathrm{n}) \nabla_{\times} \mathrm{n}$

- In a vectorial form, defining $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i}$ and $\mathbf{W}=\left(W_{i}\right)_{i}$

$$
\mathbf{W}=\mathbf{L}\left(\mathbf{g}^{\varepsilon}\right) \quad \underset{(\not))^{\prime}}{\rightsquigarrow} \quad \mathbf{g}^{\varepsilon}=\mathbf{L}^{-1} \mathbf{W}
$$

- Inject this expression for g_{i}^{ε} in the definition of J_{i}

$$
J_{i}=\int v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} \mathrm{~d} v=\int n_{i} \mu_{i} v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i}\left(n_{i} \mu_{i}\right)^{-1} \mathrm{~d} v
$$

\Rightarrow With $\mathrm{C}_{i}=\left(\mu_{k} \vee \delta_{i k}\right)_{k}$, we get

- \mathbf{L}^{-1} is self-adjoint on $(\operatorname{Ker} \mathbf{L})^{\perp}$. Let $\mathbf{\Gamma}$ be the projection of \mathbf{C} on $\operatorname{Ker} \mathbf{L}$. Thus

- Since $W_{j}=\mu_{j} v \cdot \nabla_{x} n_{j}=" \mathbf{C}_{j} \cdot \nabla_{x} n_{j}{ }^{\prime}$

- In a vectorial form, defining $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i}$ and $\mathbf{W}=\left(W_{i}\right)_{i}$

$$
\mathbf{W}=\mathbf{L}\left(\mathbf{g}^{\varepsilon}\right) \quad \underset{((t)}{\rightsquigarrow} \quad \mathbf{g}^{\varepsilon}=\mathbf{L}^{-1} \mathbf{W}
$$

- Inject this expression for g_{i}^{ε} in the definition of J_{i}

$$
J_{i}=\int v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} \mathrm{~d} v=\int n_{i} \mu_{i} v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i}\left(n_{i} \mu_{i}\right)^{-1} \mathrm{~d} v
$$

- With $\mathbf{C}_{i}=\left(\mu_{k} v \delta_{i k}\right)_{k}$, we get

$$
J_{i}=n_{i}\left\langle\mathbf{C}, \mathbf{L}^{-1} \mathbf{W}\right\rangle_{L^{2}\left((n \mu)^{-1 / 2}\right)}
$$

- \mathbf{L}^{-1} is self-adjoint on $(\operatorname{Ker} \mathbf{L})^{\perp}$. Let $\boldsymbol{\Gamma}$ be the projection of \mathbf{C} on $\operatorname{Ker} \mathbf{L}$. Thus

- In a vectorial form, defining $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i}$ and $\mathbf{W}=\left(W_{i}\right)_{i}$

$$
\mathbf{W}=\mathbf{L}\left(\mathbf{g}^{\varepsilon}\right) \quad \underset{(\star)}{\leadsto} \quad \mathbf{g}^{\varepsilon}=\mathbf{L}^{-1} \mathbf{W}
$$

- Inject this expression for g_{i}^{ε} in the definition of J_{i}

$$
J_{i}=\int v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} \mathrm{~d} v=\int n_{i} \mu_{i} v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i}\left(n_{i} \mu_{i}\right)^{-1} \mathrm{~d} v
$$

- With $\mathbf{C}_{i}=\left(\mu_{k} v \delta_{i k}\right)_{k}$, we get

$$
J_{i}=n_{i}\left\langle\mathbf{C}, \mathbf{L}^{-1} \mathbf{W}\right\rangle_{L^{2}\left((n \mu)^{-1 / 2}\right)}
$$

- \mathbf{L}^{-1} is self-adjoint on $(\operatorname{Ker} \mathbf{L})^{\perp}$. Let $\boldsymbol{\Gamma}$ be the projection of \mathbf{C} on $\operatorname{Ker} \mathbf{L}$. Thus

$$
J_{i}=n_{i} \sum_{k}\left\langle\left[\mathbf{L}^{-1}(\mathbf{C}-\boldsymbol{\Gamma})\right]_{k}, W_{k}\right\rangle_{L^{2}\left((n \mu)^{-1 / 2}\right)}
$$

- Since $W_{j}=\mu_{j} v \cdot \nabla_{x} n_{j}={ }^{"} \mathbf{C}_{j} \cdot \nabla_{x} n_{j}{ }^{"}$
- In a vectorial form, defining $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i}$ and $\mathbf{W}=\left(W_{i}\right)_{i}$

$$
\mathbf{W}=\mathbf{L}\left(\mathbf{g}^{\varepsilon}\right) \quad \underset{(\star)}{\leadsto} \quad \mathbf{g}^{\varepsilon}=\mathbf{L}^{-1} \mathbf{W}
$$

- Inject this expression for g_{i}^{ε} in the definition of J_{i}

$$
J_{i}=\int v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} \mathrm{~d} v=\int n_{i} \mu_{i} v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i}\left(n_{i} \mu_{i}\right)^{-1} \mathrm{~d} v
$$

- With $\mathbf{C}_{i}=\left(\mu_{k} v \delta_{i k}\right)_{k}$, we get

$$
J_{i}=n_{i}\left\langle\mathbf{C}, \mathbf{L}^{-1} \mathbf{W}\right\rangle_{L^{2}\left((n \mu)^{-1 / 2}\right)}
$$

- \mathbf{L}^{-1} is self-adjoint on $(\operatorname{Ker} \mathbf{L})^{\perp}$. Let $\boldsymbol{\Gamma}$ be the projection of \mathbf{C} on $\operatorname{Ker} \mathbf{L}$. Thus

$$
J_{i}=n_{i} \sum_{k}\left\langle\left[\mathbf{L}^{-1}(\mathbf{C}-\boldsymbol{\Gamma})\right]_{k}, W_{k}\right\rangle_{L^{2}\left((n \mu)^{-1 / 2}\right)}
$$

- Since $W_{j}=\mu_{j} v \cdot \nabla_{x} n_{j}=" \mathbf{C}_{j} \cdot \nabla_{x} n_{j} "$

$$
J_{i}=\sum_{k} \underbrace{n_{i}\left\langle\left[\mathbf{L}^{-1}(\mathbf{C}-\boldsymbol{\Gamma})\right]_{k}, \mathbf{C}_{k}\right\rangle_{L^{2}\left((n \mu)^{-1 / 2}\right)}}_{b_{i k}\left(n_{i}\right)} \nabla_{x} n_{k}
$$

\rightsquigarrow Fick equation: $\mathbf{J}=-B(\mathbf{n}) \nabla_{\times} \mathbf{n}$

Outline of the talk

1) Introduction

(2) Moment method

- Moment method
- Asymptotic-Preserving numerical scheme
- Numerical results
(3) Perturbative method

4 Stiff dissipative hyperbolic formalism
(5) Conclusion and prospects

Stiff dissipative model for mixtures

For any species i with density n_{i} and velocity \boldsymbol{u}_{i}, we write mass and momentum conservation

$$
(*)\left\{\begin{array}{l}
\partial_{t} n_{i}+\nabla_{\boldsymbol{x}} \cdot\left(n_{i} \boldsymbol{u}_{i}\right)=0, \\
\partial_{t}\left(n_{i} \boldsymbol{u}_{i}\right)+\nabla_{\boldsymbol{x}} \cdot\left(n_{i} \boldsymbol{u}_{i} \otimes \boldsymbol{u}_{i}\right)+\nabla_{x} n_{i}+\frac{1}{\varepsilon} R_{i}=0
\end{array}\right.
$$

- Ideal gas law for the partial pressure $P_{i}\left(n_{i}\right) \propto n_{i}$
- Relaxation term of Maxwell-Stefan's type: friction force exerted by the mixture on species i

$$
R_{i}=\sum_{k \neq i} a_{i k} n_{i} n_{k}\left(\boldsymbol{u}_{k}-\boldsymbol{u}_{i}\right)
$$

Using the formalism of Chen, Levermore, Liu, CPAM, '94

Obtain a reduced system when ε remains small

- Derive an approximation of the local equilibrium and its first-order correction
- Build a relevant entropy which ensures...
- ... the hyperbolicity of the local equilibrium approximation...
- ... and the dissipativity of its first-order correction

Maxwell-Stefan vs. Fick

Reduced system involving the bulk velocity \boldsymbol{u} for small ε

Let $n=\sum_{i} n_{i}$, and \boldsymbol{u} the mass-weighted averaged (aligned) velocity. System (*) formally reduces to

$$
\left\{\begin{array}{l}
\partial_{t} n_{i}+\nabla_{\boldsymbol{x}} \cdot\left(n_{i} \boldsymbol{u}-\varepsilon \sum_{k=1}^{p} \beta_{i k} \frac{\nabla_{x} n_{k}}{n_{k}}\right)=0 \\
\partial_{t}(n \boldsymbol{u})+\nabla_{\boldsymbol{x}} \cdot(n \boldsymbol{u} \otimes \boldsymbol{u})+\nabla_{\boldsymbol{x}} P=\mathbf{0}
\end{array}\right.
$$

where $P=\sum_{i} P_{i}\left(n_{i}\right)$ is the total pressure, and $\left(\beta_{i k}\right)$ are positive constants.

- Diffusion correction term of Fick's type (on the mass equation)
- Fick equations model mass diffusion in a continuous regime
- No viscosity term on the momentum equation (convective \gg diffusive fluxes)
- Maxwell-Stefan equations needed in a moderately rarefied regime

Conclusion and prospects

Conclusions

- Formal derivation of Maxwell-Stefan and Fick equations from the Boltzmann equation for mixtures in the diffusive regime
- Numerical scheme able to capture the Maxwell-Stefan diffusion asymptotic of Boltzmann equation for mixtures, via the moment method

Prospects

- AP property, higher space and velocity dimensions
- AP scheme for the full distribution function (without the ansatz)
- AP scheme for the Fick equations
- Numerical simulations for the stiff dissipative model
- Non isothermal setting

Thank you for your attention!

Nonnegativity of the concentrations

$$
\begin{aligned}
& c_{i, j}^{n+1}+\lambda\left(F_{i, j+\frac{1}{2}}^{n+1}-F_{i, j-\frac{1}{2}}^{n+1}\right)=c_{i, j}^{n} \\
& \left(-\Delta t \sum_{k \neq i} \mu_{i k} B_{i k} c_{k, j+\frac{1}{2}}^{n+1}-\varepsilon^{2} m_{i}\right) F_{i, j+\frac{1}{2}}^{n+1}+\Delta t c_{i, j+\frac{1}{2}}^{n+1} \sum_{k \neq i} \mu_{i k} B_{i k} F_{k, j+\frac{1}{2}}^{n+1} \\
& \\
& =k_{B} T \lambda\left(c_{i, j+1}^{n+1}-c_{i, j}^{n+1}\right)+\varepsilon^{2} m_{i}\left(\lambda R_{i, j+\frac{1}{2}}^{n}-F_{i, j+\frac{1}{2}}^{n}\right)
\end{aligned}
$$

Vectorial form of the equations, with \mathcal{S} the source term

$$
\begin{aligned}
& \partial_{t} \mathcal{C}=\partial_{x} \mathcal{F} \\
& \mathcal{A F}=\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}
\end{aligned}
$$

Nonnegativity of the concentrations II

$$
\begin{aligned}
& \partial_{t} \mathcal{C}=\partial_{x} \mathcal{F} \\
& \mathcal{A F}=\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}
\end{aligned}
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
- Nondiagonal terms of $\hat{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:
$\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0$.
\triangleright Diagonal terms of $\hat{\mathcal{A}}^{-1}$ are nonnegative
\Rightarrow Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative

Nonnegativity of the concentrations II

$$
\begin{aligned}
& \partial_{t} \mathcal{C}=\partial_{x} \mathcal{F} \\
& \tilde{\mathcal{A} \mathcal{F}}=\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}
\end{aligned}
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
- Nondiagonal terms of \mathcal{A}^{-1} contain $\mathcal{C}_{j+1 / 2}^{+}$
$\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0$.
\triangleright Diagonal terms of \hat{A}^{-1} are nonnegative
\Rightarrow Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative

Nonnegativity of the concentrations II

$$
\begin{aligned}
& \partial_{t} \mathcal{C}=\partial_{x} \mathcal{F} \\
& \tilde{\mathcal{A} \mathcal{F}}=\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}
\end{aligned}
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:
$\min \left(C_{j}^{+}, C_{j+1}^{+}\right)\left(C_{j+1}^{-}-C_{j}^{-}\right)=0$
- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
\Rightarrow Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative

Nonnegativity of the concentrations II

$$
\partial_{t} \mathcal{C}=\partial_{x}\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right)
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:
$\min \left(C_{j}^{+}, C_{j+1}^{+}\right)\left(C_{j+1}^{-}-C_{j}^{-}\right)=0$
- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative.

Nonnegativity of the concentrations II

$$
\partial_{t} \mathcal{C}=\partial_{x}\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right)
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts [Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of \mathcal{A}
- Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative

Nonnegativity of the concentrations II

$$
\left.<\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}>
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts [Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of \mathcal{A}
- Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative

Nonnegativity of the concentrations II

$$
\left.<\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}>
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
[Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

$$
\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0 .
$$

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative.

Nonnegativity of the concentrations II

$$
\left.<\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}>
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
[Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

$$
\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0 .
$$

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative

$$
\nabla \text { and for } \varepsilon \text { small enough, the } \mathcal{S} \text {-term is controlled by the previous one. }
$$

- Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative.

Nonnegativity of the concentrations II

$$
\left.<\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}>
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
[Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

$$
\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0 .
$$

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- We have $<\partial_{x} \mathcal{C}, \partial_{x} \mathcal{C}^{-}>\leq 0$,

Nonnegativity of the concentrations II

$$
\left.<\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}>
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
[Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

$$
\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0 .
$$

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- We have $<\partial_{x} \mathcal{C}, \partial_{x} \mathcal{C}^{-}>\leq 0$,
- and for ε small enough, the \mathcal{S}-term is controlled by the previous one.

Nonnegativity of the concentrations II

$$
\left.<\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}>
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
[Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

$$
\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0 .
$$

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- We have $<\partial_{x} \mathcal{C}, \partial_{x} \mathcal{C}^{-}>\leq 0$,
- and for ε small enough, the \mathcal{S}-term is controlled by the previous one.
- Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative.

A posteriori validation of the assumptions

Smallness of the source terms $\varepsilon^{2} \mathcal{S}$

- Numerically, uniform boundedness w. r. t. ε

Closure relation for Maxwell-Stefan

- Numerically, $\sum_{i=1}^{p} c_{i}=1+O\left(\varepsilon^{2}\right)$

Closure relation (1)

Maxwell-Stefan equation $-\nabla \mathbf{n}=A(\mathbf{n}) \mathbf{J}$

- Summing over i the equations (A has rank $p-1$) implies that $\nabla_{x} \sum_{i} n_{i}=0$
- Ansatz (local Maxwellian) implies

$$
\int m_{i}|v|^{2} f_{i}^{\varepsilon} \mathrm{d} v=3 k_{B} T n_{i}^{\varepsilon}+o(\varepsilon), \quad \int m_{i}|v|^{2} v f_{i}^{\varepsilon} \mathrm{d} v=5 \varepsilon k_{B} T J_{i}^{\varepsilon}+o(\varepsilon)
$$

- Moment of order 2 (order ε^{1}), summing over i, and taking the limit $\varepsilon \rightarrow 0$

$$
3 \partial_{t} \sum_{i} n_{i}+5 \nabla_{x} \cdot \sum_{i} J_{i}=0,
$$

where the collision operator disappears by symmetry when summing over i.

- Combining with mass conservation implies

$$
\partial_{t} \sum_{i} n_{i}=\nabla_{x} \cdot \sum_{i} J_{i}=0
$$

- Constant total number of molecules $\sum_{i} n_{i}$
- Compatible with equimolar diffusion $\sum_{i} J_{i}(t, x)=0$

Closure relation (2)

Fick equation $\mathbf{J}=-B(\mathbf{n}) \nabla \mathbf{n}$

- Summing over i the equations (B has rank $p-1$) implies that $\sum_{i} m_{i} J_{i}=0$
- Inversion giving the perturbation \mathbf{g}^{ε} (relation (\star)) only valid if the RHS $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i} \in(\operatorname{Ker} \mathbf{L})^{\perp}$.
- Ker \mathbf{L} spanned by $\left(\sqrt{n_{i}} \mu_{i} \mathbf{e}_{i}\right)_{i}, m_{i} n_{i} \mu_{i} v, m_{i} n_{i} \mu_{i}|v|^{2}$
- Orthogonality

$$
0=\sum_{i} \int \mu_{i} v \cdot \nabla_{x} n_{i} m_{i} v \mathrm{~d} v=\nabla_{\times} \sum_{i} m_{i} n_{i}
$$

- Mass conservation for each species implies (when summing with weights m_{i})

$$
0=\frac{\mathrm{d}}{\mathrm{dt}} \int \sum_{i} m_{i} n_{i} \mathrm{~d} x
$$

- Constant mass $\sum_{i} m_{i} n_{i}$

Steps of the computations

- Internal energy $E_{i}^{\prime \prime}\left(\rho_{i}\right)=P_{i}^{\prime}\left(\rho_{i}\right) / \rho_{i}$
- (Strictly convex) entropy $\eta=\sum_{j=1}^{p} \frac{1}{2} \rho_{j} \boldsymbol{u}_{j}^{2}+E_{j}\left(\rho_{j}\right)$
- $(p+d)$ independent conserved quantities : $\left[\rho_{1}, \cdots, \rho_{p}, \sum_{j=1}^{p} \rho_{j} \boldsymbol{u}_{j}\right]$
- Equilibrium: $\left[\rho_{1}, \cdots, \rho_{p}, \rho_{1} \boldsymbol{u}, \cdots, \rho_{\rho} \boldsymbol{u}\right]$ for some \boldsymbol{u}

Formal expansion around the equilibrium \& linearization

\rightsquigarrow expression of the correction provided (pseudo-)inversion of "the gradient of the relaxation term", involving the "flux terms"

$$
\sum_{j=1}^{p} \alpha_{i j} \frac{X_{j}}{\rho_{j}}=\nabla_{x} P_{i}\left(\rho_{i}\right)-\frac{\rho_{i}}{\rho} \nabla_{x} P
$$

with $\rho=\sum_{i} \rho_{i}, P=\sum_{i} P_{i}$
\rightsquigarrow equation on the conserved quantities with the correction term

Steps of the computations

- Internal energy $E_{i}^{\prime \prime}\left(\rho_{i}\right)=P_{i}^{\prime}\left(\rho_{i}\right) / \rho_{i}$
- (Strictly convex) entropy $\eta=\sum_{j=1}^{p} \frac{1}{2} \rho_{j} \boldsymbol{u}_{j}^{2}+E_{j}\left(\rho_{j}\right)$
- $(p+d)$ independent conserved quantities : $\left[\rho_{1}, \cdots, \rho_{p}, \sum_{j=1}^{p} \rho_{j} \boldsymbol{u}_{j}\right]$
- Equilibrium: $\left[\rho_{1}, \cdots, \rho_{p}, \rho_{1} \boldsymbol{u}, \cdots, \rho_{\rho} \boldsymbol{u}\right]$ for some \boldsymbol{u}

Formal expansion around the equilibrium \& linearization

\rightsquigarrow expression of the correction provided (pseudo-)inversion of "the gradient of the relaxation term", involving the "flux terms"

$$
X_{i}=\sum_{j=1}^{p} \frac{\beta_{i j}}{\rho_{j}}\left(\nabla_{x} P_{j}\left(\rho_{j}\right)-\frac{\rho_{j}}{\rho} \nabla_{x} P\right)
$$

with $\rho=\sum_{i} \rho_{i}, P=\sum_{i} P_{i}$
\rightsquigarrow equation on the conserved quantities with the correction term

Justification of the Ansatz for the Maxwell-Stefan equations

In a moderately rarefied regime (not so dominant collision process)

- Significant deviation from local equilibrium described by the moment method
- Moment method: approach to compute Galerkin solutions to the Boltzmann equation
[Levermore, JSP '96]
(1) First finite dimensional subspace $\mathbb{M}_{0}=\operatorname{Ker} Q$ spanned by e_{1}, \cdots, e_{p}, [$m_{1} v, \cdots, m_{p} v$] and $\left[m_{1} v^{2}, \cdots, m_{p} v^{2}\right.$]
\rightsquigarrow equilibrium with one bulk velocity
(2) Second finite dimensional subspace $\mathbb{M}_{1} \supset \mathbb{M}_{0}$ spanned by e_{1}, \cdots, e_{p}, $m_{1} v e_{1}, \cdots, m_{p} v e_{p}$ and $\left[m_{1} v^{2}, \cdots, m_{p} v^{2}\right]$
\rightsquigarrow local Maxwellian with different macroscopic velocities

