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© Introduction
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o Kinetic setting
@ Moment method
@ Towards an Asymptotic-Preserving scheme?
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Context of the study

» Non-reactive mixture of p monoatomic gases

» Isothermal setting T > 0 uniform and constant

v

2 different scales for the description of the mixture

» mesoscopic scale (kinetic model): species i described by its distribution
function fi(t, x, v)

» macroscopic scale: species i described by the physical observables
(concentration ¢i(t, x), velocity uj(t, x))

» Diffusive scaling: diffusion model at the limit

‘ Boltzmann equations ~~ Maxwell-Stefan equations

v

Study of the link between the two models: formal and theoretical convergence

» Numerical scheme which describes both scales?
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v

Kinetic setting

Elastic collision rules, for o € S9!

!/

v = (mjv + myve + my|v — vi|o)/(m; + mg),
vi = (mjv 4+ mev — mi|lv — vi|o)/(m; + my)

Boltzmann collision operator, for v € R
Qu(f, ) / Bi(v, va, o) [£(V) (V) — i(v)fi(v.)] dodv,
Rd Jsd—1

Cross sections Bix = By > 0 (Maxwell molecules)

Boltzmann equations for mixtures

P
3tf,-+v~VXﬁ-:ZQ,-k(ﬂ,fk), onR+><Q><Rd, 1<i<p
k=1
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Properties of the collision operator & Diffusive scaling

[DESVILLETTES, MONACO, SALVARANI, ’05]

» Equilibrium: Maxwellian with same bulk velocity and temperature

d/2 2
mj mi|v — u(t, x
M;(t, x, v) = ¢i(t, x) (27rk3 ) exp (_|2I<B(T)|>

» Conservation properties of the collision operator

/ Qi(f;, f)(v) mjdv = 0 and Qi(f, f)(v)mivdv =0, 1<ik<p.
RY RY
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Properties of the collision operator & Diffusive scaling

[DESVILLETTES, MONACO, SALVARANI, ’05]

» Equilibrium: Maxwellian with same bulk velocity and temperature

d/2 2
mj mi|v — u(t, x
M;(t, x, v) = ¢i(t, x) (27rk3 ) exp (_|2I<B(T)|>

» Conservation properties of the collision operator

/ Qi(f;, f)(v) mjdv = 0 and Qi(f, f)(v)mivdv =0, 1<ik<p.
RY RY

Diffusive scaling

Small mean free path and Mach number: Kn ~ Ma ~ ¢

1 P
O +v Vil = = QulfS, ),  1<i<p
T k=1
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Moment method

Moments of the distribution functions
» Concentration of species i

ci(t,x) = /]Rd f£(t, x, v)dv

» Flux of species 7

1
F£(t,x) = ci(t,x) us (t,x) = g/ v ££(t, x, v)dv
Rd

Ansatz

The distribution function of each species i is at a local Maxwellian state with a
small velocity of order ¢ for any (t,x) € Ry x Q

d/2 £ 2
. . m; _milv —eui (t, x)|
f;’ (t,X,V)—C,-(t,X) (27TkBT> exp< 2kBT

o’
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Macroscopic diffusion equations

1 .
€atfis+V'vxf;‘s = gzk:Qik(f;'E’ka)’ Vi

» Mass conservation: moment of order 0

g% (/R f,a(v)dv> 4V, (/Ravff(v)dv) —o,

where the collision term vanishes (conservation property).

Becs + V- FE = 0. )

» Momentum equation: moment of order 1

0 2 2 1 e fe
ea/R3vf;(v)dv+/R3V(v.Vxﬂ- (v)) dVZgZ/R3VQ"’<(ﬁ' ) (v)dv

ki

where the mono-species collision term vanishes (conservation property).
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Maxwell-Stefan equations

Computing all terms, introducing px the reduced mass

mi(0u(FF) + V- (FF @ 67)) 4+ ks TV = 3 B (6 Ff. — i F)
ki

» Matrix form of the Maxwell-Stefan equations (limit ¢ — 0)

ks TV,C = —A(C)F, J

where C = (¢;)1<i<p, F = (Fi)1<i<p and

A —,u,-kB,-kc,-, if i 75 k,
ik = 0 g
Z[;ﬁi pieBigce, if i = k.

» Need of a closure relation in the limit ¢ — 0, e.g. equimolar diffusion:
>.; ¢ constant (or >, F; = 0)
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Towards an Asymptotic-Preserving (AP) scheme?

» Numerical scheme capturing the behavior of both

» solutions to the Boltzmann equations in a rarefied regime

» solutions of the Maxwell-Stefan equations in the fluid regime,

with fixed discretization parameters (independent of £): AP behavior
[FILBET, JIN, "10], [JIN, "12], [JIN, SHI, ’10], [JIN, L1, '13]

Difficulties

» The collision (and the transport) term in the Boltzmann equation become
stiffer when ¢ — 0

» The Maxwell-Stefan equations are not invertible (closure relation)
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Towards an Asymptotic-Preserving (AP) scheme?

Ideas

@ Following [Jin, L1, ’13], penalize the Boltzmann operator with a linear BGK
operator (IMEX scheme)

f-_s,n+1 . f_e,n en P:n P;T.I‘H'l
5#+V.vxﬂ5’":Q’ . i + /5 ,

BGK operator: P7 = [3;(M; — £7), where M; is the global Maxwellian with

1

concentration ¢; and zero bulk velocity

Issue: discretization of the transport term = restrictive CFL condition

@ Moment method, in order to mimic the proof of the formal convergence
» Same ansatz:

E c m; \/? lv —euf(t,x)|?
fi (t,x,v) = ¢ (t,x) <27rkBT> eXP{_mi2kBT

» Computation of the moments
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Outline of the talk

© Numerical scheme
@ Description of the scheme
@ Existence of a solution
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Description of the scheme

Becs + O FE = 0
2m; (8tF,-5 -l—(‘)x(c,-s(u,-s)Z)) + ke Toc; = 3 uwBul(ci Fi — i Ff)
k#i

» 1D in space (and velocity)

» Dirichlet boundary conditions on the fluxes

>

>
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Description of the scheme

Bect + B FE =0

s%ﬂaﬁ+@6if»+hﬁmﬁzzyﬂﬁw$—§f)
i ki

» 1D in space (and velocity)

» Dirichlet boundary conditions on the fluxes

» Choice: cf(uf)? = (FF)?/cf for ¢ #0

| 4
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Description of the scheme

BecE + B FF =0

S%ﬂaﬁ+@CTFD+hﬁafzzyﬂﬁwﬁf¢ﬁ)

2

i ki

v

v

v

v

1D in space (and velocity)

Dirichlet boundary conditions on the fluxes
Choice: cf(uf)? = (FF)?/cf for ¢ #0

Implicit treatment of the linear and the Maxwell-Stefan terms (in red)
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Description of the scheme

BecE + B FF =0

2 (a7 +0u(ED)) 4 kaTorer - > k(i Fi — )

1D in space (and velocity)

Dirichlet boundary conditions on the fluxes

Choice: cf(uf)? = (FF)?/cf for c¢f #0

Implicit treatment of the linear and the Maxwell-Stefan terms (in red)

» At,Ax > 0: time and space steps, A = At/Ax
> . = cf(nAt, jAx), F 13~ Ff(nAt,(j + 3)Ax)

IsJ

Boundary conditions taken into account via ghost cells: F,.”J_rl F’",J\;l_i =0
Y]
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Discretization of the equations

PN~ F) =

( AtZﬂlkBlkck j+1 — € m)F,njtll + At Cn+1 Z,ulkBlk kj+1

k#i k;él
1 1
= kB TA(Cirj;l lnf ) + € m,(AR’ J+1 F7J+2)
» Choice of ¢; at the center of the cells: c”*jl := min {ct*, et
Matrix form of the scheme
Cn
Vector of unknowns Y" = <]__n> € RPN+ “\yhere
;
T
= (oo o= B> ol s 7= (e o)

The system becomes

SE(Cn+1)yn+1 —_ bn
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Existence of a solution

I S
e(rn+l n+1l __ pn e(nn+ly __ 12
SE(C™TH) YT =b", where S°(C™) = [Sm S§2(C"+1)}

The matrix form of the system is solved numerically by a Newton method. J

By a fixed-point argument, we can prove the existence of a solution })"*! to this
matrix form of the system.

» Auxiliary system: replace the concentrations C"t1 by their positive parts "t

S=(C"*1) is invertible

Write ™1 = £(C™1), with f continuous and compact

Bound on any &f, for € € [0,1], by using a L -estimate: [|C"|| 1 < [|C"||

Schaefer's fixed-point theorem: existence of C"*1, and thus of

j—_'nJrl _ g(én+1)_

» By nonnegativity, a solution to the auxiliary system is also solution of the
initial system.

vV V. VY
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Outline of the talk

© Numerical results
@ Diffusive behavior
@ AP behavior
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Parameters of the scheme and diffusion of two species

vVVvVVYyYy V VY

3 species: Hp, N> and CO;
Molar masses M; =2, M, =28 and M3 = 44 g - mol~!

Bjj computed from the binary diffusive coefficients: Bj

_ (mi+mj)kgT
- 47Tm,-mjD,-j

Rescaling of the cross sections by a factor 10°
Q=[-1,1, At = Ax?=10"*
Diffusion of two species
Diffusion of H, and CO, for ¢ = 1072
Plots of the concentrations for t = 0,1072,1071,1,10

>

>

Concentration ¢,

Concentration of H, evolving on time (« = 10%)

— \

i

Concentration ¢,

Concentration of CO, evolving on time (< = 10%)
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Cross-diffusion for mixtures

» 3 species test case, classical diffusion H, and CO,

Concentration of H, evolving on time (c =10%) Concentration of CO, evolving on time (c = 10%)

s

Concentration c.

0.4, -nn---lln-7
03

Concentration ¢

01 N N N
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Cross-diffusion for mixtures

» 3 species test case, classical diffusion H, and CO,
» N, although being at equilibrium, moves (uphill diffusion)
» Diffusion barrier: classical diffusion takes over

Concentration of N, evolving on time (c = 10%)
0.28 = T T T T T T T 0.1 T T

Flux of N, evolving on time (c =10?)

Concentration ¢,

04 06 08 1 &l 08 06 04 2 o 02
Space variable

Bérénice GREC Num. scheme for the diffusive limit of a kinetic model for mixtures ~ 14/19



Goncentration

AP behavior

» Fixed discretization parameters for arbitrary small values of
» Convergence of the concentrations to the solutions of Maxwell-Stefan

Gonvergence of the concentrations to thir Maxwell-Stefan lmits (w.rLc)

0
oy -
107 ws,
-l
s e et
10°
0*
10"
107
ver 0 0
10 10° 3

» Influence of the value of ¢ on the diffusion process (plot at t = 1072)

Goncentation of H, for diferent values of ¢ (102 eratons)

Goneentration of GO, for diferent values of ¢ (107 eratons)

Concentraton of N, for different valuos of ¢ (102 trations)

kY
k1

-

Concentration

o
Space variablo

Bérénice GREC

0 o
Space variable Spaco variable.
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Outline of the talk

@ Properties of the scheme
@ Nonnegativity of the concentrations
@ A posteriori validation of the assumptions
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Nonnegativity of the concentrations |

et METL - FIL) =y

( AtZM,kB,kck 1€ m)F,"JJ;l1 + At c"+:l Z,u,kB,kF o+
k#i k;él

= ks TA(CI Y — 1) +e2mi(ART +1 ~ Fige)

Vectorial form of the equations, with S the source term

atc = OX.F
./4./—" = axc aF 528
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Nonnegativity of the concentrations Il

8[-6 = 8X]:
AF = 8,C + €S

» Auxiliary equations: replace C by C* in A ~» A (invertible)
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Nonnegativity of the concentrations Il

0:C = Oy F
/Z(.F = axc + 528

» Auxiliary equations: replace C by C* in A ~ A (invertible)
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Nonnegativity of the concentrations Il

8tC = 8)(./—"
A]: = axc + EZS

» Auxiliary equations: replace C by Ct in A ~ A (invertible)

» Use the momentum equation in the mass equation
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Nonnegativity of the concentrations Il

8:C = 8, (,Zrl(axc + 523)) J

» Auxiliary equations: replace C by C* in A ~» A (invertible)

» Use the momentum equation in the mass equation
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Nonnegativity of the concentrations Il

8:C = B, (frl(axc + 523)) J

» Auxiliary equations: replace C by C* in A ~» A (invertible)
» Use the momentum equation in the mass equation

» Multiply by C™, integration by parts
[ANAYA, BENDAHMANE, SEPULVEDA, '15]
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Nonnegativity of the concentrations Il

<&C,CT >=< (A*1(8XC + 528)),8XC‘ > J

» Auxiliary equations: replace C by C* in A ~» A (invertible)
» Use the momentum equation in the mass equation

» Multiply by C™, integration by parts
[ANAYA, BENDAHMANE, SEPULVEDA, '15]
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Nonnegativity of the concentrations Il

<0C,C7 >=< (ﬁl*l(axc + 528)),8XC‘ > J

v

v

v

v

Auxiliary equations: replace C by Ct in A ~» A (invertible)
Use the momentum equation in the mass equation

Multiply by C~, integration by parts
[ANAYA, BENDAHMANE, SEPULVEDA, '15]

Nondiagonal terms of A~ contain CJ+1/2

min(C;",C41)(Cizy —Ci7) = 0.

J
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Nonnegativity of the concentrations Il

<0C,C7 >=< (A*I((?XC + 528)),8XC‘ > J

v

v

v

v

v

Auxiliary equations: replace C by Ct in A ~» A (invertible)
Use the momentum equation in the mass equation

Multiply by C~, integration by parts

[ANAYA, BENDAHMANE, SEPULVEDA, '15]
Nondiagonal terms of A~ contain 6111/2:
min(C;",C41)(Cizy —Ci7) = 0.

J

Diagonal terms of A ! are nonnegative
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Nonnegativity of the concentrations Il

<0C,C7 >=< (A*I((?XC + 528)),8XC‘ > J

v

v

v

v

v

Auxiliary equations: replace C by Ct in A ~» A (invertible)
Use the momentum equation in the mass equation

Multiply by C~, integration by parts
[ANAYA, BENDAHMANE, SEPULVEDA, '15]

Nondiagonal terms of A~ contain 6111/2:
min(C;",C41)(Cizy —Ci7) = 0.

J

Diagonal terms of A~ are nonnegative
» We have < 9:C,0:C~ ><0,
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Nonnegativity of the concentrations Il

<0C,C7 >=< (A*I((?XC + 528)),8XC‘ > J

v

v

v

v

v

Auxiliary equations: replace C by Ct in A ~» A (invertible)
Use the momentum equation in the mass equation

Multiply by C~, integration by parts
[ANAYA, BENDAHMANE, SEPULVEDA, '15]

Nondiagonal terms of A~ contain CJ+1/2

min(C;",C41)(Cizy —Ci7) = 0.

J

Diagonal terms of A~ are nonnegative
» We have < 9:C,0:C~ ><0,
» and for £ small enough, the S-term is controlled by the previous one.
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Nonnegativity of the concentrations Il

<0C,C7 >=< (A*I((?XC + 528)),8XC‘ > J

v

v

v

v

v

v

Auxiliary equations: replace C by Ct in A ~» A (invertible)
Use the momentum equation in the mass equation
Multiply by C~, integration by parts

[ANAYA, BENDAHMANE, SEPULVEDA, '15]

Nondiagonal terms of A~ contain CJ+1/2

min(C;",C41)(Cizy —Ci7) = 0.

J

Diagonal terms of A~ are nonnegative
» We have < 9:C,0:C~ ><0,
» and for £ small enough, the S-term is controlled by the previous one.

Thus < 0;C,C~ >< 0: C is nonnegative.
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A posteriori validation of the assumptions

Lz, norm of the global source term w.rt.e

Smallness of the source terms 28 ‘

» Numerically, uniform
boundedness w. r. t. ¢

‘ Closure relation for Maxwell-Stefan ‘
» Numerically, T
P _ 2
Yl 6 =1+ 0(%)
v
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Outline of the talk

© Conclusion and prospects
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Conclusion and prospects

Le
Conclusions

» Suitable numerical scheme able to capture the Maxwell-Stefan diffusion
asymptotic of Boltzmann equation for mixtures, via the moment method

> A priori nonnegativity of the concentrations, existence of a solution to the
scheme

> A posteriori validation of the assumptions (closure relation, smallness
assumption)

Prospects
» Higher space and velocity dimensions
» [2 a priori estimates

» AP-property

» Uniqueness of the scheme
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Thank you for your attention!

‘ 3 b‘
1 ik o .
i whe (e | = ot il | e e
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Computations of the different terms

» Divergence term: use of the Ansatz, translation in v + parity argument

V- (/v@ Vf’ﬁ(v)dv) x V- (cf/ <v Qv+ U ® uis>em,-|v|2/2deV>

kT
= FVC,E + Ezv : (C,'EU;;'s ® U,E)
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Computations of the different terms

» Divergence term: use of the Ansatz, translation in v + parity argument

V- (/v@ Vf’ﬁ(v)dv) x V- (cf/ <v>< v+52u,-5 ® uis>em,-|v|2/2deV>

kT
= —Vcf +£2V- (cfuf ® uf)

mj

» Collision term: explicit computations or algebraic arguments [Boupin, G.,
SALVARANI, '15], [HUTRIDURGA, SALVARANI, '17], [BOUDIN, G., PAVAN, ’17]

» For Maxwell molecules: weak form, collision rules, symmetry and parity
arguments:

/ VQulfE, E)(v) dv =

In terms of macroscopic quantities

1 27ka||b,"||L1
=Y [vouf fwar =3 TP (¢ - cicrur)

P poT Ay

My

m/b;k(cose) e (Ve —v+|v—wvlo)dodv.dv

D!
U
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