

Cubic Equations of State for Multiphase Flows

MAP5
Université cors

Gloria Faccanoni ¹, Bérénice Grec ²
(1) Université de Toulon, IMATH, (2) Université Paris Cité, CNRS, MAP5, F-75006 Paris

Framework

The dynamical evolution of a fluid is determined by the principles of conservation of mass, momentum and energy. To obtain a complete description, the conservation laws must be supplemented with constitutive relations to characterize the material properties of the fluid. The thermodynamic properties of a material are given in a relation called *equation* of State (EOS). Thermodynamics imposes mathematical constraints on the EOS.

1. Incomplete cubic equation of state

(Four parameters) incomplete cubic EOS:

$$p(\tau, T) = \frac{rT}{\tau - b} - \frac{a\alpha(T)}{\tau(\tau + d) + c(\tau - d)} \tag{1}$$

where

 $\succ \tau$ specific volume

> a, b, c, d parameters

ightharpoonup T temperature

ightharpoonup r related to the universal gas constant

ightharpoonup p pressure

 $ightharpoonup \alpha(T)$ satisfies: $\alpha \in \mathcal{C}^2$ and $\alpha(T) \geq 0$, $\alpha(1) = 1$, $\alpha'(T) \leq 0$, $\alpha''(T) \geq 0$, $\alpha'''(T) \leq 0$.

Two important classes of cubic EOS, covering significant behaviors of such EOS:

Van der Waals (VdW)

Clausius (Berthelot $\delta = 0$)

$$p(\tau, T) = \frac{rT}{\tau - b} - \frac{a}{\tau^2}$$

$$p(\tau,T) = \frac{rT}{\tau-b} - \frac{a}{T(\tau+\delta)^2} \quad \text{with } \delta \stackrel{\text{def}}{=} \frac{c+d}{2}$$

Other well-known classes of EOS are included in the general form:

- ightharpoonup Peng-Robinson class with c=d=b
- ightharpoonup (Soave-)Redlich-Kwong class with $(\alpha(T) \simeq (C-\sqrt{T})^2)$, c=0, d=b
- ightharpoonup Patel-Teja class with d=b

2. Construction of a complete cubic EOS using the variables (τ,T)

- \blacktriangleright We search for the specific internal energy e as a function of τ and T
- ightharpoonup Denoting s the entropy, we differentiate the Gibbs relation $\mathrm{d}e=T\mathrm{d}s-p\mathrm{d} au$ w.r.t. au and obtain, using a Maxwell relation

$$\left. \frac{\partial e}{\partial \tau} \right|_T = T \left. \frac{\partial s}{\partial \tau} \right|_T - p = T \left. \frac{\partial p}{\partial T} \right|_\tau - p$$

- ightharpoonup Specific heat capacity at constant volume $c_v \stackrel{\text{def}}{=} \frac{\partial e}{\partial T}\Big|_{\tau}$
- ightharpoonup e(au,T) being an exact differential form, the equality of the mixed partial derivatives leads to a compatibility condition

$$\left. \frac{\partial c_v}{\partial \tau} \right|_T = T \left. \frac{\partial^2 p}{\partial T^2} \right|_{\tau} \tag{2}$$

ightharpoonup Compute c_v by integration of (2)

$$c_{v}(\tau, T) = \operatorname{fct}(T) + \int_{\tau_{c}}^{\tau} T \frac{\partial^{2} p(\sigma, T)}{\partial T^{2}} \bigg|_{\sigma} d\sigma$$

ightharpoonup Incomplete EOS \Longrightarrow free dependence of the integration "constant" fct w.r.t. T In this work, independent of T: fct $(T_c)=c_{v,c}$ (simplest choice) for both EOS

$$c_v(\tau, T) = c_{v,c} \qquad c_v(\tau, T) = c_{v,c} + \frac{2a}{T^2} \left(\frac{1}{\tau + \delta} - \frac{1}{\tau_c + \delta} \right)$$

ightharpoonup e is obtained by integrating the definition of c_v w.r.t. T:

$$e(\tau, T) = e_c + (T - T_c)c_{v,c} - a\left(\frac{1}{\tau} - \frac{1}{\tau_c}\right)$$

$$e(\tau, T) = e_c + (T - T_c)c_{v,c} - 2a\left(\frac{1}{\tau + \delta} - \frac{1}{\tau_c + \delta}\right)\left(\frac{2}{T} - \frac{1}{T_c}\right)$$

ightharpoonup Possibility to write $e(\tau,T)$ for general cubic EOS (1).

3. Use of the complete cubic EOS in CFD

➤ In compressible flow models, knowledge of the speed of sound is fundamental:

$$c^{2}(\tau,T) = -\tau^{2} \left[\frac{\partial p}{\partial \tau} \Big|_{T} - \left(\frac{\partial p}{\partial T} \Big|_{\tau} \right)^{2} \frac{T}{c_{v}(\tau,T)} \right]$$

- ightharpoonup Changing the thermodynamic variables to (au,p):
 - **→ Analytic inversion of the temperature** possible for both EOS

$$T(\tau, p) = \frac{(p\tau^2 + a)(\tau - b)}{r\tau^2}$$

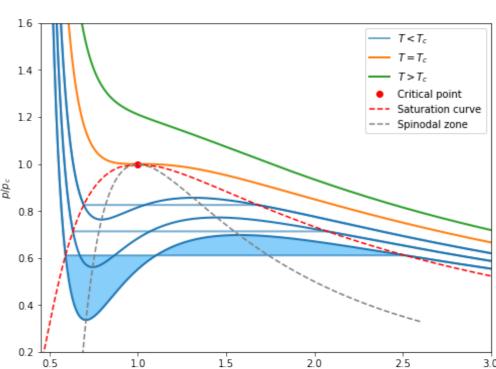
$$T(\tau,p) = \frac{p(\tau-b)}{2r} + \frac{\mathfrak{D}}{2r(\tau+\delta)} \text{ where } \mathfrak{D} \stackrel{\text{def}}{=} \sqrt{(\tau-b)\Big(p^2(\tau+\delta)^2(\tau-b) + 4ar\Big)}$$

Problematic inversion for complicated functions lpha(T).

- ightharpoonup It allows to define $\tilde{e}(\tau,p)\stackrel{\text{def}}{=} e(\tau,T(\tau,p))$ (*)
- > For asymptotic models dedicated to the low Mach number regime, explicit expression of $h(\tau,p)$ and its derivative $\partial_{\tau}h(\tau,p)$

4. Maxwell construction for determining the saturation values

① For an incomplete cubic EOS $p(\tau,T)$, the isotherm curves are as on the figure below:



ightharpoonup The critical point (τ_c, T_c, p_c) satisfies

$$p_c = p(\tau_c, T_c), \quad \frac{\partial p}{\partial \tau} \Big|_{T_c} (\tau_c, T_c) = \frac{\partial^2 p}{\partial \tau^2} \Big|_{T_c} (\tau_c, T_c) = 0.$$
 (3)

> For $T < T_c$, there is a (spinodal) zone where the pressure is increasing: complex valued speed of sound

ightharpoonup Maxwell equal area construction: for any fixed $p_* < p_c$, there is a temperature range for which this pressure is associated with three volumes; a gas phase and a liquid phase can coexist.

For any fixed p_* , we compute the saturation values τ^s_{ℓ} , τ^s_{ℓ} , T^s s.th.

$$p(\tau_{\ell}^{s}, T^{s}) = p_{*}, \qquad p(\tau_{g}^{s}, T^{s}) = p_{*}, \qquad \int_{\tau_{\ell}^{s}}^{\tau_{g}^{s}} p(\tau, T^{s}) - p_{*} d\tau = 0.$$

- ightharpoonup For $au \leq au_{\mathbb{I}}^s$ (resp. $au \geq au_{\mathbb{I}}^s$): liquid (resp. vapour) pure phase.
- **2** The complete EOS $\tilde{e}(\tau,p)$ is defined piecewise using the saturation values:

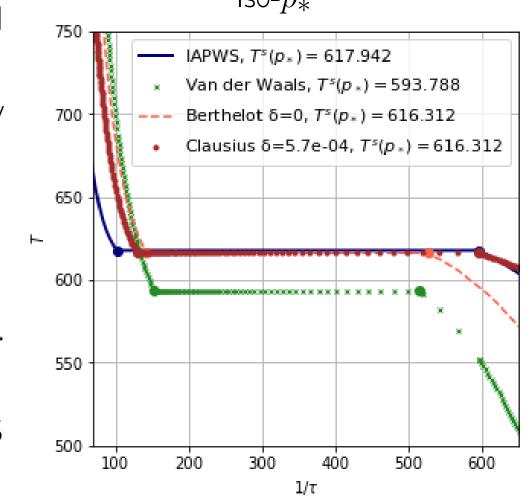
$$\tilde{e}(\tau,p) = \begin{cases} (\star) & \text{in pure phases} \\ \varphi(\tau,p)e(\tau_{\mathbb{I}}^s(p),T^s(p)) + (1-\varphi(\tau,p))e(\tau_{\mathfrak{g}}^s(p),T^s(p)) & \text{in the mixture} \end{cases}$$

with $\varphi(\tau,p)=rac{ au- au_g^s(p)}{ au_{\rm l}^s(p)- au_a^s(p)}.$ In this case, the speed of sound remains positive.

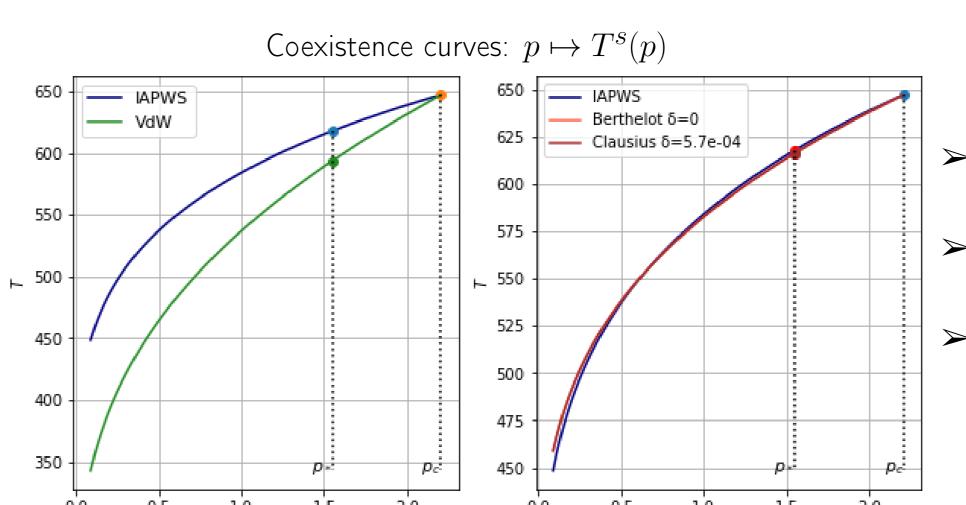
5. Parameter fitting for water at fixed pressure $p_{st} = 155$ bar

Solve the system (3) at the experimental critical values (i.e. $p_c = p_{c, exp}$, $T_c = T_{c, exp}$, $\tau_c = \tau_{c, exp}$)

- For the VdW law (and the Berthelot one), the system is overdetermined (only 2 parameters a, b):
- ightharpoonup Relax the value of r: determine a, b, r instead of satisfying only two critical values
- ightharpoonup Gives optimal saturation values for any pressure close to p_c
- \triangleright For the Clausius EOS, 3 free parameters (a, b, δ) :
 - ightharpoonup Saturation values are not satisfying for the physical value of r
 - Relaxing r allows to find better saturation values (determining a, b, r for some adequate δ)
- \blacktriangleright Comparison of the saturation values for the different EOS with IAPWS data at $p=p_*$

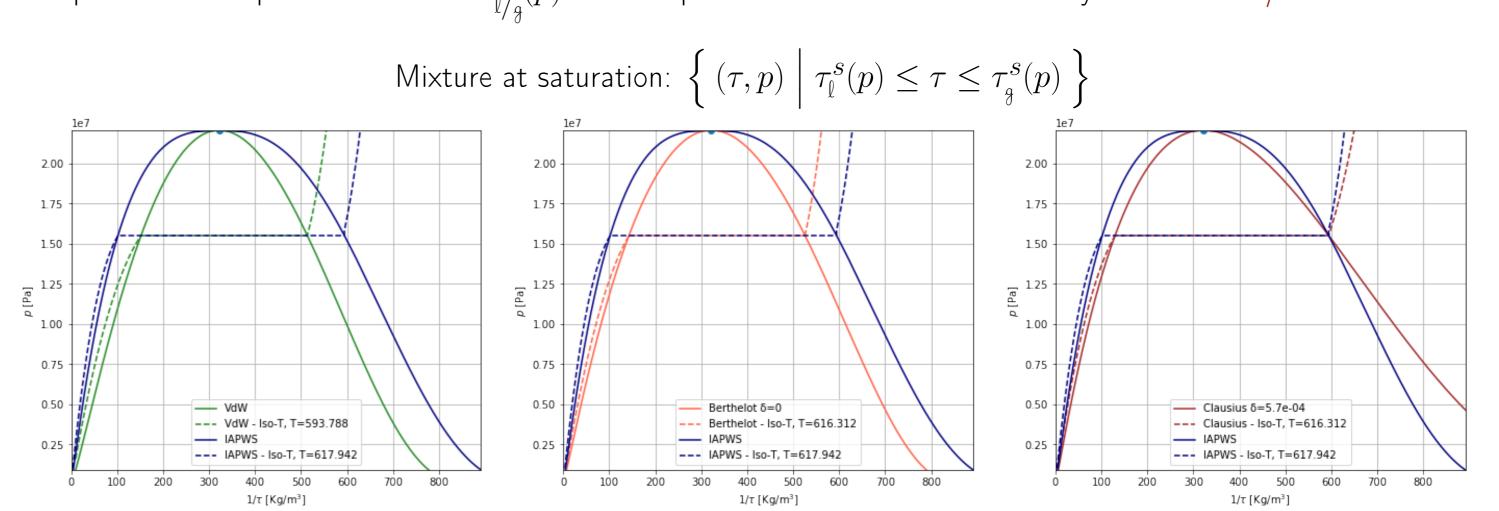


For these parameters (optimized for $p = p_*$), we obtain the following curves for variable pressures $p \le p_c$.



- ➤ Saturation temperature for different pressures (coexistence curves)
- \rightarrow Discrepancy of the VdW EOS w.r.t. IAPWS for pressures far from p_c
- > Very good accuracy of the Clausius/Berthelot EOS w.r.t. IAPWS (no visible influence of δ)

Comparison of the phase boundaries $au^s_{\ell/\mathfrak{q}}(p)$ w.r.t. experimental data: better accuracy for Berthelot/Clausius EOS



We also plot the isotherm $\tau \mapsto p(\tau, T^s(p_*))$ for each EOS. Since we fixed p_* , the level of the horizontal part of the curve is the same for any EOS. However, the value of $T^s(p_*)$ is different, and thus these isotherm curves do not all correspond to the same temperature.

References

- [1] G. Faccanoni and H. Mathis. Admissible equations of state for immiscible and miscible mixtures. ESAIM: Proceedings and Surveys, 66:1–21, 2019.
- [2] J. S. Lopez-Echeverry, S. Reif-Acherman, and E. Araujo-Lopez. Peng-Robinson equation of state: 40 years through cubics. Fluid Phase Equilibria, 447:39–71, sep 2017.
- [3] G. M. Kontogeorgis, R. Privat, and J.-N. Jaubert. Taking Another Look at the van der Waals Equation of State—Almost 150 Years Later. Journal of Chemical & Engineering Data, 64(11):4619—4637, aug 2019.
- [4] W. Wagner and H.-J. Kretzschmar. Tables of the properties of water and steam. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, pages 169–343, 2008.
- [5] G. Wilczek-Vera and J. H. Vera. Understanding cubic equations of state: A search for the hidden clues of their success. AIChE Journal, 61(9):2824–2831, mar 2015.