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Framework

The dynamical evolution of a fluid is determined by the principles of conservation of mass, momentum and energy. To
obtain a complete description, the conservation laws must be supplemented with constitutive relations to characterize
the material properties of the fluid. The thermodynamic properties of a material are given in a relation called equation
of State (EOS). Thermodynamics imposes mathematical constraints on the EOS.

1. Incomplete cubic equation of state

(Four parameters) incomplete cubic EOS:

p(τ, T ) =
rT

τ − b
− aα(T )

τ (τ + d) + c(τ − d)
(1)

where

â τ specific volume
â T temperature
â p pressure

â a, b, c, d parameters

â r related to the universal gas constant

â α(T ) satisfies: α ∈ C2 and α(T ) ≥ 0, α(1) = 1, α′(T ) ≤ 0, α′′(T ) ≥ 0, α′′′(T ) ≤ 0.

Two important classes of cubic EOS, covering significant behaviors of such EOS:

Van der Waals (VdW)

p(τ, T ) =
rT

τ − b
− a

τ2

Clausius (Berthelot δ = 0)

p(τ, T ) =
rT

τ − b
− a

T (τ + δ)2
with δ def=

c + d

2

Other well-known classes of EOS are included in the general form:
â Peng-Robinson class with c = d = b
â (Soave-)Redlich-Kwong class with (α(T ) ' (C −

√
T )2), c = 0, d = b

â Patel-Teja class with d = b

2. Construction of a complete cubic EOS using the variables (τ, T )

â We search for the specific internal energy e as a function of τ and T

â Denoting s the entropy, we differentiate the Gibbs relation de = Tds− pdτ w.r.t. τ and obtain, using a Maxwell
relation
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â Specific heat capacity at constant volume cv
def=
∂e

∂T

∣∣∣∣
τ

â e(τ, T ) being an exact differential form, the equality of the mixed partial derivatives leads to a compatibility
condition
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â Compute cv by integration of (2)

cv(τ, T ) = fct(T ) +
∫ τ

τc
T
∂2p(σ, T )

∂T 2
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σ

dσ

â Incomplete EOS =⇒ free dependence of the integration “constant” fct w.r.t. T
In this work, independent of T : fct(Tc) = cv,c (simplest choice) for both EOS

cv(τ, T ) = cv,c cv(τ, T ) = cv,c +
2a

T 2

(
1

τ + δ
− 1

τc + δ

)
â e is obtained by integrating the definition of cv w.r.t. T :

e(τ, T ) = ec + (T − Tc)cv,c − a
(
1

τ
− 1

τc

)

e(τ, T ) = ec + (T − Tc)cv,c − 2a

(
1
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)(
2

T
− 1

Tc

)
â Possibility to write e(τ, T ) for general cubic EOS (1).

3. Use of the complete cubic EOS in CFD

â In compressible flow models, knowledge of the speed of sound is fundamental:

c2(τ, T ) = −τ2
[
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]
â Changing the thermodynamic variables to (τ, p):

åAnalytic inversion of the temperature possible for both EOS

T (τ, p) =
(pτ2 + a) (τ − b)

rτ2

T (τ, p) =
p(τ − b)

2r
+

D

2r(τ + δ)
where D def=

√
(τ − b)

(
p2(τ + δ)2(τ − b) + 4ar

)
Problematic inversion for complicated functions α(T ).

å It allows to define ẽ(τ, p) def= e(τ, T (τ, p)) (?)

â For asymptotic models dedicated to the low Mach number regime, explicit expression of h(τ, p) and its derivative
∂τh(τ, p)

4. Maxwell construction for determining the saturation values

¬ For an incomplete cubic EOS p(τ, T ), the isotherm curves are as on the figure below:

â The critical point (τc, Tc, pc) satisfies

pc = p(τc, Tc),
∂p

∂τ
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(τc, Tc) = 0. (3)

â For T < Tc, there is a (spinodal) zone where the pressure is increasing:
complex valued speed of sound

âMaxwell equal area construction: for any fixed p∗ < pc, there is a temperature range for which this
pressure is associated with three volumes; a gas phase and a liquid phase can coexist.

For any fixed p∗, we compute the saturation values τs˜l , τ
s
`g , T

s s.th.

p(τs˜l , T
s) = p∗, p(τs`g , T

s) = p∗,
∫ τ s`g

τ s˜l

p(τ, T s)− p∗dτ = 0.

â For τ ≤ τs˜l (resp. τ ≥ τs`g ): liquid (resp. vapour) pure phase.

­ The complete EOS ẽ(τ, p) is defined piecewise using the saturation values:

ẽ(τ, p) =

{
(?) in pure phases
ϕ(τ, p)e(τs˜l (p), T

s(p)) + (1− ϕ(τ, p))e(τs`g (p), T s(p)) in the mixture

with ϕ(τ, p) =
τ−τ s`g (p)

τ s˜l (p)−τ
s`g (p)

. In this case, the speed of sound remains positive.

5. Parameter fitting for water at fixed pressure p∗ = 155 bar

Solve the system (3) at the experimental critical values (i.e. pc = pc,exp, Tc = Tc,exp, τc = τc,exp)

â For the VdW law (and the Berthelot one), the system is overdetermined
(only 2 parameters a, b):

åRelax the value of r: determine a, b, r instead of satisfying only
two critical values

å Gives optimal saturation values for any pressure close to pc
â For the Clausius EOS, 3 free parameters (a, b, δ):

å Saturation values are not satisfying for the physical value of r
å Relaxing r allows to find better saturation values (determining a, b, r
for some adequate δ)

â Comparison of the saturation values for the different EOS with IAPWS
data at p = p∗

Iso-p∗

For these parameters (optimized for p = p∗), we obtain the following curves for variable pressures p ≤ pc.

Coexistence curves: p 7→ T s(p)

â Saturation temperature for different
pressures (coexistence curves)

â Discrepancy of the VdW EOS w.r.t.
IAPWS for pressures far from pc

â Very good accuracy of the Clau-
sius/Berthelot EOS w.r.t. IAPWS (no
visible influence of δ)

Comparison of the phase boundaries τs˜l/`g(p) w.r.t. experimental data: better accuracy for Berthelot/Clausius EOS

Mixture at saturation:
{
(τ, p)

∣∣∣ τs˜l (p) ≤ τ ≤ τs`g (p)
}

We also plot the isotherm τ 7→ p(τ, T s(p∗)) for each EOS. Since we fixed p∗, the level of the horizontal part of the
curve is the same for any EOS. However, the value of T s(p∗) is different, and thus these isotherm curves do not all
correspond to the same temperature.
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