Derivation of a two-fluid flow model
from a kinetic formulation

An attempt to derive an immiscible two-fluid model

Bérénice Grec, Frédéric Hérau \& Hélène Mathis

Laboratoire de Mathématiques Jean Leray
MAP5, Université Paris Cité \& LMJL, Nantes Université
berenice.grec@u-paris.fr, frederic.herau@univ-nantes.fr, helene.mathis@univ-nantes.fr
Key-words: two-fluid flow, kinetic formulation, hydrodynamical limit, well-posedness

Context and motivation

Is it possible to derive a macroscopic model of immiscible two-fluid flows using a microscopic kinetic description?
Take advantage of the multi-species Boltzmann model [4]

- Mixture of gases (miscible phases by nature)
- Fluid equations accounting for
- Relaxation source terms towards thermodynamical equilibrium
- Velocity disequilibrium

Difficulties and aims
X How to model the immiscible behavior?
\times Well-posedness properties

Modelling: microscopic description of the two fluids

System of two types of fluids $i \in\{-1,+1\}$, of mass m_{i}, with strong repulsive force

- Density of matter $f_{i}(t, x, v)$ describes the species $i \in\{-1,+1\}$ where
$x \in \mathbb{R}_{2 \pi-\text { per }}^{d}$ or $x \in \Omega$ smooth bounded and connected, $v \in \mathbb{R}^{d}, t \in \mathbb{R}^{+}$
- Mixture and fluid quantities of matter
-Fluid densities $\rho_{i}(t, x)=\int_{v} f_{i}(t, x, v) \mathrm{d} v$ and momentum $\rho_{i} u_{j}(t, x)=\int_{v} v f_{j}(t, x, v) \mathrm{d} v$
- Mixture density $\rho(t, x)=\sum_{i= \pm 1} \rho_{i}(t, x)$ and momentum $\rho u(t, x)=\sum_{i= \pm 1} \rho_{i} u_{i}(t, x)$
- Mean field potential V

$$
V_{i}(t, x)=K(x) \star \rho_{i}(t, x)
$$

- K smooth nonnegative even function with compact support (ball of radius r)
\rightsquigarrow Repulsion from particles $i= \pm 1$ on $T=-i$

(KE)	$\partial_{t} f_{i}+v \cdot \nabla_{x} f_{i}-\frac{1}{\eta} \frac{1}{m_{i}} \nabla_{X} V_{T} \cdot \nabla_{v} f_{i}=\frac{1}{\varepsilon}\left(Q_{i j}\left(f_{i}, f_{i}\right)+Q_{i \lambda}\left(f_{j}, f_{T}\right)\right)$

- Fluid i strongly repelled by fluid $\bar{\tau}$ via the force term $-\frac{1}{\eta} \nabla_{X} V_{\uparrow}$, scaling parameter $\eta \ll 1$
- Attraction within each fluid is neglected (no additional difficulties)
- Knudsen number $\varepsilon \ll 1$

- Collision operator

- Bilinear collisional operators $Q_{i j}$ and $Q_{i j}$ of Boltzmann type with simple collision kernel

$$
Q_{i j}\left(f_{j}, f_{j}\right)(v)=\int_{\mathbb{R}^{3} \times \mathbb{S}^{2}} B_{i j}\left(\left|v-v^{*}\right|, \cos \theta\right)\left(f_{i}^{\prime} f_{j}^{\prime *}-f_{j} f_{j}^{*}\right) \mathrm{d} v_{*} \mathrm{~d} \sigma, \quad i, j \in\{-1,+1\}
$$

Cross section $B_{i j}\left(\left|v-v^{*}\right|, \cos \theta\right)=b_{i j}(\cos \theta)$ with an even $b_{i j} \in L^{1}$ [3]
($f_{j}^{\prime} f_{j}^{\prime *}-f_{j} f_{j}^{*}$) ensures conservation of moment and energy (weighted by fluid masses)

- Conservation within the fluid i : mass, momentum and energy

$$
\int_{V} Q_{i, i}\left(f_{i}, f_{i}\right)\left(\begin{array}{c}
1 \\
m_{i} v \\
m_{i} \frac{v^{2}}{2}
\end{array}\right) \mathrm{d} v=0 \quad i \in\{-1,+1\}
$$

- Interspecies momentum and energy conservation

$$
\forall i \in\{-1,+1\}, \quad \int_{V} Q_{i, \lambda}\left(f_{i}, f_{\bar{T}}\right) \mathrm{d} v=0 \quad \text { and } \quad \sum_{i= \pm 1} \int_{V} Q_{i, \lambda}\left(f_{i}, f_{i}\right)\binom{m_{i} v}{m_{i} \frac{v^{2}}{2}} \mathrm{~d} v=0
$$

Well-posedness properties

Consider a sufficiently smooth a priori solution of (KE), the energy

$$
E(\eta)=\sum_{i= \pm 1} \int_{x} \int_{v} \frac{1}{2} m_{i}|v|^{2} f_{i}(t, x, v) \mathrm{d} v \mathrm{~d} x+\frac{1}{\eta} \sum_{i= \pm 1} \frac{1}{2} \int_{x} V_{i}(t, x) \rho_{i}(t, x) \mathrm{d} x
$$

is conserved in time

- Idea of the proof

- Consider the first momentum of (KE) and conservation properties of the collisional operator
- Take advantage of the parity of K to handle the force term
$\checkmark E(\eta)$ is a sum of positive terms
x Further main assumption: $E(\eta)$ is bounded uniformly in η
- Entropy of the system

$$
H(f)=\sum_{i= \pm 1} \int_{x} \int_{V} f_{i} \ln \left(f_{i}\right) \mathrm{d} x \mathrm{~d} v
$$

- Entropy dissipation

$$
D_{i j}\left(f_{i}, f_{j}\right)(v)=\frac{1}{4} \int_{\mathbb{R}^{3} \times \mathbb{S}^{3}} b_{i j}(\cos \theta)\left(f_{i}^{\prime} f_{j}^{\prime *}-f_{i} f_{j}^{*}\right) \ln \left(\frac{f_{i}^{\prime} f_{j}^{\prime *}}{f_{i} f_{j}^{*}}\right) \mathrm{d} v_{*} \mathrm{~d} \sigma \geq 0, \quad i, j \in\{-1,+1\}
$$

It holds

$$
\frac{d}{d t} \sum_{i= \pm 1} \int_{x} \int_{V} f_{i} \ln \left(f_{i}\right) \mathrm{d} v \mathrm{~d} x=-\frac{1}{\varepsilon} \sum_{i= \pm 1} \int_{x} \int_{V}\left(D_{i i}\left(f_{i}, f_{i}\right)+D_{i \tau}\left(f_{i}, f_{T}\right)\right) \mathrm{d} v \mathrm{~d} x \leq 0
$$

Existence results

- For given ε and η, there exist (ultra) weak solutions of (KE) [5]
- Under the assumption of uniform boundedness of $E(\eta)$, energy conservation and entropy dissipation ensure compactness for the family of solutions of (KE) indexed by η and ε. In particular, when ε and/or $\eta \rightarrow 0$, hydrodynamical limit can be studied: under moment convergence assumptions, there exist very weak solutions of (KE) $[2,1]$

Macroscopic equations for a given η

Taking successive moments in v of the kinetic equation (KE), one exhibits the fluid equations of motion

- Fluid pressure p_{i} and heat flux $q_{i}: p_{i}^{(\ell k)}=\int_{v}\left(v^{(k)}-u_{i}^{(k)}\right)\left(v^{(\ell)}-u_{i}^{(\ell)}\right) f_{i}(t, x, v) \mathrm{d} v, \quad k, \ell \leq d$
-Fluid internal energy $e_{i}: \frac{1}{2} \int_{v} m_{i} \frac{v^{2}}{2} f_{i}(t, x, v) \mathrm{d} v=\frac{1}{2} m_{i} \frac{u_{i}^{2}}{2}+m_{i} \rho_{i} e_{i}$

- Mass equations			
	$\partial_{t} \rho_{i}+\operatorname{div}\left(\rho_{i} u_{i}\right)=0$		
- Momentum equations			
	$\partial_{t}\left(\rho_{i} u_{i}^{(\ell)}\right)+\sum_{k \leq d} \partial_{x_{k}}\left(\rho_{i} u_{i}^{(k)} u_{i}^{(\ell)}+p_{i}^{(k \ell)}\right)+\frac{1}{\eta m_{i}} \rho_{i} \partial_{x_{k}} v_{T}=\frac{m_{\bar{T}}}{m_{i}+m_{\bar{T}}} 2 \pi\left\\|b_{i \bar{T}}\right\\|_{L^{1}} \rho_{i} \rho_{\bar{T}}\left(u_{T}^{(\ell)}-u_{i}^{(\ell)}\right)$		
- Energy equations			
	$\begin{aligned} \partial_{t}\left(\frac{1}{2} \rho_{i} u_{i}^{2}+\rho_{i} e_{i}\right) & +\sum_{k \leq 3} \partial_{x_{k}}\left(u_{i}^{(k)}\left(\frac{1}{2} \rho_{i} u_{i}^{2}+\rho_{i} e_{i}\right)+\sum_{\ell \leq 3} u_{i}^{(\ell)} p_{i}^{(k \ell)}+q_{i}^{(k)}\right)+\frac{1}{\eta m_{i}} \rho_{i} u_{i}^{(k)} \partial_{x_{k}} v_{\bar{T}} \\ & =4 \pi \frac{\left\\|b_{i \overline{ }}\right\\|_{L^{1}} m_{\bar{T}}}{\left(m_{i}+m_{\bar{T}}\right)^{2}} \rho_{i} \rho_{\bar{T}}\left(\left(m_{\bar{\tau}} u_{T}+m_{i} u_{i}\right)\left(u_{T}-u_{i}\right)+2\left(m_{\bar{T}} e_{\bar{T}}-m_{i} e_{i}\right)\right) \end{aligned}$		

Perspectives

- Hydrodynamical limit (compressible Euler), Maxwellian ansatz (fixed η and $\varepsilon \rightarrow 0$):

$$
f_{i}(t, x, v)=\frac{m_{i}^{3 / 2} \rho_{i}(t, x)}{\left(2 \pi T_{i}\right)^{3 / 2}} e^{-m_{i}\left|v-u_{i}\right|^{2} / 2 T_{i}} \rightsquigarrow p_{i}^{(k \ell)}=0 \text { and } m_{i} p_{i}^{(\ell \ell)}=2 m_{i} \rho_{i} e_{i} / 3=\rho_{i} T_{i}
$$

- At the limit $\eta \rightarrow 0$, we have $\rho_{i}\left(K \star \rho_{T}\right)=0$ which means separation of fluids with a void zone of size $r \ll 1$. Study of the logistic equation (of each fluid, r is the size of support of K)
- Formal/rigorous limits with respect to the parameters ϵ, η and possibly r (depending of each others?)
- Long time behavior, other scalings (Navier-Stokes, incompressible Euler), boundary conditions..
- Making the link with Baer-Nunziato models, homogenization, patterns..

References

[1] C. Bardos, F. Golse, and C. D. Levermore. Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Comm. Pure Appl. Math., 46(5):667-753, 1993.
[2] C. Bardos, F. Golse, and D. Levermore. Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Statist. Phys., 63(1-2):323-344, 1991
[3] L. Boudin, B. Grec, and F. Salvarani. The Maxwell-Stefan diffusion limit for a kinetic model of mixtures. Acta Appl. Math., 136:79-90, 2015.
[4] L. Desvillettes, R. Monaco, and F. Salvarani. A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids, 24(2):219-236, 2005.
[5] R. J. DiPerna and P.-L. Lions. Global solutions of Boltzmann's equation and the entropy inequality. Arch. Rationa Mech. Anal., 114(1):47-55, 1991

