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Context of the study

I Non-reactive mixture of N monatomic gases, each with mass mi

I Isothermal setting T > 0 uniform and constant
I Two different scales for the description of the mixture

I mesoscopic scale (kinetic model): species i described by its distribution function fi (t, x , v)
I macroscopic scale: species i described by the physical observables

I number density ni (t, x)
I velocity ui (t, x)

 flux of species i : Ji (t, x) = ni (t, x)ui (t, x)
I vectorial quantities f = (f1, · · · , fN)ᵀ, n = (n1, · · · , nN)ᵀ, J = (J1, · · · , JN)ᵀ

I Link between the two scales in the diffusive scaling
I Formal and theoretical convergence
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Multispecies Boltzmann equation

∂t fi (t, x , v) + v · ∇fi (t, x , v) =
N∑

j=1
Qij(fi , fj), 1 ≤ i ≤ N

Collision rules & Collision operator

v ′ = (miv + mjv∗ + mj |v − v∗|σ) /(mi + mj), v ′∗ = (miv + mjv∗ −mi |v − v∗|σ) /(mi + mj)

Qij(f , g)(v) =
∫
R3×S2

Bij(v , v∗, σ) (f (v ′)g(v ′∗)− f (v)g(v∗)) dσ dv∗

Cross sections Bij = Bji > 0, hard or Maxwell potentials with Grad’s cutoff assumption

H-theorem1

Equilibrium distribution functions are the local Maxwellian with bulk velocity u

fi (t, x , v) = ni (t, x)
(

mi
2πkBT

)3/2
exp

(
−mi |v − u(t, x)|2

2kBT

)
1[Desvillettes, Monaco, Salvarani 2005]
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Multispecies Boltzmann equation

∂t fi (t, x , v) + v · ∇fi (t, x , v) =
N∑

j=1
Qij(fi , fj), 1 ≤ i ≤ N

Conservation properties of the Boltzmann equation∫
R3

Qij(f , g)(v) dv = 0,

mi

∫
R3

v Qij(f , g)(v) dv + mj

∫
R3

v Qji (g , f )(v) dv = 0.

Moments of the distribution function

ni =
∫
R3

fi dv ,

Ji = niui =
∫
R3

v fi dv .
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Scaled Multispecies Boltzmann equation

ε∂t fi (t, x , v) + v · ∇fi (t, x , v) = 1
ε

N∑
j=1

Qij(fi , fj), 1 ≤ i ≤ N

Diffusive scaling: Kn = Ma = ε� 1  cross-diffusion equations (isothermal setting)

Maxwell-Stefan equations

∂tni +∇ · Ji = 0,

∇ni =
N∑

j=1

1
Dij

(niJj − njJi ) .

Vectorial form

∇n = A(n)J

Fick equations

∂tni +∇ · Ji = 0,

Ji =
N∑

j=1
ϕij(n)∇nj .

Vectorial form  Parabolic form

J = F (n)∇n  ∂tn +∇ · (F (n)∇n) = 0

[Giovangigli 1991; Giovangigli 1999; Bothe 2011; Jüngel, Stelzer 2013]
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Emerging questions in this context

1 Cauchy problem for the cross-diffusion systems  in a perturbative setting1

2 Formal derivation of the macroscopic equations from the Boltzmann equation

 ansatz for the distribution function2

 expansion of the distribution function3

3 Rigorous convergence4

 perturbative setting
 analysis of the kinetic operator
 hypocoercivity estimates

4 Asymptotic-preserving numerical schemes

1[Bondesan, Briant 2022; Briant, G. 2023], 2[Levermore 1996; Müller, Ruggeri 1993],
3[Bardos, Golse, Levermore 1991; Bisi, Desvillettes 2014], 4[Bondesan, Briant 2021; Briant, G. 2023]
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Perturbative Cauchy theory for the Fick equations I

∂tn +∇ · (F (n)∇n) = 0, ntot =
∑

i
ni = cst.

I Decomposition of the matrix F (n) = D(n)F̆ (n), with D(n) = Diag(n).
I Kernel of F̆ : Span(nm) Notation: nm = (n1m1, · · · , nNmN )ᵀ

I Outside its kernel, the matrix F̆ is strictly negative as long as n > 0.
I Perturbative solution n(t, x) = n̄ + ñ(t, x), with n̄ cst.
I Assume n(0, x) > C > 0 and ñ(0, x) small enough in H2

Proposition
Under suitable assumptions on the matrix F (n)

I a perturbative solution of the Fick equation satisfies n > C > 0
I the perturbation ‖ñ‖H2 decays exponentially in time with an explicit decay rate.

I Perturbed equation Notation: D̄ = D(n̄), D̃ = D(ñ)

∂t ñ +∇ · (D̄F̆ (n)∇ñ) = −∇ · (D̃F̆ (n)∇ñ),
∑

i
ñi = 0.
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Perturbative Cauchy theory for the Fick equations II

∂t ñ +∇ · (D̄F̆ (n)∇ñ) = −∇ · (D̃F̆ (n)∇ñ),
∑

i
ñi = 0.

I Working in the weighted L2
x (n̄−1/2)-norm  negative feedback on (Ker F̆ )⊥:

without nonlinear terms, standard a priori estimate Notation: πF̆ projection on Ker F̆

1
2

d
dt ‖ñ‖

2
L2(n̄−1/2) = 〈F̆∇ñ,∇ñ〉L2 ≤ −β‖π⊥F̆ (∇ñ)‖2L2 ≤ −β‖∇ñ‖2L2 + β‖πF̆ (∇ñ)‖2L2

! Control of the kernel quantity πF̆ (∇ñ) = 〈∇ñ,nm〉, even at the main order 〈∇ñ, n̄m〉
I Rescaling in time and space ni = ñi (t/mi n̄2i ,

√
mi n̄ix)

 use of the coercivity of F̆
 main order of the projection on the kernel: 〈∇n, 1〉 = 0 (closure condition)

I Other terms are nonlinear
I  remain small (for small initial data) by Sobolev controls on F̆

I Use Poincaré inequality and apply Grönwall’s lemma [Briant, G. 2023]
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I Rescaling in time and space ni = ñi (t/mi n̄2i ,
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Hydrodynamic limit of the Boltzmann equation for mixtures

ε∂t fi (t, x , v) + v · ∇fi (t, x , v) = 1
ε

N∑
j=1

Qij(fi , fj), 1 ≤ i ≤ N

Scaled moments of the distribution function

ni =
∫
R3

fi dv , Ji = 1
ε

∫
R3

v fi dv .

Moment of order 0 of the Boltzmann equation  mass conservation

∂tni +∇ · Ji = 0

Maxwell-Stefan limit
Moment method: prescribing the moments with
entropy minimization
Scaled ansatz: local Maxwellian niMε

i

fi (t, x , v) ∝ ni (t, x)e−
mi

2kB T |v−εui (t,x)|2

Fick limit

Global Maxwellian µi (v) ∝ e−
mi

2kB T |v |
2

Perturbative method: expansion around the
global Maxwellian niµi

fi = niµi + εgi
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Macroscopic cross-diffusion effect
I Scaled ansatz fi ∝ ni (t, x) exp

(
− mi

2kBT |v − εui (t, x)|2
)

I Moment of order 1 of the Boltzmann equation∫
v

v ×
(
ε∂t fi + v · ∇fi = 1

ε

N∑
j=1

Qij(fi , fj)
)

I Use of the ansatz

ε2∂t(niui ) + ε2∇ · (niui ⊗ ui ) + kBT
mi
∇ni = 1

ε

N∑
j=1

∫
R3

v Qij (fi , fj ) dv

I Computation of the collision term for Maxwell molecules

1
ε

N∑
j=1

∫
R3

v Qij (fi , fj ) dv =
N∑

j=1

2πmj‖bij‖L1

mi + mj
ninj (uj − ui )︸ ︷︷ ︸

=ni Jj−nj Ji

I  Maxwell-Stefan system [Boudin, G., Salvarani 2015]
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Obtention of the Fick system: perturbative method
I Expansion f = nµ + εg in the Boltzmann equation, at leading order (ε0)

µv · ∇x n = Lg
Linearized Boltzmann operator L around the global Maxwellian µ

I Fluxes: J = 1
ε

∫
v f dv =

∫
vgdv Notation: W = µv · ∇x n

W = Lg  
(?)

g = L−1W + χ, χ ∈ Ker L

Weighted function space L2
v ((nµ)−1/2) Notation: scalar product 〈·, ·〉nµ and norm ‖ · ‖nµ

I Ker L is spanned by N + d + 1 explicit functions Notation: πL(·) projection on Ker L

I L is a closed, self-adjoint operator in L2
v ((nµ)−1/2), which is bounded and displays a spectral gap

(with a gain of weight)1

I L−1 is a self-adjoint operator on (Ker L)⊥ which is bounded and displays a spectral gap
1[Briant, Daus 2016]
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I Inject the expression for gi in the definition of Ji

Ji =
∫

v [L−1W + χ]idv =
∫

niµiv [L−1W]i (niµi )−1dv +
∫

vχi dv

= ni〈C(i),L−1W〉nµ + Xi

I L−1 is self-adjoint on (Ker L)⊥

Ji = ni
∑

j
〈[L−1(C(i) − Γ(i))]j ,Wj〉njµj + Xi

=
∑

j
ni〈[L−1(C(i) − Γ(i))]j ,C(j)〉njµj︸ ︷︷ ︸

ϕij (n)

∇x nj + Xi

I  Fick equation: J = F (n)∇n + X(n)
I Closure relation from inversion in (?): orthogonality with √nkµkek , vkmnµ, |v |2mnµ

0 = 〈µiv · ∇xni ,miniµiv〉nµ =
∑

i

∫
µiv · ∇xni mivdv ∝ ∇x

∑
i

ni

I Summing mass conservation for each species

0 = d
dt

∫ ∑
i

ni dx  
∑

i

ni cst
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Rigorous convergence in a perturbative setting

Maxwell-Stefan limit
All macroscopic quantities are contained in the
local Maxwellian nMε

Expansion around nMε

f = nMε + εg
Insert expansion in the Boltzmann equation

ε∂tg + v · ∇x g = 1
ε

Lεg + Q(g , g) + Sε

Linearized operator Lε around nMε

Sε contains several terms in Mε up to order 1/ε2

 Prove that g is small for macroscopic
quantities n, J being perturbative solutions of
Maxwell-Stefan equations
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Linearized operator Lε around nMε

Sε contains several terms in Mε up to order 1/ε2

 Prove that g is small for macroscopic
quantities n, J being perturbative solutions of
Maxwell-Stefan equations

Fick limit
Global Maxwellian nµ contains n only
Expansion around nµ

f = nµ + εg
The fluxes are related to g
 define F (n) and J (through L−1)
 handle n only
Insert expansion in the Boltzmann equation

ε∂tg + v · ∇x g = 1
ε

Lg + Q(g , g) + S

Linearized operator L around nµ

 Prove that g is small for macroscopic quantities
n being perturbative solutions of Fick equations
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Rigorous convergence in a perturbative setting

Theorem (Stability of the Fick system)
With suitable assumptions on the cross sections, if g(in) and ñ(in) are small enough, the multispecies
Boltzmann equation admits a unique global perturbative solution f(t, x , v) = (n̄ + εñ(t, x))µ(v)
+ εg(t, x , v), and

‖f − nµ‖Hs
ε
(t) ≤ Cε.

I Definition of a hypocoercive norm1 depending on ε

‖ · ‖2Hs
ε
∼
∑
|`|≤s

‖∂`x · ‖L2
x,v (µ−1/2) + ε2

∑
|`|+|j|≤s,|j|≥1

‖∂`x∂j
v · ‖L2

x,v (µ−1/2)

I A priori estimates on g in the norm Hs
ε

I Spectral gap on the linearized operator  control of the non kernel part
I Poincaré inequality for the kernel part
I Control of the source term
I Estimates for the commutator

1[Mouhot, Neumann 2006; Briant 2015]
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Rigorous convergence in a perturbative setting

Theorem (Stability of the Fick system)
With suitable assumptions on the cross sections, if g(in) and ñ(in) are small enough, the multispecies
Boltzmann equation admits a unique global perturbative solution f(t, x , v) = (n̄ + εñ(t, x))µ(v)
+ εg(t, x , v), and

‖f − nµ‖Hs
ε
(t) ≤ Cε.

For the estimates:
I Choice of the Maxwellian (n̄ + εñ(t, x))µ(v) with the “good” macroscopic quantities1
I Cauchy theory for ñ

I Smallness of the macroscopic perturbation: ‖ñ‖L∞t Hs
x ≤ δ

I Control of S = 1
ε
∂tnµ + 1

ε2 v · ∇x nµ:

πL(S) ≤ δ and π⊥L (S) ≤ δ

ε

This corresponds to the control of ∂t ñ + 1
ε
v · ∇x ñ.

1[Caflisch 1980; De Masi, Esposito, Lebowitz 1989], 2[Bondesan, Briant 2021]
Bérénice Grec Diffusive hydrodynamic limit of the Boltzmann equation for mixtures 12 / 13

For Maxwell-Stefan2, handle additionally
I the non-equilibrium Maxwellian nMε

I the fluxes J (no parabolic writing of
the equations)



Outline of the presentation

1 Introduction
Context of the study and different limit models
Emerging questions in this context

2 Hydrodynamic limit of the Boltzmann equation for mixtures
Analysis of the macroscopic equations
Formal derivation of the macroscopic equations

3 Rigorous convergence in a perturbative setting
Comparison between the two macroscopic models
Ideas of the proof

4 Prospects

Bérénice Grec Diffusive hydrodynamic limit of the Boltzmann equation for mixtures 12 / 13



Prospects

Open questions
I Non perturbative setting
I Non isothermal case
I Comparison between theoretical and experimental relaxation times

Other complex gases
I Polyatomic gases

I Compactness of the Boltzmann operator

Coupling of the two description scales
I Spatial coupling of the Boltzmann equations for mixtures and a cross-diffusion model
I Numerical scheme selecting the right model depending on the regime
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Thank you for your attention!
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Spectral analysis of the linearized operator Lε

I Choice of the weighted function spaces L2(µ−1/2), and for 〈v〉γ = (1 + |v |2)γ/2, L2(〈v〉γµ−1/2)
with scalar product 〈·, ·〉γ,µ

I Projection πL on the kernel of L
I Benefit from the spectral gap of L (with n = 1): Lε = L + (Lε −L)

Theorem
There exists δ > 0 such that for any g ∈ L2(µ−1/2), we have

〈Lεg , g〉µ ≤ − (λL − εRε) ‖g − πLg‖2γ,µ + εRε‖πLg‖2γ,µ,

where
Rε ∝ max

1≤i≤N

{
n1−δi |ui |

(
1 + ε|ui |e

4mi
1−δ ε

2|ui |2
)}

.

I |Mε(w)− µ(w)| ≤ εRεµδ(w), for δ ∈ (0, 1)
I Kernel form from a Carleman representation, pointwise bounds on the kernel
 full Maxwellian decay

[Bondesan, Boudin, Briant, G. 2020]
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