Rigorous derivation of the Fick cross-diffusion system from the multi-species Boltzmann equation in the diffusive scaling

Bérénice GREC ${ }^{1}$<br>in collaboration with M. BRIANT<br>${ }^{1}$ MAP5 - Université Paris Cité, France

Recent contributions in kinetic theory and applications LJLL, March 6th, 2023

Université Paris Cité

## Outline of the talk

(1) Introduction
(2) Kinetic setting
(3) Formal derivation of the Fick equation
4) Perturbative Cauchy theory for the Fick equation
(5) Rigorous convergence in a perturbative setting
(6) Conclusion and prospects

## Context of the study

- Non-reactive mixture of $p$ monoatomic gases
- Isothermal setting $T>0$ uniform and constant
- Two different scales for the description of the mixture
- mesoscopic scale (kinetic model): species $i$ described by its distribution function $f_{i}(t, x, v)$
- macroscopic scale: species $i$ described by the physical observables
- number density $n_{i}(t, x)$
- velocity $u_{i}(t, x)$
$\rightsquigarrow$ flux of species $i: J_{i}(t, x)=n_{i}(t, x) u_{i}(t, x)$
$\rightsquigarrow$ vectorial quantities $\mathbf{n}=\left[\begin{array}{c}n_{1} \\ \vdots \\ n_{p}\end{array}\right], \mathbf{J}=\left[\begin{array}{c}J_{1} \\ \vdots \\ J_{p}\end{array}\right]$
- Link between the two scales in the diffusive scaling
- Formal and theoretical convergence


## Diffusion models for mixtures: Maxwell-Stefan/Fick

Mass conservation:

$$
\partial_{t} \mathbf{n}+\nabla \cdot \mathbf{J}=0
$$

Diffusion process (link between $\mathbf{J}$ and $\nabla \mathbf{n}$ ):
Fick equations

$$
\mathbf{J}=A(\mathbf{n}) \nabla \mathbf{n}
$$

Maxwell-Stefan equations

$$
\nabla \mathbf{n}=B(\mathbf{n}) \mathbf{J}
$$

- $A(\mathbf{n})$ and $B(\mathbf{n})$ are not invertible (rank $p-1$ )
- Using pseudo-inverse: structural similarity [Giovangigli '91, '99]
- Equimolar diffusion setting [Bothe], [Jüngel, Stelzer]

> Formal analogy of the two systems, different ways of obtaining Fick and Maxwell-Stefan equations

## Mesoscopic point of view

## Hydrodynamic limit

- Obtention of these two equations from the kinetic description?
- Obtention of closure relations?


## Moment method (Maxwell-Stefan)

- [Levermore], [MüLler, Ruggieri]
- Ansatz that the distribution functions are at local Maxwellian states
- Assumption: different species have different macroscopic velocities on macroscopic time scales
- Rigorous convergence [Bondesan, Briant]


## Perturbative method (Fick)

- [Bardos, Golse, Levermore], [Bisi, Desvillettes]
- Based on the Chapman-Enskog expansion
- Formal and rigorous convergence [Briant, G.]


## Outline of the talk

(1) Introduction
(2) Kinetic setting
(3) Formal derivation of the Fick equation
4) Perturbative Cauchy theory for the Fick equation
(5) Rigorous convergence in a perturbative setting
(6) Conclusion and prospects

## Kinetic setting

- Boltzmann equations for mixtures on $\mathbb{R}_{+} \times \mathbb{T}^{d} \times \mathbb{R}^{d}$

$$
\varepsilon \partial_{t} f_{i}+v \cdot \nabla_{x} f_{i}=\frac{1}{\varepsilon} \sum_{j=1}^{p} Q_{i j}\left(f_{i}, f_{j}\right), \quad 1 \leq i \leq p
$$

[Desvillettes, Monaco, Salvarani, '05]

- Diffusive scaling: small mean free path and Mach number: $\mathrm{Kn} \sim \mathrm{Ma} \sim \varepsilon$
- Boltzmann collision operator, for $v \in \mathbb{R}^{d}$

$$
Q_{i j}\left(f_{i}, f_{j}\right)(v)=\int_{\mathbb{R}^{d}} \int_{\mathbb{S}^{d-1}} \mathcal{B}_{i j}\left(v, v_{*}, \sigma\right)\left[f_{i}\left(v^{\prime}\right) f_{j}\left(v_{*}^{\prime}\right)-f_{i}(v) f_{j}\left(v_{*}\right)\right] \mathrm{d} \sigma \mathrm{~d} v_{*}
$$

- Elastic collision rules, for $\sigma \in \mathbb{S}^{d-1}$

$$
\left\{\begin{array}{l}
v^{\prime}=\left(m_{i} v+m_{j} v_{*}+m_{j}\left|v-v_{*}\right| \sigma\right) /\left(m_{i}+m_{j}\right) \\
v_{*}^{\prime}=\left(m_{i} v+m_{j} v_{*}-m_{i}\left|v-v_{*}\right| \sigma\right) /\left(m_{i}+m_{j}\right)
\end{array}\right.
$$

- Cross sections $\mathcal{B}_{i j}=\mathcal{B}_{j i}>0$ (hard or Maxwell potentials with Grad's cutoff assumption)


## Properties of the collision operator

- Equilibrium: Maxwellian with same bulk velocity and temperature

$$
n_{i}(t, x)\left(\frac{m_{i}}{2 \pi k_{B} T}\right)^{d / 2} \exp \left(-\frac{m_{i}|v-u(t, x)|^{2}}{2 k_{B} T}\right)
$$

- Conservation properties of the collision operator for $1 \leq i, j \leq p$

$$
\begin{gathered}
\int_{\mathbb{R}^{d}} Q_{i j}\left(f_{i}, f_{j}\right)(v) \mathrm{d} v=0 \\
\int_{\mathbb{R}^{d}}\left(m_{i} Q_{i j}\left(f_{i}, f_{j}\right)(v)+m_{j} Q_{j i}\left(f_{j}, f_{i}\right)(v)\right) v \mathrm{~d} v=0
\end{gathered}
$$

In the following, bold notation for vectors: $\mathbf{f}=\left(f_{i}\right)_{i}, \mathbf{m}=\left(m_{i}\right)_{i}$

## Linearized Boltzmann operator

- Expansion around the global Maxwellian with zero bulk velocity (equilibrium) with number density $n_{i}$

$$
f_{i}=M_{i}+\varepsilon g_{i}=n_{i} \mu_{i}+\varepsilon g_{i} \quad \mu_{i}=\left(m_{i} / 2 \pi k_{B} T\right)^{d / 2} e^{-m_{i}|v|^{2} / 2 k_{B} T}
$$

- Linearization of the collision operator, for $\mathbf{g}=\left(g_{i}\right)_{i}$

$$
\mathcal{L}_{i}(\mathbf{g})=\sum_{j} Q_{i j}\left(n_{i} \mu_{i}, g_{j}\right)+Q_{j i}\left(g_{i}, n_{j} \mu_{j}\right)
$$

$\rightsquigarrow$ defines the linearized Boltzmann operator $\mathbf{L}=\left(\mathcal{L}_{i}\right)_{i}$ around $\mathbf{M}=\mathbf{n} \boldsymbol{\mu}$

- $\operatorname{Ker} \mathbf{L}$ is spanned by $p+d+1$ explicit functions $\left(\sim M_{k} / \sqrt{n_{k}} \mathbf{e}_{k}, v_{k} \mathbf{m M}\right.$, $|v|^{2} \mathbf{m M}$ )
- Denote by $\pi_{\mathbf{L}}(\cdot)$ the projection on $\operatorname{Ker} \mathbf{L}$
$\mathbf{L}$ is a closed, self-adjoint operator in $L_{v}^{2}\left(\mathbf{M}^{-1 / 2}\right)$, which is bounded and displays a spectral gap (with a gain of weight). [Briant, Daus]


## Definition of $\mathbf{L}^{-1}$

$\mathbf{L}^{-1}$ is a self-adjoint operator on $(\operatorname{Ker} \mathbf{L})^{\perp}$ which

- is bounded

$$
\left\|\mathbf{L}^{-1} \mathbf{g}\right\|_{\mathbf{M}} \leq K\|\mathbf{g}\|_{\mathbf{M}}
$$

- displays a spectral gap

$$
\left\langle\mathbf{g}, \mathbf{L}^{-1} \mathbf{g}\right\rangle_{\mathbf{M}} \leq-\lambda\|\mathbf{g}\|_{\mathbf{M}}
$$

with the shortcut $\|\cdot\|_{M}=\|\cdot\|_{L_{v}^{2}\left(M^{-1 / 2}\right)}$.

## Remark

Since $\mathbf{M}=\mathbf{n} \boldsymbol{\mu}$ depends on $\mathbf{n}$, the linearized operator $\mathbf{L}$, and thus $\mathbf{L}^{-1}$, also do: the constants $K, \lambda$ depend on $\mathbf{n}$. $\rightsquigarrow$ track explicit computations of $K, \lambda$ [Baranger, Mouhot], [Briant, Daus]

## Outline of the talk

(1) Introduction
(2) Kinetic setting
(3) Formal derivation of the Fick equation
4) Perturbative Cauchy theory for the Fick equation
(5) Rigorous convergence in a perturbative setting
(6) Conclusion and prospects

## Formal obtention of the diffusion equations

$$
\varepsilon \partial_{t} f_{i}^{\varepsilon}+v \cdot \nabla_{x} f_{i}^{\varepsilon}=\frac{1}{\varepsilon} \sum_{j=1}^{p} Q_{i j}\left(f_{i}^{\varepsilon}, f_{j}^{\varepsilon}\right)
$$

Moments of the distribution functions

- Number density of species $i$

$$
n_{i}^{\varepsilon}(t, x)=\int_{\mathbb{R}^{d}} f_{i}^{\varepsilon}(t, x, v) \mathrm{d} v
$$

- Flux of species $i$

$$
J_{i}^{\varepsilon}(t, x)=n_{i}^{\varepsilon}(t, x) u_{i}^{\varepsilon}(t, x)=\frac{1}{\varepsilon} \int_{\mathbb{R}^{d}} v f_{i}^{\varepsilon}(t, x, v) \mathrm{d} v
$$

(1) Mass conservation : moment of order 0 of the equation

$$
\varepsilon \frac{\partial}{\partial t}\left(\int_{\mathbb{R}^{3}} f_{i}^{\varepsilon}(v) \mathrm{d} v\right)+\nabla_{x} \cdot\left(\int_{\mathbb{R}^{3}} v f_{i}^{\varepsilon}(v) \mathrm{d} v\right)=\varepsilon\left(\partial_{t} n_{i}^{\varepsilon}+\nabla_{x} \cdot J_{i}^{\varepsilon}\right)=0,
$$

where the collision term vanishes (conservation property).

## Momentum equation (Maxwell-Stefan/Fick)

Moment method: moment of order 1 of the equation

- Use of an ansatz that $f_{i}$ are local Maxwellians
- (Explicit) computations depending on $\mathcal{B}_{i j}$
- Maxwell-Stefan cross-diffusion equations at the limit $\varepsilon \rightarrow 0$
- Possible expression of the diffusion coefficients involving $\mathbf{L}$
- Closure relation obtained from the moment of order 2 of the equation
- [Boudin, G., Salvarani], [Boudin, G., Pavan]


## Perturbative method

Inject expansion $\mathbf{f}^{\varepsilon}=\mathbf{n}^{\varepsilon} \boldsymbol{\mu}+\varepsilon \mathbf{g}^{\varepsilon}$ in the Boltzmann equation, at leading order $\left(\varepsilon^{0}\right)$

$$
\mu_{i} v \cdot \nabla_{x} n_{i}^{\varepsilon}=\mathcal{L}_{i}\left(\mathbf{g}^{\varepsilon}\right)
$$

and $J_{i}^{\varepsilon}=\frac{1}{\varepsilon} \int v f_{i}^{\varepsilon} \mathrm{d} v=\int v g_{i}^{\varepsilon} \mathrm{d} v$.
Let us drop superscript $\varepsilon$ for the time being.

- In a vectorial form, defining $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i}$ and $\mathbf{W}=\left(W_{i}\right)_{i}$

$$
\mathbf{W}=\mathbf{L}(\mathbf{g})
$$

$\underset{(*)}{\sim}$

$$
\mathbf{g}=\mathbf{L}^{-1} \mathbf{W}
$$

- Inject this expression for $g_{i}$ in the definition of $J_{i}$

$$
J_{i}=\int v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} \mathrm{~d} v=\int n_{i} \mu_{i} v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} M_{i}^{-1} \mathrm{~d} v
$$

- With $\mathbf{C}_{i}=\left(\mu_{i} v \delta_{i j}\right)_{j}$, we get

$$
J_{i}=n_{i}\left\langle\mathrm{C}, \mathrm{~L}^{-1} \mathrm{~W}\right\rangle_{\mathrm{M}}
$$

- $\mathbf{L}^{-1}$ is self-adjoint on $(\operatorname{Ker} \mathbf{L})^{\perp}$. Let $\mathbf{\Gamma}=\pi_{\mathbf{L}}(\mathbf{C})$. Thus

- Since $W_{j}=\mu_{j} v \cdot \nabla_{x} n_{j}={ }^{\prime \prime} \mathbf{C}_{j} \cdot \nabla_{x} n_{j} "$

$\rightsquigarrow$ Fick equation: $\mathbf{J}=A(\mathbf{n}) \nabla_{\times} \mathbf{n}$
- In a vectorial form, defining $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i}$ and $\mathbf{W}=\left(W_{i}\right)_{i}$

$$
\mathbf{W}=\mathbf{L}(\mathbf{g}) \quad \underset{(\star)}{\leadsto} \quad \mathbf{g}=\mathbf{L}^{-1} \mathbf{W}
$$

- Inject this expression for $g_{i}$ in the definition of $J_{i}$

$$
J_{i}=\int v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} \mathrm{~d} v=\int n_{i} \mu_{i} v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} M_{i}^{-1} \mathrm{~d} v
$$

$\Rightarrow$ With $\mathrm{C}_{i}=\left(\mu_{i} \vee \delta_{i j}\right)_{j}$, we get

$$
J_{i}=n_{i}\left\langle\mathbf{C}, \mathbf{L}^{-1} \mathbf{W}\right\rangle_{\mathbf{M}}
$$

- $\mathbf{L}^{-1}$ is self-adjoint on $(\operatorname{Ker} \mathbf{L})^{\perp}$. Let $\boldsymbol{\Gamma}=\pi_{\mathbf{L}}(\mathbf{C})$. Thus

- Since $W_{j}=\mu_{j} v \cdot \nabla_{x} n_{j}={ }^{"} \mathbf{C}_{j} \cdot \nabla_{x} n_{j}{ }^{\prime}$

$\rightsquigarrow$ Fick equation: $J=A(n) \nabla_{\times} n$
- In a vectorial form, defining $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i}$ and $\mathbf{W}=\left(W_{i}\right)_{i}$

$$
\mathbf{W}=\mathbf{L}(\mathbf{g}) \quad \underset{(\star)}{\leadsto} \quad \mathbf{g}=\mathbf{L}^{-1} \mathbf{W}
$$

- Inject this expression for $g_{i}$ in the definition of $J_{i}$

$$
J_{i}=\int v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} \mathrm{~d} v=\int n_{i} \mu_{i} v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} M_{i}^{-1} \mathrm{~d} v
$$

- With $\mathbf{C}_{i}=\left(\mu_{i} v \delta_{i j}\right)_{j}$, we get

$$
J_{i}=n_{i}\left\langle\mathbf{C}, \mathbf{L}^{-1} \mathbf{W}\right\rangle_{\mathbf{M}}
$$

- $\mathbf{L}^{-1}$ is self-adjoint on $(\operatorname{Ker} \mathbf{L})^{\perp}$. Let $\boldsymbol{\Gamma}=\pi_{\mathbf{L}}(\mathbf{C})$. Thus

$\rightsquigarrow$ Fick equation: $J=A(n) \nabla_{x} n$
- In a vectorial form, defining $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i}$ and $\mathbf{W}=\left(W_{i}\right)_{i}$

$$
\mathbf{W}=\mathbf{L}(\mathbf{g}) \quad \underset{(\star)}{\rightsquigarrow} \quad \mathbf{g}=\mathbf{L}^{-1} \mathbf{W}
$$

- Inject this expression for $g_{i}$ in the definition of $J_{i}$

$$
J_{i}=\int v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} \mathrm{~d} v=\int n_{i} \mu_{i} v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} M_{i}^{-1} \mathrm{~d} v
$$

- With $\mathbf{C}_{i}=\left(\mu_{i} v \delta_{i j}\right)_{j}$, we get

$$
J_{i}=n_{i}\left\langle\mathbf{C}, \mathbf{L}^{-1} \mathbf{W}\right\rangle_{\mathbf{M}}
$$

- $\mathbf{L}^{-1}$ is self-adjoint on $(\operatorname{Ker} \mathbf{L})^{\perp}$. Let $\mathbf{\Gamma}=\pi_{\mathbf{L}}(\mathbf{C})$. Thus

$$
J_{i}=n_{i} \sum_{j}\left\langle\left[\mathbf{L}^{-1}(\mathbf{C}-\boldsymbol{\Gamma})\right]_{j}, W_{j}\right\rangle_{\mathbf{M}}
$$

- Since $W_{j}=\mu_{j} v \cdot \nabla_{x} n_{j}=" \mathbf{C}_{j} \cdot \nabla_{x} n_{j} "$
- In a vectorial form, defining $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i}$ and $\mathbf{W}=\left(W_{i}\right)_{i}$

$$
\mathbf{W}=\mathbf{L}(\mathbf{g}) \quad \underset{(*)}{\rightsquigarrow} \quad \mathbf{g}=\mathbf{L}^{-1} \mathbf{W}
$$

- Inject this expression for $g_{i}$ in the definition of $J_{i}$

$$
J_{i}=\int v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} \mathrm{~d} v=\int n_{i} \mu_{i} v\left[\mathbf{L}^{-1} \mathbf{W}\right]_{i} M_{i}^{-1} \mathrm{~d} v
$$

- With $\mathbf{C}_{i}=\left(\mu_{i} v \delta_{i j}\right)_{j}$, we get

$$
J_{i}=n_{i}\left\langle\mathbf{C}, \mathbf{L}^{-1} \mathbf{W}\right\rangle_{\mathbf{M}}
$$

- $\mathbf{L}^{-1}$ is self-adjoint on $(\operatorname{Ker} \mathbf{L})^{\perp}$. Let $\mathbf{\Gamma}=\pi_{\mathbf{L}}(\mathbf{C})$. Thus

$$
J_{i}=n_{i} \sum_{j}\left\langle\left[\mathbf{L}^{-1}(\mathbf{C}-\boldsymbol{\Gamma})\right]_{j}, W_{j}\right\rangle_{\mathbf{M}}
$$

- Since $W_{j}=\mu_{j} v \cdot \nabla_{x} n_{j}=" \mathbf{C}_{j} \cdot \nabla_{x} n_{j} "$

$$
J_{i}=\sum_{j} \underbrace{n_{i}\left\langle\left[\mathbf{L}^{-1}(\mathbf{C}-\boldsymbol{\Gamma})\right]_{j}, \mathbf{C}_{j}\right\rangle_{\mathrm{M}}}_{a_{i j}\left(n_{i}\right)} \nabla_{x} n_{j}
$$

$\rightsquigarrow$ Fick equation: $\mathbf{J}=A(\mathbf{n}) \nabla_{x} \mathbf{n}$

## Closure relation for Fick equations

- Summing over $i$ the equations ( $A$ has rank $p-1$ ) implies that $\sum_{i} m_{i} J_{i}=0$
- Mass conservation for each species implies (when summing with weights $m_{i}$ )

$$
0=\frac{\mathrm{d}}{\mathrm{dt}} \int \sum_{i} m_{i} n_{i} \mathrm{~d} x
$$

- Inversion giving the perturbation $\mathbf{g}$ (relation ( $\star$ )) only valid if the RHS $W_{i}=\mu_{i} v \cdot \nabla_{x} n_{i} \in(\operatorname{Ker} \mathbf{L})^{\perp}$.
- Ker $\mathbf{L}$ spanned by $M_{k} / \sqrt{n_{k}} \mathbf{e}_{k}, v_{k} \mathbf{m M},|v|^{2} \mathbf{m M}$
- Orthogonality

$$
0=\left\langle\mu_{i} v \cdot \nabla_{x} n_{i}, m_{i} M_{i} v\right\rangle_{\mathbf{M}}=\sum_{i} \int \mu_{i} v \cdot \nabla_{x} n_{i} m_{i} v \mathrm{~d} v \propto \nabla_{x} \sum_{i} m_{i} n_{i}
$$

- $\rightsquigarrow$ Constant mass $\sum_{i} m_{i} n_{i}$
- Closure relation inherent to the perturbative setting


## Fick equation

- $A=\left(a_{i j}\right)$ is not symmetric, denote $A(\mathbf{n})=N(\mathbf{n}) \bar{A}(\mathbf{n})$, with $N(\mathbf{n})=\left(n_{i} \delta_{i j}\right)$.


## Properties of $\bar{A}(\mathbf{n})$

- $\bar{A}(\mathbf{n})$ is symmetric
- $\operatorname{Ker} \bar{A}(\mathbf{n})=\operatorname{Span}(\mathbf{n m})$
- Denote $\pi_{\bar{A}}$ the projection on $\operatorname{Ker} \bar{A}, \pi_{\bar{A}}^{\perp}$ on $(\operatorname{Ker} \bar{A})^{\perp}$
- $\bar{A}(\mathbf{n})$ depends on $\mathbf{n}$ via $\mathbf{L}^{-1}$ and the weight $\mathbf{M}$
- coercivity of $\bar{A}(\mathbf{n})$ outside its kernel: $(p-1)$ non zero eigenvalues $\beta_{i}$ s. th.

$$
\beta_{i} \leq-\beta_{\max }<0,
$$

where $\beta_{\text {max }}$ depends on $\lambda$.

- Combine $\mathbf{J}=N(\mathbf{n}) \bar{A}(\mathbf{n}) \nabla_{x} \mathbf{n}$ with mass conservation + closure relation

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{n}+\nabla_{x} \cdot\left(N(\mathbf{n}) \bar{A}(\mathbf{n}) \nabla_{x} \mathbf{n}\right)=0, \\
\langle\mathbf{m}, \mathbf{n}\rangle_{\mathbb{R}^{p}}=\operatorname{cst} .
\end{array}\right.
$$

## Outline of the talk

## (1) Introduction

(2) Kinetic setting
(3) Formal derivation of the Fick equation

4 Perturbative Cauchy theory for the Fick equation
(5) Rigorous convergence in a perturbative setting
6) Conclusion and prospects

## Perturbative Cauchy theory for the Fick equation

Fix a constant global equilibrium $\mathbf{n}_{\infty}>0$, and write

$$
\mathbf{n}(t, x)=\mathbf{n}_{\infty}+\tilde{\mathbf{n}}(t, x)
$$

Fick equation

$$
\left\{\begin{array}{l}
\partial_{t} \tilde{\mathbf{n}}+\nabla_{x} \cdot\left(N\left(\mathbf{n}_{\infty}\right) \bar{A}\left(\mathbf{n}_{\infty}+\tilde{\mathbf{n}}\right) \nabla_{x} \tilde{\mathbf{n}}\right)=-\nabla_{x} \cdot\left(N(\tilde{\mathbf{n}}) \bar{A}\left(\mathbf{n}_{\infty}+\tilde{\mathbf{n}}\right) \nabla_{x} \tilde{\mathbf{n}}\right), \\
\langle\mathbf{m}, \tilde{\mathbf{n}}\rangle=0 .
\end{array}\right.
$$

## Theorem

Let $s>d / 2$. For $\left\|\tilde{\mathbf{n}}^{(\mathrm{in})}\right\|_{H_{x}^{s}}$ compatible and sufficiently small, there exists a unique solution of the form (•) to the Fick equation, and it satisfies

$$
\|\tilde{\mathbf{n}}\|_{H_{x}^{s}} \leq\left\|\tilde{\mathbf{n}}^{(\mathrm{in})}\right\|_{H_{x}^{s}} e^{-\lambda_{s} t}
$$

Without nonlinear terms, standard a priori estimate with the weight $N\left(\mathbf{n}_{\infty}\right)^{-1 / 2}$

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\tilde{\mathbf{n}}\|_{L_{x}^{2}\left(N\left(\mathbf{n}_{\infty}\right)^{-1 / 2}\right)}^{2}=\left\langle\bar{A} \nabla_{x} \tilde{\mathbf{n}}, \nabla_{x} \tilde{\mathbf{n}}\right\rangle_{L_{x}^{2}} \leq \beta_{\max }\left\|\pi_{\bar{A}}^{1}\left(\nabla_{x} \tilde{\mathbf{n}}\right)\right\|_{L_{x}^{2}}^{2}
$$

No control of the kernel part $\pi_{\bar{A}}\left(\nabla_{x} \tilde{\mathbf{n}}\right):\left\langle\mathbf{n m}, \nabla_{x} \tilde{\mathbf{n}}\right\rangle$ even at the main order

## Rescaling in time and space

$$
\left\{\begin{array}{l}
\tilde{\eta}_{i}(t, x)=\tilde{n}_{i}\left(n_{\infty i}^{\alpha} t, n_{\infty i}^{\beta} x\right) \\
\partial_{t} \tilde{\eta}_{i}+\nabla_{x} \cdot\left(\sum_{j} \frac{n_{\infty}^{1+\alpha}}{n_{\infty j}^{2 \beta}} \bar{a}_{i j}\left(\mathbf{n}_{\infty}+\tilde{\eta}\right) \nabla_{x} \tilde{\eta}_{j}\right)=-\nabla_{x} \cdot\left(\tilde{\eta}_{i} \sum_{j} \frac{n_{\infty i}^{\alpha}}{n_{\infty j}^{2 \beta}} \bar{a}_{i j}\left(\mathbf{n}_{\infty}+\tilde{\eta}\right) \nabla_{x} \tilde{\eta}_{j}\right), \\
\langle\mathbf{m}, \tilde{\boldsymbol{\eta}}\rangle=0 .
\end{array}\right.
$$

$\Rightarrow$ Choice $1+\alpha=-2 \beta \rightsquigarrow$ use of the coercivity of $\bar{A}$


- Control of the kernel part \& nonlinear terms (cf. next slide) - A priori estimate in $H_{x}^{s}$, with $P^{s}(0)=0$
- For small initial datum, $C P^{s}\left(\|\tilde{\eta}\|_{H_{s}^{s}}\right) \leq 1 / 2$ \& Poincaré + Grönwall


## Rescaling in time and space

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\tilde{\eta}_{i}(t, x)=\tilde{n}_{i}\left(n_{\infty i}^{\alpha} t, n_{\infty i}^{\beta} x\right) \\
\partial_{t} \tilde{\eta}_{i}+\nabla_{x} \cdot\left(\frac{1}{n_{\infty i}^{2 \beta}} \sum_{j} \bar{a}_{i j}\left(\mathbf{n}_{\infty}+\tilde{\eta}\right) \nabla_{\times} \frac{\tilde{\eta}_{j}}{n_{\infty j}^{2 \beta}}\right)=-\nabla_{x} \cdot\left(\frac{\tilde{\eta}_{i}}{n_{\infty i}^{2 \beta}} \sum_{j} \bar{a}_{i j}\left(\mathbf{n}_{\infty}+\tilde{\eta}\right) \nabla_{x} \frac{\tilde{\eta}_{j}}{n_{\infty j}^{2 \beta}}\right) \\
\langle\mathbf{m}, \tilde{\boldsymbol{\eta}}\rangle=0 .
\end{array}\right.
\end{array}\right.
$$

- Choice $1+\alpha=-2 \beta \rightsquigarrow$ use of the coercivity of $\bar{A}$

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\tilde{\boldsymbol{\eta}}\|_{L_{x}^{2}}^{2} & =\left\langle\bar{A} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right), \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle+\left\langle\bar{A} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right), \tilde{\boldsymbol{\eta}} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle \\
& \leq-\beta_{\max }\left\|\pi_{\bar{A}}^{\perp}\left[\nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right]\right\|_{L_{x}^{2}}^{2}+\langle\ldots\rangle
\end{aligned}
$$

- Control of the kernel part \& nonlinear terms (cf. next slide)
- A priori estimate in $H_{x}^{5}$, with $P^{s}(0)=0$


## Rescaling in time and space

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\tilde{\eta}_{i}(t, x)=\tilde{n}_{i}\left(n_{\infty i}^{\alpha} t, n_{\infty i}^{\beta} x\right) \\
\partial_{t} \tilde{\eta}_{i}+\nabla_{x} \cdot\left(\frac{1}{n_{\infty i}^{2 \beta}} \sum_{j} \bar{a}_{i j}\left(\mathbf{n}_{\infty}+\tilde{\eta}\right) \nabla_{x} \frac{\tilde{\eta}_{j}}{n_{\infty j}^{2 \beta}}\right)=-\nabla_{x} \cdot\left(\frac{\tilde{\eta}_{i}}{n_{\infty i}^{2 \beta}} \sum_{j} \bar{a}_{i j}\left(\mathbf{n}_{\infty}+\tilde{\eta}\right) \nabla_{x} \frac{\tilde{\eta}_{j}}{n_{\infty j}^{2 \beta}}\right) \\
\langle\mathbf{m}, \tilde{\boldsymbol{\eta}}\rangle=0 .
\end{array}\right.
\end{array}\right.
$$

- Choice $1+\alpha=-2 \beta \rightsquigarrow$ use of the coercivity of $\bar{A}$

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\tilde{\boldsymbol{\eta}}\|_{L_{x}^{2}}^{2} & =\left\langle\bar{A} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right), \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle+\left\langle\bar{A} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right), \tilde{\boldsymbol{\eta}} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle \\
& \leq-\beta_{\max }\left\|\pi_{\bar{A}}^{\perp}\left[\nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right]\right\|_{L_{x}^{2}}^{2}+\langle\ldots\rangle
\end{aligned}
$$

- Control of the kernel part \& nonlinear terms (cf. next slide)


## Rescaling in time and space

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\tilde{\eta}_{i}(t, x)=\tilde{n}_{i}\left(n_{\infty i}^{\alpha} t, n_{\infty i}^{\beta} x\right) \\
\partial_{t} \tilde{\eta}_{i}+\nabla_{x} \cdot\left(\frac{1}{n_{\infty i}^{2 \beta}} \sum_{j} \bar{a}_{i j}\left(\mathbf{n}_{\infty}+\tilde{\eta}\right) \nabla_{x} \frac{\tilde{\eta}_{j}}{n_{\infty j}^{2 \beta}}\right)=-\nabla_{x} \cdot\left(\frac{\tilde{\eta}_{i}}{n_{\infty i}^{2 \beta}} \sum_{j} \bar{a}_{i j}\left(\mathbf{n}_{\infty}+\tilde{\eta}\right) \nabla_{x} \frac{\tilde{\eta}_{j}}{n_{\infty j}^{2 \beta}}\right) \\
\langle\mathbf{m}, \tilde{\boldsymbol{\eta}}\rangle=0 .
\end{array}\right.
\end{array}\right.
$$

- Choice $1+\alpha=-2 \beta \rightsquigarrow$ use of the coercivity of $\bar{A}$

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\tilde{\boldsymbol{\eta}}\|_{L_{x}^{2}}^{2} & =\left\langle\bar{A} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right), \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle+\left\langle\bar{A} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right), \tilde{\boldsymbol{\eta}} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle \\
& \leq-\beta_{\max }\left\|\pi_{\bar{A}}^{\perp}\left[\nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right]\right\|_{L_{x}^{2}}^{2}+\langle\ldots\rangle
\end{aligned}
$$

- Control of the kernel part \& nonlinear terms (cf. next slide)
- A priori estimate in $H_{x}^{s}$, with $P^{s}(0)=0$

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\tilde{\boldsymbol{\eta}}\|_{H_{x}^{s}}^{2} \leq-C \beta_{\max }\left(1-C P^{s}\left(\|\tilde{\boldsymbol{\eta}}\|_{H_{x}^{s}}\right)\right)\left\|\nabla_{x} \tilde{\boldsymbol{\eta}}\right\|_{H_{x}^{s}}^{2}
$$

## Rescaling in time and space

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\tilde{\eta}_{i}(t, x)=\tilde{n}_{i}\left(n_{\infty i}^{\alpha} t, n_{\infty i}^{\beta} x\right) \\
\partial_{t} \tilde{\eta}_{i}+\nabla_{x} \cdot\left(\frac{1}{n_{\infty i}^{2 \beta}} \sum_{j} \bar{a}_{i j}\left(\mathbf{n}_{\infty}+\tilde{\eta}\right) \nabla_{x} \frac{\tilde{\eta}_{j}}{n_{\infty j}^{2 \beta}}\right)=-\nabla_{x} \cdot\left(\frac{\tilde{\eta}_{i}}{n_{\infty i}^{2 \beta}} \sum_{j} \bar{a}_{i j}\left(\mathbf{n}_{\infty}+\tilde{\eta}\right) \nabla_{x} \frac{\tilde{\eta}_{j}}{n_{\infty j}^{2 \beta}}\right) \\
\langle\mathbf{m}, \tilde{\boldsymbol{\eta}}\rangle=0 .
\end{array}\right.
\end{array}\right.
$$

- Choice $1+\alpha=-2 \beta \rightsquigarrow$ use of the coercivity of $\bar{A}$

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\tilde{\boldsymbol{\eta}}\|_{L_{x}^{2}}^{2} & =\left\langle\bar{A} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right), \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle+\left\langle\bar{A} \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right), \tilde{\boldsymbol{\eta}} \nabla_{x}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle \\
& \leq-\beta_{\max }\left\|\pi_{\bar{A}}^{\perp}\left[\nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right]\right\|_{L_{x}^{2}}^{2}+\langle\ldots\rangle
\end{aligned}
$$

- Control of the kernel part \& nonlinear terms (cf. next slide)
- A priori estimate in $H_{x}^{s}$, with $P^{s}(0)=0$

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\tilde{\boldsymbol{\eta}}\|_{H_{x}^{s}}^{2} \leq-C \beta_{\max }\left(1-C P^{s}\left(\|\tilde{\boldsymbol{\eta}}\|_{H_{x}^{s}}\right)\right)\left\|\nabla_{x} \tilde{\boldsymbol{\eta}}\right\|_{H_{x}^{s}}^{2}
$$

- For small initial datum, $C P^{s}\left(\|\tilde{\boldsymbol{\eta}}\|_{H_{\chi}^{s}}\right) \leq 1 / 2$ \& Poincaré + Grönwall


## Control of the kernel part \& nonlinear terms

$-\pi_{\bar{A}}\left[\nabla_{x}\left(\frac{\tilde{\eta}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right]$ colinear to

$$
\left\langle\left(\mathbf{n}_{\infty}+\tilde{\boldsymbol{\eta}}\right) \mathbf{m}, \nabla_{x}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle=\left\langle\mathbf{n}_{\infty} \mathbf{m}, \nabla_{x}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle+\left\langle\tilde{\boldsymbol{\eta}} \mathbf{m}, \nabla_{x}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle
$$

$\Rightarrow$ Choice $2 \beta=1 \rightsquigarrow$ use of the closure relation

- Lower order term

- Nonlinear terms: control on $\bar{A}(\tilde{\eta})$

$$
\|\bar{A}(\tilde{\eta})\|_{H_{x}} \leq C P^{5}\left(\|\tilde{\eta}\|_{H_{x}}\right)
$$

## Control of the kernel part \& nonlinear terms

$-\pi_{\bar{A}}\left[\nabla_{\times}\left(\frac{\tilde{\eta}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right]$ colinear to

$$
\left\langle\left(\mathbf{n}_{\infty}+\tilde{\boldsymbol{\eta}}\right) \mathbf{m}, \nabla_{x}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle=\underbrace{\left\langle\mathbf{m}, \nabla_{x} \tilde{\boldsymbol{\eta}}\right\rangle}_{=0}+\left\langle\tilde{\boldsymbol{\eta}} \mathbf{m}, \nabla_{x}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}}\right)\right\rangle
$$

- Choice $2 \beta=1 \rightsquigarrow$ use of the closure relation
- Lower order term

$$
\left\langle\tilde{\boldsymbol{\eta}} \mathbf{m}, \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\boldsymbol{n}_{\infty}}\right)\right\rangle \leq C\|\tilde{\boldsymbol{\eta}}\|_{L_{x}}\left\|\nabla_{\times} \tilde{\boldsymbol{\eta}}\right\|_{L_{x}^{2}}
$$

- Nonlinear terms: control on $\bar{A}(\tilde{\eta})$

$$
\|\bar{A}(\tilde{\eta})\|_{H_{s}^{s}} \leq C P^{s}\left(\|\tilde{\eta}\|_{H_{x}^{s}}\right)
$$

## Control of the kernel part \& nonlinear terms

$-\pi_{\bar{A}}\left[\nabla_{\times}\left(\frac{\tilde{\eta}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right]$ colinear to

$$
\left\langle\left(\mathbf{n}_{\infty}+\tilde{\boldsymbol{\eta}}\right) \mathbf{m}, \nabla_{x}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}^{2 \beta}}\right)\right\rangle=\underbrace{\left\langle\mathbf{m}, \nabla_{x} \tilde{\boldsymbol{\eta}}\right\rangle}_{=0}+\left\langle\tilde{\boldsymbol{\eta}} \mathbf{m}, \nabla_{x}\left(\frac{\tilde{\boldsymbol{\eta}}}{\mathbf{n}_{\infty}}\right)\right\rangle
$$

- Choice $2 \beta=1 \rightsquigarrow$ use of the closure relation
- Lower order term

$$
\left\langle\tilde{\boldsymbol{\eta}} \mathbf{m}, \nabla_{\times}\left(\frac{\tilde{\boldsymbol{\eta}}}{\boldsymbol{n}_{\infty}}\right)\right\rangle \leq C\|\tilde{\boldsymbol{\eta}}\|_{L_{x}}\left\|\nabla_{x} \tilde{\boldsymbol{\eta}}\right\|_{L_{x}^{2}}
$$

- Nonlinear terms: control on $\bar{A}(\tilde{\boldsymbol{\eta}})$

$$
\|\bar{A}(\tilde{\boldsymbol{\eta}})\|_{H_{x}^{s}} \leq C P^{s}\left(\|\tilde{\boldsymbol{\eta}}\|_{H_{x}^{s}}\right)
$$

## Outline of the talk

## (1) Introduction

(2) Kinetic setting
(3) Formal derivation of the Fick equation
4) Perturbative Cauchy theory for the Fick equation
(5) Rigorous convergence in a perturbative setting
6) Conclusion and prospects

## Rigorous convergence in a perturbative setting I

Expansion $\mathbf{f}^{\varepsilon}=\mathbf{M}^{\varepsilon}+\varepsilon \mathbf{g}^{\varepsilon}$ in the Boltzmann equation

## Use of the result (for Maxwell-Stefan) of [Bondesan, Briant]

Simpler setting since

- $\mathbf{M}^{\varepsilon}$ has equal velocities for all species $(=0) \rightsquigarrow$ equilibrium of $Q$
possibility to get rid of the fluxes and have a parabolic setting

Main ingredients

- Spectral gap on $\mathbf{L} \rightsquigarrow$ control of the microscopic part of $\mathbf{g}^{\varepsilon}\left(\right.$ in $\left.(\operatorname{Ker} \mathbf{L})^{\perp}\right)$
- Choice of the Maxwellian $\mathbf{M}^{\varepsilon}(t, x, v)=\left(\mathbf{n}_{\infty}+\varepsilon \tilde{\mathbf{n}}(t, x)\right) \boldsymbol{\mu}(v)$ [Caflisch], [De Masi, Esposito, Lebowitz]
- Control of the fluid part with a hypocoercive norm depending on $\varepsilon$ (via the commutator $\left[\mathrm{v} \cdot \nabla_{x}, \nabla_{v}\right.$ ] $=-\nabla_{x}$ ) [Mouhot, Neumann], [Briant]

$$
\|\cdot\|_{\mathcal{H}_{\varepsilon}^{s}}^{2} \sim \sum_{|\ell| \leq s}\left\|\partial_{x}^{\ell} \cdot\right\|_{L_{x, v}^{2}\left(\mu^{-1 / 2}\right)}+\varepsilon^{2} \sum_{\substack{| ||+|j| \leq s\\| j \mid \geq 1}}\left\|\partial_{x}^{\ell} \partial_{v}^{j} \cdot\right\|_{L_{x, v}^{2}\left(\mu^{-1 / 2}\right)}
$$

## Rigorous convergence in a perturbative setting II

## Theorem (Briant, G.)

With suitable assumptions on the cross sections, if $\mathbf{g}^{(\mathrm{in})}$ and $\tilde{\mathbf{n}}^{(\mathrm{in})}$ are small enough, the multispecies Boltzmann equation admits a unique global perturbative solution $\mathbf{f}^{\varepsilon}(t, x, v)=\mathbf{M}^{\varepsilon}(t, x)+\varepsilon \mathbf{g}^{\varepsilon}(t, x, v) \geq 0$, and

$$
\left\|\mathbf{f}^{\varepsilon}-\mathbf{M}^{\varepsilon}\right\|_{\mathcal{H}_{\varepsilon}^{s}}(t) \leq C \varepsilon
$$

Satisfy assumptions of the result in [Bondesan, BRIANT]:

- Smallness of the macroscopic perturbation: $\|\tilde{\mathbf{n}}\|_{L_{t}^{\infty} H_{x}^{s}} \leq \delta$ (Cauchy theory for $\tilde{\mathbf{n}}$ )
- Control of $\mathbf{S}^{\varepsilon}=\frac{1}{\varepsilon} \partial_{t} \mathbf{M}^{\varepsilon}+\frac{1}{\varepsilon^{2}} v \cdot \nabla_{x} \mathbf{M}^{\varepsilon}$ :

$$
\pi_{\mathbf{L}}\left(\mathbf{S}^{\varepsilon}\right)=0 \quad \text { and } \quad \pi_{\mathbf{L}}^{\perp}\left(\mathbf{S}^{\varepsilon}\right) \leq \frac{\delta}{\varepsilon}
$$

The second estimate corresponds to the control of $\varepsilon \partial_{t} \tilde{\mathbf{n}}+v \cdot \nabla_{x} \tilde{\mathbf{n}}$ (Cauchy theory for $\tilde{\mathbf{n}}$ and estimates on $A(\mathbf{n})$ via $P^{s+2}$ )

## Outline of the talk

## (1) Introduction

(2) Kinetic setting
(3) Formal derivation of the Fick equation
4) Perturbative Cauchy theory for the Fick equation
(5) Rigorous convergence in a perturbative setting
(6) Conclusion and prospects

## Conclusion and prospects

## Conclusions

- Derivation of Fick equations from the Boltzmann equation for mixtures in the diffusive regime in a perturbative setting
- Formal obtention of the diffusion coefficients and closure relation
- Cauchy theory in Sobolev spaces for the Fick sytem
- Stability of the Fick system in the Boltzmann equation


## Prospects

- Non perturbative setting
- Non isothermal setting
- Polyatomic gases
- Asymptotic Preserving numerical scheme
- Compare the experimental and theoretical relaxation times


## Thank you for your attention!



## Fick diffusion coefficients

We had $a_{i j}=n_{i}\left\langle\left[\mathbf{L}^{-1}(\mathbf{C}-\boldsymbol{\Gamma})\right]_{j}, \mathbf{C}_{j}\right\rangle_{\mathbf{M}}$. More precisely

$$
J_{i}^{(k)}=n_{i} \sum_{j=1}^{p} \sum_{\ell=1}^{d}\left\langle\mathbf{L}^{-1}\left(\mathbf{C}_{i}^{(k)}-\boldsymbol{\Gamma}_{i}^{(k)}\right), \mathbf{C}_{j}^{(\ell)}\right\rangle_{M_{j}} \partial_{x_{\ell}} n_{j}
$$

## Properties of the term in red

- is zero if $k \neq \ell$
- is independent of $k=\ell$

Thus, it depends only on $i, j$ and allows to define the diffusion coefficients.

- Definition of $\mathbf{C}_{i}^{(k)}=\left(\mu_{i} v^{(k)} \delta_{i j}\right)_{j} \rightsquigarrow$ choice of any velocity component
- Use that $\boldsymbol{\Gamma} \in(\operatorname{Ker} \mathbf{L})$

$$
a_{i j}=n_{i}\left\langle\mathbf{L}^{-1}\left(\pi_{\mathbf{L}}^{\perp}\left(\bar{v} \mu_{i} e_{i}\right)\right), \pi_{\mathbf{L}}^{\perp}\left(\bar{v} \mu_{j} e_{j}\right)\right\rangle_{\mathbf{M}}
$$

- $A=\left(a_{i j}\right)$ is not symmetric, denote $A(\mathbf{n})=N(\mathbf{n}) \bar{A}(\mathbf{n})$, with $N(\mathbf{n})=\left(n_{i} \delta_{i j}\right)$.

