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Abstract. In this work we address the issue of uncertainty in abstract argumenta-
tion. We propose a way to compute the relative relevance of arguments by merging
the classical argumentation framework proposed in [5] into a game theoretic coali-
tional setting, where the worth of a collection of arguments can be seen as the com-
bination of the information concerning the defeat relation and the preferences over
arguments of a “user”. Via a property-driven approach, we show that the Shapley
value [17] for coalitional games defined over an argumentation framework, can be
applied to resume all the information about the worth of sets of arguments into an
attribution of relevance for the single arguments. We also prove that, for a large
family of (coalitional) argumentation frameworks, the Shapley value can be easily
computed.
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1. Introduction

A multiagent debate can be seen as a collective gathering of arguments, possibly con-
strained by the rules of a protocol, whose outcome will eventually be evaluated (for in-
stance thanks to the formal tools provided by argumentation theory [5,10]). A central
problem faced by agents contributing in such a multiagent debate is that they have to put
forward arguments taking into account their own goals, but also how the audience (the
other agents taking part in the debate) may receive their arguments, and also possibly
whether the rules of the debate will allow them to put forward these arguments. Consider,
for instance, the attitude of politicians participating to public debates: their choice to em-
brace arguments often depends by factors like, for instance, the popularity of the argu-
ments, a degree of personnel satisfaction, the consensus generated by those arguments in
an assembly or in a forum, the contiguity with a political position, etc.

This results in a complex decision-making problem, where most of the parameters
are likely to be uncertain: what are the arguments known by other agents? what are
their own goals? etc. Perhaps the most basic type of uncertainty is that it is virtually
impossible to exactly predict what combination of arguments will result from the debate.
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In particular, even though full knowledge of the other agents’ goals and arguments is
assumed, the exact deadline of the debate may still be unknown, for instance. In this
work, we thus investigate more specifically the uncertainty regarding the debate, and we
propose to exploit cooperative game theory to account for the decision-problem faced by
an agent in this context.

We focus on the argumentation framework introduced in [5], where a set of argu-
ments are represented by the nodes of a directed graph whose edges express the attacks
or conflicts between pairs of arguments. Since the seminal paper [5], several authors have
introduced and studied different notions of acceptability for arguments, assigning to each
argument the status of ‘accepted’ or ‘rejected’, which is perhaps a simplistic manner to
compare arguments in decision-making applications. Recently, few studies [1,3,4,13] at-
tempted to evaluate intermediate levels of acceptability, using very different approaches.
For example, in [13], a two-player strategic game between a ‘proponent’ and an ‘oppo-
nent’ is considered, where the strategies of the players are subsets of arguments, and the
payoffs of the game are based on the structure of the directed graph associated to the ar-
gumentation framework. In a more abstract setting, coalitional games have been applied
in [9] to define inconsistency measures for propositional belief bases.

Combining preferences and argumentation outcomes has been proposed initially in
[16] and used in many work since. In this paper, we assume that the user has a cardinal
preference relation over single arguments. From preferences over singleton arguments,
it is possible to induce a preference order on the outcome of the debates (that is, sets of
accepted arguments). For instance, I may prefer outcomes which make my favourite ar-
gument acceptable, regardless of whether many less preferred arguments are discarded.
There are of course several ways to define such a preference ordering, and we discuss
different ways to lift up preferences over subsets (i.e. coalitions) of arguments in our
context. In fact, the way to combine the information about preferences and defeat rela-
tions within each coalition of arguments can be specified by the user according to dif-
ferent criteria, ranging from the pure and simple consideration of the exogenous user’s
preferences over arguments (disregarding the conflicts among arguments), to the other
extreme where all arguments are indifferent for the user, and the notion of the worth of
a set of arguments is exclusively based on the definition of argumentation semantics. In-
terestingly, in the latter case, the measure of importance for arguments provided by the
Shapley value of the associated coalitional game, can be interpreted as a novel measure
of acceptability, and can be compared with the existing notions from the related literature
[1,3,4,13] (this comparison will be further discussed in future work). Intermediate coali-
tional argumentation frameworks, based on the combination of the users’s preferences
with a local (or myopic) observation of the abstract argumentation framework, are also
considered.

The notion of audience is also not new: several authors have integrated this com-
ponent in their favourite argumentation setting, see [2,8]. Basically, this means that the
beliefs (or the preferences) of the other agents are considered. Recently, Grossi and van
der Hoek [6] proposed an inspiring model, where agents are uncertain about the audi-
ence they face (the belief of the other agents). Based on this, they study how “adequate”
are games, that is, roughly speaking, whether they are fair to both parties. Importantly,
their approach takes into account the constraints imposed by the protocol. Our approach
differs in that we address a related question (what is the best move to do) with a different



tool —cooperative game theory— in order to compute the contribution of arguments to
the satisfaction of the user.

To sum up, in this work, we thus introduce a framework for abstract argumentation,
keeping into consideration the preferences over (collection of) arguments of an agent
(hereafter, called “the user”), who deals with the problem of assessing the relevance of
each argument with respect to her/his own objectives, and facing the uncertainty about
which combination of arguments will result from the debate. The final goal of this paper,
is then to measure the relative importance of arguments for the user, taking into account
both her/his own preferences - as represented by a utility function defined over the set
of arguments - and the information provided by the attack relations among arguments.
In this direction, we merge the classical argumentation framework proposed in [5] into
a game theoretic coalitional setting [15], where the “worth” of a coalition of arguments
can be seen as the combination of the information about the preferences of the user
over arguments and the information concerning the conflicts between the arguments. In
addition, classical power indices for coalitional games (in particular, the Shapley value
[17]) are proposed to measure the impact of a single argument in a debate.

The paper is organized as follows. We start in Section 2 with some basic definitions
about abstract argumentation and coalitional games. Section 3 is devoted to the presen-
tation of a coalitional argumentation framework, where a family of coalitional games
is used to represent the worth of coalitions of arguments, and where the Shapley value
of such games is re-interpreted as a measure of the relevance of arguments. Examples
of coalitional games that combine the user’s preferences over arguments with the defeat
relation (and according to different argumentation semantics) are illustrated in Section
4. In particular, Section 4.2 introduces a (myopic) coalitional argumentation framework,
where the worth of a coalition of arguments is additive over non-attacked arguments, and
the computation of the Shapley value is simple. In Section 5 we provide an axiomatic
characterization of the Shapley value in the class of games introduced in Section 4.2.
Section 6 deals with an extended notion of coalitional argumentation framework aimed
to capture the uncertainty generated by an interaction protocol for multi-agent debates.

2. Basic notions and definitions
2.1. Argumentation framework

A Dung Argumentation Framework (DAF) is a directed graph (A, R), where the set of
nodes A is a finite set of arguments and the set of arcs R C A x A is a binary defeat (or
attack) relation (i.e, (i, j) € R means that argument i € A attacks argument j € .4). We
say that a set of arguments S C A (also called a coalition S) attacks another coalition T C
Ain (A, R) if there exists (s,7) € S x T with (s,f) € R, that is an attacks which originates
from an argument in S and is directed against an argument in 7. For each argument a we
define the set of predecessors of a in (A, R) as the set Pr(R,a) ={j € A: (j,a) € R},
and the set of successors of a is denoted by Su(R,a) = {j € A: (a,j) € R} (if clear
from the context, we omit notation R in Pr(a) and Su(a)).

The main goal of argumentation theory is to identify which arguments are rationally
“acceptable” according to different notions of acceptability. Some of the most common
ones are the following. An argument a € A is said acceptable w.r.t. S C Aiff Vb € A: if



(b,a) € R, then 3¢ € S such that (c,b) € R. A set S C A s said to be: (conflict-free) iff
S does not attack itself; (stable) iff S is conflict-free and attacks every argument in A4\ S;
(admissible) iff S is conflict-free and S attacks every argument in A\ S that attacks S;
(preferred) iff it is a maximal (w.r.t. C) admissible extension; (complete) iff Va € A, if
a is acceptable w.r.t. S, then a € S; (grounded) iff S is the minimal (w.r.t. C) complete
extension.

2.2. Coalitional games

A coalitional game, also known as characteristic-form game or Transferable Utility (TU)
game, is a pair (N,v), where N denotes a finite set of players and v is the characteristic
function, assigning to each S C N, areal number v(S) € R, with v(@) = 0 by convention. If
the set N of players is fixed, we identify a coalitional game (N, v) with the corresponding
characteristic function v. A group of players S C N is called a coalition and v(S) is called
the worth of coalition S. We will denote by G the class of all coalitional games. LetC C G
be a subclass of coalitional games. Given a set of players N, we denote by CV C C the
class of coalitional games in C with N as set of players. We define the set X of possible
linear orders on the set N as the set of all bijections o : N — N, where (i) = j means
that with respect to o, player i is in the j-th position. For o € Xy, the marginal vector
m®(v) € RV is defined by mZ (v) =v({j e N: 0(j) <o(i)}) —v({j eN:0(j) < o(i)})
for each i € N, where m{ (v) is the marginal contribution of player i to the coalition of
players with lower positions in G.

A one-point solution (or simply a solution) for a class CV of coalitional games is a
function y : CV — R¥ that assigns a payoff vector y(v) € RY to every coalitional game
in the class. The Shapley value ¢(v) of a game (N,v) is then defined as the average of
marginal vectors over all |[N|! possible orders in Ly (|N| is the cardinality of the set N).
In formula

o)=Y M) porall i € N. (1

oEXy |N| !

An alternative representation of the Shapley value for each i € N is by the formula

Z 1

= —————(v(SUi) —v(S)). 2)
Semi IN| (IN‘\ST1> (v( ) )

0i(v)

We recall some nice properties of the Shapley value of a coalitional game (N,v): ef-
ficiency (EFF), i.e. Yy 0i(v) = v(N); symmetry (SYM), i.e. if i,j € N are such that
v(SU{i}) =v(SU{,}) for all S C N\ {i,j}, then ¢;(v) = ¢;(v); dummy player prop-
erty (DPP), i.e. if i € N is such that v(SU {i}) — v(S) = v({i}) for all S C N, then
0;(v) = v({i}); additivity (ADD), i.e. ¢(v) + ¢ (w) = ¢(v+w) for each v,w € CV. It is
well known that the Shapley value is the only solution that satisfies these four properties
on the class GN [17].

3. Coalitional argumentation framework

We define a Coalitional Argumentation Framework (CAF) as a triple (A, R,v) where
(A,R) is a DAF and v is a map assigning to each coalition § C A a number v(S) € R.



The value v(S) represents the worth of the coalition S for the user (for example, it could
measure the success provided by coalition S according to a criterion specified by the user,
e.g., the overall popularity of the arguments in S). We assume that for each a € A, the
worth (or utility) of the singleton {a} is given by a (cardinal) preference relation over .A.

In the following, we also assume that a CAF (A4, R,v) satisfies the following con-
ditions of compatibility between the map v and the DAF (A, R): (c.1) if a € A is
such that Pr(a) = Su(a) = 0 (a is not connected to other arguments in (A, R)), then
v(SU{a}) = v(S) +v({a}) for each coalition S C A\ {a}; (c.2) if a,b € A are such
that Pr(a) = Pr(b) and Su(a) = Su(b) (i.e., a and b are symmetric in the DAF) and
v({a}) = v({b}), then v(SU{a}) = v(SU{b}) for each coalition S C A.

Given a CAF (A, R,v) (satisfying conditions (c.1) and (c.2) as well), we study the
problem of providing a measure representing the relevance of arguments, taking into
account both the structure of the DAF and the worth of coalitions as measured by v. In
this direction, we focus on properties that such a measure of relevance should satisfy.

For instance, the SYM? property introduced in Section 2, states that two symmetric
players in the DAF should have the same relevance, provided that their worth as single-
tons is the same (differently stated, the relevance of an argument does not depend from its
label). Analogously, rephrasing the notion of dummy player in a CAF, the DPP says that
disconnected arguments in a DAF should receive as value of relevance precisely their
worth as singletons. Still, the EFF property imposes un upper bound over the scale for
measuring the relevance of arguments (precisely, the sum of the relevance values must
be equal to v(.A)). Finally, an interesting reinterpretation of the ADD property suggests
that the sum of the relevance values measured over two distinct CAFs (A, R,v;) and
(A, R,vy) sharing the same DAF (for instance, v; and v, may represent the worth of
coalitions over two distinct populations, like women vs. men), should be equal to the
relevance of arguments measured on (A4, R, v + v7).

Example 1. Consider two CAFs, ({1,2,3},{(1,2),(2,1)},v) and ({1,2,3}, {(1,2),
(2,1)},V) (satisfying conditions (c.1) and (c.2) as well).

Consider the CAF ({1,2,3},{(1,2),(2,1)},7 =v-+V'). By ADD and DPP, the Shap-
ley value of argument 3 is ¢3(v) = v({3}) +V'({3}), and by SYM and EFF, ¢;(v) =
02(7) = 1(:(A) v/ (A) — (13D +V ((31).

This specific interpretation of properties satisfied by the Shapley value, has the merit
to better contextualize and support the use of the Shapley value as a meaningful measure
of the relevance of arguments in a CAF. On the other hand, in order to compute such a
measure, the nature of the worth of coalitions, as represented by map v in a CAF, should
be further specified. If we completely ignore the information provided by the directed
graph in a CAF, and we assume that the worth of coalitions is additive over the worth of
the singletons (i.e., v(S) = ¥;csv({i}), for each § C A), then it is easy to check that the
Shapley value of each argument i equals v({i}). On the other hand, the objective of this
work is to apply the machinery of coalitional games to combine the user’s preferences
over arguments with the defeat relation of a DAF, and a possible approach to tackle this
problem is illustrated in Section 4.

Notice that, given a CAF (A, R,v), there may exist arguments a and b that are symmetric players in v
(according to definition provided in Section 2) that do not necessarily satisfy the condition Pr(a) = Pr(b),
Su(a) = Su(b) and v({a}) = v({b}) introduced in condition (c.2). In a similar way, there may exist arguments
a € A that are dummy players in v that do not satisfy condition Pr(a) = Su(a) = 0.



4. Combining preferences and conflicts

As we previously mentioned, the definition of the worth of a set of arguments may de-
pend on multiple factors. First of all, the combination of the information about prefer-
ences and the attack relation can vary from the unique consideration of the user’s prefer-
ences over coalitions (disregarding the conflicts among arguments), to the other extreme
where all arguments are indifferent for the user, and the notion of the worth of a coalition
is exclusively based on the definition of argumentation semantics. We can thus see the
level of consideration of the argumentation system in a scale:

1) no acknowledgement at all: the worth of a coalition § is additive over all argu-
ments of S, disregarding the attack relation (see game v° in Section 4.1);

2) partial: the worth of a coalition S is additive over the non-attacked arguments in
S (see game v in Section 4.2);

3) total: the worth of a coalition § is additive over the arguments in the grounded
extension of the DAF restricted to S (see game v* in Section 4.3).

4.1. No consideration of the acceptability

We consider here a very basic example, where the user is only interested on his/her
preference over arguments, and does not care about the attack relation existing between
those arguments. Precisely, consider a CAF (A, R,v’) where the worth of coalitions is
additive over the arguments, i.e.

v (8) =Y v ({i}),

i€S

for each S C A (by convention, v*(0) = 0). So, the worth of a coalition S is measured as
the sum of the worth of the single elements of S. As the Shapley value of each argument
is the same as its cardinal utility (i.e., ¢;(v*) =v°({i}) for each i € A), this game has
no particular interest. However, taking into account the constraints induced by a protocol
(as discussed in Section 6) could already make such a setting non-trivial.

4.2. Partial consideration of acceptability

We now focus on the case where the argumentation system is partially taken into account.
As a particular example, we define here a notion of the worth of coalitions combining
the preferences of the user over single arguments and a “local” information about the
attacks. Precisely, consider a CAF (A, R, V) where the worth of coalitions is additive
over non-attacked arguments, i.e. if a coalition S C A forms, ¥(S) denotes the sum of
the worth of single arguments that are not attacked within coalition S. Let Fs={i € S :
{i} is not attacked by S\ {i}} be the set of non-attacked arguments in S, then

0(8) =Y v({i}), 3)

ieFg

for each S C A (by convention, #(@) = 0). We denote by VA the class of CAFs (A, R, )
on A introduced in this section, and by GV the class of corresponding games ¥ defined
by relation (3).



Example 2. Consider the CAF ({1,2,3},{(1,2),(2,3)},9), such that the preference
over each argument i is the same and is equal to 1. The game V is provided in Table 1.
The Shapley value of such a game is ¢1(9) = ¢3(V) = % and ¢,(9) = 0. So the greatest
relevance is given to arguments 1 and 3 (note that the coalition {1,3} is the only stable
one).

S: {1 {23 {2} | {13} | {23} | {1,2.3}
v(S): 1 1 1 1 2 1 1
Table 1. The worth of each coalition S C {1,2,3} in V.

Alternatively, suppose that the argument 2 is preferred to the other ones, and thus the
worth of the singleton coalition {2} is, for instance, ({2}) =1, and ¥({1}) = 9({3}) =
0. Now the relevance assigned by the Shapley value is 5 to arguments 2, 0 to argument
3, and —5 to argument 1: the user would be worse off by attacking the most beneficial
and non- defended argument 2, whereas she/he would receive no detriment in adopting
argument 3.

In general the Shapley value is hard to calculate, since it requires a number of oper-
ations that is exponential in the number of arguments. However, for the specific class of
CAFs introduced in this section, it is possible to calculate the Shapley value easily. First,
observe that a game v can be decomposed as the sum

0="Y ({i})i; pr) )

icA

where, for each i € A and each S C A\ {i},
. [1lifieTandSNT =0
;s(T) = { 0 otherwise, 3)

foreach T C A.

Remark 1. Consider a game (A, ii; ) defined according to relation (5), with i € A and
S C A\ {i}. Notice that (A R, f;s) is an element of the class V* of CAFs defined in
this section, with R = {(j,i)|j € S}, that is the set of attacks R is formed by the attacks
of arguments in S to i. So, l; s € GVA. Consequently, a game " = Y jer Oill; s;, where
T C Aand with o; € R and S; C A\ {i} for each i € T, is also an element of the class of
games GVA. Precisely, VT corresponds to the game in the CAF (AR $T) € VA where
RT ={(j,i)li €T,j€S;}and VT ({i}) = oy for eachi € T.

In order to prove that the Shapley value of a game ¥ is easy to calculate, we need the
following lemma.

Lemma 1. The Shapley value of game (A,il;5), withi € A and S C A\ {i}, is such that

¢k(ﬂi75) = 75 P ifkesS, 6)
0 otherwise,



for each k € A and where s = |S| (withs =0 if S =0).

Proof. By the DPP property, we immediately have that ¢(i;s) = O for each k €
A\ (SU{i}). By relation (1), the Shapley value of argument i is the ratio between the
number Hy of permutations o € X 4 such that o(i) < o(j) for each j € S, and the total
number of permutations a!, with a = | A|. However, it is easy to check that such a ratio
does not depend on the number of arguments in A\ (SU{i}) (to see this, it suffices to
notice that for each fixed permutation 65 € Iy of elements in SU{i}, the total num-
ber of permutations in X 4 that preserve the ordering o5 is a constant K,,_,_;). Then,

we have that ¢;(i; 5) = % = @‘;’I)Ifni;(;:ls—] = - +1’ where s! is precisely the number of
permutations 6° € Ly in which ¢%/(i) = 1. Fmally, if S # 0, by properties EFF and
SYM it follows that ¢ (ii.s) = di,s(A) — 57y = — 5y foreachk € S. O

Proposition 1. Consider a CAF (A, R,?) € VA. Then the Shapley value of game (A, V)
is

¢l(‘,}\) |Pr B Z]GSu (i) %a @)
foreachic A

Proof. The proof immediately follows by relation (4) and the ADD property. O

Note that the Shapley value of an argument i in game v does not depend only on the
number of predecessors (attackers) an argument has, but also on the number of succes-
sors (arguments attacked by 7), and on the number of other attackers of the arguments at-
tacked by i. An axiomatic characterization of the Shapley value on the class of the CAFs
presented in this section is discussed in Section 5.

Example 3. Consider a CAF (A = {1,2,3,4,5,6},R = {(1,2),(2,1),(2,3),(3,4),
(5,3),(6,5)},9), and such that ¥({i}) = 1 for each i € A. Using relation (7), we have
that the Shapley value of game ¥ is (0, — é, i T 1)- Hence, ¢4(9) = d6(9) > ¢5(¥) >
01(V) > ¢ (V) = ¢3(9). As in Example 2, arguments with the highest Shapley value are
conflict free. Also, notice that arguments 4 and 6 obtain the same Shapley value, de-
spite of their opposite defeat relations (4 is attacked by a single argument, and 6 at-
tacks just one argument). Differently state, being adjacent to one single arc (together
with the fact of sharing the same worth as singletons) implies that arguments 4 and 6
equally contribute to the worth of any other coalition of arguments. For a comparison,
we recall here that the ranking provided by the method introduced in [3,4] in the DAF
(A, R) is 6 =4 > 1~ 253, whereas the ranking provided by the method in [13] is
6>~1~2~4%3>5.

4.3. Total consideration of acceptability

It is also possible to take into account the information provided by a DAF in a more
explicit way, for example by means of the definition of a coalitional game based on the
acceptability semantics. For instance, we could consider the coalitional game

=) v{i}),

i€Eg



where Eg is the grounded extension in the argumentation framework (S,Rs), where
Rs={(i,j) € R:i,j € S} is the set of attacks between arguments in S.

Example 4. Consider the CAF ({1,2,3},{(1,2),(2,3),(3,2)},v*), such that the worth
of each singleton coalition {i} is the same and equal to 1. The game v* is provided in the
Table 2, together with the grounded extensions corresponding to each DAF (S, Rs). The
Shapley value of such a game is ¢1(v*) = %, ¢(v*) = { and ¢3(v*) = % As expected,
the higher Shapley value is for argument 1, which is not attacked in the DAF. Moreover,
argument 3, which defends itself against argument 2, has a higher value than 2, which
cannot defend itself against 1.

So ] {2r | {3F | {12} | {1,3} | {23} | {1,2,3}
Es: | {1} | {2} | 33 | {1} | {13} | 0 {1,3}
vS): |1 1 1 1 2 0 2

Table 2. The grounded extension and the worth of each coalition § C {1,2,3} in v*.

Alternatively, suppose that the user likes argument 2, dislikes argument 3 and is
neutral with respect to argument 1. A possible choice of the worth of each singleton
coalition representing this situation is 0 for argument 1, 1 for argument 2 and —1 for
3. In this new situation, ¢;(v*) = —%, (v = % and ¢3(v*) = —1. Note that although
argument 1 is neutral to the user, its relevance is negative since it can only do some harm
to coalitions the user likes.

5. An axiomatic characterization

In this section we provide an axiomatic characterization of a solution in the specific class
of coalitional games arising from CAFs in VA, as introduced in Section 4.2. For this
purpose, we define a solution as a map y : GV — R4, An interesting property for a
solution is the following one.

Axiom 1 (Equal Impact of an Attack). Let (A, R,9) € VA and i,j € A, with i # j.
Consider a CAF (A,RU{(i,j)},%:;) € VA with 0;;({k}) := ({k}) for each k € A. A
solution  : GVA — RA satisfies (on GVA) the property of Equal Impact of an Attack
(EIA) iff

vi(9) — wi(Dij) = w; (%) — w;(9i)).

Property of EIA states that when a new attack between two argument i and j is added
to (or removed from) a CAF, then the relevance of the two arguments should be affected
in the same way. Differently stated, this property says that a consequence of an attack
should be detrimental for both arguments involved in the defeat relation, since an attacks
always decreases the worth of coalitions containing the involved nodes.

For instance, consider the CAF ({1,2,3},{(1,2),(2,3)},?) with ¥ of Table 1, and
consider a CAF ({1,2,3},{(1,2),(2,1),(2,3)},921) with 91 ({1,2}) = ¥21({1,2,3}) =
0 and ¥, (S) = ¥(S) for each remaining coalition S. It is easy to check that ¢; (V) —
O1(D21) = 02 (V) — @2 (V21) = % The following proposition shows that the Shapley value
satisfies the EIA property (on GVA).



Proposition 2. The Shapley value satisfies the EIA property (on GVA).

Proof. (A,R,%) € VA andi,jec A, with i # j and such that (i, j) ¢ R. Consider a CAF
(A, RU{(i,j)},%;) € V" as defined in Axiom 1. We have that

v({k
¢i(0) — ¢i(0; j) = (\Pr(?ét})H—l ZkeSu (R.i) TPr(R, k)\((\g’r}(>72 k)|+1)>
v( 1}) V({k})
(\Pr( U{(@) 1K)+ ZkGSMR’>U{/} [Pr(RU{(i,7) }.5)|(|Pr(RU{( 7J)}k\+]>

( )
- (\Pr(R,j)Hl)(IPr(R,j)HZ)’

where the first equality follows by Proposition 1 and the fact that in the directed graph
RU{(i, )}, argument i has one more successor, i.e. argument j, and argument j has one
more predecessor, i.e. argument i (w.r.t. the directed graph R). In a similar way, we have

. AR (Y))) v({k})
¢;(0) — 9;(Vij) = (W — Lkesu(R.i) |Pr<n,k>|<\Pr<R.k>\+l>>

v({J -y ) v({k})
[Pr(R,J)[+2 keSu(R,i) TPr(RK)|([Pr(RK)[+1)
_ _v{ib vi{jh) v{ih)
PriRNHT T [Pr(R)+2 — (PR HFD(Pr(R.)+2)°

where the first equality follows by Proposition 1 and the fact that in R and RU{(i, j)}
argument j has the same set of successors, but one more predecessor (w.r.t. R). O

Before to introduce the main result of this section, we need to better contextualize
the definition of the axioms presented at the end of Section 2. Of course, properties EFF,
SYM and DPP can be directly defined on the class GV, Differently, the ADD property
exhibits a problem, since the set GV is not closed under the operation of sum. To see
this, take two games u; (3),u; (23} € GV{L23}: their sum is not in GP123} | since it
does not exist a CAF (A, R,V) € VA with 9 = uy 2y +uy 23y (in fact, we have that
v({1}) =2, 9({3}) =0 but ¥({1,3}) = 1, and no directed graph on {1,3} can produce
such a value for coalition {1,3} according to definition 3). Therefore, in the following
theorem, the additivity property is reformulated in the following way. We say that a
solution y : GVA — RA satisfies the property ADD*, if and only if w(v) + w(w) =
y(v+w) for each v,w € GVA such that v+w € GVA.

Theorem 1. The Shapley value is the unique solution that satisfies EFF, SYM, DPP,
ADD* and EIA properties on the class GVA.

Proof. The Shapley value satisfies EFF, SYM, DPP, ADD* properties on each coalitional
game, and by Proposition 2, it also satisfies EIA on the class GDA.

Now, take a solution y : GDA — R that satisfies EFF, SYM, DPP, ADD* and EIA
properties. Consider a game (A, ; 5) defined according to relation (5), with i € A and
S C A\ {i}. We first prove that y(ii; s) = ¢ (#;5). The proof is by induction to |S| (by
Remark 1, recall that each game i; 5 is an element of G 1>A, and corresponds to the CAF
(A {(j,0)|j € S},iiis) € VA, so property EIA applies to #; g).

If |S| = 1, then S has a unique element, say k € A, k # i. For each j € A\ {i,k},
by the DPP we have that y;(#; (4}) = 0. By the EIA property Wi(#:0) — Wi(di 1)) =
Wi(di0) — Wic(d; 11y )- By DPP, we have that y;(il; 9) = 1 and y; (i;9) = 0 for each k € A,



k # i. By EFF and DPP, we have that ;(d; 1)) + Wi(#; xy) = 0. All these conditions
together imply that y;(i; (1)) = % and yi (i (1)) = —%. So, w(d; 1)) = ¢ (di 1y)-

Now let m € N, m > 2 and suppose that the y(d;s) = ¢(d;s) has been proved for
every S with |S| < m — 1. Consider a coalition §' = SU {k}, with k € A\ (SU{i}) and
|S'| = m. By DPP, y;(ii; ¢) = 0 for each j € A\ (SU{i,k}). In addition, we have that

0=wi(lis) — wildys) — Wk(ﬁi,S)+Wk(ﬁi,S’):(‘+1) Vil g) +w(dig), (8)

where the first equality follows by the EIA property and the second equality follows by
the induction hypothesis. Moreover,

0=Yjesufix Villis) = Willis) + (s + Dwidys ), )

where the first equality follows by EFF and DPP, and the second one by SYM. Combin-
ing relations (8) and (9), we have that y;(it; ¢) = m = ¢(d;,¢) and W;(d; g) =

ﬁ = ¢;(d; &), which implies, by the application of the induction hypothesis, that
y(dis) = ¢(d;s) for every i € Aand S C A\ {i}. Using relation (4) and the additivity
ADD* of y in view of Remark 1, we have that y(¥) = ¢(9) for each ¥ € GV, which
concludes the proof. O

6. Protocols for debates under uncertainty

In Sections 3 and 5, a property-driven approach has been used to support the adoption
of the Shapley value as a measure of the relevance of arguments. Consequently, the rele-
vance of an argument i € 4 has been measured by its expected marginal contribution

= Y piS)(SUi)—w(S)), (10)
ACA\{ }

where the probability distribution p; is such that p;(S) = foreach S C A\ {i}.

WA
On the other hand, in abstract argumentation, probabilities over arguments and coalitions
may capture the uncertainty related to a specific argumentation framework [12,7], or the
uncertainty related to a set of rules of an interaction protocol for multi-agent debates
[14]. Therefore, it makes sense to consider “probabilistic” CAFs, where the information
concerning the probability that coalitions form is given a priori, and such probabilities
are taken into account in the computation of the relevance via relation (10). For example,
consider a multi-agent interaction protocol where arguments are introduced by agents
one after the other, respecting the protocol’s rule according to which an argument can be
introduced at a certain stage of the debate only if it attacks or it is attacked by another
argument previously introduced. According to such a protocol, we can assume that it is
not plausible that all coalitions could be potentially considered, since certain coalitions
will never form. Looking at the formula (1), this means that orders inducing the formation
of impossible coalitions should not be taken into account, and therefore should be deleted
by the computation of the average marginal contribution over the set of linear orders
on the set of arguments. Of course, such a removal of orders induces a new probability
distribution p;(S) in relation (10), for each i € A and S C A\ {i}: the index obtained in
this way is the so-called “generalized Shapley value”, introduced in [11].



Example 5. Consider again the CAF of Example 2, and the multi-agent interaction
protocol described in this section. According to such a protocol, coalition {1,3} will
never form. Then, in formula (1), orders inducing the formation of coalition {1,3} should
be removed. Precisely, those orders to be deleted are 1,3,2 and 3, 1,2. It is easy to check
that the generalized Shapley value of game V (i.e., the average marginal contribution
of arguments over the remaining orders) is % for argument 1, % for argument 2 and %
for argument 3: notice that player 2 has now the highest relevance. The probabilistic
value induced by the uncertainty generated from the interaction protocol has inverted
the relative ranking of relevance over arguments, with respect to the CAF in Example 2.

However, the calculation of the generalized Shapley value implies, in general, the
consideration of a very large number of orderings of the elements in 4, and therefore
is computationally very expensive, even on small instances. A possible alternative could
be the application of simpler probability distributions in relation (10). In this direction,
one could think of using a uniform probability distribution over collections of feasible
coalitions (i.e., a notion of “generalized Banzhaf value”), or of applying methods aimed
to approximate the expected marginal contribution over feasible coalitions. These aspects
and other computational issues are left for another paper.
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