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Abstract.
ing strategical interactions between agemsolean game§8| are
two players, zero-sum static games where players’ utilipcfions
are binary and described by a single propositional formamal, the
strategies available to a player consist of truth assigmsneneach
of a given set of propositional variables (the variakldestrolledby
the player.) We generalize the frameworkntplayers games which
are not necessarily zero-sum. We give simple charactenmaof
Nash equilibria and dominated strategies, and investibateompu-
tational complexity of the related problems.

1 Introduction

Game theory is the most successful formal model for the stfdy
strategical interactions between agents. Informally, meyaonsists

Game theory is a widely used formal model for study- Since the specification of a static game needs the descripfithe

agents’ preferences, it seems natural to specify them ssiclg lan-
guages for compact preference representation. Here, dasake of
simplicity we focus on the simplest possible way of usingporo
sitional logic for representing games (the extent to whtoteih be
extended is discussed at the end of the paper), namely by asi
visited form ofBoolean gameshese game§&]|Bl [7, 5] are two-players
zero-sum games where the players’ utilities are binary aedified
by a mere propositional formulia (the Boolean fornof the game).
Some background is given in Sectldn 2. In Sedfion 3, we gigina-(
plified) description of Boolean games and generalize therassio
represent non zero-sum games with an arbitrary number gérda
(but we keep the assumption that each player’s preferemeagp:
resented by a unique propositional formula, inducing aryindility
function). In SectionEl4 arld 5, we show how well-known toodsrf

of a set of agents (or players), and for each agent, a set si-pos Propositional logic can be used so as to give simple chataat®ns

ble strategies and an utility function mapping every pdesgdom-
bination of strategies to a real value. In this paper we ctarsinly
staticgames, where agents choose their strategies in paraltbbuti
observing the others’ choices. While game theory consiseveral
formats for specifying a game (especially extended form iaod
mal form, which coincide as far as static games are concgrtes
usually consider that utility functions are representeglieitly, by
listing the values for each combination of strategies.

In many real-world domains, the strategies available togamacon-
sist in assigning a value to each of a given set of variablesv, N
representing utility functions explicitly leads to a dégtion whose
size is exponential both in the number of agemtsc @" values for

n agents each with two available strategies) and in the nurober
variables controlled by the agentsX2P x 2P values for two agents
each controllingp variables). Thus, in many cases explicitly specify-
ing utility functions is unreasonable, as well as compusotution
concepts (such as pure-strategy Nash equilibria) usindgva akgo-
rithm which enumerates combinations of strategies.

Now, specifying utilities, or more generally preferenciesa com-
pact way, is an issue addressed by many Al researchers iaghe |
years. Languages have been studied which allow for a congjse
resentation of preference relations or utility functiomscombinato-
rial domains, exploiting to a large extent the structuralparties of
preferences. In this paper, without much loss of generaléyfocus
on the case where each agent has control over a set of piopaskit
(binary) variables. Under this assumption, preferencasearepre-
sented within logic-based preference representatiorutges. Us-
ing propositional logic allies a rich expressivity to thespibility of
using a wide variety of algorithms.
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of two of the most important game-theoretic notions, nanpelse-
strategy Nash equilibria and dominated strategies, and toderive
complexity results for their computation. Sectidils 6 BhaSpec-
tively address related work and further issues.

2 Background

LetV = {ab,...} be afinite set of propositional variables andlgt
be the propositional language built frovnand Boolean constants
(true) and L (false with the usual connectives. Formulaslaf are
denoted byp, etc. Aliteral is a variablex of V or the negation of
one. Atermis a consistent conjunction of literalsit (o) denotes the
set of literals forming the terra. A formula¢ is in DNF when it is
written as a disjunction of terms.

2V is the set of the interpretations fet, with the usual convention
that forM € 2¥ andx e V, M gives the valudrue to x if xe M and
falseotherwise /= denotes the classical logical consequence relation.
LetX CV. 2X is the set o -interpretationsA partial interpretation
(for V) is anX-interpretation for som& C V. Partial interpretations
are denoted by listing all variables &f, with a ~ symbol when the
variable is set to false: for instance, lt= {a,b,d}, then theX-
interpretationM = {a,d} is denoted{a,b,d}. If {V1,....Vp} is a
partition of V and {My,...,Mp} are partial interpretations, where
Mi € 24, (My, ..., Mp) denotes the interpretatidvi; U... UMp.

Let Y be a propositional formula. A terim is animplicant of y iff

o =y holds.a is aprime implicantof Y iff a is an implicant ofy
and for every implicantt’ of Y, if o = a’ holds, them’ |= o holds.
PI1(p) denotes the set of all the prime implicantslofif X CV, anX-
prime implicant ofy is a prime implicant ofp such that.it(a) C X.
Plx () denotes the set of all the-prime implicants ofp.

Let ¢ € Ly and X C V. The forgetting of X in ¢ [L3],
denoted by3X : ¢, is defined inductively by: (i§2:¢ =¢;
(i) 32 0 = byt Ve 13 (i) IXU{X}) 10 = 3X: (3{x} 1 9).



Note thataX : ¢ is the logically weakest consequencepafontaining  Similarly, Tt_; denotes the set of the variables controlled by all play-

only variables fromV \ X [L0,[12]. ers except: TLj =V \ T§.
Finally, we denote the partial instantiation of a formgldoy anX- Finally, (s_i,5) denotes the strategy profile obtained fr&rby re-
interpretatiorMx by: (@)my = Pvemy T vex \My—L- placings with § without changing the other strategids.i,s) =

(S1,%2,-,8-1,5,S41,---:5n)-

Players’ utilities in Boolean games are binary: playés satisfied
by a strategy profile (and gets utility 1) if and only if her gdg
Given a set of propositional variabl¥s a Boolean game ovi [8, [4] is satisfied, and she gets utility O otherwise. Therefore, ghals
is a zero-sum game with two players (1 and 2), where the action{¢;,i = 1,...,n} play the role of the utility functionsy,...,un.
available to each player consist in assigning a truth vadueatch — . ' ) .
variable in a given subset ¥f. The utility functions of the two play- Dejlnltlgn 3 For exery plai/er' | and strategy profile S;(8) = 0if

ers are represented by a propositional formpulformed upon the SE ~¢i and y(S) = 1if Sf= ¢i.

variables irv and calledBoolean fornof the game¢ represents the  Example 2 We consider here a Boolean n-players version of the
goal of player 1: her payoff is 1 whefis satisfied, and 0 otherwise. well-known prisoners’ dilemma. n prisoners (denoted.by. , n) are

3 Boolean games

Since the game is zero-sflthe goal of player 2 is:¢. B kept in separate cells. The same proposal is made to eacleof: th
“Either you denounce your accomplices (denoted byiB- 1, ...,n)
Example 1 or you cover them (Ci=1,...,n). Denouncing makes you freed

Consider V= {a,b,c}. Player1
controls a and ¢ whil& controls 2 =

b b
b. Playerl's goal is$; = (a — 1 {b} {b}
b) v (-aAbA —c) and therefore, {a,c} 1,0 | (0, 1)
2s is ¢ = b1 = (-aAbA -

while your partners will be sent to prison (except those wke d
nounced you as well; these ones will also be freed). But iermhn
you chooses to denounce, everyone will be freed”

Here is the representation of this game in normal form fet &:

¢) V (aA —b). The normal form {aTt} |10 |01 strategy of3: C3 strategy of3: D3
) : ) 5

qf thls_, game is depicted on the (acl ©,1) | @, 0) N G D, G D,

right (in each(x,y), x—resp. y—

represents the payoff of player| {ac} | (1,0) | (1,0) C (1,,1) | (0,2,0) || (0,0,1) | (0,1,2)

1—-resp.2): D1 (17 0, O) (17 1, O) (17 0, 1) (17 1, 1)

So, for n prisoners, we have an n-dimension matrix, theee®5r
n-tuples must be specified. Now, this game can be expressgd mu
more compactly by the following Boolean game=GA,V, T, ®}:
A={12,...,n}, V= {Cq,...,Cq} (with -C; = D; for every i),
Vie{l,...,n},m ={C},andViec {1,....n},¢i = {(CLACA...A

Definition 1 A Boolean gamés a 4-tuple(A,V, Tt ®), where A= Cn)V-Ci}. . . .
{1,2,....n} is a set of players, V is a set of propositional variables Here:_each player i has two possible strategies=5Ci} and

(called decision variabls : A — V is a control assignment func- S = {Gi}. There are 8 strategy profiles for G, including S
tion, and® = {¢1,...,¢n} is a collection of formulas of\ (C1,C2,C) and $ = (C1,C2,Cs). Under §, players 1, 2 and 3 have
their goal satisfied, while Ssatisfies only the goal of playér

The control assignment functianmaps each player to the variables Ngte that this choice of binary utilities implies a loss ohgeality,

she controls. For the sake of notation, the set of all thesés con- ;¢ jt js essentially a starting point for the study of Boolggames,
trolled byi is writtenTs instead ofr(i). We require that each variable \hich moreover will gives us lower complexity bounds. See-Se
be controlled by one and only one agent, i{ew,...,m} forms a tion[d.

partition ofV.

We now give a more general definition of a Boolean game, with an
number of players and not necessarily zero-sum (we will segbédr
that the original definitior18.17] is a special case of thisengeneral
framework).

Definition 4 Let G= (AV,,.®) be a Boolean game, with =
Definition 2 Let G= (A,V, T, ®) be a Boolean game. #trategys {$1,...,0n} and A= {1,...,n}. Strategy sis a winning strategy

for a player i in G is arg-interpretation. Astrategy profiles for Gis ~ foriif Vs_j € 2™ (s_i,s) = ¢i.

an n-tuple S= (s1,%,...,S) where for all i, $ € 2. . .
P (51,92 ) ¥ Proposition 1 Let G= {A,V, T, ®} be a Boolean game. Playe€eiA

In other words, a strategy faris a truth assignment for all the vari- has a winning strategy iff RI(¢i) # 2.

ablesi controls. Note that sincérm, ..., Ty} forms a partition oW/, Clearly enough, deciding the existence of a winning stsafeg a

a strategy profil&is an interpretation fov, i.e.,Se 2. given player is an instance of the controllability problé@q{11] and

In the rest of the paper we make use of the following notation,can be reduced to the resolution ofBF, 5 instance.

which is standard in game theory. L&t= (A,V, 7. ®) be a Boolean |t js also easily seen that Boolean games as studied by Hagiaret
game withA= {1,...,n}, andS= (sy,...,%), S = (S},...,5) be a1 [@,[7] are a special case of omplayers Boolean games, obtained
two strategy profiless_j denotes the projection d on A\ {i}:  py making the following two assumptions:= 2 (two players) and
S =(S1,%--,S-1,5+1,---,5n)- $2 = 01 (zero-sum).

4 Stricto sensu, the obtained games are not zero-sum, butaedssim (the S
sum of utilities being 1) — the difference is irrelevant anel wse the termi- 4 Nash equnlbrla
nology “zero-sum” nevertheless. T

5 The original definition[[B[17] is inductive: a Boolean gamensists of a Pur.e-strategy Nash equ'“_bna (PNE) feplayers Boplean games are
finite dynamic game. We use here the equivalent, simpleritiefirof 5], defined exactly as usual in game theory (see for instancg, [1a-
who showed that this tree-like construction is unnecessary ing in mind that utility functions are induced from playeigdals



¢1,...,0n. A PNE is a strategy profile such that each player’s strat-This fact enables us to easily determine the complexity ofdileg

egy is an optimum response to the other players’ strategies.

Definition5 Let G= (AV,,®) be a Boolean game with A

whether there is a pure-strategy Nash equilibrium in a geeolean
game. Recall thafh = NP NP is the class of all the languages that
can be recognized in polynomial time by a nondeterministiong

{1,....n}. S={s1,...,s} is a pure-strategy Nash equilibrium machine equipped withP oracles[[T5].

(PNE) if and only ifvi € {1,...,n},vg € 2™ ui(S) > Ui(s_i,§).

Proposition 5 Deciding whether there is a pure-strategy Nash equi-

Example 3 Let G= {AV, L. ®} be the Boolean game defined by librium in a Boolean game iﬁg-complete. Completeness holds even

V ={ab,c}, A={1,2,3}, m = {a}, ®m = {b}, 3 = {c}, §1 =
-aV (aAbA-c), ¢ =(a— (b—c)) anddpz = ((aA—-bAa-C)V
(manbac)).

under the restriction to two-players zero-sum games.

Proof: Membership irig isimmediate. Hardness is obtained by a re-

Player 1 has a winning strategy, namely setting a to false. It can beduction from the problem of deciding the validity ofBF; 3. Given

checked that the strategy profile=S{a,b, ¢} is the only PNE of G.

In some examples, several PNE appear: inEx. 1, the PNEasg
and{abc}, and in Ex®, the PNE arfC;C,C3} and{C,C,C3}.

We now give simple characterizations of pure-strategy Nagfilib-
ria in Boolean games, starting with the following one:

Proposition 2 Let G= (A,V, 1, ®) be a Boolean game and leteS
2V. S is a pure-strategy Nash equilibrium for G iff for atiA, either
SE ¢j or s_j = —¢; holds.

Proof: Sis a PNE forG iff Vi € A Vs € 2. ui(S) > ui(s.i,s),
e, Vi e Avs € 2" u(S) = lorui(si,§) = 0, i.e, Vi € A
u(S)=1orvsy € 2%, ui(s_i,5) = 0. Finally, 1j(S) = 1 < S|= ¢;,
and Vs € 2" ui(s_i,§) = 0 & v € 2T, (s.i,5) = ¢, ie.,
S-i =i L

Sinces_; = —¢; means that-¢; follows from s_; whateverthe in-
stantiation of the variables controlled by playethe previous char-
acterization of PNE can be simplified again, using the fainggop-
erator.

Proposition 3 Let Se 2V. S is a pure-strategy Nash equilibrium for

G ifand only if S= Ai(¢; vV (—3i : §i)).

Proof: We have the following chain of equivalences; = —¢; <

s.i = —3i:¢i & (s,5.i) E —~3i: ¢ (because variables controlled

by playeri have disappeared frordi : ¢;) < S| —3i : ¢;. Putting
everything together, we get(Vi € ASE ¢j or s = —¢;) <
(MieASE¢ orSE-Ji:¢i) ©VieASEGV(-Ti:¢) <
Sk Ai(i v (=i i) L

In the particular case of two-players zero-sum Boolean game re-
cover the well-known fact that pure-strategy Nash equdiboincide
with winning strategies for one of the players.

Proposition 4 If G is a two-players zero-sum Boolean games S
(s1,5) is a pure-strategy Nash equilibrium iff & a winning strategy
for 1 or s, is a winning strategy foP.

Proof: LetS= (s1,52) be a PNE. Assume (S) = 1 (the case(S) =
1 is symmetric). Sinc& is zero-sum, we have(S) = 0. Now since
Sis a PNEYS,,uz(S) > up(s1,5,), which entailsvs,, up(s1,,) = 0.
It follows Vs, (s1,S,) = 2, which entails thav's), (s1,s,) = ¢1.
Thuss; is a winning strategy for 1.

Conversely, assume thgtis a winning strategy for 1 (the case of 2 is

symmetric). Then we hawésy, u(s1,S2) = 1 andvsy, up(sg,s2) =0.
Let S= (s1,5) Wheres, € 2™. We havevs;,u;(S) > ui(s;,s) and
Vs, Up(S) > Up(s1,S,). ThusSis a PNE. ]

Q = JA VB, ®, we define a two-players zero-sum Boolean game by

$1 =DV (x < y), wherex,y are new variables anth = AU {x}.
Obviously, this game can be built in polynomial time giv@n

Clearly, if Q is valid with Mp € 2" as a witness, then boitMa, x)
and (Ma,X) are winning strategies for 1. Conversely,Qfis not
valid, then whateveMp € 2* 1 plays, 2 can plaMp € 28 such
that(Ma,Mg) [~ ®, and 2 can play (resp.y) if 1 playsx (resp.x),
resulting in both cases in 2 winning (so, 1 has no winningtagy.
Now it is easily seen that 2 has no winning strategy. Fin#ligre is
a winning strategy for 1 (or 2, vacuously) if and onlyQfis valid,
and Propositiofll4 concludes. [ |

The fact that this problem lies at the second level of the pmtyial
hierarchy can intuitively be explained by the presence af inde-
pendent sources of complexity: the search for the “gooditsyy
profiles, and the test whether this strategy profile is inde@dre-
strategy Nash equilibrium. Once again, this result is egldb the
complexity of controllability [T1]. Actually, since the estence of a
Nash equilibrium is a more general problem than contrdilgbthe
fact that it has the same complexity is rather good news.

We now briefly investigate syntactic restrictions on therfalas rep-
resenting the players’ goals which make the problem easlerare
especially interested in DNF formulas. Recall that any Baalfunc-
tion can be represented by such a formula, and thus thatgstas i
syntactic but not a semantic restriction.

As far as 2-players zero-sum games are concerned, sincairdgci
the validity of 3A, VB, ®, a QBF, 5 formula, iszg-complete even if
® is restricted to be in DNF, Propositi@h 5 holds even if playsr
goal is restricted to be in DNF (and player 2’s is implicitiowever,
when we explicitly represent the goals of each player in DiKE,
complexity of the problem goes down to NP, as the next projposi
shows.

Proposition 6 Let G be a Boolean game. If the god of every
player is in DNF, then deciding whether there is a pure-giggtNash
equilibrium is NP-complete. Completeness holds even fif et re-
strict the number of players t® and one player controls only one
variable.

Proof: If ¢; is in DNF, thendi : ¢; can be computed in linear
time [10, Propositions 17-18]. Thus if evapyis in DNF, a formula
Y= Ai($i v(—3i:¢;)) can be computed in linear time. By Proposi-
tion[d it is enough to guess a strategy pro8lend checlS = y, thus
the problem is in NP.

As for hardness, we give a reduction from (the complementhaf)
problem of deciding whether a DN® = V!‘:l'l'i is tautological, a
well-knowncoNRcomplete problem. Writ¥ for the set of variables
of ® and letx,y ¢ X. Define a two-players gan@by ¢1 = Vf‘zl('ﬁ A
XA=Y)V(Ti A=XAY), To = {y}, ¢2 = (XAY) V (-XAY), Tp =
XU{x}. Clearly,G can be built in linear time angi;, ¢ are in DNF.



Observah; = P A (x#£Y) andd, = (x=Y). By Propositioi B, there is
aPNEInGifandonly if (PA (X#Y)) VD) A (X=Y) is satisfiable.
Indeed: (i) sincey does not occur i we have-3Jy: (PAXAY) =
S(PATY:XA£Y) =(PAT) ==, and (i) -IXU{x} : (x=y) =L.
Since® A (X # y) A (x =) is unsatisfiable, there is a PNE @iff
DA (x=Y) is satisfiable, i.e., if-® is satisfiable sinc& andy do
not occur in®. Finally, there is a PNE i iff @ is not tautologicalm

When restricting to two-players games, the complexity dfidieg
whether a game has a PNE can even be lower@d Tis is the case
if goals are represented in (i) Horn-renamable DNF, (iiynaffiorm,
(iif) 2CNF or (iv) monotone CNF. This is ensured by tractapibf
projection in these cases, and the same proof as for abdydiry

then{a} no longer dominate¢a} any more, and two strategy pro-
files remain, namelyab} and {ab}.

We now study properties and characterizations of domigatirate-
gies. A first result, that we just state as a remark, is thaBoalean
game, if strategys strictly dominates strategsf, thens is a win-
ning strategy for. Stated in more formal terms, strictly dominates
strategys if and only if: 5 |= (=3 —i: —¢;) ands = (=3 —i : ).
This shows that, due to the restriction to binary utilitigs notion
of strict dominance degenerates and loses its interess. i$tiow-
ever not the case for weak dominance. We have the followimglsi
characterization of weak dominance:

Section 6] can be used. However, as far as we know the practicd 'OPOSition 7 Strategy sweakly dominatestrategy $if and only if

interest of these restrictions in our context has not basshex.

5 Dominated strategies

Another key concept in game theorydeminanceA strategys for
playeri strictly dominatesanother strategy if it does strictly better
than it against all possible combinations of other playstsitegies,
andweakly dominatet if it does at least as well against all possible
combinations of other players’ strategies, and strictlfdseagainst
at least one. The key idea is that dominated strategies angsatul
and can be eliminated (iteratively, until a fixpoint is readh This
process relies on the hypothesis that every player behavesaitio-
nal way and knows that the other players are rational.

Definition 6 Lets € 2™ be a strategy for player i;$s strictly dom-
inatedif 35 € 2" s.t.Vs_j € 2™, u(s,Si) < Ui(§,Si).

s is weakly dominatedf 35 € 2™ s.t. Vs_j € 2™, u(s,s.i) <
ui(s,s-i) and3s_j € 2 s.t. y(s,s-i) < Ui(§,Si).

The following simple example shows the interest of elimimatiom-
inated strategies.

Example 4 Let G= {AV, T, ®} be the Boolean game defined by
V ={ab}, A={1,2}, ; = {a}, p = {b}, 1 = 2 =an b.
This game has two PNE: strategy profiles =S{a b} and

(Bi)g = (9i)s and (9i)s = (di)s-

Proof: Strategys weakly dominates iff (i) Vs_j € 2™, ui(s,s_i) >
ui(§,si) and (i) 3s_; € 2™, ui(s,s-i) > Ui(s,s.).

Now (i) < Vs_j € 2™, (Ui(s,s-i) = 1 orui(g,s-i) =0) & Vs—i €
25 if (5,s-i) | ¢ithen(s,s_i) = ¢i < Vs—ie 2™ if s
(bi)g thens_j = (9i)s < (9i)g = (di)s-

Finally, (ii) < —(i) if we swaps ands(; thus (i) < (¢i)s [~ (bi)g-m

Like for Nash equilibria, this characterization allows asierive the
complexity of deciding weak dominance.

Proposition 8 Deciding whether a given strategyis weakly domi-
nated isZ'z’-compIete. Hardness holds evemifis restricted to be in
DNF.

Proof: Membership inzg is immediate. Hardness is obtained again
by a reduction from the problem of deciding the validity a8k, 5.
GivenQ = 3A, VB, ®, leta,b be two new variables, and defi¢Q=
(and)Vv (-anb), m = Au{a}, ®, = BU{b} (¢2 does not matter).
Let Mj, be anyA-interpretation and; be (Mj,a). We have(¢1)g =

(b).

AssumeQ is valid with M4 € 2* as a witness, and Isf = (Ma,a).
Then clearlys; is a winning strategy for 1 wherea$ is not, thus

s weakly dominatedl. Conversely, assum@ is not valid, and let

S = {a,b}. Nevertheless, only one of these equilibria is interesting Ma € 2. Let s; = (Ma,@). Then (¢1)s, = (b) = (¢1)g, thus by
Indeed, ifl and2 are rational, they will both choose strategy profile Propositiofi¥'s; does not weakly dominatg. Now lets; = (Ma, ).
S1, which makes both of them win. This result may be obtained byinceQ is not valid, there i € 28 such tha{Ma, Mg) = @. Thus

eliminating dominated strategies: for play&(resp.2), strategy{a}
(resp.{b}) weakly dominates strated@} (resp.{b}).

This interest also appears in E3. 2 (the resulting strategfile is
{C1C2C3}), but notin Ex[1L (the resulting strategy profiles are eyactl
the PNE). It is a well-known fact from game theory that a siyic
dominated strategy is not present in any Nash equilibriutrereas
a weakly dominated strategy can be present in one (see tanoes
[8].) Moreover, the order of elimination of strictly domitea strate-
gies does not affect the final result, which is no longer tareveakly
dominated strategies. Since the latter negative resuttshfolr gen-
eral games (with no restriction on the players’ utility ftinas), it is
worth wondering whether it still holds for Boolean gamesdtually
does, as shown on the following example.

Example 5 G = {A )V, 1, ®}, where V= {a,b}, A= {1,2}, m =
{a}, o = {b}, 1 = aAb,d2 = an-b. For playerl (resp.2), strat-
egy {a} (resp. {b}) weakly dominates strategig} (resp.{b}). If
we first eliminate{@}, then{b} weakly dominategb} and only one
strategy profile remains, name{gb}. Now, if we first eliminatgb},

(Mg,b) = (¢1)s, but (Mg,b) = (¢1)s,, and by Propositiof] 7s;
does not weakly dominat® . Finally, s; is weakly dominated ifQ
is valid. For goals in DNF, just note (i) P is in DNF thendA, VB, ®
is still Zg-complete and (ii) a DNF fob4 can be built efficiently. m

6 Related work

Our work is not the first one that gives a logical account tostiuely
of concepts such as Nash equilibria and dominating stegegipart
from Boolean game$ 8] ¥ 5], a number of other works coneitler
static games from the point of view of logic and Al.

Two recent lines of work allow for expressing games witdinal
preferences within well-developed Al frameworks.

In Foo et all[6], a game in normal form is mapped inttogic pro-
gram with ordered disjunctiofLPOD) where each player owns a
set of clauses that encode the player’s preference overdssibbe
actions given every possible strategy profile of other piay# is
then shown that pure-strategy Nash equilibria correspaadtly to
the most preferred answer sets. The given translationrsufiem a



limitation, namely its size: the size of the LPOD is the sam¢h@at  Boolean games framework is defined, extending it so as twdtio

of the normal form of the game (since each player needs a numbenore general preferences does not present any partictfiguldy:

of clauses equal to the number of possible other stratedilgsdor the definition remains unchangescepthe agents’ goal$,, ..., ¢n,
other players). However, this limitation is due to the wayQBs are  which are replaced by more complex structures, expresstdnwi
induced from games and could be overwhelmed by allowing to exlogical languages for compact representation. These franks al-
press the players’ preferences by any LPODs (and priodiggels),  low for representing compactly eitheumericalpreferences (utility
which then would allow for a possible much more compact regme  functions on ¥) or ordinal preferences (partial or complete order-
tation. ings on 2). The companion papef][2] considers extended Boolean
In De Vos et all[4], a strategic game is represented usiobaice ~ games with ordinal preferences represented by prioritieeds and
logic program where a set of rules express that a player will selectCP-nets with binary variables.

a “best response” given the other players’ choices. Thanefery Now, binary utilities are a degenerate case of both numeaicd
strategic game, there exists a choice logic program sudhhtbaset  ordinal preferences. This implies that the complexity ltssidenti-

of stable models of the program coincides with the set of Nagh- fied in this paper provideower boundgor complexity results in the
libria of the game. This property provides a systematic meétto  aforementioned possible extensions of the framefliork

compute Nash equilibria for finite strategic games. Apart of extensions to more expressive preferences as ieggla
In Apt et al [1], CP-nets are viewed as games in normal formvézcel  above, we plan to address the following two issues:

versa. Each playgrcorresponds to a variabl¢ of the CP-net, whose 4 computingmixed strategy Nash equilibriar Boolean games;
domainD(X;) is the set of available actions to the player. Preferences, defining and studyinglynamicBoolean games (with complete or

over a player’s actions given the other players’ strategiieshen ex-
pressed in a conditional preference table. The CP-net ssiore of
the game can sometimes be more compact than its normal form ex

incomplete information).
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