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Abstract. Boolean games are a logical setting for representing static games in a
succinct way, taking advantage of the expressive power and conciseness of propo-
sitional logic. A Boolean game consists of a set of players, each of them controls
a set of propositional variables and has a specific goal expressed by a proposi-
tional formula. There is a lot of graphical structures hidden in a Boolean game:
the satisfaction of each player’s goal depends on players whose actions have an
influence on these goals. Even if these dependencies are not specific to Boolean
games, in this particular setting they give a way of finding simple characteriza-
tions of Nash equilibria and computing them.

1 Introduction

The framework of Boolean games [1-4] allows for expressing compactly static games with bi-
nary preferences: each player of a Boolean game controls a set of propositional variables, and a
player’s preferences is expressed by a plain propositional formula.® Thus, a player in a Boolean
game has a dichotomous preference relation: either her goal is satisfied or it is not. This restriction
may appear at first glance unreasonable. However, many concrete situations can be modelled as
games where agents have dichotomous preferences. Furthermore, Boolean games can easily be
extended to allow for non-dichotomous preferences, represented in some compact language for
preference representation (see [5]).

Using the syntactical nature of goals, we can represent graphically the dependencies between
players: if the goal (and hence the satisfaction) of a player i depends on some variables controlled
by a player j, then i may need some action of j to see her goal satisfied. This dependency be-
tweeen players is a central notion in graphical games [6, 7] as well as in [8] — see Section 6.
Representing these dependencies on a graph will allow us to compute pure-strategy Nash equi-
libria in a much simpler way, without enumerating all combinations of strategies.

After recalling some background on Boolean games in Section 2, we introduce in Section 3 the
notion of dependency graph between players in Boolean games. In Section 4 we show how this
graph can be exploited so as to find simple characterizations Nash equilibria in Boolean games,
and we generalize some of these results for non-dichotomous preferences in Section 5. Related
work and further issues are discussed in Section 6.

1 We refer here to the version of Boolean games defined in [4], which generalizes the initial
proposal [1].



2 n-playersBoolean games

For any finite setV = {a,b,...} of propositional variables, Ly denotes the propositional language
built up from V, the Boolean constants T and L, and the usual connectives. Formulas of Ly
are denoted by ¢, etc. A literal is a variable x of V or the negation of a variable. A term is a
consistent conjunction of literals. A clause is a disjunction of literals. If a is a term, then Lit(a) is
the set of literals appearing in a. If ¢ € Ly, then Var(¢) denotes the set of propositional variables
appearing in ¢.

2V is the set of the interpretations for V, with the usual convention that for M € 2Vandx eV,
M gives the value true to x if x € M and false otherwise. |= denotes the consequence relation of
classical propositional logic.

Let V' CV. A V'-interpretation?, also said partial interpretation, is a truth assignement to each
variable of V', that is, an element of 2V, v’- interpretations are denoted by listing all variables
of V/, with a — symbol when the variable is set to false: for instance, let V = {a,b,d}, then the
V'-interpretation M = {a,d} assigning a and d to true and b to false is denoted by abd. C X, then
If {V1,...,Vp} is a partition of V and {M1,...,Mp} are partial interpretations, where M; € M,
(M1,...,Mp) denotes the interpretation My U...UMp.

Finally, we denote the partial instantiation of a formula ¢ by an X-interpretation Mx by: (¢)m, =

DueMy—T veX\My —L -

Given a set of propositional variables V, a Boolean game on V is a n-players game3, where the
actions available to each player consist in assigning a truth value to each variable in a given subset
of V. The preferences of each player i are represented by a propositional formula ¢; formed upon
the variables inV.

Definition 1 A n-player Boolean game is a 4-tuple (N,V, 7t ®), where N = {1,2,...,n} is a
finite set of players (also called agents); V is a finite set of propositional variables; 1t: N — 2V is
a control assignment function; ® = {¢1,...,n} is a set of goals, where each ¢; is a satisfiable
formula of Ly .

The control assignment function Ttmaps each player to the variables she controls. For the ease of
notation, the set of all the variables controlled by i is written 15 instead of Ti(i). Each variable is
controlled by one and only one agent, that is, {11, ..., Th} forms a partition of V.

Definition 2 Let G = (N,V,1,®) be a Boolean game. A strategy for player i in G is a Tg-
interpretation . The set of strategies for player i in G is §; = 2™ A strategy profile s for G is
a n-uple s = (s1,Sp,...,5n) Where for all i, s; € Sj. S=S3 x ... x Sy is the set of all strategy
profiles.

Note that since {ry,..., T} forms a partition of V, a strategy profile s is an interpretation for Vv,
i.e., s € 2V. The following notations are usual in game theory. Let s = (s1,...,5n) be a strategy
profile. For any non empty set of players | C N, the projection of s on I is defined by s; = (Sj)ie|
and sy =syy;. If I = {i}, we denote the projection of s on {i} by s; instead of sy, ; similarly, we
note s_; instead of s_y;y. T denotes the set of the variables controlled by I, and 1| = T4. The
set of strategies for | C N is S| = X¢S;. If s and s’ are two strategy profiles, (s_ ,s{) denotes the
strategy profile obtained from s by replacing s; with s{ foralli € I.

2 Note that a V-interpretation is an interpretation.
3 In the original proposal [1], Boolean games are two-players zero-sum games. However the
model can easily be generalized to n players and non necessarily zero-sum games [4].



The goal ¢; of player i is a compact representation of a dichotomous preference relation, or
equivalently, of a binary utility function u; : S — {0,1} defined by uj(s) = 0 if s = —¢; and
ui(s) = 1 if s = ¢j. s is at least as good as s’ for i, denoted by s =i &, if ui(s) > u;(s'), or
equivalently, if s = —¢; implies s’ = —¢;; s is strictly better than s’ for i, denoted by s > ¢/, if
ui(s) > ui(s'), or, equivalently, s = ¢; and s’ = —¢;.

This choice of binary utilities implies a loss of generality, even if some interesting problems
have naturally dichotomous preferences. We relax this assumption in Section 5, where we con-
sider generalized Boolean games with nondichotomous preferences expressed in some logical
language for compact preference representation, as in [5].

3 Dependencies between players

We now focus on the syntactical nature of goals, which may help us identifying some game-
theoretical notions, as pure-strategy Nash equilibria. Intuitively, if the goal ¢; of player i does not
involve any variable controlled by player j, then the satisfaction of i does not depend directly on j.
This is only a sufficient condition: it may be the case that the syntactical expression of ¢; mentions
a variable controlled by j, but that this variable plays no role whatsoever in the satisfaction of
¢j, as variable y in ¢; = XA (y vV —y). We therefore use a stronger notion of formula-variable
independence [9].

Definition 3 A propositional formula ¢ is independent from a propositional variable x if there
exists a formula Y logically equivalent to ¢ and in which x does not appear.*

Definition 4 Let G = (N,V, 11, ®) be a Boolean game. The set of relevant variables for a player
i, denoted by RVg(i), is the set of all variables v € V such that ¢; is not independent from v.

For the sake of notation, the set of relevant variables for a given Boolean game G will be denoted
by RV; instead of RVg(i). We now easily define the relevant players for a given player i as the set
of players controlling at least one variable of RV;.

Definition 5 Let G = (N,V, 11, ®) be a Boolean game. The set of relevant players for a player i,
denoted by RP;, is the set of agents j € N such that j controls at least one relevant variable of i:
RP = Uyery T 1(v)°.

Example 1 3 friends (1, 2 and 3) are invited at a party. 1 wants to go at this party. 2 wants to go
at the party if and only if 1 goes, whereas 3 wants to go there, and prefers that 2 goes to, and 1
doesn’t. This situation can be modelled by the following Boolean game G = (N,V, Tt @), defined
by V = {a,b,c}, with a means “1 goes at the party”, the same for b and 2; and for ¢ and 3;
N={1,23}, m ={a}, o={b}, 3= {c},p1=a, dp=a—banddpz3=—-arbAc.

We can see that 1’s satisfaction depends only on herself, 2’s depends on 1 and herself, whereas 3’s
depends on 1, 2 and herself. So, we have: RV, = {a}, RV, = {a,b}, RV3 = {a,b,c}, RP; = {1},
RP, ={1,2}, RP3 ={1,2,3}.

4 We have this equivalent semantical characterization of formula-variable independence [9]: ¢
is independent from x if there exists an interpretation s such that s |= ¢ and switch(s,x) = ¢,
where switch(s,x) is obtained by switching the value of x in s, and leaving the values of other
variables unchanged.

5 Again, the set of relevant players for a Boolean game G should be denoted by RPg(i): for the
ease of notation we simply write RP;.



This relation between players can be seen as a directed graph containing a vertex for each player,
and an edge from i to j whenever j € RP;, i.e. if j is a relevant player of i.

Definition 6 Let G = (N,V, 1, ®) be a Boolean game. The dependency graph of a Boolean
game G is the directed graph (but not necessariyly acyclic) Z = (N,R), with Vi, je N, (i,j) €R
(denoted by R(i, j)) if j € RP;.

Thus, R(i) is the set of players from which i may need some action in order to be satisfied: j € R(i)
if and only if j € RP;. Remark however that j € R(i) does not imply that i needs some action by
j to see her goal satisfied. For instance, if Ty = {a}, ™o = {b} and ¢1 =a VDb, then 1 € R(2);
however, 1 has a strategy for satisfying her goal (setting a to true) and therefore does not have to
rely on 2.

We denote by R* the transitive closure of R. R*(i, j) means that there exists a path fromito j in R.
Then, R*(i) represents all players who have a direct or indirect influence on i. R*~(i) represents
all players on which i has a direct or indirect influence.

Example 1, continued: The dependence graph ® induced by G is depicted as follows:

We have R~1(1) = {1,2,3}, R"1(2) = {2,3}, R"1(3) = {3}.
R*(1) = {1}, R*(2) = {1,2} and R*(3) = {1,2,3}.
R*1(1) = {1,2,3}, R*1(2) = {2,3} and R*"1(3) = {3}.

We easily obtain the following:
Proposition 1 Every dependency graph represents at least one Boolean game.
We now introduce the notion of stable set. A stable set is a set B of nodes such that all the edges

from nodes in B get to another node in B. The set of relevant players of a stable set B are the
players in B.

Definition 7 Let G = (N,V, 7, ®) be a Boolean game. B C N is stable for R if and only if
R(B) C B, i.e.VjeB,Visuchthati € R(j), thenic B.

Clearly, @ and N are stable, and the set of stable sets for a Boolean game is closed under union and
intersection. These four properties actually fully characterize the set of coalitions that correspond
to the set of stable coalitions for a Boolean game (recall that a coalition is a subset of N).

Proposition 2 Let ¢ c 2N. There exists a Boolean game G such that C is the set of stable sets
for G if and only if C satisfies the following four properties: 1. @ € C;2.N € C; 3. I1fB,B € C
thenBUB' € C; 4. 1fB,B' € Cthen BNB' € C.

We now define the projection of a Boolean game G on the set of players B C N:

Definition 8 Let G = (N,V, 1, ®) be a Boolean game, and B C N a stable set for R. The pro-
jection of G on B is defined by Gg = (B,Vp, T8, ®g), Where Vg = UjcpTs, Tz : B — Vp such that
Tg(i) = {v|v e 1}, and ®p = {¢i|i € B}.

Proposition 3 If B is a stable set, Gg = (B, Vg, Tig, ¥g) is a Boolean game.



Proof: Let Gg = (B,Vp, T, Pg). We have to check that every goal ¢; for i € B is a formula of
Ly, or can be rewritted equivalently as a formula of Ly,. Suppose than 3i € B, 3v € Var(¢;) such
that v ¢ Vg. So, Vj € B, v ¢ 1. Let k € N\ B such that v € 1. We know that v € Var(¢;), so
either ¢; is independent from v, and then is logically equivalent to a formula in which v does not
appear; or ¢; is not independent from v, and in this case v € RV; and by definition k € RP;. So,
k € R(i), but k ¢ B: this is in contradiction with the fact that B is stable. [ ]

Example 2 Let G = (N,V, 11, ®) be the Boolean game defined by V = {a,b,c}, N = {1,2,3},
m ={a}, o ={b}, e={c}, 1 =a«<—b,pp=a« —band p3=—c.

We have: RV; = {a,b}, RV2 = {a,b}, RV3 = {c}, RP1 = {1,2}, RP, = {1,2}, RP3 = {3}.

The dependency graph 2 of G follows. The sets of players B = {1,2} and C = {3} are stable. We
can decompose G in 2 Boolean games:

M - Gg = (B,Vg,Tg, ®p), with B = {1,2}, Vg = {a,b}, m; =a, Th =D,

p1=a<b dp2=a b

@ - Gc = (C,V¢, T, @), withC = {3}, Ve = {c}, g =¢, 3 = —c.

4 Nash equilibria

Pure-strategy Nash equilibria (PNE) for n-players Boolean games are defined exactly as usual
in game theory (see for instance [10]), having in mind that utility functions are induced from
players’ goals ¢1,...,0n. A PNE is a strategy profile such that each player’s strategy is an optimal
response to the other players’ strategies.

Definition 9 Let G = (N,V, T, ®) be a Boolean game with N = {1,...,n}.
s={s1,...,5n} is a pure-strategy Nash equilibrium (PNE) if and only if Vi € {1,...,n}, Vs{ €
Si, Ui (s) > Ui (5—i,$}).

The following simple characterization of PNEs is straightforward from this definition ([4]): a
strategy profile s is a pure-strategy Nash equilibrium for G iff for all i € N, either s |=¢; or
s_i = —¢; holds.

These definitions lead to some obvious properties of pure-strategy Nash equilibria:
Proposition 4 Let G be a Boolean game. If Vi € N, i € RP; then every s € S is a PNE.

If the irreflexive part of the players’ dependency graph 2 of a game G is acyclic, (i.e. if there is
no cycle of length > 2), then we can use a procedure inspired by the “forward sweep procedure”
[11] to find the pure-strategy Nash equilibria. Let us see this on an example.

Example 1, continued: The irreflexive part of the dependency graph ? of G is acyclic. RP; =
{1}, so a strategy profile s = (s1,52,53) is @ PNE only if 1’s goal is satisfied, i.e., sy =a. Then, 2
can choose her strategy, because her goal depends only on her and on 1. Thus, s is a PNE only if
(s1,82) = (92)s,, i.€., Sp = b. Finally, 3 knows the strategies of 1 and 2, and therefore she knows
her goal will never be satisfied whatever she does. Therefore, G has 2 PNEs: {abc,abc}.

Proposition 5 Let G be a Boolean game such that the irreflexive part of the dependency graph
P of G is acyclic. Then, G has a PNE. Moreover, s is a PNE of G if and only if for every i € N,

either (Sg-(i)\ (i} Si) = i OF Sre(iy\ giy = —i-



Obviously, when the irreflexive part of the dependency graph is not acyclic, the existence of PNE
is no longer guaranteed (still, a game with a cyclic dependency graph may have a PNE, as shown
in Example 3).

Proposition 5 leads to the following corollary:

Corollary 1 If G is a Boolean game such that Vi € N, RP; = {i}, then s is a PNE if and only if
Vi, s = ¢.

If G is a Boolean game such that Vi € N, 3j € N such that RP; = { j}, then s is a PNE if and only
ifsi=9;.

Proposition 6 Let G = (N,V,1,®) be a Boolean game, B C N a stable set for R, and Gg the
projection of G on B. If s is a PNE for G, then sg is a PNE for Gg.

Example 3 LetG = (N,V, T, ®) be the Boolean game defined by V = {a,b,c,d}, N = {1,2,3,4},
m={a}, lp={b}, Iy={c}, Tu={d},p1=a<b,¢po=b<c,¢3=-d anddps=d < (bAc).
We have: RP; = {1,2}, RP, = {2,3}, RP3 = {4}, RP4 = {2,3,4}.

Th ependenraph P of G is the following:
The set of players B = {2,3,4} is stable. Gg = (B,Vp, T, ®B) is a

Boolean game, withVg = {b,c,d}, To =b, Tk =C, Ty =d, P2 =b < C,
¢3=-d,and ¢4 =d < (bAc).

G has 2 PNEs : {abcd,abcd}, and {bcd,bcd} are 2 PNEs of Gg (and
in this case, Gg has no other PNES).

As we can see on Example 2, the converse is not always true: C = {3} is stable, and the Boolean
game G¢ = (C,V¢, Tic, Pc) has a PNE : {T}, but the game G has no PNE.
However, there exist simple cases for which the converse is true.

Proposition 7 Let B and B be two stable sets of players, and let Gg and Gg be the two Boolean
games associated. Suppose than sg is a PNE for Gg and sg is a PNE for Gg such that Vi € BNB/,
sg,i = Sm',i, Where sgj represents the strategy of player i for the game Gg. Then, sgup is a PNE
for GBUB’-

Example 4 Let G = (N,V, T, ®) be the Boolean game defined by V = {a,b,c}, N = {1,2,3},
m = {a}, o = {b}, I3 = {c}, p1 =a ¢, 2 =b < —c, and ¢3 = c. We have: RP; = {1,3},
RP, = {2,3}, RP3 = {3}. The dependency graph 2 of G is drawn below. The sets of players
B = {1,3} and C = {2,3} are stable. We have two new Boolean games.

- Gg = (B,Vg, 13, Pp), withB={1,3}, Vg ={a,c}, m =a, Ty =c,¢p1=a«<cC
and ¢3 = c. Gp has one PNE : {ac} (denoted by sg = (Sg 1,58 3))
- Gcf (C.\Vg, 1, Pc), withC = {2,3},Vc = {b,c}, p=b, M3 =c, ¢ =b < —c,

@-@ ¢3 = ¢. Gc has one PNE : {bc} (denoted by sc = (sc,2,5¢.3))-

BNC = {3}. But we have sg 3 = Sc 3 = ¢: Ggyc has one PNE: {abc}.
We can easily generalize Proposition 7, with p stable sets covering the set of players:

Proposition 8 Let G = (N,V, 7, ®) be a Boolean game, and let By...Bp be p stable sets of
players, such that By U...UBp = N. Let Gg,,...,Gg, be the p Boolean games associated. If
Jsg, ...ss, PNEs of Gg,,...,Gg, such that Vi, j € {1,...p}, VK € BiNBj, sg k = S, k» then
S = (SBy---,58,) isa PNE of G.



As shown in Example 4, splitting a Boolean game makes the computation of Nash equilibria
easier. If we try to compute Nash equilibria in the original game, we have to check if either
s = ¢; or s_j = —¢; for each of the 8 strategy profiles s and for each of the 3 players i. So, we
have to make 12 verifications for each player (8 for each strategy profile in order to verify s = ¢;,
and 4 for each s_; to verify s_j = —¢;), then 36 for the game in the worst case. Meanwhile, the
computation of PNEs once the game is split is much easier: for Gg, from Proposition 5, we have
to make 6 verifications for player 1 (4 to compute (s1,53) = ¢1, and 2 to compute s3 = —1);
and only 2 for player 3 (because R*(3) \ {3} = ©@). So, we only have to do 8 verifications in the
worst case to find the PNEs of Gg, and the same for G¢, which has an equivalent configuration.
As we have to check if the instanciation of player 3’s variables are the same for PNEs of the 2
games, we have to make 17 verifications to compute PNEs of the game G.

5 Generalization to non-dichotomous preferences

This choice of binary utilities (where agents can express only plain satisfaction or plain dissat-
isfaction, with no intermediate levels) is a loss of generality. We would like now to allow for
associating an arbitrary preference relation on S with each player. A preference relation > is a
reflexive, transitive and complete binary relation on S. The strict preference - associated with
> is defined as usual by s1 > s, if and only if s1 > s> and not (S > s1). Given a proposi-
tional language L for compact preference representation, a L-Boolean game is defined a 4-uple
G = (N,V,t®), where N = {1,...,n},V, and rtare as before and ® = (P4,...,Py), where for
each i, ®; is a compact representation, in L, of the preference relation >; of agent i on S. We
let Prefg = (=1,...,>n). Remark that if Lp is the purely propositional preference representa-
tion language, where a (dichotomous) preference is represented by a propositional formula, then
Lp-Boolean games are just standard Boolean games as defined in Section 2. See [5] for several
families of L-Boolean games.

We now have to generalize the dependency graph between players from Boolean games to L-
Boolean games, for an arbitrary language L. Recall that, in Section 3, a player i was dependent
on a player j if her propositional goal ¢; was dependent of one of the variables that j controls.
Therefore, what we have to start with is generalizing formula-variable dependence to a depen-
dency notion between a preference relation (or a syntactical input in a compact representation
language from which this preference relation can be induced) and a variable. Several definitions
have been considered in [12], in the more general case where preference relations are partial
preorders. In the specific case where preference relations are complete preorders, however, there
seems to be only one suitable definition: a preference relation > depends on a propositional vari-
able x if there exists at least one state where the agent is not indifferent between this state and the
state obtained by switching the value of x:

Definition 10 A preference relation = on 2V depends on a propositional variable x € V if there
exists a s € S such that switch(s, x) = s or switch(s,x) <; s.

This definition extends naturally to inputs of preference representation languages: an input @ of
a preference representation language L depends on x if the preference relation > induced by ®
depends on x.

We are now in position of defining the dependency graph for a L-Boolean game:

Definition 11 Let G = (N,V, T, @) a L-Boolean game. The set of relevant variables for a player
i, denoted by RV;, is the set of all variables v € V such that ®; is dependent on v. The set of
relevant players for a player i, denoted by RP;, is the set of agents j € N such that j controls at
least one relevant variable of i: RP; = Uycry, T 1(v)



The dependency graph of a L-Boolean game is defined exactly as in Section 3.

These definitions do not depend on the language chosen for compact preference representation.
However, for the sake of illustration we give an example in which preferences are represented
with prioritized goals (see [5]):

Definition 12 A prioritized goal base X is a collection (z1; ...; ZP) of sets of propositional
formulas. 2! represents the set of goals of priority j, with the convention that the smaller j, the
more prioritary the formulas in /.

In this context, several criteria can be used in order to generate a preference relation > from . We
choose here to stick to the leximin criterion (see [13-15]). In the following, if s is an interpretation
of 2V then we let Sat(s,=1) = {¢ € ZJ | s |= }.

Definition 13 Let £ = (31;...;5P), and let s and s’ be two interpretations of 2V. The leximin
preference relation is defined by: s '’ iff 3k € {1,..., p} such that: [Sat(s,Z¥)| > |Sat(s’, ¥)|
and Vj <k, |Sat(s,Z!)| = |Sat(s',Z))].

Note that ='® is a complete preference relation. Here is now an example within this preference
representation language:

Example5 G = (N,V,,®) where N = {1,2,3},V = {a,b,c}, ;y = {a}, ™o = {b}, T3 = {c},
3= ( ) 22 = ((b\/ ﬂa) > and X3 = ((cV —a);a). We draw below the preference relations

: : : abc<—7 beceabf<—- 7 C Hb\f bteabgx——
3 Yy ) s : :
Ebc<—>a c<—abC<=—aht B/ Y

QJ
o\
QD
(J)
[2))
Tl<
]

(EE @ (El We have: Rv; = {a}, RV, = {a,b}, RV3={a,c}, RP; =
{1}, RP, ={1,2}, RP3 = {1,3}.

Definition 14 Let G = (N,V, 1, ®) be a L-Boolean game, and B C N a stable set for R. The
projection of G on B is defined by Gg = (B, Vg, Tig, ®g), Where Vg = UicgTs, Tie(i) = {v|v € T§},
and @g are the goals of players in B.

We can now generalize some properties found previously to these non-dichotomous preferences.
For example, Propositions 3, 5, 6, 7 and 8 can be easily generalized in this framework.

6 Arrows are oriented from more preferred to less preferred strategy profiles (sq is preferred to
s, is denoted by s; — s»). To make the figures clearer, we do not draw edges that are obtained
from others by transitivity. The dotted arrows indicate the links taken into account in order to
compute Nash equilibria. For example, player 2 prefers abc to abc because |Sat(ab, Z )| =1,
|Sat(ab,Z3)| = 1 (both stratas of 32 are satisfied), and |Sat(ab,23)| = 1, |Sat(ab, 22 2) =0
(only the first strata of 2 is satisfied).



Example5, continued: The sets of players B = {1,2} and C = {1, 3} are stable. We have two
new Boolean games:

Gg = (B, VB, T8, Pp), with B = {1,2}, Vg = {a,b},
™m=a Tp="h X =(a),and Z, = ((bV —a);a).
The preference relations Pre fi& = (=& =) are
drawn on the right.

Gg has one PNE : {ab} (denoted by sg = (Sg 1,582)).

Ge = (C.Ve,Te, @c), with € = {1,3}, Ve = {a,¢h,  gper 5

™ =a, Tg=¢ 21 = (a) and 23 = ((cV —a);a). T al
Vv
b

drawn on the right. Eb><—><g

The preference relations Prefi® = (='® ~1&) are 3

Gc has one PNE : {ac} (denoted by sc = (Sc 1,5c 3))-
BNC = {1}. But we have sg 1 = Sc 1 = a: Ggyc has one PNE: {abc}.

6 Conclusion

We have shown how the intuitive notion of dependency between players in a Boolean game can be
exploited so as to give simpler characterizations of pure-strategy Nash equilibria. Moreover, our
properties not only hold for the standard version of Boolean game (with propositional goals and
dichotomous preferences) but also for generalized Boolean games, where players’ preferences
are expressed in a compact representation language. Another class of games with dichotomous
preferences shares a lot with Boolean games: Qualitative Coalitional Games (QCG), introduced
by [16]. In a QCG, each agent has a set of goals, and is satisfied if one of her goals is achieved,
but is indifferent on which goal is, and on the number of goals achieved’. Thus agents have
dichotomous preferences (as in the standard version of Boolean games - cf. Sections 2-4). A
characteristic function associates with each agent, or set of agents, the set of goals they can
achieve. The main difference between QCGs and BG is that characteristic functions in QCGs
are not monotonic, whereas utility functions are in Boolean games. However, we can represent a
QCG with monotonic characteristic function by a Boolean games.

Boolean games take place in a larger stream of work, that we may gather under the generic name
of compactly represented games. All frameworks for compactly represented games make use of
notions of dependencies between players and/or actions that have a lot in common with ours. Most
of these frameworks, including [6, 7, 18], share the following mode of representation of players’
utilities: the utility of a player i is described by a table specifying a numerical value for each
combination of values to each of the set of variables that are relevant to i8. The representation of
games with such utility tables is called graphical normal form (GNF) in [8]. Dependency between
players and variables in such games naturally induce a dependency relation between players, in
the same way as we do (i depends on j if i’s utility table refers to a variable that is controlled by
)2

Boolean games are very similar to these graphical games, except that the form chosen for express-
ing compactly players’ preferences is logical. The logical form is sometimes exponentialy more
compact than the graphical form: consider for instance the dichotomous preference relation cor-
responding to the goal ¢ = X1 @ ... ®Xp, where & is exclusive or. While the logical representation

7In [17], QCGs are extended by allowing agents to have preferences over goals.
8 In multi-agent influence diagrams [6], a players’ utility is actually express in a more compact
way as the sum of local utilities, each corresponding to a smaller set of variables.



of ug is linear in p, its representation by utility tables would be exponential in p, since each of the
p variables is relevant to the utility of the player. In the general case of non-dichotomous utility
functions or preference relations, the Boolean game framework, by allowing some flexibility on
the choice of the language for preference representation, is more general than that of graphical
games, where the format for expressing preferences is fixed. Moreover, solving games in logical
form may benefit from the huge literature on SAT and related algorithms for propositional logic.
The notion of dependency between players and variables in graphical games is used for the very
same purpose as our dependency graph, namely, to split up a game into a set of interacting smaller
games, which can solved more or less independently. [8] study speficic restrictions on graphical
games, either by bounding the size of players’ neighbourhoods (the neighbourhood of a player
i in a graphical game is the set of players who potentially influence the utility of i), or by im-
posing that the dependency relation between players should be acyclic. They study the impact
of such restrictions on the complexity of checking the existence of a Nash equilibrium (or their
computation). Clearly, similar structural restrictions on Boolean games would probably allow for
a complexity fall with respect to the complexity results for the general case in [4]. This is left for
further study.

The work reported here is still preliminary and can be pursued in many other directions.

First, apart of the structural restrictions mentioned just above, we may study the impact of syn-
tactical restrictions on propositional goals on the computation of Nash equilibria and on the con-
struction of the dependency graph. In [19], Sichman and Conte introduced dependence graphs
which can represent and/or dependencies® on actions needed to achieve an agent’s goal and on
the agents who control these actions. In the first case, this is similar to our set of relevant vari-
ables, and in the second case this corresponds to our set of relevant players. Sichman and Conte’s
ideas can be used for introducing and/or dependencies in our framework, but using the syntac-
tical form of the goals. In [20], 3 notions of dependance are defined: the weak one is the same
than our (an agent i is dependent from a set of agents C if C can achieve i’s goal). The second
one, normal dependence, adds to weak dependence the condition that i cannot achieve her goal
by herself. Finally, the third one adds the fact that agents in C are the only ones able to achive
i’s goal. Following [19], [20] use an and-graph to reprensent weak/strong dependence: for every
coalition C, there is an and-edge from agent i, i € C, to agent j € N if the agents in C can achieve
the goal desired by the agent j. This notion of dependence is the basis of their computation of
admissible coalition under the do-ut-des criterion (see [21]).

Second, while our Section 5 does not focus on particular language (prioritized goals we used in an
example just for the sake of illustration), we may want to study in further detail the computation
of Nash equilibria (using the structural properties of the game) for some specific languages for
preference representation (see [5] for the case of CP-nets and prioritized goals). A particularly
appealing language is that of weighted goals, where a player’s utility function is represented
using several propositional formulas, each being attached with a numerical value (see [22]). This
is especially interesting because this language generalizes the representation by utility tables in
graphical games.

So far, Boolean games allow only for expressing static games (with simultaneous moves by the
players) and with complete information. Enriching Boolean games with dynamicity and nature-
driven uncertainty, as in multi-agent influence diagrams, is not as simple as it looks at first glance,
and is a challenging issue. Computing mixed strategy Nash equilibria in Boolean games is another
challenging issue.

9 The or-dependence means that several actions allow an agent to achieve a in several ways, and
the and-dependence means that this agent needs all these actions to achieve her goal.
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