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1. Introduction

This habilitation thesis presents my research activities since I obtained my PhD in November 2007,
and is based on several papers I published with my colleagues and contains some parts of them.

1.1 Context
I do my research in the Distributed Artificial Intelligence group at LIPADE in Université Paris Cité.
This team is carrying out theoretical and applied research in the domain of intelligent agents and
multi-agent systems. My work focuses on different types of interactions in multi-agent systems.

I do not see research as anything other than a collective effort, and I would like to take this opportu-
nity to thank my co-authors:1 Douae Ahmadoun (LIPADE2, Paris), Stéphane Airiau (LAMSADE,
Paris), Leila Amgoud (IRIT, Toulouse), Nicholas Asher (IRIT, Toulouse), Cédric Buron (Thales,
Paris), Marco Correia (Universidade Nova de Lisboa, Portugal), Jorge Cruz (Universidade Nova
de Lisboa, Portugal), Jérôme Delobelle (LIPADE, Paris), Caroline Devred (LERIA, ANgers),
Yannis Dimopoulos (University of Cyprus), Dragan Doder (Utrecht University), Louise Dupuis de
Tarlé (LAMSADE, Paris), Ulle Endriss (University of Amsterdam), Sébastien Konieczny (CRIL,
Lens), Dionysios Kontarinis (LIPADE3, Paris), Marie-Christine Lagasquie-Schiex (IRIT, Toulouse),
Jérôme Lang (LAMSADE, Paris), Alex Lascarides (University of Edinburgh), João Leite (Universi-
dade Nova de Lisboa, Portugal), Nicolas Maudet (LIP6, Paris), Alexis Martin (LIP6, Paris), Pavlos
Moraitis (LIPADE, Paris), Stefano Moretti (LAMSADE, Paris), Alan Perotti (CentAI, Italy), Julien
Rossit (LIPADE, Paris), Pierre Savéant (Thales, Paris), Onn Shehory (Bar-Ilan University, Israel),
Leon van der Torre (University of Luxembourg), Srdjan Vesic (CRIL, Lens), Serena Villata (I3S,
Sophia Antipolis) and Bruno Zanuttini (GREYC, Caen).

1.2 Research questions
In multi-agent systems, several agents interact, cooperatively or not, to achieve a given objective,
that can be personal to each agent, or common to the group of agents. My main research interest
consists in studying such interactions between agents.

These interactions can take different forms: they can be purely strategic when agents seek to satisfy
their own interests, and reason about the other agents’ strategy. In this context, game theory presents
an interesting set of tools to model and study these interactions. Agents can also need to interact
with each other to make decisions together or agree on a course of action. Here again, game theory,
and more especially cooperative game theory, is a natural way to study these problems.

However, game theory is not suitable anymore when agents need to convince the other agents that

1In alphabetical order
2Now AI Research Engineer @ Safran Tech
3Now Data Scientist in Cartography & Geospatial Data Section at Hellenic Statistical Authority (ELSTAT)



6 Chapter 1. Introduction

their solution, or idea, is the best one. In this case, the mechanisms proposed in argumentation
theory, that allow agents to present arguments to support their positions, are more suitable.

Another interest rose in the question of task allocation mechanisms. In this context, agents need to
undertake some tasks to accomplish a common “mission”. These missions typically involve different
tasks each requiring different skills, tools or resources. In general, these tasks are complementary
and interrelated in terms of shared resources, execution time or efficiency.

1.2.1 Argumentation Theory
Argumentation Theory provides a means of reasoning about the exchange and evaluation of
interacting arguments. In his seminal work, Dung (1995) proposed an argument framework where
the content and the structure of the arguments are abstract. It is then possible to focus on the
reasoning process to decide about the status of any specific argument, or group of arguments.
To determine which arguments are acceptable, different argumentation semantics were defined.
They can be divided into several categories: extension-based semantics, where sets of arguments
are accepted together in so-called extensions (see Baroni et al. (2011) for an overview); scoring
semantics, where a numerical acceptability degree is assigned to each argument (Besnard and
Hunter, 2001; da Costa Pereira et al., 2011; Leite and Martins, 2011; Matt and Toni, 2008); and
ranking-based semantics, where arguments are individually ranked from the most to the least
acceptable (Amgoud and Ben-Naim, 2013; Amgoud et al., 2016; Bonzon et al., 2016b; Cayrol and
Lagasquie-Schiex, 2005; Grossi and Modgil, 2015; Pu et al., 2014).
Ranking-based semantics address a different question than classical Dung’s extension-based se-
mantics. Indeed, they do not provide any indication as to what sets of arguments can be jointly
accepted. For some applications though, like online debate platforms or decision-making where
a large number of arguments is involved, ranking semantics provide highly valuable information,
complementary to classical semantics which returns two levels of evaluations (accepted or rejected).
In recent years, several ranking-based semantics have been introduced. We proposed two different
methods of comparison of these existing ranking-based semantics (an experimental one, and an
axiomatic one). Then, based on our axiomatic study, we introduced four new families of semantics:
a first one based on the notion of propagation; a second one conceived to address the specificities
of persuasion dialogues; a third one combining the strength of extension-based and ranked-based
semantics; and finally a fourth one taking account the similarities between arguments.

1.2.2 Argumentative protocols
It is natural to justify your positions and opinions with arguments, so argumentation is at the heart
of the deliberative process. A few years ago, most of the existing work on argumentation theory
concerned an agent reasoning alone through an argumentation process, and based only on the
information available to her. My research was therefore guided by the idea of defining the basis of
a theory of multilateral argumentation, potentially involving many agents, and in which each agent
has his own opinion (arguments, beliefs, objectives, etc. ). An important application of this work is
linked to the debate systems that are emerging on the Internet. The success of these platforms in
their current form seems to suggest that they can become an important source of information. For
example, Debategraph4 has been used to produce maps for the British newspaper "The Independent"
as well as talk shows on CNN, and is supported by the White House, the European Commission
and other institutions. These debate systems are, however, still in their infancy. For the moment,
these are mainly interfaces in which it is possible to give arguments for or against a given question,
without processing or evaluating these arguments.
I thus have been interested in studying protocols for persuasion in such multi-agent systems, first in
the context of extension-based semantics. Then, I turned my attention to the dynamical aspect of

4https://debategraph.org

https://debategraph.org
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gradual semantics and studied the impact of such semantics on the debates and the agents’ opinions.
I also had an interest in argumentative negotiation and looked at a protocol allowing agents to take
into account a partial knowledge of their opponents. Another point of interest was to study how
the diversity of views observed in such multi-agent systems is consistent with the views of every
individual argumentation framework.

1.2.3 Interaction in Games
Game theory aims at developing mathematical tools to model strategic interactions between several
agents. More specifically, Boolean games (that I studied during my PhD) make it possible to
represent strategic games succinctly by taking advantage of the power of expression and the
conciseness of propositional logic.
I was interested in studying the links between argumentation theory and game theory. More
specifically, I wondered how the tools from game theory can be used in the setting of abstract
argumentation theory. Many similarities exist between argumentation systems and CP-Boolean
games, and we worked on a translation between both systems and then identified some links
between the solutions concepts of both theories.
Another interesting question regarding the links between game and argumentation theory is to study
how the concepts of cooperative game theory can guide agents as to what argument should be put
forward in a debate.

1.2.4 Task Allocation
In today’s era of rising technological applications such as robotics, autonomous engines and home
devices, there has been a renewed interest in multi-agent task allocation technologies. The tasks
at hand typically involve different sub-tasks each requiring different skills, tools or resources of
the agents involved. In general, these tasks are complementary and interrelated in terms of shared
resources, execution time or efficiency. As many communication disconnections or breakdowns may
occur in real-world applications, we need multi-agent task allocation mechanisms in a decentralized
and robust manner, to avoid the single-point failure possible in a centralized configuration.
I thus wondered: how to allocate interdependent tasks to agents and form coalitions in a decen-
tralized manner? In particular, we focused our research on the case where agents cannot execute
more than one task at a time and are heterogeneous, meaning they have different capabilities.
These agents must realize, cooperatively as a team, a mission composed of complex tasks where
each of those tasks requires a subset of agents with a specific combination of capabilities for its
achievement.
Furthermore, the tasks are interdependent. The quality of a task does not depend only on the agents
assigned to it but can also depend on other tasks. Regarding the mission execution environment, we
started by considering a static environment, that we extended to a dynamic one where some agents
can break down while others can join the mission on the road, and some tasks can fail while new
ones can be added. For this reason, we focused on a decentralized configuration to adapt to the
nature of the intended applications that can be critical with communication instability and where
agents are robots or drones.





2. Argumentation

Argumentation is a reasoning model based on the evaluation, and sometimes exchange, of interacting
arguments. The most popular way to represent the argumentation process was proposed by Dung
(1995) with abstract argumentation frameworks, in which the structure of arguments is abstract.
Such systems can then be modeled by directed graphs, where the nodes represent (abstract)
arguments, and the edges represent the attacks between them.
Given an argumentation framework, we need a reasoning process to decide about the status of
any specific argument, or group of arguments: answering this question corresponds to defining
an argumentation semantics. Various semantics (see Baroni et al. (2011) for an overview) have
been formulated to compute these sets of arguments, called extensions (or equivalently labelings
Caminada (2006)), from an argumentation framework. An alternative way to evaluate arguments
consists of directly reasoning on the arguments themselves by exploiting the topology of the
argumentation framework. Following this idea, scoring semantics (assigning numerical acceptability
degree to each argument) and ranking-based semantics (returning a ranking on the arguments) have
been proposed in recent years. Such semantics address a different question than classical Dung’s
semantics. Indeed, they do not provide any indication as to what sets of arguments can be jointly
accepted. For some applications though, like online debate platforms or decision-making where
a large number of arguments is involved, ranking semantics provide highly valuable information,
complementary to classical semantics which returns two levels of evaluations (accepted or rejected).

In this chapter, we are interested in studying ranking-based semantics: we will propose two different
methods of comparison of existing ranking-based semantics (an experimental one, and an axiomatic
one). Then, we will introduce four new families of semantics: a first one based on the notion of
propagation; a second one conceived to address the specificities of persuasion dialogues; a third
one combining the strength of extension-based and ranked-based semantics; and finally a fourth
one taking account the similarities between arguments.
Note that the main part of this work has been done by Jérôme Delobelle (Delobelle, 2017) during
his PhD thesis, co-supervised with Sébastien Konieczny and Nicolas Maudet.
We will start by giving some background on abstract argumentation theory. My objective in this
section is not to give an exhaustive state of the art but to introduce some concepts that will be useful
in the rest of this thesis.

2.1 Basic concepts on abstract argumentation
Abstract argumentation has received a great deal of interest since the work of Dung (1995). The
idea behind this seminal work is to focus only on the definition of the status of arguments, and
to abstract from the content and the structure of those arguments. Arguments are then simply
considered abstract entities and can be represented as nodes of a graph.
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Definition 2.1 [Argumentation framework (AF)]
An argumentation framework (AF) is a pair ⟨A,R⟩ of a set A of arguments and a binary
relation R on A called the attack relation. ∀ai,a j ∈ A, (ai,a j) ∈R means that ai attacks a j

(or a j is attacked by ai). An AF may be represented by a directed graph, called the interaction
graph, whose nodes are arguments and edges represent the attack relation.

In the following, AF will represent the set of all argumentation frameworks.

Definition 2.2 [Path, Defender, Attacker]
Let AF= ⟨A,R⟩, and a,b ∈ A. A path P from b to a, noted P(b,a), is a sequence ⟨a0, . . . ,an⟩
of arguments such that a0 = a, an = b and ∀i < n,(ai+1,ai)∈R. We denote by lP = n the length
of P.
A defender (resp. attacker) of a is an argument situated at the beginning of an even-length
(resp. odd-length) path. We denote the multiset of defenders and attackers of a by R+

n (a) =
{b | ∃P(b,a) with lP ∈ 2N} and R−

n (a) = {b | ∃P(b,a) with lP ∈ 2N+ 1} respectively. The
direct attackers of a are arguments in R−

1 (a). An argument a is defended if R+
2 (a) ̸= /0.

A defense root (resp. attack root) is a non-attacked defender (resp. attacker). We denote the
multiset of defense roots and attack roots of a by B+

n (a) = {b ∈ R+
n (a) | |R−

1 (b)| = 0} and
B−

n (a) = {b ∈R−
n (a) | |R−

1 (b)|= 0} respectively. A path from b to a is a defense branch (resp.
attack branch) if b is a defense (resp. attack) root of a. Let us note B+(a) =

⋃
nB+

n (a) and
B−(a) =

⋃
nB−

n (a).

The goal of the argumentation process is to evaluate these arguments, taking into account the
existing conflicts between them, to determine their degree of acceptability.
In Dung’s framework, the acceptability of an argument depends on its membership to some sets,
called extensions. These extensions characterize collective acceptability. The main characteristic
properties are:

Definition 2.3 [Conflict-free set, Acceptability]
Let AF= ⟨A,R⟩ be an argumentation framework. Let S ⊆A.

• Conflict-free set: S is conflict-free for AF if and only if there exists no ai, a j in S such
that aiRa j.

• Acceptability: An argument a is acceptable w.r.t. S for AF if and only if ∀b ∈ A such
that (b,a) ∈R, ∃c ∈ S such that (c,b) ∈R. S is acceptable for AF if and only if ∀a ∈ S,
a is acceptable w.r.t. S for AF.

Then several semantics for acceptability have been defined in Dung (1995). For instance:

Definition 2.4 [Extension-based semantics]
Let AF= ⟨A,R⟩ be an argumentation framework and S ⊆A.

• Admissible: S is an admissible set of AF if and only if S is conflict-free and acceptable
for AF.

• Preferred extension: S is a preferred extension of AF if and only if S is maximal (w.r.t.
⊆) among the admissible sets for AF.

• Stable extension: S is a stable extension of AF if and only if S is conflict-free and S
attacks every argument in A\S.

• Complete extension: S is a complete extension of AF if and only if ∀a ∈ A, if a is
acceptable w.r.t. S, then a ∈ S

• Grounded extension: S is the grounded extension of ⟨A,R⟩ if and only if S is the minimal
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(w.r.t. ⊆) complete extension.

We denote by Eσ (AF) the set of extensions of AF for the semantics σ ∈ {co(mplete), pr(eferred),
st(able), gr(ounded)}.

An alternative way to represent extension-based semantics is by using a labeling-based approach
Caminada (2006). Indeed, rather than stating in terms of sets of arguments, a labeling function can
be used to assign a label to each argument. The idea of labeling is to associate exactly one label to
each argument, which can either be in, out or undec. The label in indicates that the argument is
explicitly accepted, the label out indicates that the argument is explicitly rejected, and the label
undec indicates that the status of the argument is undecided, meaning that one abstains from a
judgment whether the argument is accepted or rejected.

Definition 2.5 [Labeling-based semantics]
Let Λ = {in,out,undec}. Let AF= ⟨A,R⟩ be an argumentation framework. A labeling on AF
is a total function L : A→ Λ. A labeling-based semantics in a function λ such that for every
argumentation framework AF we have that λ (AF) is a set of labelings on AF.

In the labeling-based approach, a semantics definition relies on some legality constraints relating
the label of an argument to those of its attackers.

Definition 2.6 [Legal labeling]
Let AF= ⟨A,R⟩ be an argumentation framework, and L be a labeling of AF.

• An in-labeled argument is said to be legally in if and only if all its attackers are labeled
out.

• An out-labeled argument is said to be legally out if and only if it has at least one attacker
that is labeled in.

• An undec-labeled argument is said to be legally undec if and only if not all its attackers
are labeled out and it does not have an attacker that is labeled in.

To simplify the technical treatment in the following, some extension-based semantics are defined
by referring to the commitment relation between labelings (Baroni et al., 2011).

Definition 2.7 [Commitment relation between labelings]
Let L1 and L2 be two labelings. We say that L2 is more or equally committed than L1, denoted
L1 ⊑ L2, if and only if in(L1)⊆ in(L2) and out(L1)⊆ out(L2).

On this basis, the labeling-based definitions of several argumentation semantics can be introduced.

Definition 2.8 [labeling-based definitions of argumentation semantics]
Let AF= ⟨A,R⟩ be an argumentation framework.

• An admissible labeling of AF is a labeling L where every in-labeled argument is legally
in and every out-labeled argument is legally out.

• A complete labeling of AF is a labeling where every in-labeled argument is legally in,
every out-labeled argument is legally out and every undec-labeled argument is legally
undec.

• A stable labeling of AF is a complete labeling without undec-labeled arguments.

• The grounded labeling of AF is the minimal (w.r.t. ⊑) labeling among all complete
labelings.

• A preferred labeling of AF is a maximal (w.r.t. ⊑) labeling among all complete labelings.
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We denote by Lσ (AF) the set of labelings of AF for the semantics σ ∈ {co, pr, st, gr}.

For an argumentation framework AF with at least one extension (resp. labeling), we say that an
argument is skeptically accepted if it belongs to all of AF’s extensions (resp. it is labeled in in
all of AF’s labelings). An argument is credulously accepted if it belongs to at least one of AF’s
extensions (resp. it is labeled in in at least one of AF’s labelings). Given a semantics σ , we denote
by saσ (AF) (resp. caσ (AF)) the set of skeptically (resp. credulously) accepted arguments in AF.
A more fine-grained notion of a justification status has also been introduced in (Wu and Caminada,
2010) with a labeling-based justification status of the arguments in an argumentation framework.
Concretely, the justification status of an argument consists of the set of labels that could reasonably
be assigned to the argument w.r.t. the complete semantics.

Definition 2.9 [Justification status]
Let Λ = {in,out,undec}. Let AF= ⟨A,R⟩ be an argumentation framework and x ∈ A. The
justification status of x is the outcome yielded by the function JS : A→ 2Λ such that JS(x) =
{L(x) | L ∈ Lco(AF)}.

For example, if an argument is labeled either in or undec in all the complete labelings then
the justification status of this argument is {in,undec}. Thus, there are 6 possible statuses to be
considered: {in}, {out}, {undec}, {in,undec}, {out,undec} and {in,out,undec}.

Extension-based and labeling-based semantics (see Baroni et al. (2011) for an overview) aims
at evaluating which sets of arguments can be accepted together. Thus, these semantics evaluate
sets of arguments in a binary way (sets of arguments are or are not extensions (or in) for a given
semantics).
However, this binary evaluation can be too rough for some applications, for example for online
debate platforms (Leite and Martins, 2011), and the need for a more focused evaluation of each
argument has been put forward. This led to the idea of ranking-based semantics (see e.g. Amgoud
and Ben-Naim, 2013; Amgoud et al., 2016; Bonzon et al., 2016b; Cayrol and Lagasquie-Schiex,
2005; Grossi and Modgil, 2015; Patkos et al., 2016; Pu et al., 2015b) and scoring-based semantics
(see e.g. Besnard and Hunter, 2001; da Costa Pereira et al., 2011; Leite and Martins, 2011; Matt
and Toni, 2008), where the aim is to evaluate each argument in an argumentation system by
exploiting the topology of the argumentation framework. The ranking-based semantics associates
with any argumentation framework a ranking of the arguments from the most to the least acceptable
ones. The scoring semantics assigns a numerical acceptability degree to each argument, taking
into account various criteria from the argumentation framework. If one defines scoring-based
semantics, then this straightforwardly induces corresponding ranking-based semantics. This allows
having a large number of levels of acceptability and not only the classical accepted/rejected (or
accepted/rejected) evaluations obtained with extension-based semantics, but on the other hand the
joint acceptability of arguments is no longer captured.
Formally, ranking-based semantics rank-orders a set of arguments in an argumentation framework
from the most acceptable to the weakest one(s) by comparing pairs of arguments.

Definition 2.10 [Ranking-based semantics]
A ranking-based semantics σ associates to any argumentation framework AF = ⟨A,R⟩ a
ranking ⪰σ

AF on A, where ⪰σ
AF is a preorder (a reflexive and transitive relation) on A.

a ⪰σ
AF b means that a is at least as acceptable as b (a ≃σ

AF b is a shortcut for a ⪰σ
AF b and b ⪰σ

AF a,
and a ≻σ

AF b is a shortcut for a ⪰σ
AF b and b ⪰̸σ

AF a).

We denote σ(AF) the ranking on A returned by σ . When there is no ambiguity about the argumen-
tation framework in question, we will use ⪰σ instead of ⪰σ

AF.
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2.2 Ranking semantics
Amgoud and Ben-Naim (2013) presents four considerations regarding extension-based semantics:

• Killing: The impact of an attack from an argument a to an argument b is drastic, that is, if b
belongs to an extension, then a is automatically excluded from that extension.

• Existence: One successful attack against an argument a has the same effect as any number of
successful attacks.

• Absoluteness: The three possible statuses of the arguments are absolute, that is, they make
sense even without comparing them with each other.

• Flatness: All the accepted arguments have the same level of acceptability.
These considerations seem rational in applications like paraconsistent reasoning (Besnard and
Hunter, 2008) where arguments are represented as formulas and attacks correspond to contradictions
between these formulas. Here, the killing and existence considerations seem essential to capture
the fact that one, and only one, attack is lethal and prevent any contradiction between arguments
and thus obtain a consistent set of formulas.
However, in other applications like decision-making, online debate platforms or when additional
information exists in the framework, some of these considerations are debatable.
For example, imagine an online debate represented by the following argumentation framework,
where argument a is the subject of the debate:

a

b
d

e

f
g

c
h

In a classical setting, b and c have the same status: they both do not belong to any extension and
are not accepted. However, it could make sense that the level of acceptability of argument b, which
is widely attacked, should be lower than that of c, in contradiction with Existence and Absoluteness
considerations.
On the other hand, arguments a, e, d, f , g and h are all accepted and have the same level of
acceptability. But, in applications like decision-making, it is reasonable to consider that the level of
acceptability of a should be lower than that of h for example, which is not attacked, in contradiction
with Flatness consideration.

This shows that if classical semantics can be well-suited for reasoning, they are not suited for
applications like decision-making.

2.2.1 Properties of ranking-based semantics
Many ranking-based semantics with different behaviors have been introduced in recent years
(Amgoud and Ben-Naim, 2013; Amgoud et al., 2016; Bonzon et al., 2016b; Cayrol and Lagasquie-
Schiex, 2005; Grossi and Modgil, 2015; Pu et al., 2014, 2015b). These semantics have often been
defined along with a set of properties, each of which represents a specific criterion (e.g. quantity
or quality of the direct attackers of an argument), aiming to highlight the unique behavior of the
proposed semantics (Amgoud and Ben-Naim, 2013; Cayrol and Lagasquie-Schiex, 2005; Matt and
Toni, 2008).
Note, however, that none of these properties are mandatory. Indeed, some of these properties
are not independent of each other because incompatibilities and dependencies can exist between
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them (Besnard et al., 2017; Bonzon et al., 2016a). These properties are therefore an excellent
indication to better understand the behavior of these semantics and remain the only way to compare
existing ranking-based semantics with new ones. They also are a first step to the ambitious research
question of defining fully characterized classes of ranking-based semantics with respect to a subset
of properties.
In this section, I recall the intuition of these properties and let the interested reader look for the
original works for details.

First, it seems natural that the ranking on the set of abstract arguments should be defined only based
on the attacks between arguments and should not depend on the identity of the arguments.

Property 1 — Abstraction (Abs). (Amgoud and Ben-Naim, 2013)
The ranking on A should be defined only based on the attacks between arguments.

Property 2 — Independence (In). (Amgoud and Ben-Naim, 2013; Matt and Toni, 2008)
The ranking between two arguments a and b should be independent of any argument that is neither
connected to a nor b.

Example 2.1 Consider the two following argumentation frameworks:

a b c d

The property Abstraction ensures that the ranking between a and b is the same as the one
between c and d.
The property Independence ensures that the ranking between a and b (and the one between c
and d) remains the same after the fusion of the two frameworks. ■

Property 3 — Void Precedence (VP). (Amgoud and Ben-Naim, 2013; Cayrol and Lagasquie-
Schiex, 2005; Matt and Toni, 2008)
A non-attacked argument is ranked strictly higher than any attacked argument.

Property 4 — Self-Contradiction (SC). (Matt and Toni, 2008)
A self-attacking argument is ranked lower than any non self-attacking argument.

Example 2.2 Consider the following argumentation framework:

a b c d

The property Void Precedence ensures that a, which is not attacked, is strictly more acceptable
than both b and c which are attacked.
The property Self-Contradiction ensures that d which attacks itself is strictly less acceptable
than a, b and c. ■

Property 5 — Cardinality Precedence (CP). (Amgoud and Ben-Naim, 2013)
The greater the number of direct attackers for an argument, the weaker the level of acceptability of
this argument.

Property 6 — Quality Precedence (QP). (Amgoud and Ben-Naim, 2013)
The greater the acceptability of one direct attacker for an argument, the weaker the level of
acceptability of this argument.
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Example 2.3 Consider the following argumentation framework:

a

b

c

d

e

g h

The property Cardinality Precedence ensures that h is strictly more acceptable than a, because a
has more direct attackers.
If we suppose that g is strictly more acceptable than b and c, then the property Quality Precedence
ensures that a is strictly more acceptable than h. ■

Property 7 — Defense Precedence (DP). (Amgoud and Ben-Naim, 2013)
For two arguments with the same number of direct attackers, a defended argument is ranked higher
than a non-defended argument.

Property 8 — Counter-Transitivity (CT). (Amgoud and Ben-Naim, 2013)
If the direct attackers of b are at least as numerous and acceptable as those of a, then a should be at
least as acceptable as b.

Property 9 — Strict Counter-Transitivity (SCT). (Amgoud and Ben-Naim, 2013)
If CT is satisfied and either the direct attackers of b are strictly more numerous or acceptable than
those of a, then a is strictly more acceptable than b.

Example 2.4 Consider the two following argumentation frameworks:

a

a1

a3

a2

b

b1

b2

Both arguments a and b have two attackers, but a is defended by a2 whereas b is not defended.
Defense Precedence ensures that a is ranked higher than b.
As b has two strong attackers (they are not attacked), whereas a has one strong (a3) and one
weak (a1, attacked by a2) attackers, (Strict) Counter-Transitivity ensures that a is (strictly) more
acceptable than b.

■

Definition 2.11 [Simple and distributed defense]
Let AF = ⟨A,R⟩ and a ∈ A. The defense of a is simple if and only if every defender of a
attacks exactly one direct attacker of a. The defense of a is distributed if and only if every
direct attacker of a is attacked by at most one argument.

Property 10 — Distributed-Defense Precedence (DDP). (Amgoud and Ben-Naim, 2013)
The best defense is when each defender attacks a distinct attacker to weaken all of them, instead
of focusing on a specific direct attacker to greatly weaken it (but at the price of leaving its other
attackers unaffected).
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Example 2.5 Consider the two following argumentation frameworks:

a

a1

a3

a2

a4

b

b1

b2

b3

b4

The two arguments a and b have the same number of attackers and the same number of defenders.
The defense of a is simple because a2 directly attacks a1 and a4 directly attacks a3; distributed
because a1 and a3 are attacked by exactly one argument. Conversely, the defense of b is also
simple but not distributed (b1 is directly attacked by two arguments). Distributed-Defense
Precedence ensures that a is more acceptable than b.

■

The following properties check if some change in an AF can improve or degrade the ranking of
one argument. These properties have been proposed informally by Cayrol and Lagasquie-Schiex
(2005), in the context of their semantics. In Bonzon et al. (2016a), we proposed a formalization
that generalizes them for any argumentation framework.

Property 11 — Strict addition of Defense Branch (⊕DB).
Adding a defense branch to any argument improves its ranking.

It makes sense to treat differently non-attacked arguments. So in Cayrol and Lagasquie-Schiex
(2005), this property is defined in a more specific way:

Property 12 — Addition of Defense Branch (+DB).
Adding a defense branch to any attacked argument improves its ranking.

Property 13 — Addition of Attack Branch (+AB).
Adding an attack branch to any argument degrades its ranking.

Example 2.6 Consider the following argumentation framework:

a1 a2 a3 a4

b2 b3 b4

c2 c3 c4

d3 d4

e3

Addition of Attack Branch (+AB) ensures that a1, which has no attack branch, is more acceptable
than b2, b3, d3 and b4 which have one attack branch; and that a2 is more acceptable than a4
(both have one defense branch with the same length but a4 has also an attack branch while a2
has not).
Strict addition of Defense Branch (⊕DB) ensures that a3 is more acceptable than a2, which is
more acceptable than a1. Indeed, a3 has one more defense branch than a2, which has one more
defense branch than a1. In addition, a4 with one defense branch and one attack branch should
be more acceptable than b2, b3, d3 and b4 which have no defense branch.
Addition of Defense Branch (+DB) ensures allows the same conclusion as ⊕DB, except for a1.
Indeed, as a1 is not attacked, nothing can be said about its ranking in comparison with the other
arguments. ■
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Property 14 — Increase of Attack branch (↑AB).
Increasing the length of an attack branch of an argument improves its ranking.

Property 15 — Increase of Defense branch (↑DB).
Increasing the length of a defense branch of an argument degrades its ranking.

Example 2.7 Consider the following argumentation framework:

a1

a2

a3

a4

b1

b2

b3

b4c2

c3

c4

d3

d4e4

Increase of Attack branch (↑AB) ensures that a3, which has an attack branch of length 3, is more
acceptable than a1, which has one attack branch of length 1.
Increase of Defense branch (↑DB) ensures that a2, which has a defense branch of length 2, is
more acceptable than a4, which has a defense branch of length 4. ■

To this set of properties from the literature, we added some other important properties in (Bonzon
et al., 2016a; Delobelle, 2017).
The first one, Total, allows to make a distinction between the semantics which return a total
preorder or a partial preorder between arguments. Indeed, too many incompatibilities can be
problematic, especially if we want to use argumentation for decision-making or online debate
platforms. Argument Equivalence ensures that the acceptability of an argument depends only on
(the structure of) its attackers and defenders. This property is related to a well-known property
satisfied by the classical semantics, called Directionality (Baroni et al., 2011), which states that
an argument can only be affected by arguments following the direction of the attacks (i.e. an
argument a cannot be affected by another argument b if there exists no path from b to a). Non-
attacked Equivalence is a particular case of Argument Equivalence that focuses on the comparison
between the non-attacked arguments: if the arguments are affected only by the arguments in their
ancestors’ graph, then the non-attacked arguments should be unaffected by the remaining part of
the argumentation framework and should have the same ranking. Another possibility to detect when
two arguments are equally acceptable consists of taking into account their direct attackers, which is
captured by Ordinal Equivalence. Finally, Attack vs Full Defense describes the behavior adopted by
semantics concerning the notion of defense and can be viewed as some kind of compatibility with
usual Dung’s semantics. The idea is that a defended argument is always better than an attacked
argument.

Property 16 — Total (Tot). All pairs of arguments can be compared.

Property 17 — Argument Equivalence (AE).
If two arguments have the same ancestors’ graph, then they are equally acceptable.

Property 18 — Non-attacked Equivalence (NaE).
All the non-attacked argument have the same rank.

Property 19 — Ordinal Equivalence (OE).
If two arguments a and b have the same number of direct attackers and that, for each direct attacker
of a, there exists a direct attacker of b such that the two attackers are equally acceptable, then a and
b are equally acceptable too.

Property 20 — Attack vs Full Defense (AvsFD).
An argument without any attack branch is ranked higher than an argument only attacked by one
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non-attacked argument.

2.2.2 Links between these properties
Each of these properties aims to capture a particular principle. These different principles may
be contradictory, or they may overlap. (Amgoud and Ben-Naim, 2013; Besnard et al., 2017)
highlighted some incompatibilities and dependencies between properties, and we pursued this work
in (Bonzon et al., 2016a, 2023; Delobelle, 2017).

Definition 2.12 [Incompatibility]
Two properties are incompatible if there exists an argumentation framework AF= ⟨A,R⟩ and
a,b ∈ A such that when one property states that a ≻AF b, the other property states that b ⪰AF a.

Proposition 2.1 For every ranking-based semantics, the following pairs of properties are incom-
patible:

1. Cardinality Precedence (CP) and Quality Precedence (QP) (Amgoud and Ben-Naim, 2013)

2. Self-Contradiction (SC) and Cardinality Precedence (CP) (Besnard et al., 2017)

3. Self-Contradiction (SC) and Counter-Transitivity (CT) (Besnard et al., 2017)

4. Self-Contradiction (SC) and Strict Counter-Transitivity (SCT) (Besnard et al., 2017)

5. Cardinality Precedence (CP) and Attack vs Full Defense (AvsFD)

6. Cardinality Precedence (CP) and Addition of a Defense Branch (+DB)

7. Cardinality Precedence (CP) and Strict Addition of a Defense Branch (⊕DB)

8. Void Precedence (VP) and Strict Addition of a Defense Branch (⊕DB)

9. Argument Equivalence (AE) and Self-Contradiction (SC)
Moreover, no ranking-based semantics can simultaneously satisfy Addition of a Defense Branch
(+DB), Strict Counter-Transitivity (SCT) and Argumentation Equivalence (AE).

Some of these results are not surprising. Indeed, some properties have different views on the notion
of defense. It is the case, for example, with the properties CP and SCT which consider that any
additional (defense or attack) branch should harm a given argument while +DB or ⊕DB state that
an additional defense branch should have a positive impact on this argument.

Definition 2.13 [Implication]
A property P implies an other property Q if and only if for any ranking-based semantics σ , if σ

satisfies P then σ satisfies Q.

Proposition 2.2 For every ranking-based semantics, the following pairs of properties are not
independent:

1. Strict Counter-Transitivity (SCT) implies Void Precedence (VP) (Amgoud and Ben-Naim,
2013)

2. Counter-Transitivity (CT) and Strict Counter-Transitivity (SCT) imply Defense Precedence
(DP) (Amgoud and Ben-Naim, 2013)

3. Counter Transitivity (CT) implies Non-attacked Equivalence (NaE)

4. Counter Transitivity (CT) implies Ordinal Equivalence (OE)

5. Strict Counter-Transitivity (SCT) and Ordinal Equivalence (OE) imply Counter-Transitivity
(CT)
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6. Strict Addition of Defense Branch (⊕DB) implies Addition of a Defense Branch (+DB)

7. Argument Equivalence (AE) implies Non-attacked Equivalence (NaE)

8. Ordinal Equivalence (OE) implies Non-attacked Equivalence (NaE)

9. Void Precedence (VP) and Quality Precedence (QP) imply Attack vs Full Defense (AvsFD)

10. Cardinality Precedence (CP) implies Addition of an Attack Branch (+AB)

Interestingly, even if each property aims to catch a particular behavior, some of them remain
connected. For example, if the properties SCT and OE are both satisfied, then one can directly
consider VP, DP, CT and NaE satisfied too.
All the results obtained in this section are summed up in Figure 2.1.

AE

CT

DP

NaE

OE

SCT ⊕DB

VP

SC

+DB

AvsFD

QP

CP +AB

/

̸

̸

̸

̸

̸
\

̸

\

Figure 2.1: Graph which represents the relation between properties (X → Y means that X implies
Y, X−̸−Y means that X and Y are not compatible and the properties into the red rectangle cannot
be simultaneously satisfied.)

2.3 Argumentation Ranking Semantics based on Propagation
While many principles presented in Section 2.2.1 remain discussed and sometimes controversial,
there is a common consensus over the fact that non-attacked arguments should have the highest
rank. Indeed, the non-attacked arguments play a key role in the classical semantics (extension-
based semantics) to select the accepted arguments. It could then be interesting to observe what is
happening when more importance is given to them in ranking-based semantics while preserving the
principles concerning the quality and the number of attackers or defenders. However, the impact
these arguments should have on the other arguments is not always clear: should the arguments
directly attacked by them be less acceptable than the other arguments? Should the impact of a
non-attacked argument be the same as an attacked argument? A median approach that allows
control of their impact in the argumentation framework could be interesting to define. For this
purpose, we introduce three ranking-based semantics based on the propagation principle for which
the influence of non-attacked arguments is more or less important.1

1An interested reader can find more details in (Bonzon et al., 2016b).
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The propagation method that we define for our ranking-based semantics has two steps:
1. During the first step, a positive initial weight is assigned to each argument. The score of 1

attached to non-attacked arguments is set to be higher (or equal) than the score of attacked
arguments, which is an ε between 0 and 1. The value of this ε is chosen accordingly to the
degree of influence of the non-attacked arguments that we want: the smaller the value of ε

is, the more important the influence of non-attacked arguments on the order prevails. But it
is also possible to assign the same initial weight to all the arguments in the argumentation
framework if one considers that all the arguments should have the same influence.

2. Then, during the second step, each argument propagates step by step its value into the
argumentation framework in changing their polarities to comply with the attack relation
meaning (attack or defense). For each argument, we accumulate and store the weights from
its attackers and defenders in the argumentation framework.

Before formally defining the propagation principle, we want to pay close attention to a particular
case concerning the selection of attackers and defenders of an argument. It could happen that an
argument attacks or defends another argument through several paths with the same length. For
example, on the following argumentation framework, two paths of length 2 exist from e to g:
⟨e,d,g⟩ and ⟨e,h,g⟩.

a b c d e

f g h i

j

Figure 2.2: The argumentation framework AFc

So there are two possibilities for e to propagate its value to g (or equally g receives the value from
e): either g receives one value from e because it is its only defender or g receives two values from e
because there exist two paths between both arguments. We consider that none of these options is
better than the other, which is why we include a new parameter ⊕ aiming to select the set (S) of
arguments at the end of the path without taking into account the number of possible paths, or the
multiset (M) which encodes the fact that there are several possible paths.

Definition 2.14 [Attacker, Defender according to ⊕]
Let AF= ⟨A,R⟩ be an argumentation framework and x,y∈A be two arguments. Let ⊕∈{M,S},
where M (respectively S) stands for multiset (respectively set). The (multi)set of arguments such
that there exists a path to x with a length of n is denoted by R⊕

n (x) = {y | ∃P(y,x) with lP = n}.

To return to AFc (Figure 2.2), the result is RS
2(g) = {e} if we consider the set, whereas the result is

RM
2 (g) = {e,e} with the multiset.

The propagation vector of an argument contains all the values received by its attackers and defenders.

Definition 2.15 [Propagation vector]
Let AF= ⟨A,R⟩ be an argumentation framework and ⊕∈ {M,S}. The valuation V of x ∈A, at
step i, is given by:

Vε,⊕
i (x) =

 vε(x) if i = 0
Vε,⊕

i−1 (x)+(−1)i
∑

y∈R⊕
i (x)

vε(y) otherwise
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where vε : A → R+ is a valuation function giving an initial weight to each argument, with
ε ∈ [0,1] such that ∀y ∈ A,

vε(y) =
{

1 if R⊕
1 (y) = /0

ε otherwise

The propagation vector of x is denoted Vε,⊕(x) = ⟨Vε,⊕
0 (x),Vε,⊕

1 (x), . . .⟩.

The first step of the propagation principle is ensured by the valuation function vε where 1 is assigned
to the non-attacked arguments and ε for the attacked arguments. The propagation is then defined
step by step: at step i, we add or remove (according to the value of (−1)i) the accumulated score
of x until the previous step (Vε,⊕

i−1 (x)) and the initial score (vε ) received from arguments at the
beginning of a path with a length of i (R⊕

i ).

Example 2.8 Let us compute the valuations V with ε = 0.75 for each argument in AFc (Figure
2.2 on the facing page). These results are given in the following table. If no distinction exists
between the set and multiset then the value is put in the same cell. Otherwise, the cell is divided
into two parts (valuation for set at left and for multiset at right).

V0.75,⊕
i

a,e, j b,d,h c f g i
S M S M S M S M S M S M

0 1 0.75 0.75 0.75 0.75 0.75
1 1 -0.25 0 -0.75 -0.75 -1.25
2 1 -0.25 1 1.25 0.25 1.25 -1.25

Let’s focus on argument f .
• Step i = 0: As it is attacked, its initial weight is 0.75: V0.75,⊕

0 ( f ) = 0.75

• Step i = 1: The direct attackers (b and d which are also attacked) propagate negatively
their weights of 0.75 to f , so V0.75,⊕

1 ( f ) = V0.75,⊕
0 ( f )− (v0.75(d)+ v0.75(b)) =−0.75

• Step i = 2: f receives positively the weights of 1 from a and e which are non-attacked, so
V0.75,⊕

2 ( f ) = V0.75,⊕
1 ( f )+(v0.75(a)+ v0.75(e)) = 1.25

As there exists no path to f with a length higher than 2, this score remains the same, and
V0.75,⊕( f ) = ⟨0.75,−0.75,1.25⟩.

■

It is important to note that Vε,⊕(x) may be infinite (this may occur when an argument is involved
in at least one cycle). Moreover, the valuation Vε,⊕

n (x) of an argument x is not even necessarily
bounded as n → ∞. After a finite number of steps though, an argument is bound to receive the
influence of exactly the same arguments as in a previous step of the vector (which means that the
vector can be finitely encoded). More precisely, this number of steps is in the order of the least
common multiplier of the cycle lengths occurring in the argumentation graph. As ranking-based
semantics are not concerned with the exact values of arguments, but only with their relative ordering,
this is sufficient for our purpose.

Once the propagation vector is computed for each argument in the argumentation framework, the
goal is now to compare these vectors to provide a ranking between all the arguments. For this
purpose, we introduce three ranking-based semantics (more exactly six ranking-based semantics
since we have the set/multiset version of each semantics which can return different rankings
between arguments for the same argumentation framework) giving more and more importance to
non-attacked arguments: Propaε , Propa1+ε and Propa1→ε .
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2.3.1 Propaε

Once the propagation vector is calculated for each argument in the argumentation framework,
we can compare the different vectors to obtain an order between all the arguments. We want
the influence of arguments to quickly decrease with the length of a path, so an option is to use a
lexicographical comparison to compare these vectors.

Definition 2.16 [Lexicographical order]
A lexicographical order between two vectors of real numbers V = ⟨V1, . . . ,Vn⟩ and V ′ =
⟨V ′

1, . . . ,V
′
n⟩ is defined as V ≻lex V ′ iff ∃i ≤ n s.t. Vi >V ′

i and ∀ j < i,Vj =V ′
j . V ≃lex V ′ means

that V ⊁lex V ′ and V ′ ⊁lex V ; and V ⪰lex V ′ means that V ′ ⊁lex V .

For the first semantics Propaε we just compare the propagation vectors for a given ε .

Definition 2.17 [Propaε ]
Let ⊕ ∈ {M,S} and ε ∈ ]0,1]. The ranking-based semantics Propaε,⊕

ε associates to any argu-
mentation framework AF= ⟨A,R⟩ a ranking ⪰V

AF on A such that ∀x,y ∈ A,

x ⪰V
AF y if and only if Vε,⊕(x)⪰lex Vε,⊕(y)

Example 2.8 [continuing from p. 21] Let us compute the ranking returned by Propa0.75,S
ε step

by step, and lexicographically compare the propagation vectors of each argument in AFc.

V0.75,S
i a,e, j b,d,h c f g i a ≃ b ≃ c ≃ d ≃ e ≃ f ≃ g ≃ h ≃ i ≃ j

0 1 0.75 0.75 0.75 0.75 0.75 a ≃ e ≃ j ≻ b ≃ c ≃ d ≃ f ≃ g ≃ h ≃ i

1 1 -0.25 0 -0.75 -0.75 -1.25 a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≃ g ≻ i

2 1 -0.25 1 1.25 0.25 -1.25 a ≃V e ≃V j ≻V c ≻V b ≃V d ≃V h ≻V f ≻V g ≻V i

So, the ranking returned by Propa0.75,S
ε is:

a ≃V e ≃V j ≻V c ≻V b ≃V d ≃V h ≻V f ≻V g ≻V i

■

If these semantics focus mainly on the attackers and defenders, they also take into account the fact
that if there exist non-attacked arguments among them, these will be more influential than attacked
arguments. However, this influence depends also on the value of ε . Indeed, two values of ε can lead
to different orders. On Example 2.8, with ε = 0.75, if we focus on f , which is defended twice, and
h, which is attacked (and not defended), we can see that h is better than f . But if we take ε < 0.5,
we obtain the opposite case.
So, with Propaε semantics, an argument with only (but numerous) defense branches can be worse
than an argument only attacked by one non-attacked argument. A possible point of view is to focus
only on the attackers in saying that the more an argument is directly attacked, the less acceptable
the argument is. It is the case, for instance, with the semantics proposed by Amgoud and Ben-Naim
(2013). But other approaches are possible, as we shall see now.

2.3.2 Propa1+ε

If we do not want the influence of non-attacked arguments to be drowned in by the influence of
attacked arguments, we have to split and lexicographically compare the influence of the two kinds
of arguments. To do so, we need to define the shuffle operation.
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Definition 2.18 [Shuffle]
The shuffle ∪s between two vectors of real numbers V = ⟨V1, . . . ,Vn⟩ and V ′ = ⟨V ′

1, . . . ,V
′
n⟩ is

defined as V ∪s V ′ = ⟨V1,V ′
1,V2,V ′

2, . . . ,Vn,V ′
n⟩.

Definition 2.19 [Propa1+ε ]
Let ⊕ ∈ {M,S} and ε ∈ ]0,1]. The ranking-based semantics Propaε,⊕

1+ε
associates to any argu-

mentation framework AF= ⟨A,R⟩ a ranking ⪰V̂
AF on A such that ∀x,y ∈ A,

x ⪰V̂
AF y if and only if V0,⊕(x)∪s Vε,⊕(x)⪰lex V0,⊕(y)∪s Vε,⊕(y)

With these semantics, we simultaneously look at the result of the two propagation vectors V0,⊕

and Vε,⊕ step by step, using the shuffle operation, starting with the first value of the propagation
vector V0,⊕ (i.e. the one that takes into account non-attacked arguments only). In the case where
two arguments are still equally acceptable, we compare the first value of the propagation vector
Vε,⊕. Then, in the case of equality, we move to the second step and so on.

Example 2.8 [continuing from p. 21] Let us first compute the propagation number of each
argument in AFc when ε = 0 and when ε = 0.75.

V0,⊕
i

a,e, j b,d,h c f g i
S M S M S M S M S M S M

0 1 0 0 0 0 0
1 1 -1 0 0 0 -2
2 1 -1 1 2 1 2 -2

V0.75,⊕
i

a,e, j b,d,h c f g i
S M S M S M S M S M S M

0 1 0.75 0.75 0.75 0.75 0.75
1 1 -0.25 0 -0.75 -0.75 -1.25
2 1 -0.25 1 1.25 0.25 1.25 -1.25

Let us focus on the argument f . Its propagation vector when ε = 0 is V0,⊕( f ) = ⟨0,0,2⟩ and
V0.75,⊕( f ) = ⟨0.75,−0.75,1.25⟩ when ε = 0.75. Let us now use the shuffle ∪s to combine these
two propagation vectors:

V0,⊕( f )∪s V0.75,⊕( f ) = ⟨0,0,2⟩∪s ⟨0.75,−0.75,1.25⟩= ⟨0,0.75,0,−0.75,2,1.25⟩

Of course, the same method is used for all the others arguments. Comparing them with the
lexicographical order gives the following ranking, for ⊕= S:

a ≃V̂ e ≃V̂ j ≻V̂ c ≻V̂ f ≻V̂ g ≻V̂ b ≃V̂ d ≃V̂ h ≻V̂ i

■

It is also important to notice that Propa1+ε , conversely to Propaε , returns the same ranking whatever
the value of ε , which removes the problem of choosing “a good” ε .

Proposition 2.3 Let ⊕ ∈ {M,S}. For any argumentation framework AF, for any ε,ε ′ ∈ ]0,1], it
holds that

Propaε,⊕
1+ε

(AF) = Propaε ′,⊕
1+ε

(AF)

2.3.3 Propa1→ε

A last possibility is to give a higher priority to the non-attacked arguments, by propagating only their
weights in the graph. In other words, the acceptability of an argument depends only on its attack
and defense roots. But if two arguments are still equivalent for this comparison (i.e. they have the
same number of roots at each step), they are compared using the Propaε method. Technically, the
priority to the non-attacked arguments is given by using ε = 0. So, we first compare the propagation
vectors V0,⊕. And if the two propagation vectors are identical, we restart with a non-zero ε and
compare the propagation vectors Vε,⊕.



24 Chapter 2. Argumentation

Definition 2.20 [Propa1→ε ]
Let ⊕ ∈ {M,S} and ε ∈ ]0,1]. The ranking-based semantics Propaε,⊕

1→ε
associates to any argu-

mentation framework AF= ⟨A,R⟩ a ranking ⪰V
AF on A such that ∀x,y ∈ A,

x ⪰V
AF y if and only if V0,⊕(x)≻lexV0,⊕(y) or (V0,⊕(x)≃lexV0,⊕(y) and Vε,⊕(x)⪰lexVε,⊕(y))

Example 2.8 [continuing from p. 21] Let us compute the ranking returned by Propa0.75,S
1→ε

, step
by step, for AFc beginning by the case ε = 0 and pursuing with ε = 0.75.

V0,S
i a,e, j b,d,h c f g i a ≃ b ≃ c ≃ d ≃ e ≃ f ≃ g ≃ h ≃ i ≃ j

0 1 0 0 0 0 0 a ≃ e ≃ j ≻ b ≃ c ≃ d ≃ f ≃ g ≃ h ≃ i

1 1 -1 0 0 0 -2 a ≃ e ≃ j ≻ c ≃ f ≃ g ≻ b ≃ d ≃ h ≻ i

2 1 -1 1 2 1 -2 a ≃ e ≃ j ≻ f ≻ c ≃ g ≻ b ≃ d ≃ h ≻ i

V0.75,S
i a,e, j b,d,h c f g i

0 1 0.75 0.75 0.75 0.75 0.75 a ≃ e ≃ j ≻ f ≻ c ≃ g ≻ b ≃ d ≃ h ≻ i

1 1 -0.25 0 -0.75 -0.75 -1.25 a ≃ e ≃ j ≻ f ≻ c ≻ g ≻ b ≃ d ≃ h ≻ i

2 1 -0.25 1 1.25 0.25 -1.25 a ≃V e ≃V j ≻V f ≻V c ≻V g ≻V b ≃V d ≃V h ≻V i

One can remark that f has one more defense branch than c and g (when ⊕= S), which have
also one more defense branch than b, d and h. This difference has a direct impact on the ranking
between these arguments because one can see that at the end of the step i = 2 (when ε = 0), f is
strictly more acceptable than g and c which are strictly more acceptable than b, d and h.
As some arguments are still equally acceptable (in particular c and g which have only one
defense root), we restart the process with ε = 0.75. Thanks to this second process, c, which is
directly attacked only once, is now strictly more acceptable than g which is directly attacked
twice (V0.75,S

1 (c) = 0 >−0.75 = V0.75,S
1 (g)). So we obtain the following ranking for ⊕= S:

a ≃V e ≃V j ≻V f ≻V c ≻V g ≻V b ≃V d ≃V h ≻V i

■

Without surprise, Propa1→ε returns the same ranking whatever the value of ε .

Proposition 2.4 Let ⊕ ∈ {M,S}. For any argumentation framework AF, for any ε,ε ′ ∈ ]0,1], it
holds that

Propaε,⊕
1→ε

(AF) = Propaε ′,⊕
1→ε

(AF)

Finally, one can remark that if we choose ε = 0, the three kinds of semantics return exactly the
same order.

Proposition 2.5 Let ⊕ ∈ {M,S}, for all AF ∈AF,

Propa0,⊕
ε (AF) = Propa0,⊕

1+ε
(AF) = Propa0,⊕

1→ε
(AF)

In this case, only the weights propagated by the non-attacked arguments are taken into account.
This can make sense, but when there is no non-attacked argument in the AF, all the arguments have
a propagation vector composed only of 0, therefore trivializing the result.

2.4 Analysis of ranking-based semantics
We are now able to check which properties are satisfied by some ranking-based semantics introduced
in the literature. Some of these semantics have not been originally defined as ranking-based
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semantics but rather as gradual semantics. But, as explained in the previous section, we can
always induce ranking-based semantics from gradual ones. However, as ranking-based semantics
associates a unique ranking to any argumentation framework (see Definition 2.10 on page 12),
the scores assigned by a gradual semantics should be unique too. This is why we leave the social
argumentation frameworks (Leite and Martins, 2011) and the equational approach (Gabbay, 2012),
which may both return multiple rankings, out of this study.2 I will not present in detail each of
these semantics in this document, an interested reader can refer to the original papers, or to Bonzon
et al. (2016a, 2023).
The semantics considered in this study are the following:

Categoriser-based ranking semantics (Cat) (Besnard and Hunter, 2001)
Originally, the categoriser function was proposed for “deductive” arguments, by assigning
a value to a tree of such arguments where each value captures the relative strength of an
argument taking into account the strength of its attackers which takes into account the
strength of its attackers, and so on. Pu et al. (2014) proved the existence and uniqueness of
such a solution for any argumentation framework. The categoriser-based ranking semantics
builds a ranking from the categoriser values obtained. The higher the categoriser value of an
argument, the more acceptable the argument.

Discussion-based semantics (Dbs) (Amgoud and Ben-Naim, 2013)
This semantics was proposed to take into account only the number of attackers/defenders of a
given argument, whatever their quality: the less attackers and the more defenders an argument,
the more acceptable the argument. The method lexicographically ranks the arguments based
on the number of attackers and defenders. Concretely, we start by comparing the number
of direct attackers of each argument. If some arguments are still equivalent (they have the
same number of direct attackers), the size of paths is recursively increased until a difference
is found or the threshold is reached.

Burden-based semantics (Bbs) (Amgoud and Ben-Naim, 2013)
This semantics follows the same idea as Dbs in considering only direct attackers of arguments.
However, the approach is different. Indeed, instead of computing all the possible paths that
lead to an argument like Dbs does, each argument receives, at each step, a burden number
which is simultaneously computed based on the burden numbers of their direct attackers
at the previous step. Two arguments are lexicographically compared based on their burden
numbers.

α-Burden-based semantics (α-Bbs) (Amgoud et al., 2016)
A broad class of ranking semantics that allows one to choose to which extent to prioritize the
quality of attacks (i.e. the scores of the direct attackers) over their quantity (i.e. the number
of direct attackers) (or vice versa). This principle, called compensation, can be checked when
several weak attacks (i.e. direct attackers of an argument are attacked) could have the same
impact as one strong attack (i.e. direct attackers are not attacked). The parameter α is both
used for the compensation and to ensure the uniqueness of the solution. Indeed, contrary to
Bbs where the lexicographical order is used, α-Bbs uses a fixed-point iteration to find the
burden number of each argument.

Valuation with tuples (Tuples) (Cayrol and Lagasquie-Schiex, 2005)
This semantics is defined as a “global” approach where only the defense and attack branches
of an argument are taken into consideration to compare arguments. A structure, called tupled
value, is first defined to store, for each argument, the set of the lengths of the branches

2It was discovered (Amgoud et al., 2017b) that the conjecture about the uniqueness of social models only holds up to
3 arguments in the argumentation framework.
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(attack and defense branches are considered separately) leading to this argument. When
cycles exist in the AF, there may be no non-attacked argument and thus no branch. The
solution proposed in (Cayrol and Lagasquie-Schiex, 2005) is to consider that a cycle is like
an infinity of branches which gives an infinite acyclic graph. Once the tupled values have
been computed for each argument, the next step consists in comparing them. To do so, the
number of attack and defense branches of two arguments are first compared and, in case of a
tie, the values inside each tuples are lexicographically compared. Thus, the priority is given
to the quantity, and the quality is taken into consideration only if the quantity cannot allow to
decide between two arguments.

Game of argumentation strategy (2ZG) (Matt and Toni, 2008)
Matt and Toni (2008) compute the strength of an argument using a two-person zero-sum
strategic game. This game confronts two players, a proponent and an opponent for a given
argument, where the strategies of the players are sets of arguments. The goal of the game is
to evaluate the interactions between the strategies chosen by the two players. Matt and Toni
ensure that, in a dispute, it is better for the proponent of an argument to have more attacks
against opponents to this argument and fewer attacks from them. To capture this idea, they
introduced the notion of degree of acceptability of a set of arguments with respect to another
one.

Fuzzy labeling (FL) (da Costa Pereira et al., 2011)
da Costa Pereira et al. (2011) study how an agent changes her mind in response to new
information/arguments. For this, they combine belief revision and argumentation in a single
framework close to Dung’s framework, called fuzzy argumentation framework, where a
degree of trust is first assigned to each argument. When a new argument is proposed, it has
more or less influence on the evaluation of existing arguments according to its degree of trust.
Even if this work does not directly propose a ranking-based semantics, the score obtained
by each argument after computation could be used to rank the arguments. To compare this
semantics with the existing ranking-based semantics in the classical framework, we consider
that all arguments are trusted.

Iterated Graded Defense (IGD) (Grossi and Modgil, 2015, 2019)
This semantics proposes a generalization of Dung’s notion of acceptability. The theory is
based on two assumptions: (A1) having fewer direct attackers is better than having more; and
(A2) having more direct defenders is better than having fewer. To catch these two principles,
Grossi and Modgil define a generalization of the notion of defense initially defined by Dung.

Counting semantics (CS) (Pu et al., 2015a,b)
This semantics allows to rank arguments by counting the number of their respective attackers
and defenders. However, contrary to the tuple-based semantics which only focuses on the
branches, the counting semantics takes into account a large part of paths that leads to a
given argument (and which continues the process even if a difference is found, contrary
to the Discussion-based semantics). To assign a value to each argument, they consider an
argumentation framework as a dialogue game between proponents of a given argument x (i.e.
the defenders of x) and opponents of x (i.e. the attackers of x). The idea is that an argument
is more acceptable if it has many arguments from proponents and few arguments from
opponents. In (Pu et al., 2015a), they deepen their work by presenting some complements
about how the damping factor α allows to control the convergence speed of the computation
for the counting semantics.

I will also add the propagation semantics (see Section 2.3 on page 19).



2.4 Analysis of ranking-based semantics 27

2.4.1 An Experimental Comparison of Ranking-based Semantics
As it can be easily checked with the rankings obtained with the different ranking-based semantics
on AFc (the AF and the results are given in Figure 2.3), the ranking-based semantics we presented
here mostly return distinct rankings between arguments.

a b c d e

f g h i

j

AFc

Semantics Ranking between arguments
FL a ≃ c ≃ e ≃ f ≃ g ≃ j ≻ b ≃ d ≃ h ≃ i
2ZG a ≃ e ≃ j ≻ c ≃ f ≃ g ≻ b ≃ d ≃ h ≃ i
Cat

a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ f ≃ g ≃ h ≻ i
1-Bbs
Dbs

a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≃ g ≻ i
Bbs
0.5-Bbs
CS
Propa0.75,M

ε

Propa0.75,S
ε a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≻ g ≻ i

5-Bbs

a ≃ e ≃ j ≻ c ≻ f ≃ g ≻ b ≃ d ≃ h ≻ i
IGD
Propa0.3,M

ε

Propaε,M
1+ε

Propa0.3,S
ε a ≃ e ≃ j ≻ c ≻ f ≻ g ≻ b ≃ d ≃ h ≻ i

Propaε,S
1+ε

Propaε,S
1→ε

a ≃ e ≃ j ≻ f ≻ c ≻ g ≻ b ≃ d ≃ h ≻ i
Tuples

a ≃ e ≃ j ≻ f ≃ g ≻ c ≻ b ≃ d ≃ h ≻ i
Propaε,M

1→ε

Figure 2.3: Rankings obtained on AFc with some existing ranking-based semantics

However, this difference concerns a subset of arguments (here b,c,d, f ,g,h) and not all the argu-
ments. Conversely, some common behaviors seem to appear between the semantics like the fact
that a, e and j are always equally acceptable and more acceptable than all the other arguments
(except for the semantics FL) or that i is always ranked last (even if it can be a tie). Thus, it could
be interesting to know if such information can be generalized to all the argumentation frameworks.
The goal of this section consists of evaluating experimentally how different or similar are these
ranking-based semantics. For this purpose, we have chosen to compute and compare the ranking of
each ranking-based semantics on several randomly generated argumentation frameworks.
But before explaining how to compute and compare the different rankings, we decided to exclude
some ranking-based semantics from this study. Indeed, it is difficult to compare total and partial
preorders (because some arguments could be incomparable), which is why the semantics that return
a partial preorder, like IGD (Grossi and Modgil, 2015) and Tuples (Cayrol and Lagasquie-Schiex,
2005), were excluded. The semantics 2ZG (Matt and Toni, 2008) was also excluded from this study
because, according to the authors, this semantics can only be used for argumentation frameworks
with less than a dozen arguments. Indeed, the size of the players’ strategy spaces grows exponen-
tially fast with the total number of arguments in the argumentation framework considered so when
it contains more than twelve arguments, the computation becomes almost impossible.
To experimentally compare the rankings returned by the ranking-based semantics, we considered a
significantly large experimental setting with a great variety of benchmarks. This set was separated
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into two parts: the first one contains AFs similar to those used in online debates and the second one
contains AFs generated from standard random AF generators.

Debate graphs

Ranking-based semantics seem to be a promising tool to evaluate online debates (Amgoud, 2019;
Egilmez et al., 2013). We, therefore, chose to randomly generate argumentation frameworks3 with
the same characteristics as the most popular online debates. This type of graph is characterized by
a specific argument (the issue) that plays the role of the main question of the debate and several
branches converging towards this argument with the condition that all arguments must be connected
to this issue. To build such a graph (an instance is illustrated in Figure 2.4), we created a new
generator using several tools from the networkx package. First, a directed star graph with n+1
nodes is created where the central node is the target argument connected to n outer nodes (i.e. n
arguments that directly attack the target argument). For each node representing a branch of the star,
a directed tree containing m additional nodes is generated where edges are oriented into this node.

star digraph

directed tree

Figure 2.4: A debate graph

For our experiment, we generated 10000 debate graphs whose value of the integer n varies randomly
between 6 and 15 and whose value of the integer m varies randomly between 1 and 6. In the
following, we collectively refer to this group of AFs as debateGraph10000. Figure 2.5 on the next
page shows the distribution of the number of arguments in the benchmark debateGraph10000.

Random graphs

We also considered an experimental setting representing three different models used during the
ICCMA competition4 as a way to generate random argumentation graphs:

1. the Erdös-Rényi model (ER) which generates graphs by randomly selecting attacks between
arguments;

2. the Barabasi-Albert model (BA) which provides networks, called scale-free networks, with a
structure in which some nodes have a huge number of links, but in which nearly all nodes are
connected to only a few other nodes; and

3. the Watts-Strogatz model (WS) which produces graphs that have small-world network
properties, such as high clustering and short average path lengths.

3Ideally, we would have liked to create a set of AFs from real online debates but actual online debates have additional
features (e.g. a support relation, or votes on arguments) that are not taken into account by the semantics studied in this
work.

4http://argumentationcompetition.org/

http://argumentationcompetition.org/
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Figure 2.5: Histogram showing the distribution of the number of arguments in the benchmark
debateGraph10000. The average number of arguments is 32.5176.

The generation of these three types of AFs was done by the AFBenchGen2 generator (Cerutti
et al., 2017). We generated a total of 9460 AFs almost evenly distributed between the three models
(3000 AFs for the WS model and 3230 AFs for the ER and BA models). For each model, the
number of arguments varies among Arg= {10,20,30,40,50,60,70,80,90,100}. In the following,
we collectively refer to the group of AFs generated using the Erdös-Rényi model (resp. Barabasi-
Albert model and Watts-Strogatz model) as rER (resp. rBA and rWS). Finally, the notation randomAF
refers to the union of these three groups.

Comparison and results

Let us now detail how we compare these rankings to represent the concordance of the ranking-based
semantics. A way to compare these semantics based on the rankings previously computed consists
in using Kendall’s tau coefficient (Kendall, 1938). This value corresponds to the total number
of rank disagreements over all unordered pairs of arguments between two rankings from distinct
semantics. It, therefore, allows us to obtain a dissimilarity degree between the two rankings.
From the rankings computed for each argumentation framework in input, we compute Kendall’s
tau coefficient between all pairs of rankings.5 Finally, for each pair of ranking-based semantics,
we average Kendall’s tau coefficients computed from rankings for each argumentation framework
and multiply the result by 100 to obtain a percentage of dissimilarity. All the results are given in a
symmetric matrix (Table 2.1 on the following page).
Thus, the biggest dissimilarity degree between two ranking-based semantics is observed between
the discussion-based semantics (Dbs) and the fuzzy labelings (FL) with a value of 25.43%. FL
clearly stands out from the other semantics with a degree of dissimilarity always greater than
24%. But, globally, the other ranking-based semantics seems to share a solid common basis with a
dissimilarity degree often smaller than 10%.

To better represent the “closeness” between these ranking-based semantics, from the previous
matrix, we compute a dendrogram, which is a graphical representation of the results of hierarchical
cluster analysis. In our case, the method used is a stepwise algorithm for n semantics which merges

5The code and benchmarks are available online at
https://github.com/jeris90/comparison_rankingsemantics.git

https://github.com/jeris90/comparison_rankingsemantics.git
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C
at

B
bs

D
bs

0
.3-B

bs

1-B
bs

10-B
bs

FL C
S
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0.5,S
ε
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0.5,M
ε
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0.5,S
1+

ε

Propa
0
.5,M

1
+

ε

Propa
0
.5,S

1→
ε

Propa
0.5,M
1→

ε

Cat 0 1.88 2.00 1.56 0 2.21 25.09 1.55 2.84 1.94 3.38 2.48 7.63 7.27

Bbs 1.88 0 0.77 2.48 1.88 2.13 25.37 1.44 2.43 1.22 3.01 1.79 7.44 6.79

Dbs 2.00 0.77 0 2.49 2.00 2.40 25.43 0.97 2.45 0.67 3.04 1.25 7.48 6.25

0.3-Bbs 1.56 2.48 2.49 0 1.56 3.28 25.33 2.08 3.68 2.93 4.24 3.49 8.44 8.22

1-Bbs 0 1.88 2.00 1.56 0 2.21 25.09 1.55 2.84 1.94 3.38 2.48 7.63 7.27

10-Bbs 2.21 2.13 2.40 3.28 2.21 0 24.55 2.46 2.97 1.76 2.40 1.19 6.17 5.46

FL 25.09 25.37 25.43 25.33 25.09 24.55 0 25.35 24.40 24.94 24.16 24.71 24.32 25.06

CS 1.55 1.44 0.97 2.08 1.55 2.46 25.35 0 2.71 1.47 3.30 2.05 7.62 6.94

Propa0.5,S
ε 2.84 2.43 2.45 3.68 2.84 2.97 24.40 2.71 0 1.86 0.60 2.43 5.06 7.40

Propa0.5,M
ε 1.94 1.22 0.67 2.93 1.94 1.76 24.94 1.47 1.86 0 2.41 0.60 6.84 5.60

Propa0.5,S
1+ε

3.38 3.01 3.04 4.24 3.38 2.40 24.16 3.30 0.60 2.41 0 1.84 4.47 6.82

Propa0.5,M
1+ε

2.48 1.80 1.25 3.49 2.48 1.19 24.71 2.05 2.43 0.60 1.84 0 6.28 5.03

Propa0.5,S
1→ε

7.63 7.44 7.48 8.44 7.63 6.17 24.32 7.62 5.06 6.84 4.47 6.28 0 2.45

Propa0.5,M
1→ε

7.27 6.79 6.25 8.22 7.27 5.46 25.06 6.94 7.40 5.60 6.82 5.03 2.45 0

Table 2.1: Average of Kendall’s tau coefficients on debateGraph10000 and randomAF. The darker
the color of the cell, the greater the dissimilarity between the two ranking-based semantics.

two semantics or clusters with the least dissimilarities at each step until obtaining a unique cluster.
Several operators exist (Tan et al.) to compute the distance between the new cluster and the other
clusters like the single link (minimum), complete link (maximum), group average, median, etc.
However, a few numbers of inputs make the differences negligible between these methods, so we
chose the average method to compute the dendrogram illustrated in Figure 2.6 on the next page.
On this dendrogram, the height of the branch between two clusters indicates how different they are
from each other: the greater the height, the greater the difference. Four groups emerge from this
study: one containing the semantics Dbs, Bbs and CS (which have a dissimilarity degree always
smaller than 1.5%), another one containing the semantics Cat, 0.3-Bbs and 1-Bbs (which have a
dissimilarity degree always smaller than 1.56%), another one containing Propa0.5,S

ε and PropaS
1+ε

(which have a dissimilarity degree equals to 0.6%), and the last one containing 10-Bbs and and
Propa0.5,M

ε and PropaM
1+ε

(which have a dissimilarity degree always smaller than 1.76%). The
propagation semantics Propa1→ε

seem closer to the third group of semantics with a dissimilarity
degree between 4% and 6% with all these ranking-based semantics. Among these groups, one
can observe that some semantics are very close like Bbs and Dbs with a dissimilarity value of
0.77%. An important observation is that the categoriser-based semantics and the α-Burden-based
semantics always return the same ranking (their dissimilarity degree is 0%) when α = 1, as noticed
in Amgoud et al. (2016).

2.4.2 Properties × Ranking-based semantics
We are now in a position to check which of the properties introduced in Section 2.2.1 on page 13
are satisfied by these ranking-based semantics. Recall that, among these ranking-based semantics,
some of them (e.g. α-burden-based semantics, the propagation semantics) are configurable with
one or several parameters. Thus, two values of a parameter could give different rankings. It is why
we consider that a property is satisfied by these ranking-based semantics only if the property is
satisfied for all the values of a parameter.
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Figure 2.6: Dendrogram representing the relationships between the ranking-based semantics
studied in this work

Proposition 2.6 The properties that are satisfied by each ranking-based semantics (the other
properties are not satisfied by the corresponding ranking-based semantics):

• The categoriser-based ranking semantics (Cat) satisfies Abs, In, VP, DP, CT, SCT, ↑AB,
↑DB, +AB, Tot, NaE, AE and OE.

• The discussion-based semantics (Dbs) satisfies Abs, In, VP, DP, CT, SCT, CP, ↑AB, ↑DB,
+AB, Tot, NaE, AE and OE.

• The burden-based semantics (Bbs) satisfies Abs, In, VP, DP, CT, SCT, CP, DDP, ↑AB,
↑DB, +AB, Tot, NaE, AE and OE.

• Let α ∈ ]0,+∞[. The α-burden-based semantics (α-Bbs) satisfies Abs, In, VP, DP, CT,
SCT, ↑AB, ↑DB, +AB, Tot, NaE, AE and OE.

• The fuzzy labeling (FL) satisfies Abs, In, CT, QP, Tot, NaE, AE, OE and AvsFD.

• Let α ∈ ]0,1[. The counting semantics (CS) satisfies Abs, VP, DP, CT, SCT, ↑AB, ↑DB,
+AB, Tot, NaE, AE and OE.

• The tuples-based semantics (Tuples) satisfies Abs, In, VP, +DB, ↑AB, ↑DB, +AB, NaE,
AE, OE and AvsFD.

• The ranking-based semantics 2ZG satisfies Abs, In, VP, +AB, SC, Tot, NaE and AvsFD.

• The iterated graded defense semantics (IGD) satisfies Abs, In, VP, +AB, NaE and AE.

• The ranking-based semantics Propaε,⊕
ε satisfies Abs, In, VP, DP, ↑AB, ↑DB, +AB, NaE,

Tot and AE. When ⊕= M, Propaε,M
ε also satisfies CT, SCT and OE. The other properties

are not satisfied.
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• The ranking-based semantics Propaε,⊕
1+ε

satisfies Abs, In, VP, DP, DDP, ↑AB, ↑DB, +AB,
Tot, NaE, AE and AvsFD. When ⊕= M, Propaε,M

1+ε
satisfies CT, SCT and OE. The other

properties are not satisfied.

• The ranking-based semantics Propaε,⊕
1→ε

satisfies Abs, In, VP, DP, DDP, +DB, ↑AB, ↑DB,
+AB, Tot, NaE, AE and AvsFD. When ⊕= M, Propaε,M

1→ε
satisfies OE. The other properties

are not satisfied.

We also checked what are the properties satisfied by the usual Dung’s grounded semantics which is
the only semantics to return an unique extension. The idea is to give some hints on the compatibility
of these properties with classical semantics. Note that, in this case, this is a degenerate ranking
semantics with only two levels (accepted/rejected):

Proposition 2.7 The grounded semantics (Gr) satisfies Abs, In, Tot, NaE, AE and AvsFD. The
other properties are not satisfied.

We summarize all these results in Table 2.2.

Properties Cat Dbs Bbs α-Bbs FL CS Propaε Propa1+ε Propa1→ε Tuples 2ZG IGD Gr
Abs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
In ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓
VP ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×
DP ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × × × ×
CT ✓ ✓ ✓ ✓ ✓ ✓ ✓M ✓M × × × × ×

SCT ✓ ✓ ✓ ✓ × ✓ ✓M ✓M × × × × ×
CP × ✓ ✓ × × × × × × × × × ×
QP × × × × ✓ × × × × × × × ×

DDP × × ✓ × × × × ✓ ✓ × × × ×
SC × × × × × × × × × × ✓ × ×
⊕DB × × × × × × × × × × × × ×
+DB × × × × × × × × ✓ ✓ × × ×
↑AB ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × × ×
↑DB ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × × ×
+AB ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × × ×
Tot ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓
NaE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓
OE ✓ ✓ ✓ ✓ ✓ ✓ ✓M ✓M ✓M ✓ × × ×

AvsFD × × × × ✓ × × ✓ ✓ ✓ ✓ × ✓

Table 2.2: Properties satisfy by the studied ranking semantics. A cross × means that the property
is not satisfied, symbol ✓ means that the property is satisfied and the shaded cells highlight the
results already proven in the literature.

2.4.3 Discussion
Several observations can be made regarding these axioms and the results reported in Table 2.2.

Some properties seem to be widely accepted and shared by almost all semantics. It is the case with
the properties Abs, In, VP, +AB, Tot, NaE and AE. We recall that the input is a Dung’s abstract
argumentation framework without information about the nature of arguments, so only the attacks
have to be taken into account, hence the importance of Abs. Concerning property Independence
(In), it seems difficult to explain the fact that an argument can influence other arguments without an
existing link between them. The only semantics which does not satisfy this property is the counting
semantics (CS) which needs the maximal indegree to guarantee convergence. All the semantics
consider the non-attacked arguments as the best arguments in an argumentation framework (VP),
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even if sometimes (for FL and Gr) non-attacked arguments are not ranked strictly higher than other
arguments. Nevertheless, there are situations where VP does not seem appropriate (e.g. see the
study of protocatalepsis in the context of persuasion Section 2.5 on page 35). NaE and AE are also
satisfied by all semantics (except for 2ZG which does not satisfy AE, and is incompatible with
SC). This is a kind of compatibility principle with usual Dung’s semantics (the grounded semantics
satisfies them too) where only your attackers should impact your ranking, not the arguments you
attack. It is also interesting to note that almost all the semantics satisfy the property Total allowing
a direct utilization in real applications wanting to distinguish all the arguments. A last property
satisfied by almost all semantics is +AB, which states that adding an attack branch toward an
argument degrades its ranking. This also seems to be a perfectly natural requirement for ranking
semantics: the more you are attacked, the worse you are. Furthermore, this property is one of the
main reasons to explain the difference observed between the semantics FL which does not satisfy it
and all the other semantics. Indeed, FL extends the complete semantics by considering varying
degrees of acceptability (rather than the three classical ones: in, out and undec) and thus does not
take into account the number of attackers, while all the other semantics do.

Some properties are very discriminatory and provide a rough classification of semantics. If some
incompatibilities between properties exist, some other properties allow to separate the semantics
into sub-classes groups. It is the case with the properties (S)CT and AvsFD (or +DB) which are
always satisfied by at least one semantics (except for Propa1+ε where both are accepted). Indeed,
different approaches (without being incompatible) concerning the defense are considered by these
properties. The semantics that satisfy AvsFD take care of the whole branches of attack/defense.
Whereas for the semantics that satisfies (S)CT, a defense branch (that still ends by an attack to-
wards the argument) always penalizes it. Such properties reveal the elements in an argumentation
framework causing differences between the rankings.

More specific properties. These properties operate at different levels. There are ‘local’ properties
(e.g. CP, QP, DP, DDP, (S)CT) focusing on the direct attackers (or defenders) which can be justified
in some situations but seem hardly general (and sometimes impossible to reconcile with some more
global properties, as Proposition 2.1 on page 18 shows). And properties related to ‘change’ (e.g.
⊕DB, +DB, ↑AB, ↑DB, +AB) seem very appealing because they specify how the ranking should
be affected based on the comparison of attack and defense branches. They allow, for example,
to categorize the semantics according to the behavior towards some basic requirements like the
defense with +DB (see the previous observation). Another example of their interest is that, in
focusing on the two semantics Tuples and 2ZG, it seems clear that the properties related to ‘change’
satisfied by these two semantics allow to distinguish these two semantics.

Defining axiomatically the worst arguments is not obvious. Interestingly, while almost all semantics
agree axiomatically on which arguments should be the best in an argumentation framework (VP),
there is no consensus regarding the worst arguments. SC is very interesting in that respect. It
observes that a self-contradicting argument is intrinsically flawed, without even requiring other
arguments to defeat it. But as can be observed none of the semantics comply with it, except the one
of Matt and Toni (2ZG) who introduced the property. The explanation is that all semantics consider
that an argument that attacks itself is a path like the other ones. So an argument that attacks itself
(and by no other argument) is better than an argument that is attacked several times. On the other
hand, another possibility is when the properties +AB and ↑AB are satisfied together. Indeed, one
can consider the worst argument as the one which is directly attacked by a maximum (+AB) of
non-attacked arguments (↑AB).

The interplay of axioms is often instructive. In Propositions 2.1 and 2.2 on page 18, we have
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identified some implications and incompatibilities between axioms. Let us focus, for example, on
the relation of incompatibility between VP and ⊕DB. One can easily remark that ⊕DB is more
general than +DB, and in a sense more natural: the property is stated for any cases, and it does not
treat some arguments (the non-attacked arguments here) differently. But it contradicts VP in this
case. +DB is a less “systematic” property (it was the original one proposed in Cayrol and Lagasquie-
Schiex (2005)) but is compatible with VP: if one accepts that non-attacked arguments should be
the best (VP), then adding a defense branch cannot always improve the situation of a given argument.

This set of axioms is yet to be augmented. This can be observed with the semantics Categorizer,
α-Burden-based semantics and Propaε which satisfy the same set of properties, whereas they have
quite different definitions and behaviors as it is revealed by our experimental study. This means
that at least one logical property (if it exists) is lacking to discriminate these operators.

Towards an application-oriented axiomatic analysis. Let us recall that we do not claim that all of
the properties presented in Section 2.2.1 are required. However, at this level of abstraction, they
allow us to compare and better understand the ranking-based semantics. Indeed, while our objective
has been to offer the broadest possible picture of ranking-based semantics by presenting a large
catalogue of properties, we certainly believe that the relevance of each axiom should be ultimately
evaluated with respect to the application at hand. Depending on the context, a designer may only
focus a subset of axioms, or even challenge a specific property often assumed in existing semantics
(as, for instance, in the case of persuasion where VP may not be desirable (see Section 2.5 on
the facing page)). In line with the work initiated in Vesic et al. (2022) for gradual semantics, it
would be interesting to target the mandatory properties for some practical aspects of argumentation
(persuasion, negotiation, online debate, etc.).

Link between extension-based semantics and ranking-based semantics. One can note that Abs, In,
AE, NaE, Tot and AvsFD are satisfied by the grounded semantics. However, among the properties
widely accepted by the ranking-based semantics, VP and +AB are not satisfied by the grounded
semantics. An explanation is related to the fact that extension-based semantics (and in particular
grounded semantics) consider that the impact of an attack from an argument to another one is drastic.
In other words, the grounded semantics falsifies VP and +AB because an attack can “kill” another
argument (see the discussion in Amgoud and Ben-Naim (2013)) while the ranking-based semantics
suppose that an attack does not “kill” but can just weaken the attacked argument. However, these
two principles are not totally incompatible with grounded semantics to some extent. Indeed, as
suggested in Thimm and Kern-Isberner (2014), a weak version of Void Precedence, which states
that non-attacked arguments should be at least as acceptable as (and not strictly more acceptable)
attacked arguments, can also be defined.

Property 21 — weak Void Precedence (wVP). (Thimm and Kern-Isberner, 2014)
The rank of a non-attacked argument is higher or equal to the rank of any attacked argument.

Clearly, Void Precedence implies weak Void Precedence so all the semantics which satisfy VP also
satisfy wVP. But it is interesting to note that the grounded semantics satisfies wVP because the
non-attacked arguments are always accepted but can be equal to some other attacked arguments.
Following the same reasoning, the weak version of some other existing properties6 can be defined
and satisfied by the grounded semantics. Let us check which of them is satisfied by the grounded
semantics.

6Defining the weak version of a property means replacing the strict comparison operator between two arguments
with a strict or equal comparison operator without changing the conditions.
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Proposition 2.8 The grounded semantics satisfies the weak version of VP, DP, QP, DDP, SC,
⊕DB, ↑DB, ↑AB and +AB.

It is clear that in this case, the grounded semantics satisfies many more properties. This is because
there exist only two levels of acceptability (accepted/rejected) to evaluate the arguments. Thus, if
an argument is considered as accepted (resp. rejected) then it will always be considered more (resp.
less) acceptable regardless of the acceptability of the other argument. But in general, these weak
properties are less interesting for the ranking-based semantics precisely because of the many levels
of acceptability. They can nevertheless make sense when they are combined.7

2.5 Ranking semantics for persuasion
As discussed in the previous section, if many ranking-based semantics were compared based on
their properties, the relevance of some properties may be very much dependent on the context
of the application. Indeed, what is often missing to compare these approaches is thus a clear
indication of the applications they target. For example, for online debate platforms, satisfying the
property Total (Tot) may seem natural to ensure the comparison between all the arguments and thus
guarantee a result to the users. Conversely, for the same platforms where votes are assigned to each
argument and represent their social support, a possibility would be to reward a more aggressive
non-attacked argument. Thus, such property as Non-attacked Equivalence (NaE), considering that
all the non-attacked arguments should be equally acceptable, should not be satisfied.
Among the many existing fields in argumentation (e.g., negotiation, persuasion, deliberation),
we choose to focus on the context of persuasion in argumentation. Persuasion is an activity that
involves one party (the persuader) trying to induce another party (the persuadee) to believe (or not
believe) certain information or to do (or not do) some action.
Among the processes used in this specific domain, we shall concentrate on two well-documented
phenomena in persuasion (procatalepsis and fading) and draw a parallel between each of them and
existing properties for ranking-based semantics.8

Procatalepsis

The procatalepsis principle aims to strengthen an argument by dealing with possible counter-
arguments before their audience can raise them. To illustrate this principle, we extend an example
from (Besnard and Hunter, 2008, p.85): a (fictional) sales pitch intended to persuade someone to
buy a specific car.

Example 2.9

(a1) The car x is a high-performance family car with a diesel engine and a price of 32000

(a2) In general, diesel engines have inferior performance compared with gasoline engines

(a3) But, with these new engines, the difference in performance [...] is negligible

(a4) In addition, even though the price of the car seems high

(a5) It will be amortized because diesel engines run longer before breaking than any other kind
of engine.

7See Section 2.6 on page 45 for a discussion on this subject.
8This work was originally published in (Bonzon et al., 2017, 2021)
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a1a2a3

a4a5

The seller’s objective is here to increase the acceptability of a1. For this purpose, he anticipates
two arguments a2 and a4 (which could have been proposed by the customer later in the dis-
cussion) by providing two counter-arguments a3 and a5 which attack a2 and a4 respectively.
■

In this kind of persuasion context, it can be more convincing to state the more plausible counter-
argument to a1 to provide a convincing defense against them, than simply stating a1 alone. These
anticipations make it possible to persuade the interlocutor that any attack against a1 is in vain.
In addition, it becomes difficult for the persuadee to find arguments against a1 if the persuader
anticipates most of them. In terms of ranking, a1 with several defense branches could be seen as
strictly more acceptable than a1 without any branch.
To define the procatalepsis principle in the context of abstract argumentation, we first need to define
the argumentation frameworks that we call persuasion pitches. A persuasion pitch is a tree-shaped
argumentation framework where an argument x, called the targeted argument, has only defense
branches.

Definition 2.21 [Persuasion pitch] An argumentation framework AF= ⟨A,R⟩ is a persuasion
pitch with x ∈ A as the targeted argument if the following conditions are satisfied:

1. B−(x) = /0,

2. B+(x) ̸= /0,

3. ∀y ∈ A\{x}, there exists a unique path from y to x.
A persuasion pitch is denoted by Pk(x) where k = |B+(x)| is the number of defense branches of
its targeted argument x. When the targeted argument x of the persuasion pitch is clear, we will
use Pk instead of Pk(x).

Condition (1) means that the targeted argument has no attack branch while condition (2) states that
it has at least one defense branch (the length of defense branches does not matter here). Condition
(3) guarantees that the argumentation framework is in the shape of a tree centered on the targeted
argument x, i.e. it contains only the arguments used in the pitch which are related to x (i.e. for
which a path to x exists).

Example 2.9 [continuing from p. 35] This argumentation framework is an example of persua-
sion pitch P2 where a1 is the targeted argument with two defense branches. ■

Property 22 — Procatalepsis (PR).
A ranking-based semantics satisfies Procatalepsis if a number of defense branches are sufficient to
make a targeted argument from a persuasion pitch at least as acceptable as when it does not have
any (i.e. it is not attacked).

As it can be too restrictive to claim that adding a unique defense branch will always be sufficient
to make the targeted argument at least as acceptable as a non-attacked argument, we deliberately
made this definition a little more flexible than the original one. Indeed, one can, for example, think
that in Example 2.9, the defense branch composed of arguments a2 and a3 is not sufficient on its
own to make a1 more acceptable than when it was not attacked and that it is the combination of the
two defense branches that allow it. This flexibility allows us to keep the idea that the more defense
branches there are, the harder it will be for the opponent to find arguments to attack a1.
It is striking that procatalepsis blatantly contradicts the property Void Precedence (VP), considering
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that a non-attacked argument is strictly more acceptable than an attacked argument.

Proposition 2.9 Void Precedence (VP) and Procatalepsis (PR) are incompatible.

Fading

The fading effect states that long lines of argumentation become ineffective in practice because the
audience easily loses track of the relation between the arguments.
This principle is supported in practice by the work of Tan et al. (2016) which shows (in the context
of their study, an extensive analysis of persuasive debates which took place on the subreddit
“ChangeMyView”9), that arguments located at a distance greater than 10 from another argument
(i.e., 5 rounds of back-and-forth), have no impact in the debate.
More precisely, the fading principle concerns the limit until which the length of a path between an
argument and another one is too long to have an impact on the targeted argument.

a1a2a3a4a5a6a7a8

It seems natural to think that the closer an attacker (respectively, defender) is to an argument, the
more effect it has on this argument. For example, argument a2 should have more impact on a1
than any other argument in this argumentation framework because a2 is the direct attacker of a1.
The idea is then that the impact is gradually reduced when the length of the path between two
arguments increases. This principle of attenuation is already partially captured by two existing
properties: Increase of an attack branch (↑AB) and Increase of a defense branch (↑DB) which
state that increasing the length of an attack (resp. defense) branch of an argument increases (resp.
decreases) its level of acceptability.

2.5.1 Ranking-based semantics taking into account the persuasion principles
Our objective here was to build a ranking-based semantics that allows us to catch the procatalepsis
principle and the fading effect.

• For the fading effect, a solution could be to use an attenuation factor to gradually decrease
the impact of arguments. This is used for instance by the counting semantics Pu et al. (2015b)
where the damping factor α (a value between 0 and 1) is used.

• For the procatalepsis principle, we want that an attacked argument with many defense roots
and few or no attack roots (like a1 in Example 2.9 on page 35) can be more acceptable than
a non-attacked argument. To achieve this goal, a solution is to only take into account the
defense roots and the attack roots of an argument. Indeed, if we consider that a defense
(respectively, attack) root has a positive (respectively, negative) effect on an argument, then,
a sufficient number of defense roots (which can be caught by a parameter) would allow this
argument to become more acceptable than a non-attacked argument.

Propagation with attenuation

We propose to adapt the propagation principle introduced in Section 2.3 on page 19 with the
elements previously put forward. Recall that the idea of propagation is to assign a positive initial
value to each argument in the argumentation framework (arguments may start with the same initial
value or start with distinct values where non-attacked arguments have greater value than attacked
ones). Then each argument propagates its value into the argumentation framework, alternating
the polarity according to the considered path (negatively if it is an attack path, positively if it is a
defense one).

9https://www.reddit.com/r/changemyview/

https://www.reddit.com/r/changemyview/
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But, to catch the persuasion principle, we formally redefine the propagation principle by including
a damping factor δ which allows decreasing the impact of attackers situated further away along a
path (the longer the path length i, the smaller the δ i).

Definition 2.22 [Attenuated propagation]
Let AF= ⟨A,R⟩ be an argumentation framework. The valuation V of x ∈ A, at step i, is given
by:

Vε,δ
i (x) =

 vε(x) if i = 0
Vε,δ

i−1(x)+(−1)iδ i
∑

y∈RS
i (x)

vε(y) otherwise

with δ ∈ ]0,1[ be an attenuation factor and vε : A→R+ is a valuation function giving an initial
weight to each argument, with ε ∈ [0,1] such that ∀y ∈ A,

vε(y) =
{

1 if RS
1(y) = /0

ε otherwise

One can remark that the parameter ⊕, allowing to make a distinction between the use of the set
(⊕= S) or the multiset (⊕= M) to select the attackers or defenders of an argument, is missing in
the previous definition compared to the original definition of the propagation principle. Indeed, in
this new definition, we choose to only use the set (⊕= S) to guarantee a result to the method.

a b

cd

e

f

Figure 2.7: The argumentation framework AF1

Example 2.10 Let us compute the valuation V of each argument in AF1, depicted in Figure2.7,
when ε = 0.5 and δ = 0.4. The results, at each step, are given in Table 2.3 on the next page.
Let us focus on the argument f :

• Step i = 0, f begins with an initial weight of 0.5 because it is attacked, V0.5,0.4
0 ( f ) = 0.5

• Step i = 1, it negatively receives the value attenuated by δ and sent by its direct attacker
d which is also attacked, V0.5,0.4

1 ( f ) = V0.5,0.4
0 ( f )−0.4× v0.5(d) = 0.3

• Step i = 2, it positively receives the weights from a and c attenuated by δ 2, V0.5,0.4
2 ( f ) =

V0.5,0.4
1 ( f )+0.42 × (v0.5(a)+ v0.5(c)) = 0.46

• Step i = 3, it negatively receives the weight of 1 from b and the weight of 0.5 from e
attenuated by δ 3, V0.5,0.4

3 ( f ) = V0.5,0.4
2 ( f )−0.43 × (v0.5(b)+ v0.5(e)) = 0.364

• And so on.

■

The following proposition answers the question of convergence of the valuation V . The convergence
is guaranteed by the use of the damping factor, but also because the set of arguments that attack or
defend an argument for a given length of path is finite and limited by the number of arguments in an
argumentation framework. It is why the use of the multiset is impossible here: when a high number
of cycles exists, the multiset of arguments can increase very fast with respect to the length of the
considered path and the damping factor (even small) is not enough to guarantee the convergence of
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V0.5,0.4
i a b c d e f

0 0.5 1 0.5 0.5 0.5 0.5
1 -0.1 1 0.1 0.1 0.3 0.3
2 -0.02 1 0.1 0.34 0.38 0.46
3 -0.052 1 0.1 0.308 0.316 0.364
...

...
...

...
...

...
...

14 -0.0402 1 0.1 0.3161 0.3506 0.3736

Table 2.3: Computation of the valuation V of each argument from AF1 when ε = 0.5 and δ = 0.4

the formula.

Proposition 2.10 Let AF = ⟨A,R⟩ be an argumentation framework, δ ∈ ]0,1[ and ε ∈ ]0,1].
For all x ∈ A, the sequence {Vε,δ

i (x)}+∞

i=0 converges.

Let us now compute the propagation number of an argument using a fixed-point iteration (the
outcome is guaranteed with the previous proposition).

Definition 2.23 [Propagation number]
Let AF= ⟨A,R⟩ be an argumentation framework, δ ∈ ]0,1[ and ε ∈ ]0,1]. The propagation
number of an argument x ∈ A is:

Vε,δ (x) = lim
i→+∞

Vε,δ
i (x)

Example 2.10 [continuing from p. 38]
The propagation number of each argument in AF1 is represented in the shaded cell in Ta-
ble 2.3. Thus, V0.5,0.4(a) = −0.0402, V0.5,0.4(b) = 1, V0.5,0.4(c) = 0.1, V0.5,0.4(d) = 0.3161,
V0.5,0.4(e) = 0.3506 and V0.5,0.4( f ) = 0.3736. ■

Variable-depth propagation

Let us now define ranking-based semantics using the propagation number and taking into consider-
ation the persuasion principles. As stated previously, a solution to catch the procatalepsis principle
is to only take into account the roots of the arguments. Formally, it is possible when ε = 0. Indeed,
in this case, the non-attacked arguments propagate their weights (vε(y) = 1) in the argumentation
framework, while attacked arguments have an initial weight of 0. Thus, the propagation number of
each argument is only based on the value received by their attack or defense roots. Any pairwise
strict comparison (based on propagation number) resulting from this process is fixed.
Let us take the example of the argumentation framework illustrated in Figure 2.8 on the next page.
On the one hand, a1 and b1 have the same propagation number when ε = 0 because they both
have two defense branches and no attack branch. On the other hand, c1 has three defense branches.
Therefore, since c1 has more branches of defense than a1 and b1, c1 must be more acceptable than
a1 and b1 to be in agreement with the procatalepsis principle.
However, we do not want our semantics to be too "disconnected" from the principles that make the
strength of ranking-based semantics: distinguishing arguments by taking into account the quality
and the quantity of the arguments that attack or defend them. This is why we apply a second phase
to break ties among arguments equally valued in the first phase. From a technical point of view,
this means we re-run the propagation phase but this time setting an initial weight ε ̸= 0 to take into
account the attacked arguments. For example, if a1 and b1 have the same propagation number when
ε = 0 in the argumentation framework represented in Figure 2.8, b1 is directly attacked only once



40 Chapter 2. Argumentation

a1a2a3

a4a5

b3

b4

b2 b1 c5 c4

c7 c6

c3 c2

c1

Figure 2.8: Two arguments a1 and b1 with two defense branches (but with different configurations)
involving a similar propagation number when ε = 0 and c1 which has three defense branches.

while a1 is directly attacked twice, so one can consider that b1 could be more acceptable than a1.

Definition 2.24 [Variable-Depth Propagation]
Let ε ∈ ]0,1] and δ ∈ ]0,1[. The ranking-based semantics Variable-Depth Propagation vdpε,δ

associates to any argumentation framework AF = ⟨A,R⟩ a ranking ⪰vdpε,δ

AF on A such that
∀x,y ∈ A,

x ⪰vdpε,δ

AF y if and only if V0,δ (x)> V0,δ (y) or (V0,δ (x) = V0,δ (y) and Vε,δ (x)≥ Vε,δ (y))

Example 2.10 [continuing from p. 38] According to the previous definition, we first need
to compute the propagation number of each argument when ε = 0. Argument b is the only
non-attacked argument, so the propagation number of each argument is only based on the value
that it propagates. The valuations of each argument at each step are given in the following table:

V0,0.4
i a b c d e f
0 0 1 0 0 0 0
1 -0.4 1 -0.4 0 0 0
2 -0.4 1 -0.4 0.16 0 0
3 -0.4 1 -0.4 0.308 0 -0.064
4 -0.4 1 -0.4 0.308 0.0256 -0.064
...

...
...

...
...

...
...

14 -0.4105 1 -0.4 0.1642 0.0263 -0.0657

It is why, until step i = 3, e has a valuation of 0, but during step i = 4, it receives a positive value
from b, so V0,0.4

4 (e) = 0.44 × v0(b) = 0.0256.
We finally obtain the following pre-ranking: b ≻ d ≻ e ≻ f ≻ c ≻ a
As no arguments are equally acceptable here, it is not necessary to perform the second phase.
Thus, ∀ε ∈ ]0,1], vdpε,0.4 returns the following ranking:

b ≻vdpε,0.4
d ≻vdpε,0.4

e ≻vdpε,0.4
f ≻vdpε,0.4

c ≻vdpε,0.4
a

■

Let us give another example where the second phase is needed to distinguish two arguments.

Example 2.11 Let us compute the ranking returned by vdp0.5,0.4 for the argumentation frame-
work depicted in Figure 2.8, beginning by the case ε = 0.
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V0,0.4
i a3,a5,b3,b4,c3,c5,c7 a2,a4,c2,c4,c6 b2 a1 b1 c1

0 1 0 0 0 0 0
1 1 -0.4 -0.8 0 0 0
2 1 -0.4 -0.8 0.32 0.32 0.48

According to the definition of vdp, we first compare the propagation number of each argument
when ε = 0. The result is the following ranking:

a3 ≃ a5 ≃ b3 ≃ b4 ≃ c3 ≃ c5 ≃ c7 ≻ c1 ≻ a1 ≃ b1 ≻ a2 ≃ a4 ≃ c2 ≃ c4 ≃ c6 ≻ b2

We can see that some arguments are still equally acceptable, in particular a1 and b1. So,
according to the definition of vdp, we restart the process with a non-zero ε (here ε = 0.5):

V0.5,0.4
i a3,a5,b3,b4,c3,c5,c7 a2,a4,c2,c4,c6 b2 a1 b1 c1

0 1 0.5 0.5 0.5 0.5 0.5
1 1 0.1 -0.3 0.1 0.3 -0.1
2 1 0.1 -0.3 0.42 0.62 0.38

a3 ≃vdp0.5,0.4
a5 ≃vdp0.5,0.4

b3 ≃vdp0.5,0.4
b4 ≃vdp0.5,0.4

c3 ≃vdp0.5,0.4
c5 ≃vdp0.5,0.4

c7

≻vdp0.5,0.4

c1
≻vdp0.5,0.4

a1
≻vdp0.5,0.4

b1
≻vdp0.5,0.4

a2 ≃vdp0.5,0.4
a4 ≃vdp0.5,0.4

c2 ≃vdp0.5,0.4
c4 ≃vdp0.5,0.4

c6

≻vdp0.5,0.4

b2

With this second process, a1 and b1 can be distinguished. Indeed, they have two defense branches
of length 2, so during the step where ε is 0, they receive the same values from their defense roots.
However, one can remark that a1 is directly attacked twice while b1 is directly attacked once. So,
during the second process where the initial scores of the attacked arguments are also propagated,
a1 receives one more negative value than b1 (V0.5,0.4

1 (a1) = 0.1 < 0.3 = V0.5,0.4
1 (b1)). ■

2.5.2 Analysis and properties

Influence of the parameters

The definition of the propagation number is based on two parameters: ε and δ . Let us characterize
their roles and their impacts on the ranking computed when the variable-depth propagation is used.
Recall that the parameter ε has a key role to distinguish the two phases aiming to compute the
ranking between arguments. However, a concern might be that the value of ε might change the
ranking obtained. We show that this is not the case:

Proposition 2.11 Let δ ∈ ]0,1[ and ε,ε ′ ∈ ]0,1]. For any AF, we have vdpε,δ (AF)= vdpε ′,δ (AF).

Please note that even though different values of ε do not change the ranking between arguments
returned by vdp, this parameter remains mandatory to distinguish the two steps used in the definition
of vdp: the first one where non-attacked arguments are the only arguments to propagate their value
in the argumentation graph (ε = 0) and the second one where all arguments propagate their value
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(ε ̸= 0). However, this is a purely internal artifact without any effect on the outcome of the method.
To make this clear, we note vdpδ instead of vdpε,δ to describe our parametrized ranking semantics
in general.

The parameter δ is defined as the damping factor allowing us to decrease the impact of the argument
when the length of the path increases. Following this, there intuitively exists a length such that the
impact of arguments situating at the beginning of this path is negligible compared to the nearest
arguments. Thus, the role of this parameter is to choose the scope of influence of the arguments
in the argumentation framework, in addition to guaranteeing the convergence of the valuation
V . For instance, with a value of δ close to 0, only the nearest arguments (so a small part of
the argumentation framework) are taken into consideration to compute the different propagation
numbers, whereas with a value of δ close to 1, (almost) all the argumentation framework will be
inspected. Consequently, two different values of δ can produce different rankings for the same
argumentation framework. Following the principle of the fading effect, it is natural to assume that
arguments located at a long distance from another argument become ineffective. In terms of design,
it seems very interesting to have the ability to control this parameter to specify a maximal depth
after which arguments see their influence on the value of others vanish.
To better understand how to take the fading principle into account in using δ , let us detail the
algorithm used to compute the propagation numbers.

1. A positive number is assigned to each argument: ∀a ∈ A, Vε,δ
0 (a) = 1 if a is non-attacked or

Vε,δ
0 (a) = ε otherwise,

2. We increase the step i by 1 and we add (or subtract) the score computed during the previous
step (Vε,δ

i−1(a)) and the attenuated weights (vε and δ i) received from defenders (or attackers)
at the beginning of a path with a length of i (RS

i (a)):

Vε,δ
i (a) = Vε,δ

i−1(a)+(−1)i
δ

i
∑

b∈R−
i (()a)

vε(b)

3. If, between two steps, the difference, for all valuations P, is smaller than a fixed precision
threshold µ (i.e. ∀a ∈ A, |Vε,δ

i (a)−Vε,δ
i−1(a)|< µ) then the process is stopped10 and the last

values correspond to the propagation number of each argument. If it is not the case, we go
back to 2).

Thus, given a precision threshold, one can choose δ according to the maximal expected depth.

Proposition 2.12 Let AF= ⟨A,R⟩ be an argumentation framework, i ∈N\{0} be the maximal
depth and µ be the precision threshold. If δ < i

√
µ

max
a∈A

(|RS
i (a)|)

then, for all a ∈ A, the sequence

{Vε,δ
i (a)}+∞

i=0 converges before step i+1.

Through the formula given in Proposition 2.12, we can determine, for each maximal depth, which
value of δ should be used.

On the diversity of rankings

As shown in Figure 2.9 on the facing page, for a given argumentation framework, different values
of δ can produce different rankings. Indeed, when δ ∈ {0.0001,0.2,0.4,0.6}, vdpδ provides the
same ranking, whereas, when δ ≥ 0.8, c becomes more acceptable than f and d becomes more
acceptable than b.

10In practice, we consider that a process is stopped when, for each valuation, the difference between two steps is
smaller than a precision threshold.
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a b

cd

e

f

δ vdpδ

0.0001

b ≻ d ≻ e ≻ f ≻ c ≻ a
0.2
0.4
0.6
0.8 d ≻ b ≻ e ≻ c ≻ f ≻ a
0.9 d ≻ e ≻ b ≻ c ≻ f ≻ a

Figure 2.9: An AF and the rankings returned by vdpδ for different values of δ

In light of these differences, one may be worried that the diversity of rankings could be so high that
the semantics becomes too sensitive to small modifications of the parameter δ . To check this, we
applied our variable-depth propagation on 1000 randomly generated argumentation frameworks11

for different values of δ ∈ {0.001,0.2,0.4,0.6,0.8,0.9}. Then, we measured the dissimilarity
degree between two rankings from two different values of δ using Kendall’s tau coefficient (Kendall,
1938). This coefficient corresponds to the total number of rank disagreements over all unordered
pairs of arguments between two rankings. It, therefore, allows us to obtain a dissimilarity degree
between the two rankings.
Table 2.4 contains, for each pair of δ , the average Kendall’s tau coefficient, from the results
previously computed, which we multiply by 100 to obtain a percentage of dissimilarity.

δ 0.001 0.2 0.4 0.6 0.8 0.9

0.001 0 0.06 0.55 4.09 10.62 13.74

0.2 0.06 0 0.52 4.13 10.63 13.64

0.4 0.55 0.52 0 3.71 10.13 13.3

0.6 4.09 4.13 3.71 0 6.82 9.86

0.8 10.62 10.63 10.13 6.82 0 3.16

0.9 13.74 13.64 13.3 9.86 3.16 0

Table 2.4: Percentage of dissimilarity between the rankings from vdpδ with δ ∈
{0.001,0.2,0.4,0.6,0.8,0.9}

The results show that the obtained rankings stay pretty close since the biggest dissimilarity between
the smallest and largest value of δ is 13.74%. This dissimilarity remains overall very small, showing
that the semantics remain quite stable as the parameter varies.
The question now is whether these differences are only caused by the fading effect or if δ has an
impact on other domains too.

Properties satisfied by vdp

We now investigate the properties satisfied by our variable-depth propagation semantics vdp. Before
checking all properties discussed in the literature, we start by inspecting the case of Void Precedence
because this property contradicts the procatalepsis principle.
One of the very distinctive features of vdp is that an attacked argument can have a better score (and
so a better rank) than a non-attacked argument. Indeed, when a given argument has many defense
branches, it receives many positive weights. However, as depicted in the following example, this
feature is not guaranteed for all values of δ .

11The generation algorithms are based on the three algorithms used for producing the benchmarks of the competition
ICCMA’15 Thimm and Villata (2015)
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Example 2.12 Let us compute the rankings of the argumentation framework which represents
the sales pitch aiming to persuade someone to buy a car used to explain the procatalepsis
principle (see Example 2.9 on page 35), in using variable-depth propagation with several values
of δ .

a1a2a3

a4a5

δ vdpδ

0.0001

a5 ≃ a3 ≻ a1 ≻ a2 ≃ a4
0.2
0.4
0.6
0.8

a1 ≻ a5 ≃ a3 ≻ a2 ≃ a40.9
Indeed, one can remark that the non-attacked argument a3 (respectively a5) is strictly more
acceptable than each attacked argument (including a1) when δ ∈ {0.0001,0.2,0.4,0.6} but a1
becomes strictly more acceptable than a3 (respectively a5) for the value of δ ∈ {0.8,0.9}. Thus,
according to the choice of δ , this argument, which is attacked, can obtain a greater score than
the score of non-attacked arguments.

■

Let us formally determine which are, for a given argumentation framework, the values of δ that
ensure that the non-attacked arguments are more acceptable than the attacked arguments:

Proposition 2.13 Let AF = ⟨A,R⟩ be an argumentation framework and x,y ∈ A such that
R−

1 (x) = /0 and R−
1 (y) ̸= /0. If δ < δ M such that δ M =

√
1

maxz∈A(|R−
2 (z)|)

then V0,δ (x)> V0,δ (y).

De facto, there exists a threshold for the parameter δ which VP is satisfied.

Corollary 2.1 For any argumentation framework, if δ < δ M then vdpδ satisfies VP.

Thus, our method departs from other approaches in its treatment of the Void Precedence property,
but to a certain extent only. Let us take the example of persuasion pitches to illustrate this.12 In a
persuasion pitch, a single line of defense is not enough to be more convincing than a non-attacked
argument. On the other hand, when this condition is met, a simple condition for the violation of VP
in persuasion pitches can be stated:

Proposition 2.14 Let Pk = ⟨A,R⟩ be a persuasion pitch with x ∈ A as the targeted argument
and y ∈ A be a non-attacked argument. Then,
(i) if k = 1 then y ≻vdpδ

Pk
x;

(ii) if k ≥ 2 and δ > m
√

1
k where m is the length of the longest defense branch of x then x ≻vdpδ

Pk
y.

Interestingly, it turns out that in the context of our method, the Void Precedence property is related
to the property Defense Precedence.

Proposition 2.15 If vdpδ satisfies VP then it satisfies DP.

However please note that this is not the case in general because some ranking-based semantics
satisfy VP but not DP (see Table 2.5 on the next page).
Let us now check which properties, among those defined in Section 2.2.1 on page 13, are satisfied
by the variable-depth propagation semantics vdp.

Proposition 2.16 Let δ ∈ ]0,1[. vdpδ satisfies Abs, In, Tot, NaE, +AB, AE and AvsFD. The
other properties are not satisfied.

12Recall Definition 2.21 on page 36.
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All these results are reported in Table 2.5. For comparison, we also include in this table the results
of the ranking semantics presented in Section 2.4 on page 24.

Properties Cat Dbs Bbs α-Bbs CS Propaε Propa1+ε Propa1→ε Tuples 2ZG IGD vdpδ vdpδ ′
vdpδ ′′

Abs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

In ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓

DP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × × × ✓

CT ✓ ✓ ✓ ✓ ✓ × × × × × × × × ×
SCT ✓ ✓ ✓ ✓ ✓ × × × × × × × × ×
CP × ✓ ✓ × × × × × × × × × × ×
QP × × × × × × × × × × × × × ×

DDP × × ✓ × × × ✓ ✓ × × × × × ×
SC × × × × × × × × × ✓ × × × ×
⊕DB × × × × × × × × × × × × × ×
+DB × × × × × × × ✓ ✓ × × × ✓i ✓i

↑AB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × ✓i ✓i

↑DB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × ✓i ✓i

+AB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓

Tot ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ ✓ ✓

NaE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓

OE ✓ ✓ ✓ ✓ ✓ × × × ✓ × × × × ×
AvsFD × × × × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓

PR × × × × × × × × × × × × ✓ ×

Table 2.5: Summary of the properties satisfied by vdp (∀δ , for max(δ m,δ M) < δ ′ and for
δ m < δ ′′ < δ M) and some existing ranking semantics studied in the literature. A cross × means
that the property is not satisfied, symbol ✓means that the property is satisfied, and ✓i means that
the i-version of the property is satisfied.

Each of these existing ranking-based semantics satisfies Void Precedence and therefore violates the
principle of procatalepsis (PR).

Proposition 2.17 The ranking-based semantics Cat, Dbs, Bbs, α-Bbs, CS, Propaε , Propa1+ε ,
Propa1→ε , Tuples, 2ZG and IGD does not satisfy PR.

We first remark that for any value of δ , vdp satisfies the properties accepted by almost all the
existing ranking-based semantics (Abs, In, +AB, NaE, AE and Tot). The only exception concerns
VP, but it is intended by design and discussed earlier. We can also note that vdp always satisfies
property AvsFD, and for a specific δ (δ m < δ ) the property +DB. These three conditions are
necessary to catch the procatalepsis principle. Indeed, AvsFD and +DB state that increasing the
number of defense branches improves the acceptability of an argument, and the failure to satisfy
VP is necessary to allow the attacked arguments to become more acceptable than non-attacked
arguments.

2.6 Combining Extension-based Semantics and Ranking-based
Semantics
As we have seen in the previous sections, there are two kinds of evaluations of arguments: at the
level of sets of arguments (with extension-based or labeling-based semantics) or the level of single
arguments (with ranking-based or gradual semantics). These two ways to evaluate the information
encoded in an argumentation framework are interesting and target different kinds of applications.
The starting point of this work is the observation that these two kinds of evaluation are in a sense
orthogonal. They both can be used to extract some information about the status/strength/situation
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of (sets of) arguments. Instead of seeing these approaches as mutually exclusive, one natural idea is
to try to take the best of both worlds and combine them.
As already discussed in this document, extension-based semantics (Dung, 1995) are closely related
to models of logic programs so they exhibit an all-or-nothing evaluation of sets of arguments. Am-
goud and Ben-Naim (2013) underlines some characteristics specific to extension-based semantics
(see section 2.2.1 on page 13). This kind of evaluation can be useful to define arguments from
logical formulas. The killing and existence considerations seem essential to capture the fact that
one attack is lethal and prevent any contradiction between arguments and thus obtain a consistent
set of formulas.
However, in other applications, some of these properties can be discussed. For example, on online
debate platforms, agents argue for or against a particular topic (in the form of a question or an
affirmation) or other existing arguments. Often, the goal is not to find the arguments that can
be accepted together but to evaluate how accepted is the topic argument. But more generally,
when one faces many arguments, having a more detailed evaluation of arguments than the binary
accepted/rejected obtained with extension-based semantics may be useful. Leite and Martins
(2011) emphasize the limitations of classical acceptability semantics for this kind of application. In
addition, to accurately represent the opinions of thousands of users, it could be more appropriate
to evaluate arguments using degrees of acceptability or gradual acceptability. With ranking-based
semantics, we can precisely obtain a very detailed evaluation of the strength of each argument. This
can be useful for these debate platforms, but also to select the best arguments in all kinds of debates
(persuasion, deliberation, etc.).
On the other hand, we can see as a drawback the fact that the evaluation of each argument is not
linked at all with its acceptance status: being an argument with a good evaluation does not mean
that this argument should be accepted (under extension-based semantics), and even if we define
“acceptance” with respect to the ranking, there is no natural threshold to make a distinction between
accepted and non-accepted argument. Defining a ranking-based semantics that is compatible with
the acceptance status of an extension-based semantics would be a solution. So we propose to build
this kind of semantics by refining ranking-based semantics using extension-based semantics.
Conversely, a drawback of extension-based semantics is that they do not allow a very detailed
evaluation of arguments. It is for instance impossible to give a better evaluation to an unattacked
argument than to all the arguments that this argument defends, whereas the acceptability of the latter
depends on the acceptability of the unattacked argument. So one can use the detailed evaluation of
arguments to modify extension-based semantics, for instance by selecting only the best extensions
for this evaluation.13

2.6.1 Improving Ranking-based semantics using Extension-based semantics

Refining ranking-based semantics using acceptance status

The first idea is to constrain the rankings to be compatible with the acceptance status of the
arguments. We lexicographically combine a ranking denoting the acceptance status of the arguments
given by an extension-based semantics and the ranking given by a ranking-based semantics.

Definition 2.25 [Refinement of a ranking]
Let AF= ⟨A,R⟩ be an argumentation framework. Let ⪰1

AF and ⪰2
AF be two rankings on A. The

(lexicographical) refinement of ⪰2
AF by ⪰1

AF gives a new ranking ⪰1,2
AF such that ∀x,y ∈ A,

x ⪰1,2
AF y if and only if (x ≻2

AF y) or (x ≃2
AF y and x ⪰1

AF y)

The following definition allows to build a ranking from the acceptance status given by an extension-

13This work was originally published in (Bonzon et al., 2018)
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based semantics14: an argument skeptically accepted is more acceptable than an argument credu-
lously accepted which is more acceptable than a rejected argument.

Definition 2.26 [Ranking from extension based-semantics]
Let AF= ⟨A,R⟩ be an argumentation framework and σ ∈ {co, pr,st,gr}. Let ⪰σ

AF be a ranking
on A such that ∀x,y ∈ A, x ⪰σ

AF y if and only if one of the following conditions is satisfied:
1. x ∈ saσ (AF),

2. x ∈ caσ (AF)\ saσ (AF) and y /∈ saσ (AF),

3. x,y /∈ caσ (AF)

Definition 2.27 [Acceptance-based ranking semantics]
Let σ1 be a ranking-based semantics and σ2 ∈ {co, pr,st,gr}. The acceptance-based ranking
semantics ARSσ1,σ2 associates to any AF= ⟨A,R⟩ a ranking ⪰σ1,σ2

AF on A which is the refinement
of ⪰σ2

AF by ⪰σ1
AF .

I will focus on the categorizer-based ranking semantics to illustrate our method (see Section 2.4 on
page 24).

Example 2.13 Let us first compute the arguments skeptically (sa) and credulously (ca) accepted
w.r.t. the complete semantics on the following AF:

a b c d e

f

g

Eco(AF) = {{a},{a,c},{a,d, f}}, so saco(AF) = {a} and caco(AF) = {a,c,d, f}. We obtain
thus : a ≻co

AF c ≃co
AF d ≃co

AF f ≻co
AF b ≃co

AF e ≃co
AF g

The ranking returned by the categorizer-based ranking semantics is the following:
a ≻Cat

AF f ≻Cat
AF d ≻Cat

AF g ≻Cat
AF b ≻Cat

AF c ≻Cat
AF e.

Thus, when we combine the two rankings, the refinement-based ranking semantics returns the
following ranking: a ≻Cat,co

AF f ≻Cat,co
AF d ≻Cat,co

AF c ≻Cat,co
AF g ≻Cat,co

AF b ≻Cat,co
AF e

■

One can see in this example that g has quite a good evaluation for the ranking-based semantics ≻Cat
AF ,

whereas it is a rejected argument. In particular, it has a better evaluation than c that is credulously
accepted (for the complete semantics). The combined ranking-based semantics ≻Cat,co allows to
force c to be better than g.
So now the question is to know whether these modifications change the “rationality” of the ranking-
based semantics, i.e. do these combined semantics satisfy less logical properties than the original
ranking-based semantics?

Proposition 2.18 Let σ1 be a ranking-based semantics and σ2 ∈ {co, pr,st,gr}. Let α be any
property among Abs, In, VP, DP, DDP, SC, ⊕DB, +DB, +AB, ↑AB, ↑DB, Tot, NaE.
If σ1 satisfies the property α , then the semantics ARSσ1,σ2 satisfies the property α . The semantics
ARSσ1,gr and ARSσ1,st satisfy QP, CT and SCT. The semantics ARSσ1,σ2 satisfies the property
AvsFD and does not satisfy CP.

14Please note that, a priori, any extension-based semantics can be used in our method but for our properties, we choose
to only focus on the four classical semantics (see Definition 2.4 on page 10).



48 Chapter 2. Argumentation

It is interesting to note that, except for AvsFD and CP, the semantics satisfies the property if the
original ranking-based semantics satisfies the properties. Thus, the compliance of the ranking-based
semantics for these properties is preserved using the refinement with the extension-based semantics.
Better than that, it allows the enforcement of AvsFD that few semantics satisfy (Section 2.4.2 on
page 30). So it is an easy way to obtain new semantics satisfying AvsFD from standard semantics
from the literature.

Refining ranking-based semantics using justification status

Instead of focusing on the acceptability status of the arguments, we can also build a ranking from
the labeling-based justification status of the arguments, that offers a more fined-gained distinction
of the arguments with respect to the labelings/extensions. However, the definition from Wu and
Caminada (2010) (see Definition 2.9 on page 12) only concerns the complete semantics. It is why
we propose to extend the definition to Dung’s semantics.

Definition 2.28 [Extended justification status]
Let AF= ⟨A,R⟩ be an argumentation framework, σ ∈ {co, pr,st,gr} and x ∈ A. The extended
justification status of x is the outcome yielded by the function JS : A → 2{in,out,undec} s.t.
JSσ (x) = {Lσ (x) | L ∈ Lσ (⟨A,R⟩)}.

In addition to the 6 statuses {in}, {out}, {undec}, {in,undec}, {out,undec} and {in,out,undec},
we must add the status {in,out}, that could not appear for the complete semantics, but which may
be obtained, for instance with the preferred semantics.
With the graph depicted in Figure 2.10, we include the status {in,out} in the hierarchy of the
justification statuses.

{in}

{in,undec}

{in,undec,out}{undec} {in,out}

{out,undec}

{out}

Figure 2.10: The hierarchy of the extended justification statuses

Thus, we can classify the statuses with the following ranking: {in} ≻ js {in,undec} ≻ js {undec}
≃ {in,out,undec} ≃ {in,out} ≻ js {out,undec} ≻ js {out}. According to this classification, we
can say that an argument is more acceptable than another one if it has a better status.

Definition 2.29 [Justification-based ranking]
Let AF= ⟨A,R⟩ be an argumentation framework and σ ∈ {co, pr,st,gr}. Let ⪰JSσ

AF be a ranking
on A such that ∀x,y ∈ A,

x ⪰JSσ

AF y if and only if JSσ (x)⪰ js JSσ (y)
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Definition 2.30 [Justification-based ranking semantics] Let σ1 be a ranking-based semantics
and σ ∈ {co, pr,st,gr}. The justification-based ranking semantics JRSσ1,σ associates to any
AF= ⟨A,R⟩ a ranking ⪰σ1,JSσ

AF on A which is the refinement of ⪰JSσ

AF by ⪰σ1
AF .

Example 2.13 [continuing from p. 47] This argumentation framework depicted has three
complete labelings L1, L2 and L3 with:
in(L1) = {a},out(L1) = {b},undec(L1) = {c,d,e, f ,g}
in(L2) = {a,c},out(L2) = {b,d},undec(L2) = {e, f ,g}
in(L3) = {a,d, f},out(L3) = {b,c,e,g},undec(L3) = /0
From these different complete labelings, the labeling-based justification statuses of each argu-
ment in the AF is JSco(a) = {in}, JSco(b) = {out}, JSco(c) = JSco(d) = {in,out,undec},
JSco(e) = JSco(g) = {undec,out} and JSco( f ) = {in,undec}. So we obtain the following
ranking:

a ≻JSco
AF f ≻JSco

AF c ≃JSco
AF d ≻JSco

AF e ≃JSco
AF g ≻JSco

AF b

Combined with the ranking returned by the categorizer-based ranking semantics, we obtain the
following ranking:

a≻Cat,JSco
AF f ≻Cat,JSco

AF d ≻Cat,JSco
AF c ≻Cat,JSco

AF g ≻Cat,JSco
AF e ≻Cat,JSco

AF b

■

Proposition 2.19 Let σ1 be a ranking-based semantics and σ2 ∈ {co, pr,st,gr}. Let α be any
property among Abs, In, VP, DP, DDP, ⊕DB, +DB, +AB, ↑AB, ↑DB, Tot, NaE.
If σ1 satisfies the property α , then the semantics ARSσ1,JSσ2

satisfies the property α . The semantics
ARSσ1,JSgr and ARSσ1,JSst satisfy QP, CT and SCT. The semantics ARSσ1,JSσ2

satisfies the property
AvsFD and does not satisfy CP, SC.

One can remark that the difference of properties satisfied between this semantics and the previous
one is minor. Indeed, the only difference concerns the Self-Contradiction (SC) property and can be
explained by the fact that an argument that attacks itself is labeled undec if it is not attacked by
other arguments. Thus, this argument is more acceptable than an argument directly attacked by a
non-attacked argument while the skeptical and credulous inference functions always consider the
two arguments as rejected.

2.6.2 Refining Propagation semantics using acceptance and justification status
We proposed to adapt the propagation principle introduced in Section 2.3 on page 19 by using
acceptance status and justification status to allow a more fine-grained initial evaluation.
Recall that the first step of the propagation principle is ensured by the valuation function vε , which
takes, for the propagation semantics, only two values (1 is assigned to the non-attacked arguments
and ε for the attacked arguments). The idea is to propose more complex functions to assign values
to arguments at the beginning of the propagation. Let us first define a valuation function that takes
into account the level of acceptability of arguments.

Definition 2.31 [Valuation function based on acceptance]
Let AF = ⟨A,R⟩ be an argumentation framework and z⃗σ = ⟨α,β ,γ,δ ⟩ be a vector of real
number linked to the semantics σ ∈ {co, pr,st,gr}, with 1 ≥ α > β > γ > δ ≥ 0. The valuation
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function v⃗zσ
: A→ [0,1] is defined as ∀x ∈ A,

v⃗zσ
(x) =


α if R−

1 (x) = /0
β if x ∈ saσ (AF) and R−

1 (x) ̸= /0
γ if x ∈ caσ (AF)\ saσ (AF)

δ if x /∈ caσ (AF)

So a preference is given to non-attacked arguments, then to skeptically accepted arguments, then to
credulously accepted ones, and the worst ones are rejected arguments.

Example 2.13 [continuing from p. 47] Applying the complete semantics on the AF depicted
in this example allows to say that a is the only argument which is not attacked while c,d and f
are credulously (and not skeptically) accepted and b,e and g are considered as rejected.
With z⃗co = ⟨1,0.7,0.3,0⟩, we obtain the following table which sums up the valuation of each
argument at each step:

V z⃗co
i a b c d e f g

0 1 0 0.3 0.3 0 0.3 0

1 1 -1 0 0 -0.3 0.3 -0.3

2 1 -1 1.3 0.3 0.3 0.6 -0.3

When we lexicographically compare the propagation vector of each argument, we obtain the
following ranking:

a ≻V⃗zco
AF f ≻V⃗zco

AF c ≻V⃗zco
AF d ≻V⃗zco

AF e ≻V⃗zco
AF g ≻V⃗zco

AF b

■

Let us check which properties are satisfied:

Proposition 2.20 Let σ ∈ {co, pr,st,gr}. The semantics Propa⃗zσ satisfies Abs, In, VP, DP, ↑AB,
↑DB, +AB, Tot, NaE and AvsFD. The other properties are not satisfied.

The set of properties satisfied by Propa⃗zσ is close to the ones satisfied by the semantics Propaε . The
differences come from the AvsFD property that is satisfied by Propa⃗zσ thanks to the distinction
done between attacked arguments in the initial evaluation, and from the fact that SCT and CT are
not satisfied.

We also define another valuation function by considering the extended justification status.

Definition 2.32 [Valuation function based on justification]
Let AF= ⟨A,R⟩ be an argumentation framework and J⃗Sσ = ⟨α,β ,γ,δ ,ε,ω⟩ be a vector of real
number linked to the semantics σ ∈ {co, pr,st,gr}, with 1 ≥ α > β > γ > δ > ε > ω ≥ 0.
The valuation function vJ⃗Sσ

: A→ [0,1] is defined as ∀x ∈ A,

vJ⃗Sσ
(x) =



α if R−
1 (x) = /0

β if JSσ (x) = {in} and R−
1 (x) ̸= /0

γ if JSσ (x) = {in,undec}
δ if JSσ (x) ∈ {{undec},{in,out},{in,undec,out}}
ε if JSσ (x) = {undec,out}
ω if JSσ (x) = {out}
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Example 2.13 [continuing from p. 47] Let us recall the justification status labeling of each argu-
ment: JSco(a) = {in}, JSco(b) = {out}, JSco(c) = JSco(d) = {in,out,undec}, JSco(e) =
JSco(g) = {undec,out} and JSco( f ) = {in,undec}. So, with J⃗Sco = ⟨1,0.8,0.6,0.4,0.2,0⟩,
we have:

V J⃗Sco
i a b c d e f g

0 1 0 0.4 0.4 0.2 0.6 0.2

1 1 -1 0 0 -0.4 0.4 -0.4

2 1 -1 1.4 0.4 0.6 1 -0.2

And, consequently, we obtain the following ranking:

a ≻V
AF J⃗Sco f ≻V

AF J⃗Scoc ≻V
AF J⃗Scod ≻V

AF J⃗Scoe ≻V
AF J⃗Scog ≻V

AF J⃗Scob

■

As shown in the following proposition, increasing the number of distinctions between the attacked
argument does not change the properties satisfied by the propagation semantics.

Proposition 2.21 Let σ ∈ {co, pr,st,gr}. The semantics Propa⃗zJSσ satisfies Abs, In, VP, DP,
↑AB, ↑DB, +AB, Tot, NaE and AvsFD. The other properties are not satisfied.

2.6.3 Improving Extension-based using Ranking-based semantics
In this section, we propose three different ways to use ranking-based semantics to modify the
results obtained by extension-based semantics. The first two methods aim to decrease the number
of extensions, to allow more inferences, thanks to ranking-based semantics. The last method
disregards the attacks that come from bad arguments with respect to the ranking-based semantics.

a

b

c

d

e g

f

Egr(AF) = {}
Epr(AF) = {{a,c},{b,d, f},{b,e, f},{b,d,g},{b,e,g}}
Est(AF) = {{a,c},{b,d, f},{b,e, f},{b,d,g},{b,e,g}}

Eco(AF) = { /0,{a,c},{b,d, f},{b,e, f},{b,d,g},{b,e,g}}
Cat(AF) = b ≻Cat

AF a ≻Cat
AF c ≻Cat

AF g ≻Cat
AF d ≃Cat

AF e ≻Cat
AF f

Figure 2.11: An AF with many extensions

As shown with the argumentation framework depicted in Figure 2.11, when many cycles with
even lengths exist, extension-based semantics return several extensions (except for the grounded
semantics which always return a unique extension). As discussed in Konieczny et al. (2015),
in this case, selecting the arguments skeptically and credulously accepted can be problematic.
Indeed, if there are many extensions, using skeptical inference can give almost no information
and the credulous inference can give too many arguments. There exist works where additional
information (e.g. weight on the attacks, preferences) are used to reduce the number of extensions in
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a given argumentation framework (e.g. (Amgoud and Vesic, 2014; Coste-Marquis et al., 2012)).
However, our goal is to reduce the set of extensions without any additional information in the
argumentation framework. While in Konieczny et al. (2015), the attack relation is taken into account
to discriminate some extensions, we propose here to consider the ranking returned by ranking-based
semantics to select the “best” extensions. For this purpose, we propose two approaches.

Select the best extensions: comparing the arguments’ ranks

The first criterion we consider is the rank that an argument has in a ranking of arguments returned
by ranking-based semantics.

Definition 2.33 [Rank]
Let AF = ⟨A,R⟩ be an argumentation framework. Given a ranking-based semantics σ , the
rank of x ∈ A w.r.t. ⪰σ

AF, denoted by rσ (x), is the level in which it belongs in the ordered
sequence of equivalence classes of A with respect to ⪰σ

AF. So rσ (x) = i where i is the longest
path x1 ≻σ

AF . . .≻σ
AF xi ≻σ

AF x; and rσ (x) = 0 if ∄y ∈ A s.t. y ≻σ
AF x.

Example 2.14 If we consider the ranking returned by the categorizer semantics on the AF
depicted in Figure 2.11 on the previous page, the rank of each argument is rCat(a) = 1, rCat(b) =
0, rCat(c) = 2, rCat(d) = 4, rCat(e) = 4, rCat( f ) = 5 and rCat(g) = 3. ■

Given a ranking-based semantics, the rank multiset of an extension obtained from an extension-
based semantics is composed of the rank of each of its arguments.

Definition 2.34 [Rank multiset] Let AF= ⟨A,R⟩ be an argumentation framework, σ1 be an
extension-based semantics and σ2 be a ranking-based semantics. For an extension E ∈ Eσ1(AF),
with E = {x1, . . . ,xn}, we define its rank multiset as rvσ2(E) = (rσ2(x1), . . . ,rσ2(xn)).

Example 2.14 [continuing from p. 52] Focusing on the preferred extension {b,d, f} and the
categoriser-based semantics, we have rvCat({b,d, f}) = (0,4,5). ■

We use an aggregation function to aggregate the values belonging to the same rank multiset.

Definition 2.35 [Aggregation function]
We say that ⊕ is an aggregation function if for every n ∈N, ⊕ is a mapping from Nn to N such
that:

• if xi ≥ x′i, then
⊕(x1, . . . ,xi, . . . ,xn)≥⊕(x1, . . . ,x′i, . . . ,xn)

• ⊕(x1, . . . ,xn) = 0 iff for every i, xi = 0

• ⊕(x) = x.

Many typical examples of aggregation functions exist such as sum, max, min, leximax, leximin,
etc. The goal is now to compare the score assigned to each extension to select the best ones with
respect to the chosen criterion.

Definition 2.36 [Rank-based extensions]
Let AF= ⟨A,R⟩ be an argumentation framework, σ1 be an extension-based semantics, σ2 be a
ranking-based semantics and ⊕ be an aggregation function.
The set of rank-based extensions (RBE) is defined as RBE⊕σ1,σ2

(AF) = argmin
E∈Eσ1(AF)

⊕(rvσ2(E))

The resulting set of extensions depends on the chosen aggregation function. Indeed, using the
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average favors the extensions with few arguments but which have a good rank (even if these are not
the best ranks) while when the leximin is used, the number of arguments has no impact because
the rank of the best argument in each extension is first compared and in case of a tie for some
extensions, we compare the second best rank and so on.

Proposition 2.22 For every ⊕, for every semantics σ1 and σ2, for every AF= ⟨A,R⟩, for every
x ∈ A,

• RBE⊕σ1,σ2
(AF)⊆ Eσ1(AF)

• saσ1(AF)⊆
⋃

E∈RBE⊕σ1 ,σ2 (AF)
E ⊆ caσ1(AF)

Baroni and Giacomin (2007) pointed out a set of properties for extension-based argumentation
semantics: I-maximality, Admissibility, Strong Admissibility, Reinstatement, Weak Reinstatement
and CF-Reinstatement.

Proposition 2.23 Let ⊕ be an aggregation function and σ2 be a ranking-based semantics. Let α

be any property among I-maximality, Admissibility, Strong Admissibility, Reinstatement, Weak
Reinstatement and CF-Reinstatement.
If the semantics σ1 satisfies the property α , then the semantics RBE⊕σ1,σ2

satisfies the property α .

So RBE satisfies the same properties as the underlying extension-based (or labeling-based) semantics
they are built from, except for the directionality property, just like in Konieczny et al. (2015).

Select the best extensions: pairwise comparison

Our second approach consists in comparing all pairs of extensions based on the number of arguments
in one extension which are more acceptable than the arguments in another extension.

Definition 2.37 [Acceptability number]
Let AF= ⟨A,R⟩ be an argumentation framework. Let σ1 be an extension-based semantics, σ2
be a ranking-based semantics and E ,E ′ ∈ Eσ1(AF). We have

Nσ2(E ,E ′) = |{(x,y) s.t. x ≻σ2
AF y with x ∈ E and y ∈ E ′}|

Example 2.15 Let us consider the set of extensions returned by the preferred semantics and
the ranking returned by the categorizer-based semantics on the AF depicted in Figure 2.11 on
page 51. For example, NCat(E1,E4) = 4 because c ≻Cat d, c ≻Cat g, a ≻Cat d and a ≻Cat g. So,
following the same reasoning, when we compare all the extensions, we obtain the following
table:

NCat E1 E2 E3 E4 E5

E1 = {a,c} × 4 4 4 4

E2 = {b,d, f} 2 × 0 0 0

E3 = {b,e, f} 2 0 × 0 0

E4 = {b,d,g} 2 1 1 × 0

E5 = {b,e,g} 2 1 1 0 ×

■

The approach consists in counting how many extensions are defeated by a given extension and
selecting the extension(s) that obtain the best score.
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Definition 2.38 [Acceptability-based extensions]
Let AF= ⟨A,R⟩ be an argumentation framework, σ1 be an extension-based semantics and σ2
be a ranking-based semantics. The set of acceptability-based extensions (ABE) is defined as
follows:
ABEσ1,σ2(AF) = argmax

E∈Eσ1 (AF)

|{E ′ ∈ Eσ1(AF) : Nσ2(E ,E ′)>Nσ2(E ′,E)}|

Example 2.15 [continuing from p. 53] We can see that the extension E1 defeats all the other
extensions, so, ABEpr,Cat(AF) = {E1}. ■

Proposition 2.24 For every semantics σ1 and σ2, for every AF= ⟨A,R⟩, for every x ∈ A,
• ABEσ1,σ2(AF)⊆ Eσ1(AF)

• saσ1(AF)⊆
⋃

E∈ABEσ1 ,σ2 (AF)
E ⊆ caσ1(AF)

Although the obtained semantics are different from the RBE semantics, ABE semantics exhibit the
same properties.

Proposition 2.25 Let σ2 be a ranking-based semantics. Let α be any property among I-
maximality, Admissibility, Strong Admissibility, Reinstatement, Weak Reinstatement and CF-
Reinstatement.
If the semantics σ1 satisfies the property α , then the semantics ABEσ1,σ2 satisfies the property α .

Removing attacks

As a last possible modification of extension-based semantics with ranking based-semantics we will
look at a more drastic modification, where we put more emphasis on the ranking-based semantics.
The idea here is to give strong priority to strong arguments with respect to the ranking-based
semantics, by not considering attacks from weaker arguments to stronger ones. So we will use the
preference-based argumentation framework of Amgoud and Cayrol (2002a), by considering the
ranking obtained by the ranking-based semantics as the preference relation between arguments.
Amgoud and Cayrol (2002a) redefine the attack relation in saying that an argument x defeats an
argument y if and only if there exists an attack from x to y and y is not preferred to x with respect to
the preference relation.

Definition 2.39 [Ranking-based argumentation framework]
Let AF= ⟨A,R⟩ be an argumentation framework and σ be a ranking-based semantics. An AFσ

is a triplet ⟨A′,R′,⪰σ
AF⟩ where:

• A′ =A
• R′ = {(a,b) | (a,b) ∈R and a ⪰σ

AF b}
• ⪰σ

AF is the ranking on A returned by the ranking-based semantics σ from AF

The acceptability of the arguments is then defined in the standard way from this new argumentation
framework.

Example 2.16 Let us focus on the argumentation framework depicted in Figure 2.11 on page 51
and on the categorizer-based ranking semantics. Following the definition, we must remove
the attacks (c,b) (because b ≻Cat

AF c), (d,c) (because c ≻Cat
AF d), (e,c) (because c ≻Cat

AF e) and ( f ,g)
(because g ≻Cat

AF f ). Thus, we obtain the following AFCat and its extensions:
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a

b

c

d

e g

f

Egr(⟨A,R⟩Cat) = {b,c, f}
Epr(⟨A,R⟩Cat) = {{b,c,e, f},{b,c,d, f}}
Est(⟨A,R⟩Cat) = {{b,c,e, f},{b,c,d, f}}
Eco(⟨A,R⟩Cat) = {{b,c, f},{b,c,e, f},{b,c,d, f}} ■

One can remark that the computed extensions are not necessarily conflict-free with respect to the
original AF due to the removal of some attacks. That is perfectly natural since we consider that
these attacks are not legitimate ones, so conflict-freeness has to be considered with respect to the
defeat relation, not the attack one.
But, in the case where one wants a conflict-free result with respect to the original argumentation
framework, we propose now a method to “rationalize” these extensions by extracting conflict-free
subsets. For this purpose, for a given set of (potentially not conflict-free) arguments, we select the
subsets of arguments (maximal w.r.t. ⊆) which are conflict-free and which respect the constraint
saying that when a conflict exists between two arguments, the most acceptable argument (w.r.t. the
ranking-based semantics used to define AFσ ) is selected.

2.7 Similarity between Arguments
Another question of interest concerning semantics in argumentation theory concerns the notion of
similarity between arguments. Similarity is related to commonality, in that the more commonality
two arguments share, the more similar they are. Similar arguments appear frequently either in
texts or debates. While the importance of detecting similar arguments (paraphrases, or rephrased
arguments) has been identified as an important challenge in argument mining (Konat et al., 2016;
Stein, 2016), this relation is always taken in a strong sense (“two text units are in the relation of
rephrase when substitution of one unit for another preserves the argument structure” (Konat et al.,
2016)). When such a relation exists, rephrased arguments can simply be considered as a single
argument for the evaluation phase. The same holds for the equivalence of arguments studied in
(Amgoud et al., 2014; Wooldridge et al., 2006).
There is however to the best of our knowledge no work investigating more generally the impact of
partially similar arguments at the level of their global evaluation. Consider the example of Figure
2.12 on the following page, extracted from a debate held on the arguman platform.15

Arguments a and c are similar (in short, they take a probabilistic frequentist scheme). However,
both also add subtle elements: c mentions that the number of people currently alive is negligible
wrt. the number of people who died in history. On the other hand, argument a mentions (“until
dramatic medical discoveries [...] are made...”). That is, while they certainly share some elements
and should not be simply considered as two arguments, it would also be too simplistic to merely
regard them as a single argument resulting from the merging of these individual arguments. One
obvious problem with this solution would be that a counter-attack against a sub-part of the argument
would transfer to the whole argument. In our example, d attacks the statement made more precise
in c that the probability becomes negligible, but it would not attack the statement of a (“we should
not expect...”).
Our research question is thus: Can we design gradual semantics taking into account the degree of
similarity among arguments?

15http://en.arguman.org/
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Not all people have died,
so we cannot discount the
possibility of immortality

The probability of death
(of the persons who are

currently living) is not
influenced by the amount
of people who have died
so far. As it stands, there

are biological reasons why
humans have a finite life
span. As long as these

things are yet to be
circumvented, man is

mortal.

0% of people have lived
to 150 years of age. So we
should not expect to live
to 150 years of age unless

dramatic medical
discoveries about

anti-aging are made.

Given that every person in
history has eventually died
and only a much smaller
amount is currently alive,
I’d say that the possibility

of immortality grows
smaller and smaller, with
nothing to indicate that

this is possible

Possibility approaching
zero still doesn’t equal

zero and thus the
possibility exits.

b (+) 1 vote

a (+) 2 votes
c

d

Figure 2.12: Excerpt of an Argüman debate.

First and foremost, it is important to stress that our perspective is normative. Surely, we do not
deny that repeating the same argument, again and again, can be, in some contexts, an efficient
strategy in a debate. However, ideally, this should not be the case. For instance, in the context of
online debates, the objective of the owner of the platform may precisely be to choose an evaluation
method resistant to some sockpuppet behavior (Kumar et al., 2017) consisting in repeating similar
arguments under false alternative identities.
The basic idea of our approach is thus that the overall strengths of an argument’s attackers should
not be fully considered if the attackers are similar. Similarity is usually simply defined among pairs
of entities. In the context of argumentation though, we shall defend the view that it sometimes
makes sense to consider more generally the similarity between an individual argument and a full
set of other arguments. This does not rule out the use of classical pairwise measures, and indeed
some of our methods simply require an input pairwise similarity.

2.7.1 Weighted Argumentation Graph with Similarity
Similarity has been studied in many domains, like recognition, classification and clustering, where
it is necessary to compare two objects. For that purpose, numerous similarity measures were defined
(see (Lesot et al., 2009) for a survey). They are generally suited for objects of the same size and are
defined as functions assigning to any pair of objects a value in the unit interval [0,1]. The greater
the value, the more similar the objects. In the context of argumentation, it will sometimes be useful
to define the similarity of an argument with respect to a set of arguments.
Existing measures share two main properties: maximality capturing the idea that two identical
objects are fully similar, and symmetry meaning that similarity is symmetric in nature.16

Let us now introduce the class of argumentation graphs we are interested in. We focus here on
argumentation frameworks where each argument has a basic weight representing different issues.

16A formal definition of similarity measure is given in (Amgoud et al., 2018).
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We assume that similarities between individuals and subsets of arguments are given by a similarity
measure.

Definition 2.40 [Weighted argumentation graph with similarity]
A weighted argumentation framework with similarity is a tuple G= ⟨A,w,s,R⟩ where

• A⊆ f A ,

• w is a function from A to [0,1],

• s is a similarity measure on A,

• R⊆A×A.

Intuitively, w(a) represents the basic strength of argument a, and s(a,X) is the degree of similarity
between a and the set X of arguments.
Some semantics for weighted argumentation systems have been proposed in (Amgoud and Ben-
Naim, 2016; Amgoud et al., 2017a).

Definition 2.41 [Semantics for weighted argumentation frameworks]
A semantics is a function S assigning to any G= ⟨A,w,s,R⟩ a function DegS

G : A → [0,1].
DegS

G(a) represents the overall strength of a.

The overall strength of an argument should depend on its basic weight, the similarities between its
attackers, and the overall strengths of those attackers. It is also worth mentioning that fully similar
arguments do not necessarily get the same overall strength. This is mainly because these arguments
may have different basic strengths. For instance, if the basic strength of an argument represents
the importance degree of its source, then it may be the case that two equivalent arguments are
given by two sources, one of which is reliable and the other not. Similarly, in the context of online
debate where weights may represent the votes that users have expressed, it may be the case that one
argument has attracted many more votes than another (similar) one. This is illustrated in Figure 2.12
on the preceding page where a received two votes, while the similar argument c did not receive any.

2.7.2 Rationality Principles
The principles introduced in Section 2.2.1 on page 13 are based on the strong implicit assumption
that arguments in a graph are not fully similar. While they can assume that fully redundant
arguments are removed from argumentation graphs, they do not account for partially similar ones.
Moreover, they are conceived for flat argumentation system, that is argumentation frameworks
without weights.
Thus, we take inspiration from the list of principles of Amgoud et al. (2017a), and redefine two of
them by considering similarities between attackers (reinforcement and counting). The definitions
of all the others do not change since similarity is not involved in them.
Recall that Independence states that the evaluation of an argument should be independent of any
argument that is not related to it by a path.

Property 23 — Directionality. The fact that an argument attacks other arguments should not affect
its own evaluation.

Property 24 — Maximality. Non-attacked arguments receive their basic strengths.

Property 25 — Monotony. The overall strength of an argument cannot be improved by an attack.

Property 26 — Proportionality. The greater the basic strength of an argument, the more resilient
the argument to attacks.

When the principles of monotony and proportionality are satisfied, it follows that two similar
arguments are equally strong if and only if they have the same basic weights. This holds when the
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attack relation satisfies the natural property stating that similar arguments receive the same attacks.
Let us now switch to the two principles that are affected by similarity. Reinforcement states that
increasing the quality of an attacker leads to a decrease in the overall strength of its target.

Property 27 — S-Reinforcement. Increasing the quality of an attacker leads to a decrease in the
overall strength of its target when the improved attacker is not impeded by similarities with the
other attackers of its target.

Counting states that each attacker with a strictly positive overall strength should have an impact on
its target. This principle gives birth to two separate principles:

Property 28 — S-Counting. Each attacker with a strictly positive overall strength should have an
impact on its target if it brings some novelty to the attackers which are at least as strong as it is.

Recall that similarity can lead to ignoring attackers or considering parts of their strengths. The
question of which argument to be sacrificed raises then naturally. Thus, the weakest arguments are
disadvantaged. If for instance, two attackers a and b are fully similar but a is stronger than b, the
semantics ignores b and fully considers a.

Property 29 — Redundancy Freeness. If an attacker of an argument does not bring any novelty
with respect to the other (stronger) attackers of the argument, then it should be discarded.

The last principle, called Sensitivity to Similarity, is new and has no counterparts in Amgoud et al.
(2017a).

Property 30 — Sensitivity to Similarity. The more similar the attackers of an argument, the stronger
the argument.

These four principles are compatible, that is, there exists at least one semantics satisfying all of
them. They are also compatible with all the cited ones.

2.7.3 Extending Weighted h-Categorizer Semantics
In (Amgoud et al., 2017a), the semantics that deals with weighted argumentation graphs were
analyzed. The results show that there are essentially two categories of semantics: the first one
considers only one attacker (the strongest one) among all the attackers of an argument. Examples
of such semantics are extension-based ones (Dung, 1995), Trust-based semantics (da Costa Pereira
et al., 2011), Iterative schema (Gabbay and Rodrigues, 2015) and Top-based semantics (Mbs)
(Amgoud et al., 2017a). The second category of semantics takes into account all the attackers of an
argument. There are also several such semantics in the literature: weighted h-Categorizer (Hbs) and
cardinality-based (Cbs) proposed both in (Amgoud et al., 2017a), (DF-)QuAD proposed in (Baroni
et al., 2015; Rago et al., 2016), as well as the propagation-based semantics.
Similarity comes into play when all attackers may be taken into account. Thus, only the second
category of semantics is concerned with the problem of not dealing with similarities. In what
follows, we extend Hbs for accounting for similarities between attackers. Please note that Cbs can
be extended exactly in the same way.
The weighted h-categorizer semantics (Hbs) takes as input a weighted argumentation system and
assigns for each argument an overall strength, which depends on the basis weight of the argument
and the sum of the overall strengths of its attackers.

Definition 2.42 [Weighted h-categorizer semantics (Hbs)]
Let WF= ⟨A,w,R⟩ be a weighted argumentation system, and a ∈ A.

DegHbsWF (a) =
w(a)

1+ ∑
b∈R−(a)

DegHbsWF (b)
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A generalization of some of the semantics (including the weighted h-categorizer semantics), called
the “local approach”, has been proposed by Cayrol and Lagasquie-Schiex (2005). Indeed, the value
of an argument is obtained by combining two functions: one to aggregate the score of its direct
attackers (Hbs uses the sum for example) and one attenuation function to apply the “negative” effect
of its direct attackers (Hbs uses the reciprocal function for example). Our goal is to modify the
function allowing to aggregate the score of the direct attackers in order to take into account the
similarities which could exist between them.17

The readjustment method (Readjustment weighted h-categorizer (RHbs)). The first possibil-
ity consists in aggregating the overall score of the direct attackers, to find the “real” score of
each direct attacker of an argument by taking into account the pairwise similarities that could
exist with the other direct attackers.

The grouping by thresholds method (Grouping weighted h-categorizer (GHbs)). The second method
allows to directly compute the score resulting from the aggregation of all the direct attackers
of an argument. The rationale of the method is to do so by considering iteratively the different
relevant thresholds of similarity, and by examining which sets of arguments can be assessed
as sufficiently similar, in the sense that any pairwise similarity among arguments of the set
is above the required threshold. Thus, it constitutes a sort of intermediate step between
approaches based on pairwise similarities and approaches based on setwise similarities.

Method based on setwise similarity (Extended weighted h-categorizer (EHbs)). The basic idea
of this last method is the following: instead of considering the whole overall strength of each
attacker, we only consider a part that is proportional to the novelty of the argument with
respect to stronger attackers. For instance, when two fully similar arguments have different
overall strengths, we keep the whole value of the strongest argument and discard the value of
the weakest one. The attackers should thus be rank-ordered from the strongest to the weakest
ones.

Let us now check which principles, among the four principles introduced in this paper, are satisfied
by these semantics:

Theorem 2.1

• The semantics RHbs and GHbs satisfy the properties S-Reinforcement and Sensitivity to
Similarity. The properties S-Counting and Redundancy Freeness are not satisfied.

• The semantics EHbs satisfies the properties S-Reinforcement, Sensitivity to Similarity,
S-Counting and Redundancy Freeness.

The reasons behind the fact that S-Counting and Redundancy Freeness are not satisfied by RHbs

and GHbs are directly linked with the discussion on the Monotony principle. Indeed, RHbs and
GHbs do not satisfy Monotony, consequently, adding a new attacker to an argument does not always
harm this argument.
The semantics GHbs, RHbs and EHbs extend Hbs by similarities. When the arguments are all
distinct (i.e., similarities are 0), the four semantics assign the same values to all arguments.

Theorem 2.2 For any G= ⟨A,w,s,R⟩, if for any a ∈ A, for any X ⊆A\{a}, s(a,X) = 0, then

DegGHbsG ≡ DegRHbsG ≡ DegEHbsG ≡ DegHbsG′

17See (Amgoud et al., 2018) for details.
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where G′ = ⟨A,w,R⟩.

The four semantics coincide also on the class of argumentation frameworks where each argument is
attacked by at most one attacker. Indeed, our semantics only consider the similarity between the
direct attackers of an argument. So if this argument has no direct attacker then its score is equal to
its basic weight. And if this argument has only one direct attacker then we only consider the overall
strength of this attacker without any modification.

Theorem 2.3 For any G= ⟨A,w,s,R⟩, if for any a ∈ A, |R−
G(a)| ≤ 1, then

DegGHbsG ≡ DegRHbsG ≡ DegEHbsG ≡ DegHbsG′

where G′ = ⟨A,w,R⟩.



3. Interaction and Argumentation

Argumentation can be used by a single agent to reason about his beliefs, goals and possible actions.
But, an even more complex and interesting form of argumentation is when arguments are coming
from several different agents. In this context, we face a multi-agent setting where agents hold
different (and possibly conflicting) views of the world. We assume that each agent is modeled as an
argumentation system and that they want to achieve a common decision, either by aggregating their
points of view or by debating, negotiating, and trying to convince others.

In this chapter, we are first interested in studying protocols for persuasion in such multi-agent
systems, first in a context of ‘classical semantics’ a la Dung (Dung, 1995), where we will see how
we can characterize the minimal changes necessary to achieve an argumentative goal in the debate.
Then, we will turn our attention to the dynamical aspect of gradual semantics, and study the impact
of such semantics on the debates and the agents’ opinions. Then, we will focus on argumentative
negotiation, and look at a protocol allowing agents to take into account a partial knowledge of their
opponents. Finally, we will study how the diversity of views observed in such multi-agent systems
is consistent with the assumption that every individual argumentation framework is induced by a
combination of, first, some basic factual attack relation between the arguments and, second, the
personal preferences of the agent concerned regarding the moral or social values the arguments
under scrutiny relate to.

Note that part of this work has been done by Dionysios Kontarinis (Kontarinis, 2014) during his
PhD thesis, co-supervised with Nicolas Maudet and Pavlos Moraitis.

3.1 Protocols for persuasion

Protocols for persuasion (Prakken, 2006) regulate the exchange of arguments to arbitrate among
conflicting viewpoints. When the ambition is to regulate some interaction between different agents,
it is often desirable that the outcome of the dialogue is not entirely predetermined from the initial
situation (Loui, 2002; Parsons et al., 2003). This means that agents have a chance to influence the
outcome of the game depending on how they play. Different properties of such protocols have been
studied with the help of game-theoretical concepts (see (Rahwan and Larson, 2009) for a survey).

We are interested in the case of multiparty argumentation. In this context, a number (n > 2) of
agents exchange arguments on a common gameboard. Such dialogues give rise to new types of
questions: What types of protocols can coordinate multilateral dialogues? How can turn-taking
be defined in multilateral debates, and how does it affect the debate? How can a group’s power
be measured in a debate? How can a group of agents coordinate to maximize their chances of
winning? What should be the collective outcome?

We started this line of work by introducing a simple protocol in (Bonzon and Maudet, 2011).



62 Chapter 3. Interaction and Argumentation

3.1.1 A Relevance-based Protocol for Multiparty Persuasion
We consider a set N of n agents. We assume that each agent holds an argumentation system
AFi = ⟨A,Ri⟩, sharing the same set of arguments A, but with possible conflicting views on attack
relations between arguments, coming for instance from different underlying preferences. Suppose
we are in the presence of two mutually conflicting arguments, a and b. The agents may have different
opinions regarding the respective credibility of a given source, hence in one argument system the
attack would hold from a to b, while the symmetric relation would hold for the other agent. More
generally, the situation may occur as the result of agents being equipped with preference-based
(or value-based) argument systems (Amgoud and Cayrol, 2002b; Bench-Capon, 2002; Brewka,
2001) sharing the same arguments but diverging when it comes to the preferential value attached to
arguments.
We assume that agents are focused (Rahwan and Tohmé, 2010), that is, they concentrate their
attention on a specific (same for all) argument. This argument is referred to as the issue d of the
debate (Prakken, 2006). Unsurprisingly, agents want to see the acceptability status (under the
grounded semantics) of the issue coincide in the debate and in their individual systems. Thus
we can see the debate as opposing two groups of agents: CON = {ai ∈ N|d ̸∈ Egr(AFi)} and
PRO= {ai ∈ N|d ∈ Egr(AFi)}. If X = PRO (resp. CON), we have X = CON (resp. PRO).

Merged Argumentation System

What should be the collective view in that case? To tackle this problem, we rely on the notion of a
merged argumentation system (Coste-Marquis et al., 2007). In the specific case we discuss here,
it turns out that a meaningful way to merge is to take the majority argumentation system where
attacks supported by a majority of agents are kept (this corresponds to minimizing the sum of the
edit distances between the AFi and the merged system (see Coste-Marquis et al., 2007, Prop. 41)).
Assuming, on top of that, that ties are broken in favor of the absence of an attack allows to ensure
the existence of a single such merged argumentation system, that we denote MASN .

Definition 3.1 [Majority argumentation system]
Let N be a set of agents and ⟨AF1 . . .AFn⟩ be the collection of their argumentation systems. The
majority argumentation system is MASN = ⟨A,M⟩ where M⊆A×A and (x,y) ∈M when
|{i ∈ N|(x,y) ∈Ri}|> |{i ∈ N|(x,y) ̸∈ Ri}|}.

The corresponding merged outcome is denoted by Egr(MASN).

A relevance-based protocol

Building upon (Prakken, 2006; Rahwan and Larson, 2008), we assume that agents’ moves should
immediately improve their satisfaction with respect to the current situation of the debate. However,
no central computation of the whole system takes place, and no coordination between agents is
assumed (even if they share the same view). The motivating applications we have in mind are
for example online platforms allowing users to asynchronously modify the content of a collective
debate.
As in those platforms, agents will exchange arguments via a common gameboard. The issue will
be assumed to be present on this gameboard when the debate begins. The “common” argument
system is, therefore, a weighted argumentation system (Dunne et al., 2009) where the weight is
simply a number equal in the difference between the number of agents who asserted a given attack
and the number of agents who opposed it. We denote by (x,y) ∈ Rα the fact that the attack has
a weight α . Let AGB be the set of all the arguments present on the gameboard. The collective
outcome is obtained by applying the semantics used on the argumentation system ⟨AGB,RGB⟩
where RGB ⊆ AGB×AGB and RGB = {(x,y) ∈ Rα |α > 0}. In words, we only retain attacks
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supported by a (strict) majority of agents who have expressed their view on this relation. Observe
that following our tie-breaking policy we require the number of agents supporting the relation to
strictly overweight the number of agents who oppose it (i.e in case of a tie, the relation does not
hold).

As said before, a move is acceptable if it immediately modifies the current status of the issue under
discussion. Another important feature is that the protocol allows only one argument to be advanced
at the same time. A permitted move is as follows: either a positive assertion of an attack (x,y) ∈R,
or the contradiction of an (already introduced) attack.
When a (relevant) move is played on the gameboard, the following update operation takes place:

1. after an assertion (x,y) ∈R,

• if (x,y) ∈Rα , then α := α +1
• if (x,y) ̸∈ Rα and x,y ∈ AGB, then the edge is created with α := 1
• otherwise (x is not present), then the node of the new argument is created and the edge

is created with α := 1

2. after a contradiction of (x,y) ∈R we have α := α −1

The reader may remark that the value of α is binary if agents obey this protocol.
All the ingredients are in place to describe the simple protocol which will regulate the multiparty
debate.

1. Agents report their individual views on the issue to the central authority, which then assigns
(privately) each agent to PRO or CON.

2. The first round starts with the issue on the gameboard and the turn given to CON.

3. Until a group of agents cannot move, we have:

a. agents independently propose moves to the central authority;
b. the central authority picks the first (or at random) relevant move from the group of

agents whose turn is active, updates the gameboard, and passes the turn to the other
group

When a group of agents cannot move, we say that the gameboard is stable and we refer to Egr(GB)
as the outcome of the debate.

Example 3.1 Let three agents with their argumentation systems and the following merged
argumentation framework:

a b c

a1 - Egr(AF1) = {a}

a b c

a2 - Egr(AF2) = {a,c}

a b c

a3 - Egr(AF3) = {a,b}

a b c

Egr(MAS) = {a,c}

The issue of the dialogue is the argument c. We have CON= {a1,a3}, PRO= {a2}.
A sequence of moves allowed by the protocol is the following:
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a1 plays for CON, adds (a,c) ∈RGB

a c

a2 plays for PRO, removes (a,c) ∈RGB

a c

a3 plays for CON, adds (b,c) ∈RGB

a b c

a2 plays for PRO, adds (a,b) ∈RGB

a b c

a3 plays for CON, removes (a,b) ∈RGB

a b c

a2 cannot add c in the extension
The game board is stable, we obtain Egr(GB) = {a,b}. ■

The first interesting thing to observe in this simple example is the fact that the status of an issue
in the merged argumentation system can contradict the opinion of the majority. This is discussed
in Coste-Marquis et al. (2007): if agents vote on extensions, the attack relations from which
extensions are characterized are not taken into consideration, and a lot of significant information is
not exploited.
Another important thing to note in this example is that PRO agents cannot ensure c in Egr(GB).
It is then impossible to guarantee convergence to the status of the issue obtained in the merged
argumentation system. This is because agent a1 has no interest to play the attack relation (a,b),
which appears in the MAS. As studied in a different context by Rahwan and Larson (2008), this can
be seen as a strategic manipulation by withholding an argument or an attack between arguments.
But is it even possible to reach the merged outcome in this case? We leave it to the reader to check
that this is not the case here.
This example shows that the characterization of the result obtained by debates following this
protocol is not as simple as one can believe at first glance.

Global arguments-control graph

To characterize the status of the issue obtained by our protocol we will need the notion of global
arguments-control graph (ACG). The idea here is to gather the attacks of all agents in the same
argumentation graph, and then determine which group, PRO or CON, has control over some path
of this graph, and thus a possible way to reach its preferred outcome. To do so, we first need to
define the notion of control over an attack relation:

Definition 3.2 [Control, playability]
Let N be a set of agents, ⟨AF1 . . .AFn⟩ be the collection of their argumentation systems, and
L=∪i∈1...nRi be the union of their attack relations. Let X ∈{CON,PRO}. Finally, let add(a,b)=
{ai ∈ N|(a,b)⊆Ri} be the set of agents being able to add the attack (a,b), and rem(a,b) = {ai ∈
N|(a,b) ̸⊆ Ri}. be the set of agents being able to remove the attack (a,b).

• X has the constructive control of (a,b) ∈ L, denoted by X+(a,b), iff |add(a,b)∩X | >
|rem(a,b)∩X |, that is if the number of agents in X who can add (a,b) is greater than the
number of agents in X who can remove it.

• X has the destructive control of (a,b) ∈ L, denoted by X−(a,b), iff |rem(a,b) ∩X | ≥
|add(a,b) ∩X |, that is if the number of agents in X who can remove (a,b) is greater or
equal than the number of agents in X who can add it.

We will say that (a,b) ∈ ∪1...nRi is playable by a X , denoted by X•(a,b), if and only if there is
an ai ∈ X such that (a,b) ∈Ri.

For the sake of readability, we will only specify the information about playability when it is relevant.
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Definition 3.3 [Global arguments-control graph]
Let N be a set of agents and ⟨AF1 . . .AFn⟩ be the collection of their argumentation systems. The
global arguments-control graph is ACGN = ⟨A,L⟩ is constructed as follow:

1. L= ∪i∈1...nRi

2. Label each (a,b) ∈ L by the information about control and playability for each group
X ∈ {PRO,CON}.

Example 3.2 Five agents have the following argumentation systems:

a b

c

d

agent 1

a b

c

d

agent 2

a b

c

d

agent 3
a b

c

d

agent 4

a b

c

d

agent 5

The issue of the dialogue is the argument c. We have CON= {a1,a2,a3}, PRO= {a4,a5}. The
global arguments-control graph is the following:

a b

c

dCON+,−
• , PRO• CON+

• , PRO+
•

CON+
• PRO+

• CON−
• , PRO−CON−

• , PRO−

We easily see that the issue c is a possible outcome for the agents in CON: CON can attack c
with b. Then, the only possible move for PRO is to attack b with a. However, CON can remove
this attack, and PRO has no other move.
But c is also a possible outcome for PRO: CON can start by the attack (d,c), which is playable
by a1. Then, a5 will defend with (b,d), and a1 counter-attack with (a,d). If the next move of
PRO is to remove (d,c), then CON has no other move left: it cannot add the attack (b,c), as it
is defended by a; and it cannot remove the edge (a,b) as it does not drop c from the extension.

■

This example shows that our protocol leaves some degree of freedom to agents (strategy may make
a difference) and that the issue of the debate is not predetermined from the initial situation.
The possibility for both teams to win the debate comes from the fact that the attack (a,b) is a
switch.

Definition 3.4 [Switch]
An edge (x,y) on a path P is a switch for the issue d if

1. it is a defense for d on P

2. it is playable by CON

3. there exists an even-length path from y to d such that all the attack edges are playable by
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CON and all the defense edges are playable by PRO. So it is also a potential attack for d
via a different path.

Essentially, what this definition says is that there is a possibility that this edge (x,y) may be played
as an attack by CON.

Is it useful to allow reinforcement?

A natural extension is to consider that a move may also be relevant as long as it reinforces (or
symmetrically weakens) an edge which, if deleted and all other things being equal, would change
the status of the issue. Essentially, besides the relevant moves as defined in the previous section,
this would allow agents to augment the weight of an existing attack, and we refer to this as a
reinforcement move. Symmetrically, agents may weaken an attack even if hey don’t directly delete
it, and we refer to this as a weakening move. This extended protocol would allow any number of
such relevant moves during a group’s turn, but (as before) would only switch to the other side after
a change in the current status of the issue. However, the following example tells us that it is not
beneficial for an agent to play reinforcement moves. Worse, and rather counter-intuitively, it can be
damaging for agents to do so.

Example 3.3 Let 6 agents with the following argumentation systems.

ab

ec

d f

agent a1

ab

ec

d f

agent a2

ab

ec

d f

agent a3 +a4

ab

ec

d f

agent a5

ab

ec

d f

agent a6

The issue of the debate is a. There are four agents PRO and two agents CON. The key to the
analysis is to see that PRO agents initially hold constructive and destructive control on (c,b).
Now compare the following sequences of moves. In the first one, a5 plays (b,a). Then a1 plays
(c,b) and a2 reinforces this move. At this point, PRO loses its destructive control on (c,b).
Assume a CON agent plays (d,c). a1 can remove (b,a). Then a5 can play (e,a), a3 can defend
with (b,e). Now, with a CON agent playing ( f ,d), the debate is doomed with the issue out.
In the alternative case where no reinforcement is played, we are in the case discussed in the first
protocol: PRO can remove the attack (c,b), and win the debate. ■

This result tells us that in the absence of coordination, agents are better off employing directly
relevant moves, hence adopting a “wait and see” approach. Still, using reinforcement moves may
prove useful in practice, in contexts where the debate is limited: for instance, agents may be
impressed by seemingly large majorities and avoid these issues to concentrate on some other ones.

This protocol, despite its simplicity, raises several interesting questions: What strategies can be
followed by the agents? If several outcomes are possible depending on how agents play, how can
we decide whether the outcome of the dialogue can be accepted by all the participants in the debate?
We will first look at the former question, wondering how agents can select the “best” move to play.
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3.1.2 Target sets
We are interested here in the study of the dynamics of argumentative debates: it is not clear how
agent strategies could change the outcome of debates. In the previous section, we introduced a very
simple dynamic, based on a direct notion of relevance inspired by (Prakken, 2005). We have shown
in particular that in the absence of coordination and with myopic behavior, agents can play against
their own interests. This justifies the fact that some “guidance” might be useful to agents, without
assuming any sort of explicit coordination among agents. We thus turn our interest to the notion of
target sets, that has been proposed in (Boella et al., 2011).
Roughly speaking, a target set specifies the minimal change necessary to achieve an argumentative
goal in the debate. The intuition is that agents should be better off following their target set
recommendations.

Basic definitions of target sets

A target set is a minimal set of actions on an argumentation system allowing to achieve a given
argumentative goal.

Definition 3.5 [Action on a gameboard]
Let GB= ⟨AGB,RGB⟩ be the gameboard at a given time. An action on GB is a tuple ((x,y),s)
with (x,y) ∈ AGB×AGB and s ∈ {+,−}, which stands respectively for adding or removing an
attack on the GB.
The resulting GB after playing a set of actions m, is denoted as ∆(GB,m) = ⟨AGB,Rm

GB⟩.

In what follows, we will say that an argument a ∈ A is credulously accepted (resp. skeptically
accepted) w.r.t. system AF under semantics σ , denoted σ∃(a,AF) (resp. σ∀(a,AF)), if and only if
a belongs to at least one (resp. to every) extension of AF under the σ semantics.1 We will denote
by σ ∈ {ad,co, pr} the set of ad(missible), co(mplete) and pr(eferred) semantics. Moreover, as
stated in (Dung, 1995), an argument a ∈ A belongs to the grounded extension if and only if it
is skeptically accepted under the complete semantics. We will then denote in the following the
grounded extension by co∀(a,AF).
Let us now describe the types of goals that we focus on. We focus on the acceptance of a single
argument d ∈ A called the issue, and we consider these two types of goals:

Definition 3.6 [Goals]
Let X ∈ {∃,∀}. A positive goal g = σX(d) is satisfied in GB if and only if σX(d,GB) holds. A
negative goal g = ¬σX(d) is satisfied in GB if and only if σX(d,GB) does not hold.
A goal will denote either a positive or a negative goal.

If a specific (positive or negative) goal is not satisfied in GB, then we search for possible actions m
on GB leading to a modified system ∆(GB,m) in which that goal is satisfied.

Definition 3.7 [Successful set of actions, Target set]
m is a successful set of actions for goal g if and only if g is satisfied in ∆(GB,m). We denote
by M(GB) the set of all successful sets of actions.
m is a target set for goal g if and only if m is a ⊆-minimal set of actions from M(GB). We
denote by T(GB) the set of all target sets.

We now provide some properties of successful actions and target sets.

1Thus, σ∃(a,AF) if and only if a ∈ caσ (AF), and σ∀(a,AF) if and only if a ∈ saσ (AF) (see Section 2.1 on page 9).
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Proposition 3.1 It holds that

Mco
∀ ⊆Mpr

∀ ⊆Mσ

∃ and Mσ

¬∃ ⊆M
pr
¬∀ ⊆M

co
¬∀

Proposition 3.2
If m is a set of actions such that m ∈Tco

∀ and m ∈Tσ

∃ , then m ∈Tpr
∀ (1)

Moreover, if m is a set of actions such that m ∈Tσ

¬∃ and m ∈Tco
¬∀, then m ∈Tpr

¬∀ (2)

Figure 3.1 graphically represents the links between the set of successful sets of actions and the
target sets for the positive and the negative goals.
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¬∀
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Figure 3.1: On the left: The sets of successful sets of actions and target sets for the positive goals.
On the right: The sets of successful sets of actions and target sets for the negative goals.

Having highlighted some properties of the successful set of actions and of the target sets, we can
now define a rewriting procedure that computes target sets.

Computing Target Sets

To compute all the target sets for some types of goals, we have provided a set of rewriting rules
using the Maude2 system (Clavel et al., 1999), which is based on rewriting logic.
Maude is both a declarative programming language and a system. A program in Maude is a logical
theory, and a computation made by that program is a logical deduction using the axioms of the
theory.
Our Maude program3 is given as input a term which describes an argumentation system and
contains either PRO(d) or CON(d), with d ∈ A. If we want to ensure the (positive) goal of
accepting argument d under some semantics, we start with PRO(d). Otherwise, if we want to
ensure the (negative) goal of rejecting d, we start with CON(d). Maude starts from these atoms and,
based on a set of rewriting rules and equations, rewrites the initial term, thus producing new terms,
which are, in turn, rewritten. The system stops when all the computed terms are non-rewritable.
Every term of the output corresponds to an action on the initial system. Their connection with the
status of d is detailed in the following proposition.

2http://maude.cs.uiuc.edu
3An interested reader can find this Maude program in (Kontarinis et al., 2013).
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Proposition 3.3 The following table illustrates for which goals the rewriting procedure is correct
for successful actions and/or complete for target sets.

Goal Correctness for successful actions Completeness for target sets
σ∃(d) Yes Yes
pr∀(d) No No
co∀(d) No Yes
¬σ∃(d) No No
¬pr∀(d) No ?
¬co∀(d) Yes Yes

Note that the completeness regarding the goal ¬pr∀(d) is left open so far. However, for the sake of
readability, we draw Figure 3.1 assuming that the answer is “Yes”.

Strategies and Target Sets

Then, we experimentally investigated how well strategies based on target sets behave. We studied
several dynamics, of increasing complexity, where the notion of target set is thoroughly exploited.
Our experimental results show in particular that the use of these sophisticated strategies provides
an advantage to the side using it and that it shortens the length of debates.
To study different strategies, we defined a specific protocol. As in the protocol defined in Sec-
tion 3.1.1 on page 62, the agents focus on the status (under the grounded semantics) of a single
argument d ∈A, which is the issue of the debate. As the goal of an agent i ∈ N is to have the issue’s
status be the same, on the GB and in her private system, at the end of the debate, we can once again
distinguish two groups of agents: the agents of the group PRO (resp. CON) who have (resp. do not
have) the issue in the grounded extension of their systems.
However, unlike the previously mentioned protocol, agents can vote for or against an attack (and
not just add or remove it). Then, the verdict of an attack is True if the attack is present on the
gameboard (the number of votes of the attack is strictly greater than the number of votes against it),
False otherwise. To ensure the termination of our protocol, we assume that an agent cannot vote
on the same attack twice.
The protocol is defined by the following:

• Participants: A finite set of agents N, each one being either PRO or CON, according to her
opinion on the issue’s status.

• Turntaking: Round-robin. The token is given to each agent, in turn, and comes back to the
first agent once all agents have played.

• Permitted moves: Agent i at timestep t can either:

– Vote for an attack, denoted ⟨(a,b),+, i⟩
– Vote against an attack, denoted ⟨(a,b),−, i⟩
– Play a pass move (giving the token to the next agent).

• Stopping condition: |N| pass moves have been played in a row.

• Winning condition: Once the debate has stopped, all PRO (resp. CON) agents win if
and only if the issue belongs (resp. does not belong) to the grounded extension of the
argumentation system of GB.

When having the token, an agent can vote on any of the attacks under discussion, but which one
should he choose? In general, a strategy states, for each agent, what move should be uttered next
in the course of the debate. When a strategy returns a single move, we say it is deterministic.
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Depending on the information required to take this decision, we can distinguish different kinds of
strategies:

• (k)-history-based strategies: the strategy selects moves based on the last k moves uttered in
the debate, noted h(k)-strategies. For instance:

“If someone just attacked argument a, I will try to defend it.”

• (k)-state-based strategies: the strategy selects moves based on the last k states of the game-
board, noted s(k)-strategies. For instance:

“If a ∈ Egr(GB), then I will utter the attack (d,a).”

We say that a strategy s has a richer information basis than a strategy s′ (noted s▷ s′) when it uses
more information to select the next moves.
In what follows, we study a natural class of s(1)-strategies, as we define strategies based on the
computation of the target sets of the last GB. We also assume that all agents from one side (PRO or
CON) use the same strategy. This facilitates the analysis but constitutes of course a simplification.
Moreover, we assume that the agents cannot disclose their private argumentation systems. Thus,
agents do not have any knowledge of the other agents’ private systems.
As said before, the analysis of target sets and their properties leads us naturally to think that agents
would profit from focusing on attacks on target sets, as it is the fastest and most economical way to
achieve a goal.

Dominance. One may wonder whether “playing within target sets” is a dominant strategy, that
is, whether agents can never be better off playing a different strategy, whatever the strategy
of the other party is. Note first that “playing within target sets” does not constitute a single
strategy, but instead a class of strategies, in fact, a subclass of s(1)-strategies. So when say “a
dominant strategy”, we abuse language and mean any strategy belonging to this class. This
turns out to be a too-demanding notion because the strategy of the other player can be of any
kind, in particular, it may be such that moves played outside a target set will precisely be the
moves required to lead to a winning result.

Symmetric Equilibrum. We may then ask whether a weaker property can be guaranteed: is it
the case that, if the other agent follows a strategy consisting of playing within target sets,
then agents of the other side will not have the incentive to play differently, ie. whether this
constitutes a symmetric equilibrium. This is not the case either.4

All in all, playing in target sets looks intuitively like a good strategy, but it seems difficult to obtain
theoretical guarantees. This leads us to study it experimentally.
To do so, we define 5 strategies, from the simpler to the more complex, mainly focusing on target
sets. Strategy 0 is the exception, as it is a random strategy, which will allow us to assert that playing
in the target sets is useful. Note that when there are no available moves for an agent (we remind
that an agent cannot vote on the same attack twice), that agent obligatorily passes.

Strategy 0: This is a random strategy, where (1) if the agent is winning, then she plays pass. (2)
otherwise, she votes randomly on an attack on the gameboard.

Strategy 1: The idea of this strategy is to allow only agents who are not satisfied with the current
state of the gameboard to vote. Moreover, these agents can only vote if they can change the
status of the issue (and thus, if they can change the verdict of an attack belonging to a target
set of cardinality 1).5 More precisely: (1) if the agent is winning, then she plays pass. (2)

4Counter-examples for these two properties are given in (Kontarinis et al., 2014a).
5Note that this strategy is the one studied in Section 3.1.1 on page 62.
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otherwise, the agent can only vote on an attack if this vote allows changing the status of the
issue.

Strategy 2: This strategy improves the previous one by allowing agents to vote on a target set of
cardinality greater than 1: an agent can vote on an attack if she can change its verdict, but
this vote does not have to change the status of the issue. More precisely: (1) if the agent is
winning, then she plays pass. (2) otherwise, the agent can only vote on an attack if this attack
belongs to a target set, and if this vote allows to change the verdict on this attack.

Strategy 3: This strategy allows an agent to vote on an attack belonging to a target set, even if she
cannot change the verdict on this attack. More precisely: (1) if the agent is winning, then she
plays pass. (2) otherwise, the agent can vote on any attack belonging to a target set (towards
changing the verdict).

Strategy 4: This strategy improves the previous one by allowing a winning agent to play a move
that renders the goal of the other team more difficult to be reached. More precisely: (1) if the
agent is winning, then she can vote on an attack that belongs to a target set for the goal of the
other team and “reinforce” it.6 (2) otherwise, the agent can vote on any attack belonging to a
target set (towards changing the verdict).

An agent can compute a set of possible votes, using any of the above strategies. Then, he can
either randomly choose a vote among them, or use a more subtle heuristic. We have defined three
heuristics that can be used for filtering the initial set of possible votes.

Heuristics A the agent randomly chooses a possible vote.

Heuristics B the agent filters out all possible votes on non-minimal (wrt. cardinality) target sets 7.
Then, she randomly chooses a vote.

Heuristics C the agent filters out all possible votes on non-minimal (wrt. cardinality) target sets.
If she can change the verdict of an attack among the remaining ones, she filters out all the
attacks she cannot change. Then, she randomly chooses a vote.

Coupling a strategy with a heuristics gives us a specific strategy profile. As Strategy 0 does not use
target sets, it can not be coupled with any heuristics. Also, in Strategy 1 an agent can only vote on an
attack if it belongs to a target set of cardinality 1 and she can change its verdict, so it does not make
any sense to associate Strategy 1 with heuristics B or C. In the same way, in Strategy 2 an agent can
only vote on an attack if she can change its verdict, so it does not make sense to couple Strategy 2
with heuristics C. We thus have the following strategy profiles to consider (the number indicates
the strategy type and the capital letter the heuristics): SP = {0,1,2A,2B,3A,3B,3C,4A,4B,4C}.
We assume that the agents of the same group (PRO or CON) are using the same strategy profile
during a debate. This is done to draw more easily conclusions on how the strategy profiles fare
against each other. We can thus introduce the notion of debate profile. A debate profile is defined
as a couple (SPPRO,SPCON) with SPPRO,SPCON ∈ SP. It indicates that all agents in the PRO (resp.
CON) group are using the strategy profile SPPRO (resp. SPCON). Since there are 10 strategy profiles,
there exist 10×10 = 100 different debate profiles. In the following, we first examine Strategy 0,
and then we turn our attention to the 9 other strategy profiles which use target sets (thus on their
corresponding 9×9 = 81 debate profiles).
For the analysis of the results and the evaluation of the strategies and debate profiles, we considered
three criteria:

6And thus making it more difficult for the other team to change the verdict on this attack.
7For example, if an agent can vote on two attacks, the first being in a target set of cardinality 1, and the second in a

target set of cardinality 2, then he will filter out the second option.
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• Debate length: the average number of rounds in the debate.

• Happiness: the percentage of coincidence between the debate’s result and the majority result.
Its interest is better understood from the perspective of the debate’s central authority. For
example, if the central authority chooses a strategy profile for both PRO and CON (eg. the
same one), then it may wish to know which one would help the majority, and which one
would offer more chances to the minority.

• Rationality: the percentage of coincidence between the result of the debate and the merged
result.

We also want to find the “best” strategies, meaning the strategies that maximize a group’s chances
to win the debate.
We begin our analysis with the random strategy profile. As far as the maximization of a group’s
winning chances is concerned, the random strategy profile did not fare worse than the quite simple
strategy profiles 1 and 2X. The reason is that its drawback (the fact that agents playing random
attacks could harm their own group), was balanced by the drawback of profiles 1 and 2X, which
can “block” a group normally able to change an attack by casting two or more votes. The winning
percentage of a group increases if instead of the random profile an elaborated profile 3X and 4X is
used: the winning percentage always increased, up to 25% in some cases (although less in others).
A key disadvantage of the random profile is that, if a group uses it, then the number of rounds of the
debate explodes. In most cases, when one group adopted the random profile, the number of rounds
increased by a factor of 10 (eg. from 25 rounds to 250 rounds). Remember that in the profiles
focusing on target sets, if an agent has no move in a target set, she plays pass. This is not the case
in the random profile, where a group can play a lot of “dummy” moves before achieving its goal.
On the positive side, if a group uses the random strategy, then the percentage of agreement with the
merged outcome is quite high (in almost all the cases we tested that percentage was bigger than
90%). Naturally, the reason behind this, is that the group using the random profile will cast a lot
more votes during the debate, and as a result, the GB will resemble more to the merged system.
This was even clearer when both groups used the random profile when that percentage went up to
97.6%.
Concluding, the fact that the number of rounds increases dramatically when a group uses the
random strategy, as well as the fact that it fares worse (as far as winning the debate is concerned)
than strategies 3X and 4X, lead us to not include the random profile in the following tests, where
we just compare the 9 strategy profiles focusing on target sets.

We now turn our attention to the 9 strategy profiles focusing on target sets and their corresponding
81 debate profiles.
Each of the four graphics in Figure 3.1.2 on the facing page contains information on all debate
profiles focusing on target sets. The top left shows the percentage of PRO wins (for every profile),
the top right shows the average number of rounds of the debates, the bottom left shows the
percentage of agreement between the results of the debates and the merged results, and the bottom
right shows the percentage of agreement between the results of the debates and the majority results.
Let us first consider the criterion of debate length (top-right). The lowest number of rounds is found
when both agents use strategy 4. A small number of rounds is also obtained in profiles (1,4X),
(4X,1) (where X ∈ {A,B,C}) and (1,1). For the latter, the reason is that there are cases where a
group cannot vote on an attack because no single agent can change it (and thus the debate stops).
For profiles (4X,4Y) the reason debates are short is that agents are not forced to play (useless)
pass-moves, as they can reinforce attacks on the GB while they are winning. This is not possible
with profiles (3X,3Y) which gives the longest debates. Note that agents using the strategy profiles
4X have the incentive to give more information than with the other strategy profiles. That can be
seen as a disadvantage for agents who wish to hide information. A last remark on debate length: If
we concentrate only on rounds that do not contain pass moves (let us call them no-pass rounds),
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Figure 3.2: Top-Left: Percentage of wins by PRO. Top-Right: Number of rounds of the debates.
Bottom-Left: Percentage of agreement with the merged result. Bottom-Right: Percentage of
agreement with the majority result. PRO strategies are shown on the left side, and CON strategies
on the right side of every graphic.

then the results of strategy profiles 3X and 4X are inverted. Strategy profiles 4X lead to more
no-pass rounds, than profiles 3X (eg. (4C,4C) lead on average to 11.97 no-pass rounds, while
(3C,3C) lead on average to 10.36 no-pass rounds). We see that when profiles 3X are used, many
rounds involve pass moves, and this is the reason why profiles 3X have the biggest total number of
rounds.

Let us now focus on rationality (bottom-left). The most “rational” outcomes (closer to the results
of the merged system) are obtained when both groups use one of the strategies: 3A, 3B, 3C, 4A,
4B, 4C (the percentage of agreement being 0.88). The only cases where the results of the debates
are farther from the merged results are when a group uses strategy profile 4X and the other group
uses strategy profile 1 or 2X. So, we pull away from the merged result when a group uses the most
advanced strategy (4X), while the other a simple one (1 or 2X). The smallest agreement is 0.66, at
the profile (1,4X).

Similar results are obtained when we focus on happiness (bottom-right). Almost all profiles give a
similar value of agreement with the majority (about 0.85). However, when PRO uses strategies 1,
or 2X, and CON uses 4X, the debate’s result starts to move away from the majority’s opinion (its
minimum value is 0.7).
Regarding the strategy which is most likely to win a debate, the most elaborated strategies 3 and
4 provide a clear advantage. PRO’s best chance to win is when the profile (4X,1) is used (0.75
percentage of PRO winning). Similarly, CON’s best chance to win is in profile (1,4X) (0.38 of
PRO winning). In general, no matter what strategy a group is using, the other group increases
its winning percentage if it uses strategy 3 or 4, instead of the simpler 2 and 1 (1 being the worst
choice).

Finally, some remarks on the heuristics. Heuristics C which focuses on the smallest target sets, and
prefers moves able to add/remove an attack, was expected to lead to the quickest debates. This was
verified, although its results were not significantly better than the results of the simpler heuristics B
and A. For example, the debate profile (4C,4C) lead to 23.88 rounds on average, while the profile
(4A,4A) lead to 24.81. Also, the debate profile (3C,3C) leads to 35.29 rounds on average, while the
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profile (3A,3A) leads to 36.29. We conjecture that, when heuristics C is used instead of B or A, the
decrease in the number of rounds is small, because the randomly generated systems do not contain
many target sets, and these target sets do not have great differences in size. We expect that in the
case of master systems with target sets of considerably different sizes, heuristics C will lead to a
more significant decrease in the number of rounds, compared to heuristics B and A.
To conclude, a general observation is that the more sophisticated strategy profiles (3X and 4X)
are the best choices for the agents who want to win the debate. Their main difference lies in the
average number of rounds, and the amount of information disclosed during the debate. Surprisingly,
the simpler strategy profiles (1 and 2X) offer an interesting alternative, provided that the debate’s
central authority can ensure that both groups will use a simple strategy profile and that no group
will switch to using a sophisticated one. It is worth noting that, in the above experiments, the
probability that the winner is the same when either profile (1,1) or profile (3C,3C) is used, was
almost 95%. Finally, the use of heuristics C shortens the length of the debates, though more tests
are needed to evaluate its impact.

Playing outside Target Sets

As we have just seen, agents are better off following their target set recommendations. One
challenge though is that target sets may prescribe multiple changes, and in general it is impossible
to assume that agents have the opportunity to make all these changes. Thus, in this section, we will
analyze the evolution of target sets when it cannot be assumed that an agent can play all the actions
prescribed by a target set.8

We first turn our attention to what happens if we play actions that are not part of any target set for a
given goal. Intuitively, we will not perform in this case an action allowing to get closer to the given
goal. We will see that playing such an action could even lead us farther away from the goal, in the
sense that we will need to perform more actions to obtain this goal.
Let m be a set of actions on a gameboard GB such that m does not contain any action of any target set
of GB. After playing m, the goal remains unsatisfied in the resulting gameboard GB′ = ∆(GB,m),9

while the set of target sets changes and is denoted T(GB′).
The first property states that, for every new target set, there exists an old target set which is a subset
of it.

Proposition 3.4 If m is a set of actions on GB such that GB′ = ∆(GB,m), and no action of m
belongs in a target set of GB, then ∀t ′ ∈T(GB′) ∃t ∈T(GB) such that t ⊆ t ′.

The second property states that, for every new target set, there is no old target set which is a strict
superset of the new one. Thus, no target set “shrinks” when playing m.

Proposition 3.5 If m is a set of actions on GB such that GB′ = ∆(GB,m), and no action of m
belongs in a target set of GB, then ∀t ′ ∈T(GB) ̸ ∃t ∈T(GB) such that t ′ ⊂ t.

Moreover, for every old target set, there is at least one new target set which is a superset of the old
one. Thus, no target set “disappears” when playing m.

Proposition 3.6 If m is a set of actions on GB such that GB′ = ∆(GB,m), and no action of m
belongs in a target set of GB, then ∀t ∈T(GB) ∃t ′ ∈T(GB′) such that t ⊆ t ′.

Finally, the cardinality of the new set of target sets is greater or equal to the cardinality of the
previous set of target sets.

8This work was originally published in (Kontarinis et al., 2014b)
9Because if m was successful, then a subset of m would be a target set. Impossible since m contains no actions of any

target set
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Proposition 3.7 If m is a set of actions on GB such that GB′ = ∆(GB,m), and no action of m
belongs in a target set of GB, then |T(GB′)| ≥ |T(GB)|.

Thus, if a set of actions m which does not contain any action of any target set of T(GB) is played,
then according to Property 2, every new target set in T(GB′) will be bigger than some old target
set of T(GB). In that sense, it will become harder (or at least not easier) to satisfy the goal under
consideration, even if the cardinality of the set of target sets may grow.

The previous results indicate that playing outside of target sets for a goal is not a good idea. But
what happens if we play a set of actions m belonging to a target set? Let t ∈T(GB) and let m ⊂ t.
If we play m, then t \m will become a target set of the new gameboard ∆(GB,m). However, we are
uncertain about the other target sets of GB: some may shrink too, but others may remain unchanged,
or even grow. Moreover, the cardinality of T(GB) could decrease, remain unchanged or increase in
∆(GB,m).
Therefore, playing in a target set shrinks (at least) that target set, regardless of what happens to
the other target sets. In that sense, at least one “path” toward the satisfaction of the goal becomes
shorter, whereas this is not the case if we play outside target sets.

3.1.3 Expertise in Argumentative Debates
We now turn to another question, regarding how the agents who participate in a debate are likely to
accept the outcome of this debate.
Once a debate is over, participating agents may not be entirely satisfied with the procedure’s final
outcome. First, of course, they may not be satisfied with the outcome itself (Caminada and Pigozzi,
2011; Rahwan and Larson, 2008). In this section10 we concentrate on a different issue though,
namely, the fact that the obtained result may in some way be controversial. In particular, in our
context, this may result from two (distinct, but related) situations:

• argumentative controversy: when argumentation theory does not provide a clean-cut decision:
this is the case in particular when several (conflicting) acceptable outcomes are returned;

• voting controversy: when voting does not offer a clear majority to support the fact that an
attack should be taken into account (or not).

Our objective in this work is to set up a framework where these issues can be formally studied. Once
a debate is obtained, we discuss how the choice of an additional expert should be made to make
the result less controversial. We emphasize that our work is not dependent on a specific protocol.
For what matters, the resulting debate may be the outcome of a multilateral protocol like the one
proposed in Section 3.1.1 on page 62, or of a merging process (Cayrol and Lagasquie-Schiex, 2011;
Coste-Marquis et al., 2007). Instead, we study how the different types of expertise of agents should
be modeled, and how the additional expert may affect the current debate.
In order to define the expertise of agents over arguments or attacks, we need to attach to arguments
some keywords, specifying which topics this argument is about. It is common practice in such
systems (Toni and Torroni, 2011). In this work, we assume that the set of potential topics, denoted
T , is known and fixed a priori by the system. Attached to each argument is a set of topics that, in
principle, can be empty or contain as many topics as wished. From topics attached to arguments,
we deduce how topics are attached to potential attacks.

Definition 3.8 [Topics]
Let T be the set of topics. The set of topics of an argument a ∈ A is given by function
top(a)⊆ T .
The set of topics of a (potential) attack (a,b) ∈ R is given by the functiona top(a,b) =

10This work was originally published in (Kontarinis et al., 2012)
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top(a)⊎ top(b)⊆ T ⊎T .
a⊎ indicates the multiset union

For an attack, it is thus possible to distinguish three levels of “relevance” for topics: prominent
topics (attached to both arguments) denoted prom(a,b) ⊆ T , relevant topics (attached to one
argument) denoted rel(a,b)⊆ T , and irrelevant topics (not attached to either argument) denoted
irr(a,b)⊆ T .
When the agents express some opinion regarding an attack (in our context by voting, or initially
stating the attack), a weight will be attached to that vote. Note that weights are not assigned to
agents but to pairs agents-attacks depending on their expertise.

Definition 3.9 [Expertise of an agent]
The expertise of agent i is given by a function exp(i)⊆ T .

Experts express their opinions on attacks by casting positive or negative votes.

Definition 3.10 [Vote]
A vote is a tuple ⟨(a,b),s, i⟩ where (a,b) ∈R is the attack concerned by the vote, s ∈ {−1,+1}
is the polarity (sign) of the vote, and i is the voter.

The impact of the vote of an expert i for or against an attack depends on her expertise over the
topics of this attack. Intuitively, the opinion of an expert on the topics of an attack should have more
importance than the opinion of a non-expert on the same attack. However, this general principle
needs to be made much more precise. Some key assumptions need to be made explicit:

• Independence of expertise: should two experts in one topic each have the same impact as one
expert in both topics voting once?

• Compensation among topics: should we allow compensation among levels of topics? For
instance, should two votes on a relevant topic be as important as one vote on a prominent
one? Should irrelevant topics be considered in the first place?

Here, we make the following simple choices: we suppose that independence of expertise holds,
we allow compensation among topics (considering prominent topics to be twice as important as
relevant topics) and we disregard votes on irrelevant topics.
We thus propose the following definition of impact, which has two advantages. First, the more
topics of an attack an agent is expert in, the greater her impact is on the attack. Second, expertise in
prominent topics of an attack leads to a greater impact than expertise in its relevant topics.

Definition 3.11 [Impact]
Let i be an agent. The impact of i on (a,b)∈R is denoted impi(a,b) and defined by impi(a,b)=
2×|exp(i)∩ prom(a,b)|+ |exp(i)∩ rel(a,b)|. If impi(a,b) = 0 we say that i is a dummy voter
on (a,b).

Definition 3.12 The evaluation vector of (a,b) ∈R is denoted v(a,b) = ⟨w(a,b),mw(a,b)⟩,
where w(a,b) (called the weight of (a,b)) is the aggregated impact of all the experts who have
voted for or against (a,b), and mw(a,b) (called the max-weight of (a,b)) is the aggregated
impact of all the voters on (a,b), assuming they had all voted in favor of it.

Once the experts have expressed their points of view on a subset of attack relations, we obtain an
aggregated argumentation system with weighted attacks (WAS). To use acceptability semantics of
abstract argumentation (Dung, 1995), we need to define the notion of non-weighted counterpart AF
of a WAS. To do so, we simply chose to remove all attacks with non-positive weights.
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The procedure we propose then proceeds in three phases. The first phase consists of the aggregation
of the different opinions of the agents and allows to obtain an aggregated WAS. Recall that we
do not commit to any specific protocol here. Then comes an evaluation phase which allows to
determine how controversial the aggregated WAS is. If required, this second phase leads to a third
phase where we chose an expert to make the aggregated WAS less controversial.

Phase 1: Experts express their opinions

In this first phase, the agents place their arguments on the board and express their opinions by
voting on the attack relations.

Phase 2: Evaluation of the aggregated WAS

Once the agents have expressed their opinion, we obtain an aggregated WAS. The question is
then if this WAS is controversial, and to what extent. We want the WAS to be as uncontroversial
as possible, to avoid discussions and discontentment about the outcome of the procedure. These
disagreements could appear if the majority is not clearly defined, or if the final outcome can be
interpreted in several ways.
Several criteria can assess how controversial a WAS is. In the following, we focus on two such
criteria:

• Stability of attacks: an attack relation can be seen as stable if it is difficult to question it, more
specifically, if a single expert cannot change its sign.

• Persistence of arguments’ labels: an argument can be seen as persistent if its label (in, out
or undec, under a chosen semantics) does not depend on unstable (controversial) attacks,
that is if a single expert cannot change its label if she changes some signs of these attacks.

For the first criterion, we consider a natural qualitative scale and introduce three types of attacks.
The beyond any doubt attacks are the ones on which sufficiently many agents agree (or, as a
particular case, no agent has stated them). The strong attacks are defined as the attacks which are
not beyond any doubt, but such that a single expert cannot change the sign of their weights. Finally,
the weak attacks are neither beyond any doubt nor strong, thus they are the most controversial ones.
For the second criterion, we consider that a persistent argument is an argument whose label remains
unchanged, regardless of any changes in the weak attacks. Thus, a persistent argument is an
argument whose label cannot be changed by the vote of a single expert.
These two (related) notions allow us to determine to what extent the aggregated WAS is controversial.
The next phase of the procedure depends on the result of this analysis. If the debate is too
controversial at this point, it could be useful to know how to choose an expert to stabilize the
aggregated WAS.

Phase 3: Asking the opinion of an expert

The main difficulty at this phase is that the choice of an expert depends on her expertise, but the
decision-maker cannot know the expert’s opinion. So, we consider an expert i who has not taken
part in the discussion so far and ask for her opinion on the WAS. We assume that we know i’s
topics of expertise, but we do not know a priori her opinion on the attacks. We will not ask i’s
opinion on beyond-any-doubt attacks, as we are certain about them, but only on strong and weak
attacks a strong attack can become weak after the expert’s vote.
The main difficulty now lies in the comparison of the available experts, to choose the one who can
make the WAS as uncontroversial as possible. In particular, we observe that it may not be a good
heuristic to select the expert with the highest number of topics of expertise, because these topics
may not be the most relevant ones. More surprisingly, we also observe that it may not be appropriate
to always prefer an expert who declares a strict superset of topics over another expert, because
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the additional impact provided by the extra topics may jeopardize an attack that was considered
“strong” before.
It is important at this point to observe that a difficulty we face here is that, when comparing experts,
we do not compare two WAS, but two sets of possible WAS (those that can be obtained when
questioning the experts). This leads to various natural definitions of (strict, easily adapted to weak)
dominance:

• i necessarily dominates j if any WAS that can be reached by i is “better” than any WAS that
can be reached by j.

• i possibly dominates j if there exists a WAS that can be reached by i which is “better” than a
WAS that can be reached by j.

• i optimistically dominates j if the best WAS that can be reached by i is “better” than the best
WAS that can be reached by j.

• i pessimistically dominates j if the worst WAS that can be reached by i is “better” than the
worst WAS that can be reached by j.

Observe that while the necessary dominance guarantees that the WAS obtained will be better, the
optimistic and pessimistic dominance do not. However, they provide good reasons to prefer an
expert over another one. By “better” we essentially mean in the sense of Pareto.

3.2 Multi-agent Dynamics
We are now interested in the dynamical aspect of gradual (or scoring) semantics. Please recall that
scoring semantics assigns a numerical acceptability degree to each argument and that if one defines
a grading-based semantics, then this straightforwardly induces a corresponding ranking-based
semantics (see Section 2.2 on page 13). Interestingly, from their very inception, these semantics
have been promoted as more natural in contexts, such as online debates (Leite and Martins, 2011).
Many gradual semantics have been proposed recently, and their formal properties have been studied
(in particular, their axiomatics and their computational properties (Amgoud et al., 2017a)). Our
research question in this section is thus the following:11

If agents indeed reason and interact using some gradual semantics, together with some
protocol, how will debates and agents’ opinions evolve?

This is a very general question, and there are a number of assumptions that we wish to make explicit
upfront for the sake of clarity:

1. agent-system coherence: we assume that the agents’ opinions and the system evaluation of
the debate are based on the same argumentation semantics;

2. agreement on the argumentative structure: while agents may have different opinions because
they hold different sets of arguments, they agree on attack relations among those arguments;

3. independence of agents: each agent behaves independently of the others, we shall not consider
issues of coalitions, communication or influence directly among agents.

Of course, all these assumptions could be discussed. We believe though they constitute a natural
starting point for the study of such dynamics — and a sort of minimal relevance test for such
semantics in multi-agent settings.
While motivated by naturally occurring debates, our work is normative by nature. We do not claim
that agents do indeed use (a variant of) such semantics in practice. We instead study how a system
would evolve if agents were designed/enforced to follow such principles. Whether this corresponds
to what is observed in real online platforms for instance is an interesting but difficult question that
we leave for future work. What we are after instead are findings that could help to design a better

11This work has been originally published in (Dupuis de Tarlé et al., 2022)
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platform, and at least provide some partial validation of the relevance of using such semantics in
that context.

3.2.1 A multi-agent protocol using gradual semantics
As the protocols presented previously, we assume that a specific argument (the issue) plays the
role of the main question of the debate, and all arguments must be connected to this issue. We
assume that each debate will be characterized by a unique issue-oriented argumentation graph UG,
the universe graph, containing every argument relevant to the issue of the debate. Each agent is
equipped with a private argumentation graph, composed of a subset of nodes of UG, called her
opinion graph, and representing her own view of the world. Therefore, all agents agree on the
attack relations between the arguments they know of, and all the graphs share the same issue.
We assume that agents evaluate arguments using a grading semantics, namely the h-categorizer
semantics (Besnard and Hunter, 2001) in its weighted variant proposed by Amgoud et al. (2017a),
which is known to satisfy several desirable axioms.

Definition 3.13 [Weighted h-categorizer semantics]
The weighted h-categorizer is defined as:

Hbs(a) =
w(a)

1+∑b∈Att(a) Hbs(b)

When dealing with non-weighted graphs, we shall simply assume that the weights are 1 for all
the arguments. In this case, we retrieve the classical h-categorizer definition (see Section 2.4 on
page 24).
All agents play simultaneously, i.e., at each step all agents play a move. An agent’s move consists
in adding to the current public graph (or gameboard) an argument, and all the attacks between this
new argument and the ones already present in the public graph. Agents can only play arguments
that directly attack an argument already on the gameboard.
Intuitively, this corresponds to the behavior of agents seeing the state of the online debate and adding
a direct response to one of the published arguments. This is a mild constraint on the relevance of
the moves (Prakken, 2006), allowing to backtrack to any previously stated arguments, although not
to construct lines of argumentation which would require to state arguments not explicitly related to
the debate in the first place. Each agent can perform only one operation on the state of the game at
each step.

Dynamics and agents’ strategies

To properly define the rational behavior of the agents, we need to clarify how an agent evaluates
the current state of the debate, relative to her own private opinion. It would be too demanding to
assume that agents require the value of the debate to be exactly as their personal opinion. Instead,
we assume there is an interval around this value (the comfort zone) that makes them happy with
the current outcome of the debate. The size of the comfort zone allows to model to what extent an
agent is ready to compromise with her own value.
For every argument a of their own argumentation system, each agent can compute a hypothetical
value HP(a) which corresponds to the value of the issue of the gameboard when adding argument a
and all relevant attack relations. Using this hypothetical value, they can evaluate every argument
that they know of and determine which of them would (theoretically) improve their satisfaction.
Their possible strategies are then the following:

• if an agent k is not comfortable, she can play any argument present in her argumentation
graph, which directly attacks at least one argument of the gameboard and whose hypothetical
value is closer to her opinion than the current public graph value.
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• if an agent k is comfortable, she can play any argument present in her opinion graph, which
directly attacks at least one argument of the gameboard and whose hypothetical value is still
contained in her comfort zone.

Note the difference between both situations here: while an agent follows a simple better-response
approach when she is not comfortable, we assume when she is that she may continue to exchange
arguments as long as this does not make her uncomfortable.
In the end, to select which argument to play, the agents choose randomly among the possible
strategies. If the set of possible strategies is empty, the agent does not play. At the end of the turn,
every argument that was selected by an agent is added to the public graph, along with all relevant
attacks
The game stops when every agent’s strategy is to do nothing. As the number of arguments known
by the agents is finite, the game trivially always finishes.

Learning process

After a turn, every agent has the possibility of learning the arguments that were played by others
and are unknown to her. Learning an argument a means adding a to the set of arguments of the
argumentation graph of the agent, adding all the attack relations between a and the arguments of
her argumentation graph as they appear in the universe graph, and therefore updating the agent’s
opinion.
We chose to model the learning process to represent confirmation bias. Confirmation bias is a
cognitive bias that consists in manifesting a preference towards the information which confirms
preconceived ideas and grants less weight to the assumptions that challenge them (Poletiek, 2013).
At the end of each turn, the agents have access to the new argument’s impact on the public graph,
that is the difference in value induced by each argument added on the gameboard. The probability
for an agent to learn a new argument is related to the dissatisfaction12 brought by this argument.
Agents have a greater probability p f avor to learn arguments that favored their own opinion: those are
the arguments whose impact on the public graph was to bring its value closer to the agent’s opinion,
and thus the effect of these arguments on the public graph decreased the agent’s dissatisfaction.
Conversely, if the arguments’ impact on the public graph was to bring its value further away from
the agent’s opinion, and thus increased the agent’s dissatisfaction, the agent has a probability pagainst

to learn it, with pagainst ≤ p f avor to account for the confirmation bias.

Experimental results

We now enumerate several hypotheses that we intuitively expect from our protocol and proceed to
check that they are supported experimentally.13

While our setting is well-defined for argumentation graphs, most of the debates, as they can be seen
in real life or online debate platforms14 are in the form of trees, with the debated issue at the root.
We thus decided to study, especially issue oriented argumentation trees (that is, for every argument
of the graph, there is one and only one path toward the issue i) to present results specifically relevant
for debates.
We hypothesize that the following properties are verified by our protocol :

H1 - Outcome: For a given debate, if the learning probabilities increase, the outcome gets closer
to the merged value.

H2 - Flexibility: Increasing the size of the comfort zone increases the agent’s satisfaction.

12Intuitively, the dissatisfaction captures how well the outcome of the debate matches an agent’s personal views.
13All the material used for this work is available at https://github.com/LouiseDupuis/

ArgumentationProject.
14See e.g. Debategraph (debategraph.org/home)

https://github.com/LouiseDupuis/ArgumentationProject
https://github.com/LouiseDupuis/ArgumentationProject
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H3 - Open Mind: If the learning probability of an agent increases, she will be more satisfied at
the end of the debate.

H4 - Strength of the Group: When many agents share the same initial information, they have a
greater chance to be satisfied by the final result.

H5 - Power of Knowledge: Agents that know more arguments at the beginning of the game are
more satisfied at the end.

H6 - Convergence of Views: The highest the learning probabilities, the lower the distance between
the agent’s final values.

Two different metrics can be used to assess the satisfaction of agents at the end of a game: the
number of agents comfortable, and the average of their respective dissatisfaction.
In the special case of Hypothesis 4 (Strength of the Group), as we lacked a proper way to describe
the similarity of groups of distinct agents, we proceeded by creating a certain number of “clones”,
agents which start the game with the same opinion graph and studied the average dissatisfaction of
these clones with the variation of their number. We wanted to see whether big groups of clones had
a better chance to sway the debate in their favor.
In the case of Hypothesis 6 (Convergence of Views), we chose to evaluate ST D, the standard
deviation of the agent’s opinions at the end of the game, as a measure of the similarity of these
opinions.
To test the effect of the learning process, in the case of Hypotheses 1, 3 and 6, we randomly select a
learning probability p f avor and we fix pagainst = max(0, p f avor −0.1). PL designates the average of
these two probabilities.

Each game simulation starts with the generation of the universe graph UG. We generate random
issue-oriented argumentation trees using a Prüfer sequence. The profile of the game is built by
selecting for each agent a random integer S ∈ [2,A], the size of the agent’s opinion graph, and then
drawing S nodes from A and adding the edges corresponding to the relevant attacks.
For each hypothesis, we ran 1000 debates, with parameters |N|= 7 agents and |A|= 20 arguments,
and studied the correlation between two values of interest. We report the Pearson correlation
coefficient R, as well as the p-value of the correlation p (see e.g. (Navarro, 2018)). We consider that
0.50 < |R|< 1 corresponds to a high correlation, 0.30 < |R|< 0.49 to a moderate correlation and
|R|< 0.29 to a low correlation. We consider the null hypothesis (no correlation) to be successfully
rejected when p < 0.01.
In the following table, we denote ADclones the average dissatisfaction of the group of clones,
|Arg(DGk)| and dk respectively the number of arguments known at the beginning of the game by
agent k and her dissatisfaction at the end of the game. The correlation level is the following: dark
green = high, light green = moderate, and yellow = low.

Variable 1 Variable 2 R p value

H1 PL |VF −VM| -0,55029 2,44E-80
H2 cl NC 0,680451 4,1E-137
H3 PL AD -0,70346 2,1E-150
H4 Nb of Clones ADclones -0,28678 2,19E-20
H5 |Arg(DGk)| dk -0,40972 9,3E-38
H6 PL ST D -0,6683870 1,2764E-130

As many of the correlations we investigate are negative correlations, many of the R we obtain are
negative: for instance, we expect the average dissatisfaction of the agents to decrease when the
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learning probability increases. The signs of the correlation coefficient we obtain are all consistent
with our hypotheses.
In every experiment, the null hypothesis is rejected with a p-value that is much lower than the
threshold of 0.01. In the case of Hypotheses 1, 2, 3, 5 and 6 the correlation is high or moderate, and
we conclude that these hypotheses are verified experimentally. Figure 3.3 presents the evaluation of
the average dissatisfaction AD of the debates obtained when we vary PL the learning probability of
the agent. We observe a clear trend towards reduced agent dissatisfaction, however with a number
of outliers indicating that this is not an exact law.

Figure 3.3: H3 - Open Mind: Average dissatisfaction of the agents as a function of learning
probability.

In the case of Hypothesis 4, the effect of the presence of clones is not null but is not responsible for
a large variation in the satisfaction of agents. Qualitative assessment of individual debates leads us
to assume that this is because other factors play a larger role in the outcome of the debate, such as
the number of arguments known to the clones. Indeed, as we do not take into account the number
of people who play the same arguments, a group of ignorant clones act as a single ignorant agent
and cannot prevent a knowledgeable opponent from swaying the game in her favor.
We conclude that our simple protocol empirically exhibits desirable properties. In the next Section
we ask ourselves whether this empirical evidence is robust to a modification of the protocol where
votes can be expressed by agents.

3.2.2 Adding votes
It is common for online debate platforms to allow their users to cast votes on arguments.15 We
propose an improved version of the protocol where agents can do so, as in (Rago and Toni, 2017)
for instance. This approach introduces an element of social validation of the arguments: their value
can be dramatically influenced by the amount of social support they receive. This allows the public
argumentation framework to better reflect the opinion of all the agents.
Votes can either be positive or negative: an agent votes for an argument if she endorses it or against
otherwise. We refer to positive arguments as upvotes and negative arguments as downvotes. Note
that here, endorsing an argument means that the argument belongs to the agent’s opinion graph.
Votes are aggregated using a weight function such that the more endorsed or well-accepted an
argument is, the greater its weight and arguments with an equal number of upvotes and downvotes
weight 0.5. Because of its special status, the issue is not voted for or against and weights 1
throughout the game. In this version, the public graph thus becomes a weighted issue-oriented
argumentation graph.

15See for example ChangeMyView (https://www.reddit.com/r/changemyview/)
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Each step of this protocol is similar to a step of the simpler protocol with the addition of a voting
stage after the learning stage. When computing the hypothetical value that the public graph would
take if they played an argument, agents assign a hypothetical weight of 1 to this argument. Agents
vote on the new arguments that were played during the step. Note that the order of the stages is
crucial, as agents can vote in favor of arguments they have just learned. After the voting step, votes
are aggregated into weights for the arguments in the public graph. This mechanism makes the
dynamics of the game more complex.

We have performed an experimental study of the hypotheses presented in Section 3.2.1 on page 80,
whose results are presented in the following Table.16

Variable 1 Variable 2 R p value
H1 PL |VF −VM| -0,0645 0,04
H2 cl NC 0,604745 6,6E-101
H3 PL AD -0,53363 1,39E-171
H4 Nb of Clones ADclones -0,23606 3,94E-14
H5 |Arg(DGk)| dk -0,40972 9,3E-38
H6 PL ST D -0.62242 1.8E-108

Hypothesis 1 is not verified at all by the new protocol. Intuitively, as the public graph is now a
weighted argumentation graph, it is not clear whether two weighted graphs can converge as well
as a weighted graph and a flat one. All of the other hypotheses remain confirmed, albeit with
correlation coefficients that are slightly lower than in the first protocol.

The results of these studies provide some evidence that the studied gradual semantics can be
meaningfully used in the context of multi-agent debates over a given issue. On the downside, we
showed that the empirical support for some hypotheses decreased (one hypothesis being no longer
verified) when we augmented the protocol with votes, which reminds us of the importance of such
seemingly minor design choices.

3.3 Argumentation-based Negotiation
We now turn our attention to another application of argumentation: whereas until now we were
interested in the dialogues in a context of persuasion, we now wonder how to tackle the problem of
negotiation.
Argumentation-based negotiation frameworks are based on the assumption that agents negotiate
through the exchange of arguments. Several works that propose specific (see e.g. Dung et al.,
2008; Kakas and Moraitis, 2006a; Parsons et al., 1998) or abstract (see e.g. Amgoud et al., 2007)
argumentation-based negotiation frameworks share two important underlying hypotheses:

• The selection of arguments that an agent uses to justify her offer to her opponent or to attack
or defend another argument, is based solely on her knowledge about the world and her
self-interest

• The knowledge that an agent has about her opponent comes exclusively from their interaction
during the negotiation. Therefore, this knowledge is restricted by the information revealed
through the arguments used by the opponent.

The above assumptions seem rather counterintuitive. For instance, a competent salesperson is
expected to use arguments that are appropriate for the customer, even without any prior interaction
between them.
In (Bonzon et al., 2012), we presented a new perspective to argumentation-based negotiation that
captures these intuitions in an argumentation-based reasoning mechanism for negotiation, where

16Correlation level: Dark green = high, light green = moderate, yellow = low, red = no.



84 Chapter 3. Interaction and Argumentation

agents use both the knowledge they have about the world as well as the (usually incomplete)
knowledge they have about the other agents to make crucial decisions at any time. More precisely
this new perspective considers that agents use their own arguments for choosing the offers to
propose but, whenever possible, use arguments that are meaningful for their opponents to support
those offers. This policy is also applied to the arguments that agents use for attacking the opponent’s
arguments.

3.3.1 The Negotiation Mechanism
The negotiation framework of this work is the one of Hadidi et al. (2010). We assume two agents,
a1 and a2, who are involved in a bilateral negotiation over a set of offers (options) O = {o1, ...,on}.
We further assume that there is an option oD ∈ O that represents disagreement. The options are
mutually exclusive, which means that each agent can choose only one of them at once.

Arguments

As in (Hadidi et al., 2010), we distinguish two types of arguments that are both taken into account
in the reasoning mechanism used by the agents (see Amgoud et al., 2008).

Definition 3.14 [Epistemic and pratical arguments]
The set of arguments A=Ae ∪Ap, such that Ae ∩Ap = /0, with

• Ap the set of practical arguments that support offers by trying to justify those offers

• Ae the set of epistemic arguments that represent what the agent believes about the world
Epistemic arguments are denoted by variables γi, while practical arguments are by variables δi.
When no distinction is necessary between arguments, we use variables a,b,c...

We assume that an agent is aware of all the arguments of the set A. It encodes the fact that when an
agent receives an argument from another agent, it can interpret it correctly and it can also compare
it with its own arguments.
Let F be a function that maps each offer to the arguments that support it, i.e., ∀o ∈ O, F(o) ⊆ Ap.
Each argument can support only one option, thus ∀oy,oz ∈ O,oy ̸= oz,F(oy)∩F(oz) = /0. When
δ ∈ F(o), we say that o is the conclusion of δ , noted Conc(δ ) = o.

Conflicts between arguments are captured by the binary relation C (see Amgoud et al. (2008)) such
that C = Ce ∪Cp ∪Cm, where

• Ce represents the conflicts between arguments in Ae

• Cp represents the conflict between practical arguments, such that Cp = {(δ ,δ ′) | δ ,δ ′ ∈
Ap,δ ̸= δ ′ and Conc(δ ) ̸=Conc(δ ′)}. This relation is symmetric

• Cm represents the conflicts between epistemic and practical arguments such that (γ,δ ) ∈ Cm,
γ ∈ Ae and δ ∈ Ap.

We assume that practical arguments supporting different offers conflict. Thus for any two offers
oy,oz, ∀δ ∈ F(oy) and ∀δ ′ ∈ F(oz), it holds that (δ ,δ ′) ∈ Cp and (δ ′,δ ) ∈ Cp.

As in (Amgoud et al., 2008; Hadidi et al., 2010), we assume three binary preference relations
between arguments:

• ⪰e is a partial preorder on the set Ae.

• ⪰p is a partial preorder on the set Ap.

• ⪰m is defined on the sets Ae and Ap such that ∀γ ∈Ae, ∀δ ∈Ap, (γ,δ )∈≻m and (δ ,γ) ̸∈≻m.
That means that any epistemic argument is preferred over any practical argument.

Each preference relation ⪰x is combined with the relation of conflict Cx to give a defeat relation
between arguments, noted Dx
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Definition 3.15 [Defeat relation]
Let x ∈ {e, p,m}, and a,b ∈ A. (a,b) ∈ Dx if and only if (a,b) ∈ Cx, and (b,a) /∈≻x.
We have D =De ∪Dp ∪Dm.

Agents theories

As in Hadidi et al. (2010) we assume that an agent ai has a theory represented abstractly.

Definition 3.16 [Agent’s theory]
The theory Ti = ⟨Ai, Fi, Di⟩ of agent’s ai consists of

• a set Ai =Ap,i ∪Ae,i of arguments

• a function Fi : O→ 2Ap,i that returns the arguments which support a given offer (and thus
Ap,i =

⋃
k=1,...,nFi(ok))

• a defeat relation Di on Ai

Moreover, we assume that each agent has also knowledge about the other agent she could negotiate
with. This allows us to encode situations where an agent has some insight into her opponent’s
arguments and preferences, allowing her to use arguments of her opponent to support her favorite
offers, which could help her obtain a better agreement.
The knowledge agent ai has on a j is denoted by Ti, j. This theory has the same structure as the
agent’s ai own theory but we suppose it to be incomplete, as the knowledge ai has on a j is partial.
The important part of Ti, j is Ai, j which contains the arguments agent ai knows. This set can be
empty if ai does not know anything about a j or contains a subset of a j’s arguments. We must
note that the knowledge an agent has about her opponent is incomplete but accurate (i.e. as far as
arguments, preferences on these arguments and conflicts).

The negotiation protocol

Rubinstein (1982) introduced the Alternating Offers protocol for bargaining between agents. This
protocol has been adapted in the argumentation-based negotiation context in (Hadidi et al., 2010).
This protocol is generic, with no time limits and no central coordinator to manage the negotiations,
and either of the parties can leave the process at any time.
Arguments and offers are conveyed through dialogue moves (or simply moves). These moves use
the following performatives:

• propose allows an agent to propose an offer to another agent, along with an argument that
supports it.

• argue allows an agent to argue by defending her own offer; or to counter-attack an offer sent
by the other agent.

• reject allows an agent to inform the other agent that she has no arguments to present, but
that she still does not accept her offer.

• nothing allows an agent to notify the other agent that she has no argument to present and
she either still considers her offer as a most preferred one for her (when she is the proposer),
or believes that she has better options that the current offer (when she is the recipient).

• accept is used by an agent to notify that she accepts the offer made by her opponent.

• agree allows an agent to state that she believes that her current offer is not optimal for herself
and therefore accepts the arguments sent by the other agent, who has to start a new round.

A round takes place in an alternating way between two agents. The agent proposing an offer may
send moves with performative from {propose, argue, agree, nothing, withdraw}, whereas the
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agent that receives an offer may send moves with performative from {argue, reject, accept,
nothing, withdraw}. Two outcomes are possible: (a) no agreement (disagreement), or (b) an
agreement in some round.

We then implemented a reasoning mechanism that allows agents to use their own negotiation theory
to find the best offer to propose to their opponent. This offer is supported by the current "strongest"
acceptable (wrt the defeat relation) argument in the agents’ theory. Then they use the partial
knowledge they have of their opponent to find whether this offer is supported by an acceptable
argument in the opponent’s argumentation theory. If this is the case, this argument is sent for
supporting the proposed offer. Otherwise, they are looking at whether there exists an argument that
supports this offer in the opponent’s theory, which is not currently acceptable, but which could be
defended by their own theories to become an acceptable one. The same policy is also applied to
choose the arguments that are used for attacking the arguments of the opponent. However, if such
arguments do not exist, agents use the arguments of their own theories for supporting or defending
an offer as is done in the frameworks where agents have no knowledge of the opponent.

3.3.2 Experimental evaluation

The experimental evaluation is based on two systems. The first implements the method of Hadidi
et al. (2010), which does not utilize any form of knowledge about the opponent agent, whereas the
second system is an implementation of our approach.

Agent theories have been generated randomly, as sizeable real-life argumentation theories are not
readily available. Random theory generation also facilitates the process of creating structurally
diverse theories. Indeed, the experimental suite used in this work includes a variety of agent
theories with up to 230 arguments, that differ regarding the relation between the preferences on the
epistemic arguments of the negotiating agents, as well as the knowledge an agent possesses about
her opponent.

The experimental suite contains test cases that are generated by assigning values to two parameters.
The first parameter (⪰e) concerns the percentage of common preferences between epistemic
arguments shared by the agents, with values 100% and 50%. The second parameter (Ai, j) concerns
the portion of the knowledge (i.e. arguments) each agent has on his opponent, with values 0%,
25%, 50% and 100%.

In the following, RK denotes the round where an agreement is found by using our system (agents
have some knowledge K about each other) and R¬K the round where an agreement is found with
the system of Hadidi et al. (2010) (without knowledge about each other). DK (resp. D¬K) is the
distance between the outcome of the negotiation found with our system (resp. with the system of
Hadidi et al. (2010)) and the optimal (or ideal) solution for each agent (see Amgoud and Vesic
(2011)). Then, nRK is the number of negotiations where our system found an agreement in fewer
rounds than the system of Hadidi et al. (2010); nR¬K is the number of negotiations where the
system of Hadidi et al. (2010) found an agreement in fewer rounds than our system; nDK denotes
the number of negotiations where the distance of the outcome of the negotiation from the optimal
solution is smaller for at least one agent and not worse for the other agent in our system than in the
one of Hadidi et al. (2010); nD¬K is the number of negotiations where the distance of the outcome
of the negotiation from the optimal solution is smaller for at least one agent and not worse for the
other agent in Hadidi et al. (2010) than in our system. The following table presents the comparative
results for the experiments where both systems have found an agreement (the number of such
negotiations over the 180 experimented per test is given in column nAgr). Each test (row) consists
of 180 negotiations. The number of arguments involved is between 60 and 230 for each agent’s
theory.
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nRK nR¬K nAgr nDK nD¬K

⪰e: 100%, Ai, j: 100% 45 0 152 5 1
⪰e: 100%, Ai, j: 50% 20 2 152 0 0
⪰e: 100%, Ai, j: 25% 0 0 152 0 0
⪰e: 100%, Ai, j: 0% 0 0 152 0 0
⪰e: 50%, Ai, j: 100% 47 1 141 3 2
⪰e: 50%, Ai, j: 50% 4 2 141 1 0
⪰e: 50%, Ai, j: 25% 0 0 141 0 0
⪰e: 50%, Ai, j: 0% 0 0 141 0 0

The analysis of the experimental results summarized in this table gives us useful information about
(1) the usability in practice of argumentation-based negotiation and the way it computationally
behaves while scaling in a bilateral negotiation context (2) the performance of our approach.
Concerning the first point, this work is (as far as we know) the first one to empirically show that
a Dung-based abstract preference-based argumentation framework behaves computationally well
while scaling in a bilateral negotiation context. We ran 1440 negotiation experiments which, when
resulted in an agreement, did so in reasonable execution times. More precisely the average time for
an agreement was between 10s and 15s for a size of 60 arguments for each agent theory and 45s
for a size of 230 arguments for each agent theory. Moreover, for more than 1600 negotiations, the
number of arguments used by each agent reached 230 which, we believe, is sufficient to model and
implement real-life applications.
Concerning the second point, the results show that our system improves the performance of the
system of Hadidi et al. (2010) regarding two important criteria, namely the length of the negotiation
when there is an agreement and the quality of the agreement. More precisely concerning the
criterion of length, the use of knowledge about the other agent has, (no matter what the % of
knowledge about the other agent is), a significant positive impact on the negotiation shortening.
This can be important, especially for time-constraint negotiations.
Finally, it is worth noting that both systems find exactly the same solution and in the same round
when in our system there is no knowledge at all on the opponent.

3.4 Are agent systems consistent?
Different agents may have different points of view, and that can be modeled through different
abstract argumentation frameworks. The problematic of aggregating several argumentation frame-
works, either in the context of argumentative protocols as seen all along this chapter, or to obtain
a single collective argumentation framework that would appropriately represent the views of the
group as a whole (see eg. Bodanza and Auday, 2009; Coste-Marquis et al., 2007; Dunne et al.,
2012; Tohmé et al., 2008) is a form of graph aggregation (Endriss and Grandi, 2017). We are given
a profile of attack relations, one for each agent, and are asked to compute a suitable compromise
attack relation. This is an interesting and fruitful line of research, bringing together concerns in
abstract argumentation with the methodology of social choice theory, but it raises one important
question: For a given profile of argumentation frameworks, is it conceivable that such a profile
would manifest itself? That is, how do we explain the differences in perspective of the individual
agents for a given profile? Why do they sometimes report different arguments? And why do they
sometimes report different attacks even between those arguments they agree on?
The point that the attack relation should not be viewed as absolute and objective, but may very well
depend on the individual circumstances of the agent considering the arguments in question, has
been made before by multiple authors (e.g., Amgoud et al., 2008; Baumann, 2012; Bench-Capon
et al., 2007; Booth et al., 2013; Gabbriellini and Torroni, 2013; Grossi and van der Hoek, 2013).
A widespread explanation for such diversity of views is that agents have different preferences
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regarding the arguments at hand. For instance, arguments may come from different sources, which
agents may trust to varying degrees. Or the arguments may be attached to different moral or social
values, which the agents may prioritize differently. This perspective still assumes an underlying
ground truth, which however may be interpreted differently, depending on the agents.
Here we adopt a preference-based approach, in the value-based variant due to Bench-Capon (2003).
In his model, whether argument A ultimately defeats argument B does not only depend on whether
A attacks B in an objective sense, but also on how we rank the importance of the moral or social
values attached to A and B: If we rank the value associated with B strictly above that associated
with A, we may choose to ignore any attacks of A on B. Thus, differences in their preferences can
explain why different agents may report different attacks.
Regarding the fact that agents may also report different sets of arguments, to begin with, the most
natural explanation is simply that the agents are not all aware of the same arguments. However,
depending on the context, it may sometimes also be reasonable to assume that an agent chooses,
on purpose, not to report certain arguments. For instance, it may be the case that certain values
are ‘taboo’ for some agents and that they prefer not to refer to them and thus choose to suppress
any arguments relating to those values.17 Or agents may choose to ignore arguments they consider
irrelevant to minimize communication.
At the technical level, the question we asked in (Airiau et al., 2016, 2017) is the following: Given
a profile of argumentation frameworks ⟨AF1, . . . ,AFn⟩, one for each agent, defined over possibly
different sets of arguments, can this profile be explained in terms of a single master argumentation
framework, an association of arguments with values, and a profile of preference orders over
values (≽1, . . . ,≽n), one for each agent? Or, as we shall put it: Can the profile of argumentation
frameworks observed be rationalized? To be able to answer this question in the affirmative, for
every agent i, we require AFi to be exactly the argumentation framework we obtain when the master
argumentation framework with its associated values is first restricted to the arguments agent i is
aware of and then any attacks that are in conflict with the preference order ≽i are being canceled.

First and foremost, following Bench-Capon (2003), we define an audience-specific value-based
argumentation framework (AVAF) as an AF equipped with a function associating each argument
with the social or moral value it advances, combined with a preference order declared over those
values. While the mapping from arguments to values is fixed and the same for everyone, the
preferences over values are those of a particular agent (the “audience”).

Definition 3.17 [AVAF]
An audience-specific value-based argumentation framework is defined as a 5-tuple ⟨A,R,Val,val,≽
⟩, where ⟨A,R⟩ is an argumentation framework, Val is a finite set of values, val : A→ Val is a
mapping from arguments to values, and ≽ is the audience’s preference order on Val.

We call ⟨Val,val⟩ the AVAFs value-labeling. Let =val be the equivalence relation on arguments
induced by val: A =val B if and only if val(A) = val(B).
Now suppose an agent is presented with an AF and a value-labeling. In Bench-Capon’s model, this
agent will uphold a proposed attack (A,B) ∈R and therefore accept that A defeats B, unless she
strictly prefers the value associated with the attackee B to the value associated with the attacker A
(Bench-Capon, 2003).

Definition 3.18 [Defeated Arguments]
Given an AVAF ⟨A,R,Val,V≽

, ⟩, we say that argument A ∈ A defeats argument B ∈ A, denoted
(A,B) ∈ D, if and only if we have (A,B)nR but it is not the case that val(B)≻ val(A).

We call D the defeat-relation induced by the AVAF. We stress that saying ‘it is not the case that

17Similar ideas have been explored for the definition of semantics that attempts to only make use of certain arguments
if absolutely necessary (Cayrol et al., 2002).
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val(B) ≻ val(A)’ is the same as saying ‘val(A) ≽ val(B) is the case’ only when the preference
order ≽ is complete.

Note that for any given AVAF ⟨A,R,Val,val,≽⟩ the induced defeat-relation D is, just like an attack
relation R, an irreflexive binary relation on A. Thus, we can (and will) think of ⟨A,D⟩ as just
another AF.

Example 3.4 Pollution is becoming a major health problem in big cities. City councils are
facing the question of possibly banning polluting vehicles, specifically diesel cars, from the city
centers. A city council might entertain the following arguments:
(A) Diesel cars should be banned from the inner city center to decrease pollution.

(B) Artisans, who deserve special protection from the city council, cannot change their
vehicles, as that would be too expensive for them.

(C) The city can offer financial assistance to artisans.

(D) There are only very few alternatives to using diesel cars. Specifically, the autonomy of
electric cars is poor, as there are not enough charging stations around.

(E) The city can set up more charging stations.

(F) In times of financial crisis, the city should not commit to spending additional money.

(G) Health and climate change issues are important, so the city has to spend what is needed to
tackle pollution.

The following graph shows the AF generated by these arguments, together with a natural attack
relation R between them:

A

BC

DE

FG

We can associate the arguments presented in this example with four types of values. Arguments
A and G concern environmental responsibility (value env), B and C are about social fairness
(value soc), F promotes economic viability (value econ), and D and E pertain to infrastructure
efficiency (value infra). We thus have that Val = {env,soc,econ,infra}, as well as that
val(A) = val(G) = env, val(B) = val(C) = soc, val(F) = econ, and val(D) = val(E) = infra.
Let us now assume that a particular councilor wants to promote the values of environmental
responsibility and infrastructure efficiency over the other two values. So her preferences might
be given by the following weak order: env∼ infra≻ soc∼ econ.
This induces a defeat-relation D for our councilor that corresponds to the following graph:

A

BC

DE

FG

For instance, the attack from B to A got removed, because val(A) = env ≻ soc = val(B).
Overall, three attacks got removed.

■
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In the sequel, we are going to use standard set-theoretical operations (e.g., ∩, ⊆) on binary
relations (understood as sets of pairs). Furthermore, R−1 = {(x,y) | (y,x) ∈ R} is the inverse of a
binary relation, R+ is its transitive closure, and R∗ is its reflexive-transitive closure. R◦R′ is the
composition of R and R′. We also define R+

val := (R∪=val)
∗ ◦R ◦ (R∪=val)

∗, which is like the
usual transitive closure, except that we can move to arguments with the same value, even if not
connected by R. Finally, for any binary relation R defined on some set S, we use R↾S = R∩ (S×S)
to denote the restriction of R to S.

3.4.1 The Rationalizability Problem
Let N = {1, . . . ,n} be a finite set of agents (or audiences). Suppose each of these agents supplies
us with an AF, not necessarily over the same set of arguments. We call this a profile of AFs.
As we think of each AF in such a profile as the result of having imposed the corresponding
agent’s preferences on some underlying master AF, we write individual AFs as ⟨Ai,Di⟩ (rather
than as ⟨Ai,Ri⟩). Here, Ai is the set of arguments agent i is aware of and Di is the defeat-relation
on Ai adopted by i. A profile of such AFs is denoted as AF = (⟨A1,D1⟩, . . . ,⟨An,Dn⟩). Let
A :=A1 ∪·· ·∪An denote the set of all arguments at least one agent is aware of.
Now we may ask whether the profile we observe can be rationalized (i.e., whether it can be
explained) in terms of a common master AF and a common value-labeling, together with a profile
of preference orders, one for each agent. This question gives rise to the rationalizability problem.
We define an entire family of rationalizability problems, parameterized by a set of constraints
imposed on the solutions admitted.

Definition 3.19 [Rationalizability]
A profile of AFs, AF = (⟨A1,D1⟩, . . . ,⟨An,Dn⟩), is called rationalizable for a given set of
constraints if there exists an attack relation R on A =A1 ∪ ·· · ∪An, a set of values Val with
a mapping val : A→ Val, and a profile (≽1, . . . ,≽n) of preference orders on Val, all meeting
said constraints, such that, for all agents i ∈ N and all arguments A,B ∈ Ai, it is the case that
(A,B) ∈ Di if and only if (A,B) ∈R but not val(B)≻i val(A).

We refer to ⟨A,R⟩ as the master AF, and consequently to R as the master attack relation.
Some comments on how to interpret Definition 3.19 are in order. Given the presumed ex-
istence of ⟨A,R⟩, val : A → Val, and (≽1, . . . ,≽n), we think of the observed profile AF =
(⟨A1,D1⟩, . . . ,⟨An,Dn⟩) as having come about as the result of the following process:

1. Each agent i ∈ N becomes aware of some subset Ai ⊆A of the full set of arguments, and
thus of the AF ⟨Ai,(R)↾Ai

⟩, i.e., of the restriction of the master attack relation to the set of
arguments she is aware of

2. Agent i removes any attacks in this AF that are at odds with her preferences, i.e., we get
(A,B) ∈ Di for A,B ∈ Ai if and only if (A,B) ∈ (R)↾Ai

but not val(B)≻ val(A)

Thus, we have made a specific modeling choice when defining rationalizability: We assume that
agents first choose (possibly unconsciously) the subset of arguments to report, and only then reduce
the attack relation defined on that subset according to their individual preferences. Another option
would have been to assume that the agents first reduce the master attack relation according to their
own preferences, and then choose a subset of arguments to report (e.g., those that they deem most
relevant or significant).
Definition 3.19 can be instantiated for different types of constraints. In the following, we are going
to consider the following constraints (but others may be of interest as well):

• the master attack relation R may be fixed,

• the value-labeling ⟨Val,val⟩ may be fixed,

• the number of values |Val | may be bounded from above by some constant k,
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• the preference orders ≽i may be required to be complete.
In addition, we will consider two restrictions of the problem, namely the case where all individual
argument sets coincide (i.e., where Ai =A j for all i, j ∈ N), and the single-agent case (with n = 1).

With these definitions in place, we may now ask: For a given set of constraints, can we characterize
the class of all profiles of AFs that can be rationalized? And can we check efficiently whether a
given profile is rationalizable?

3.4.2 The Single-Agent Case
We first consider the single-agent case of the rationalizability problem. This is not only useful
for gaining an understanding of the multi-agent case but is also interesting in its own right. For
example, it may be the case that there is some ‘ground truth’ available and we know what the
correct attack relation is (e.g., due to the logical structure of the arguments), but that a specific agent
is still reporting a different AF. Can this subjective AF be explained in terms of the value-based
model? That is, is this framework compatible with what we know to be the ground truth?

Example 3.5 Consider a scenario with three arguments, A = {A,B,C}, with a fixed master
attack relation R = {(A,B),(B,C),(A,C)}. Suppose we observe a single agent who only
declares D = {(A,B),(B,C)}. Below, the master attack relation is shown on the left and the
observed individual attack relation is shown on the right:

A B

C

A B

C

Can we rationalize this omission of the attack of A on C? Rationalization requires A and C to be
labeled with distinct values, say vA and vC, and our agent must prefer vC to vA for (A,C) ∈R to
get canceled. Are two values enough? The answer is no: If we reuse, say, value vA to also label
argument B, then (B,C) ∈R would get canceled as well. Similarly, if we reuse vC for B, then
(A,B) ∈R would get cancelled. Thus, we need a third value vB. Now there is a rationalization,
with the agent’s preference order ranking vC above vA, and vB being incomparable to the other
two values. Observe that, even with three values, rationalization is impossible if we require the
preference order to be complete, i.e., if we require it to not leave any two values incomparable. ■

In the single-agent case, we are given an AF ⟨A,D⟩. A solution consists of an AVAF ⟨A,R,Val,val,≽
⟩, over the same set of arguments A, that induces D. We consider this problem for several types of
constraints on solutions. We aim to provide polynomial-time algorithms for computing solutions
and, where possible, to provide exact characterizations of those solutions. We begin with the
simplest of all scenarios, where there are no constraints imposed on permissible rationalizations,
and observe that the problem of rationalizability is trivial in this case:

Proposition 3.8 [No Constraints]
In the absence of constraints, every single AF is rationalizable.

The same result applies to rationalization under any set of constraints referring only to Val and val.
It also continues to apply if we require the preference order to be complete. The main insight here
is that any natural instance of the single-agent problem that is nontrivial will involve a constraint
on the master attack relation. Therefore, we consider rationalizability problems with a given fixed
master attack relation.

Proposition 3.9 [Fixed Attack Relation]
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A single AF ⟨A,D⟩ is rationalizable by an AVAF with a given fixed master attack relation R if
and only if all of the following three conditions are satisfied:
(i) D ⊆R;
(ii) (R\D) is acyclic;
(iii) D∩ (R\D)+ = /0.

All three conditions can be checked in polynomial time, so we obtain a tractability result:

Corollary 3.1 [Fixed Attack Relation]
Whether a single AF is rationalizable by an AVAF with a given fixed master attack relation can
be decided in polynomial time.

We now investigate what happens when we add such constraints, and first, consider the most
extreme case where the full value-labeling is fixed from the outset. This is a natural scenario to
consider in those cases in which we are willing to assume that the question of which value a given
argument relates to is a matter that can be settled objectively.

Proposition 3.10 [Fixed Value-Labeling]
A single AF ⟨A,D⟩ is rationalizable by an AVAF with a given fixed master attack relation R
and a given fixed value-labeling ⟨Val,val⟩ if and only if all of the following three conditions are
satisfied:
(i) D ⊆R;
(ii) the relation

⋃
(A,B)∈(R\D){(val(A),val(B))} is acyclic;

(iii) D∩ (R\D)+val = /0.

This characterization immediately provides us with a polynomial-time algorithm. Thus, we obtain
the following result:

Corollary 3.2 [Fixed Value-Labeling ]
Whether a single AF is rationalizable by an AVAF with a given fixed master attack relation and
a given fixed value-labeling can be decided in polynomial time.

The final single-agent scenario we want to consider here is one where we are not given the full value-
labeling but merely an upper bound on the number of values that may be used for rationalization.18

This scenario comes about when there is no unique objective mapping from arguments to values
and we are looking for a “simple” explanation for an observed defeat relation only involving a
limited number of different values. (For instance, when values correspond to different sources
providing information, their number may be known.) From an algorithmic point of view, this is the
most demanding problem considered so far. Still, at least for the case of complete preferences, also
for this problem we can establish the existence of a polynomial-time algorithm, as the following
result shows.

Proposition 3.11 [Bound on Values]
Whether a single AF is rationalizable by an AVAF with a given fixed master attack relation, a
given upper bound on the number of values, and a complete preference order can be decided in
polynomial time.

Assuming completeness of the preference order (i.e., excluding the possibility of an agent not being
able to compare the importance of two given values) is sometimes reasonable, but certainly not
always. Whether single-agent rationalizability for a bounded number of values remains polynomial

18Thus, this scenario requires solving the decision problem corresponding to the optimization problem of computing
the minimal number of values needed for rationalization.
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for possibly incomplete preferences is a nontrivial open question of some interest.
Recall that Example 3.5 on page 91 has demonstrated that there indeed are single-agent scenar-
ios where rationalization is possible with incomplete preferences but impossible with complete
preferences. We conclude this section with one further observation on the impact the choice of
preference order can have on rationalizability. We show that even when rationalization is possible
with a complete preference order, imposing that requirement may radically increase the number of
values we need to use.

Proposition 3.12 [Value Ratio]
The ratio between the number of values required to rationalize a given AF by an AVAF with
a given fixed master attack relation and a complete preference order and the number of values
required in case the requirement to use a complete preference order is dropped, in the worst case,
cannot be bounded from above by a constant.

Thus, in principle, the number of values required for rationalization can grow arbitrarily when we
exclude the possibility of an agent declaring two values preferentially incomparable.

3.4.3 The Multi-agent Case

We now turn to the multi-agent case. In presenting our results for each type of constraint considered,
we are specifically going to focus on the extent to which the (positive) results obtained for the
single-agent case carry over to this more general scenario. To get started, recall that we have seen
that, in the absence of constraints, every single AF can be rationalized (Proposition 3.8 on page 91).
The following example shows that this result does not generalize to profiles with (at least) two AFs.

Example 3.6 Consider a profile of two AFs over a common set of three arguments. Suppose
D1 = {(A,B),(B,C),(C,A)}, while D2 = /0, as shown below:

A B

C

A B

C

Any value-labeled AF and preference profile that could rationalize this profile would have
to have an attack relation R that includes, at least, the attacks (A,B), (B,C), and (C,A), as
otherwise, these edges could not have occurred in the first AF. But this means that the second
preference order, to be able to cancel these attacks, must at least include the comparisons
val(B)≻2 val(A), val(C)≻2 val(B), and val(A)≻2 val(C). But then ≽2 is not acyclic, thereby
contradicting our assumptions on well-defined preference orders. Thus, this profile cannot be
rationalized, even in the absence of any kind of constraint. ■

We are first going to investigate the question of when we can decompose a given multi-agent
rationalizability problem into a set of n single-agent rationalizability problems that can be solved
independently of each other (but that still require us to provide a global solution involving a common
master AF and a common value-labeling). Example 3.6 shows that this kind of decomposition is
not possible when we do not impose any constraints during rationalization. On the other hand,
for the scenarios of Propositions 3.9 on page 91 and 3.10 on the facing page, it is easy to see that
decomposition is possible:

• If the only constraint is that the master attack relation is fixed, then every agent’s rationaliz-
ability problem can be solved independently.

• If the only constraints are that the master attack relation and the value-labeling are fixed, then
every agent’s rationalizability problem can also be solved independently.



94 Chapter 3. Interaction and Argumentation

But what if the master attack relation is not given? Consider the generic profile AF=(⟨A1,D1⟩, . . . ,⟨An,Dn⟩).
Any rationalization of AF must involve a master attack relation R with R⊇D1 ∪·· ·∪Dn, because
no agent can create an edge not already included in R. Any additional edges in R will make
rationalization only harder if they make a difference at all. Thus, rationalization is possible at all
if and only if rationalization is possible with the fixed master attack relation R :=D1 ∪ ·· ·∪Dn.
Given these insights, together with Corollaries 3.1 on page 92 and 3.2 on page 92, we obtain the
following result:

Proposition 3.13 [Decomposable Cases]
Whether a profile of AFs is rationalizable can be decided in polynomial time by solving the
problem independently for each agent, in at least the following cases:
(a) No constraints are given.

(b) The master attack relation and/or the value-labeling is fixed.

Thus, of all the constraints we have considered here, only the one specifying an upper bound on the
number of values leads to a ‘genuine’ multi-agent rationalization problem. Let us now consider this
problem in some detail.
For the remainder of this section, we are always going to assume that a fixed master attack relation R
is part of the constraints considered. By our reasoning above, any tractability result obtained under
this assumption immediately extends to the case where no master attack relation is specified.
Our first result on multi-agent rationalization with a bound on the number of values to be used is
negative: in the most general case, this problem is intractable.

Proposition 3.14 [Bound on Values: General Case]
Deciding whether a profile of AFs is rationalizable by an AVAF with a given fixed master attack
relation and a given upper bound (of at least 3) on the number of values is an NP-complete
problem.

This is bad news. But are there special cases where rationalizability is tractable after all? Indeed, if
all agents are aware of the exact same set of arguments and if we are allowed to use at most two
values, then deciding rationalizability is tractable:

Proposition 3.15 [Two Values and Common Argument Sets]
Whether a profile of AFs over a common set of arguments can be rationalized by an AVAF with
a given fixed master attack relation and using at most two values can be decided in polynomial
time.

Proposition 3.15 suggests that rationalizability becomes easier when the argument sets reported by
the agents are all exactly the same. The following simple observation shows that the opposite is
also true: if the argument sets are all radically different from each other, then rationalization also
becomes easy.

Proposition 3.16 [Mutually Exclusive Argument Sets]
Any profile of AFs of the form AF = (⟨A1,D1⟩, . . . ,⟨An,Dn⟩), with Ai ∩A j = /0 for all pairs of
agents i, j ∈ N, can be rationalized using just a single value.

If all agents report mutually disjoint sets of arguments and we are given a fixed master attack
relation, we might require more than just one value to achieve rationalization. Note that this case is
covered by Proposition 3.13.
Recall that in case there is no bound on the number of values (or, equivalently, if k = |A|), we
already know that rationalization is tractable (as this follows from Proposition 3.13). Finally, we
show that the rationalizability problem remains tractable when the bound k is ‘large’, in the sense
of only reducing the number of allowed values by a constant d (relative to the maximum k = |A|).
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Proposition 3.17 [Large Bound on Values]
Let d ∈ N be an arbitrary constant. Whether a profile AF = (⟨A1,D1⟩,. . ., ⟨An,Dn⟩) is rational-
izable by an AVAF with a given fixed master attack relation and at most k := |A1 ∪·· ·∪An|−d
values can be decided in polynomial time.

3.4.4 Application Scenarios
There are several different application scenarios where dealing with questions of rationalizability
will be valuable. In this section, we list and illustrate some of them.
First, given the growing interest in the abstract argumentation research community in questions
of aggregation of AFs, it is important to have a clear understanding of what types of scenarios
the question of aggregation is in fact relevant. Our notion of rationalizability provides a suitable
definition for this purpose. It allows for a systematic scan of the different examples used in the
literature – not to dismiss those failing the test, but to point out that one must be careful with the
interpretation used.

Example 3.7 Let us see whether the example given by (Coste-Marquis et al., 2007, Ex-
ample 7) passes this test. We are given AF1 = ⟨{A,B,E,F},{(A,B),(B,A),(E,F)}⟩, AF2 =
⟨{B,C,D,E,F},{(B,C),(C,D),(F,E)}⟩, and AF3 = ⟨{E,F},{(E,F)}⟩:

A B

C D

E F

A B

C D

E F

A B

C D

E F

This profile indeed does pass the test. It can be rationalized by using as master attack relation
the union of the individual relations. It is sufficient to set vE ̸= vF , while A, B, C, and D can all
take the same value, either that of E or that of F . Thus, two values suffice. ■

The second application of our work concerns aggregation itself. In a scenario where multiple AFs
need to be aggregated, we may use the notion of rationalizability to choose between alternative
aggregation techniques, depending on the result of the rationalizability test. For example, if a
profile turns out to be rationalizable for a given preference model (e.g., for complete preference
orders), we may reasonably assume that this model is a good abstraction of reality and aggregate the
AFs by aggregating the inferred preferences (which is a much better-studied problem than that of
aggregating AFs). For instance, we may use the well-known Kemeny rule (Kemeny, 1959; Zwicker,
2016) to aggregate the preferences,19 and then apply the collective preference order obtained to the
master attack relation inferred.

Example 3.8 Consider the following profile of AFs, in which each of the three agents reports
the same set of arguments {A,B,C}:

19For a given profile of preference orders, the Kemeny rule returns the preference order that minimizes the number of
times an agent disagrees on the relative ranking of two alternatives. In other words, the Kemeny rule minimizes the sum
of the Kendall tau distances between the outcome and the individual preference orders.
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A B

C

A B

C

A B

C

The union of the individual AFs together with the following preferences achieves rationalization:
vC ≻1 vA ≻1 vB, vB ≻2 vC ≻2 vA, and vB ≻3 vA ≻3 vC. Observe that this is the only rationalization
with complete and strict preferences. The result of applying the Kemeny rule to this profile of
preferences is vB ≻ vC ≻ vA (with a Kendall tau distance of 3 from the collection of preferences).
Hence, the aggregated AF with this technique would be the same as the AF of agent 2. ■

But when rationalization fails, this approach does not make sense, and we should look for a different
method of aggregation. In such a case, there is a more substantial disagreement between the agents:
maybe the model of preferences has to be changed, maybe the agents differ on the assignment of
values to arguments, or maybe the agents interpret the arguments differently. Importantly, failure of
rationalization can also provide hints as to where disagreement occurs.

A third application we foresee is in the context of online debating platforms, where value-based
argumentation systems already are used as a modeling tool (Pulfrey-Taylor et al., 2011). In this
context, AFs are (typically) not obtained via a one-shot process, but rather retrieved interactively, by
monitoring the utterances of the participants. Our approach could be used to detect inconsistencies
as they occur, and thus to trigger clarification questions on the fly.

Example 3.9 Suppose the following sequence of utterances occurs in a given debate:
• Agent 1: A defeats B.
• Agent 2: B defeats A.
• Agent 3: There is no defeat between A and B.

At this stage, it is clear that this collection of AFs cannot be rationalized, because agent 3 would
have to both prefer the value of A over that of B, and the value of B over that of A. A clarification
is required to identify the mismatch. For example, the system could ask agent 3 whether she
believes there is no attack between A and B. ■

Interestingly, a similar dynamic perspective to solve inconsistencies in a framework mixing opinion
polling and argumentation has been proposed by Rago and Toni (2017), albeit in their case the
problem is to rationalize the votes of users. Interleaving the elicitation of preferences over values
within a dialectical process is also proposed by Bench-Capon et al. (2007). But these authors take a
different perspective. While we assume that an agent’s preferences over values are fixed from the
outset and just need to be ‘discovered’ during rationalization, they do not take this assumption for
granted. Instead, the ranking of values is built as part of the dialectical process, whereby an agent
(in their case, just one agent) aims at rationalizing her position (i.e., the arguments she wants to see
accepted or rejected).

This leads us naturally to our final point of discussion, which concerns the nature of what is
observed. So far we have assumed that the agents express AFs, which we can observe directly.
But in many situations, it may be more natural to assume that each agent only reports the set of
arguments she accepts (a so-called extension), or a (partial) labeling of the arguments with the
labels ‘accept’ and ‘reject’. Dunne et al. (2014) have addressed the challenging problem of inferring
an AF from such an extension (or a set of such extensions) that could serve as an explanation for
the behavior observed. Of course, there often will be many possible AFs that could explain a given
set of accepted arguments. Our approach could be used to narrow down the range of possible
explanations when performing this task for several agents in parallel, by imposing the constraint
that the profile of AFs we infer, one for each extension observed, should be rationalizable.
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Example 3.10 Suppose there are three agents and three arguments. Agent 1 reports extension
{A}, agent 2 reports extension {A,C}, and agent 3 reports extension {A,B}. Suppose these
reports have come about through each agent applying one of the well-known semantics proposed
by Dung (1995) to some AF declared over the full set {A,B,C}. For the sake of simplicity, let
us exclude the possibility of mutual attacks between pairs of arguments. Then agent 1, who only
considers A acceptable, must have one of the following three AFs:

A B

C

A B

C

A B

C

Now, for agent 2, there must be no attack between A and C, while B must get attacked by at least
one of them. This leaves five possible cases:

A B

C

A B

C

A B

C

A B

C

A B

C

Finally, for agent 3, we can have no attack between A and B. She must have generated her
position based on one of the following five AFs:

A B

C

A B

C

A B

C

A B

C

A B

C

But now, in terms of rationalization, we see that some combinations are impossible, such as the
profile consisting of the third AF for agent 1, the second for agent 2, and the third for agent 3. To
see this, note that the master attack relation would have to contain both (B,C) ∈R (for agent 2)
and (C,B) ∈R (for agent 3). But then agent 1 would have to have one of these attack relations
in her system, as she cannot both strictly prefer the value of B to that of C and vice versa. While
this does not allow us to uniquely define a profile of AFs, this method can nevertheless guide
the search amongst the AFs that are compatible with the extensions observed. ■

Similar ideas may also have useful applications in the context of analyzing people’s decisions a
posteriori. An example of an application of this kind is the analysis of a participatory decision
setting involving an environmental project in Québec, which was carried out by Tremblay and
Abi-Zeid (2016). In their work, they first extracted an AF with 20 arguments, labeled by 7
values, from the debates they analyzed. They then imposed a number of technical constraints,
eventually obtaining 18 subgraphs of the master AF as possible candidates for the kind of AF that
may in practice have guided the deliberations of the committee responsible for taking a decision
about which arguments to accept. They then analyzed each of these 18 AFs in combination
with one of the possible preference orders over the 7 values, to test whether and how often the
decision recommended by a given AF coincides with the decision actually observed in practice.
(That decision consisted in accepting 5 of the 20 arguments considered.) To make this analysis
manageable, the choice of the 18 AFs considered required several judgment calls. Here, the concept
of rationalizability may offer an alternative route. For a set of arguments we observe to have been
accepted in practice, we may first induce a number of possible AFs that could explain this extension,
using the approach of Dunne et al. (2014), and then apply our rationalization approach to check
whether any of these AFs is rationalizable, given the constraints regarding values we have been
able to extract from the debate.





4. Interaction in Games

In multi-agent systems, several agents interact, cooperatively or not, to achieve a given objective,
that can be personal to each agent, or common to the group of agents. These interactions can take
different forms: they can be purely strategic when agents seek to satisfy their own interests, and
reason about the other agents’ strategy. The fate of each of the agents, that is the satisfaction of her
preferences, depends not only on her own decisions but also on the decisions taken by the other
members of the system. Therefore, the optimal decision for an individual depends not only on her
own actions but also on what other agents are doing. As agents are not in total control of their
own fate, we say that they are in strategical interaction. In this context, game theory presents an
interesting set of tools to model and study these interactions. Agents can also need to interact with
each other to take decisions together or agree on a course of action. Here again, game theory, and
more especially cooperative game theory, is the natural way to study these problems.
However, game theory is not suitable anymore when agents need to communicate to resolve differ-
ences of opinion and conflicts of interest, to work together to resolve dilemmas, to find evidence, or
simply to exchange information. In this case, the mechanisms proposed in argumentation theory,
that allow agents to present arguments to support their positions, are more suitable.

In this chapter, we are interested in studying the link between argumentation and game theory.
More specifically, we asked ourselves how the tools from game theory, which are widely studied,
can be used in the setting of abstract argumentation theory. I first came to this idea at the end of
my PhD. thesis, which focused on the study of Boolean games, when I realized that there were
many similarities between argumentation systems and CP-Boolean games1. I wondered first if it
was possible to find a translation between both systems and then to identify some links between
the pure strategy Nash equilibrium of a CP-Boolean game, and the preferred extensions of the
corresponding argumentation system.
Later, we studied how to guide agents as to what argument should be put forward in a debate, and
proposed to exploit cooperative game theory to account for the decision-problem faced by an agent
in this context.

First and foremost, the next section introduces some background on game theory, which aims
at developing mathematical tools to model strategic interactions between several agents. More
specifically, Boolean games make it possible to represent strategic games succinctly by taking
advantage of the expressivity and the conciseness of propositional logic.
Once again, our goal here is not to give an exhaustive state of the art on game theory but to introduce
some concepts that will be useful in the rest of this chapter.2

1See Section 4.2.3 on page 106.
2But there are some great books on this subject if the reader is interested in Game Theory, for example (Osborne,

2004; Osborne and Rubinstein, 1994).
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4.1 Basic concepts of Game theory
Game theory is a mathematical approach to studying the behavior - planned, real, or justified a
posteriori - of individuals faced with situations of antagonism. If the precursors were Cournot
(1838) and Edgeworth (1897), it was the publication in 1944 of the book by von Newmann and
Morgenstern (1944), The Theory of Games and Economic Behaviour, which truly established game
theory as a new discipline. In this work, von Newmann and Morgenstern proposed a solution in the
particular case of a zero-sum game (what is won by one is lost by the other, and vice versa). In 1950,
Nash (1950) showed how the ideas developed by Cournot could serve as the basis for constructing
an equilibrium theory for non-zero-sum games, which generalizes the solution proposed by Von
Neumann and Morgenstern.
Game theory studies situations in which the fate of each participant depends not only on the
decisions she makes but also on the decisions made by other participants. The optimal choice for
an agent (called player) therefore generally depends on the choices of the other agents. As each
player is not totally in control of her own fate, we say that the agents are in a situation of strategic
interaction.
It is assumed in such games that the players know each other: they know how many players there
are, and who they are. As the final outcome for each player depends on the actions of the others,
each player must get an idea as precise as possible of the strategies chosen (or likely to be chosen)
by the other players. For this, we assume that the agents are rational, that is that each player
strives to make the best decisions for herself, and knows that the other players do the same.

4.1.1 Game taxonomy
Succinctly, a game is a set of players, a set of strategy profiles (i.e. a vector of strategies, one
strategy for each player representing a possible choice for her) and a utility function that gives each
player her profit according to each strategy profile. Each strategy profile is called an issue of the
game. A game can be static or dynamic; and cooperative or non-cooperative.

Static games: A game is static if players choose their strategies simultaneously, and then receive
their respective utility.

Dynamic games: A game is dynamic if it proceeds in several steps. In a dynamic game with
perfect information, each player knows all past players’ choices and knows all possible
strategies of every player. If several players choose their actions simultaneously at a given
step, or if players do not know every strategy of the other players, the game is dynamic with
imperfect information.3

Cooperative games: A game is cooperative if players can make agreements and form coalitions4

to achieve together their goals. A cooperative game has transferable utilities if it is possible
to add players’ utilities and to distribute this sum to members of a coalition (there exists a
“common currency” with which one can make transfers) and has non-transferable utilities
otherwise.

Non-cooperative games: A game is non-cooperative if players cannot make agreements. Non-
cooperative games can be divided into two cases: zero-sum games and non-zero-sum games.
Zero-sum games are games in which the “algebraic” sum of players’ profits is a constant:
what a player gains is necessarily lost by another player.

The prisoner’s dilemma is a famous example of a static, non-cooperative and non-zero-sum game.

3This notion of perfect and imperfect information does not make sense in static games.
4A coalition is a subset of players.
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Example 4.1 Two suspects are arrested by the police. Each prisoner is in solitary confinement
and cannot communicate with the other. The prosecutors lack sufficient evidence to convict
the pair on the principal charge, but they have enough to convict both on a lesser charge. The
prosecutors offer each prisoner the same deal. Each prisoner is given the opportunity either to
betray the other by testifying that the other committed the crime or to cooperate with the other
by remaining silent. The possible outcomes are:

• If one testifies against her partner and the other remains silent, the betrayer goes free
while the silent accomplice receives the full 5-year sentence.

• If both remain silent, both prisoners are sentenced to only one year in jail for a minor
charge.

• If each betrays the other, each receives a 3-year sentence.

This problem can be formalized by a two-player game, each player having two possible strategies:
to cooperate with (denoted by C) or to defect from (i.e., betray) the other player (denoted by D).

• The set of players is N = {1,2}
• Prisoner 1 has two possible strategies: s11 = C and s12 = D. Prisoner 2 has the same

possibilities: s21 =C and s22 = D.

• There are thus four strategy profiles: CC, CD, DC, DD

• The utility functions are the following:

– u1(C,C) = u2(C,C) =−1,
– u1(D,D) = u2(D,D) =−3,
– u1(C,D) = u2(D,C) =−5
– u1(D,C) = u2(C,D) = 0.

■

4.1.2 Game representation
A strategic game can be represented in two different but equivalent ways: in normal form or
extensive form.
The extensive form of a game is a decision tree describing the possible strategies of each player at
each stage of the game. A node of this tree specifies the current player, as well as the information
available to her. A branch corresponds to the different alternatives available at each time, and a leaf
gives the gains of each player for the corresponding strategy profile.

Example 4.1 [continuing from p. 101] An extensive form of the prisoner’s dilemma is the
following:

1

2

(-1, -1)

C

(-5, 0)

D

C

2

(0, -5)

C

(-3, -3)

D

D

In the leaves, the first element of each pair represents Player’s 1 utility, while the second one
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represents Player’s 2 utility.
The dotted circle surrounding the two occurrences of Player 2 means that this player does not
know in which situation she is: she does not know if her accomplice has chosen to betray her or
to keep quiet.
This game has another extensive form in which the root node corresponds to the second player.
As the two players play simultaneously, these two representations are equivalent.

■

The normal form of a game gives the set of players, the set of strategies of each player and the
profits for each strategy profile. This corresponds to a matrix form which associates with each
strategy profile s a n-tuple giving the utility obtained by each player: (u1(s),u2(s), . . . ,un(s)).

Example 4.1 [continuing from p. 101] The normal form of the prisoner’s dilemma is the
following:

H
HHH

HH1
2

C D

C (-1, -1) (-5, 0)

D (0, -5) (-3, -3)

■

4.1.3 Solution concepts

There exist many solution concepts in game theory, but I will only present the pure-strategy Nash
equilibrium and the Shapley value in this document. Interested readers can refer to the following
books for more details (Osborne, 2004; Osborne and Rubinstein, 1994).

Pure-strategy Nash equilibria

Nash equilibrium, introduced by Nash (1950), is a fundamental solution concept in Game Theory.
It describes an issue of the game in which no player wishes to modify her strategy given the strategy
of each other player. So a Nash equilibrium is a strategy profile where no player may find it
beneficial to deviate if she assumes that the other players will not deviate either. There exist several
versions of this concept: pure-strategy Nash equilibrium (PNE) or mixed-strategy Nash equilibrium
(where probabilities are associated with the strategies).
A pure strategy Nash equilibrium (PNE) is a strategy profile such that each player’s strategy
is an optimal response to the strategies of the other players. In other words, a pure strategy Nash
equilibrium is a strategy profile where no player may find it beneficial to deviate if it assumes that
the other players will not deviate either.

Example 4.1 [continuing from p. 101] Strategy profile DD is a pure-strategy Nash equilibrium
of the prisoner’s dilemma. Indeed, one can check that: u1(DD) ≥ u1(CD) and u2(DD) ≥
u2(DC).
This is the only PNE of this game:

• as u1(DC)≥ u1(CC), CC cannot be a PNE (if player 2 chooses to remain silent, player 1
would be better off betraying)

• as u2(DD)≥ u2(DC), DC cannot be a PNE

• as u1(DD)≥ u1(CD), CD cannot be a PNE
■

Existence and unicity of a PNE are not guaranteed.
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Shapley value

A coalitional (or cooperative) game is a pair (N,v), where N denotes a finite set of players and
v is the characteristic function, assigning to each S ⊆ N, a real number v(S) ∈ R, with v( /0) = 0
by convention. A group of players T ⊆ N is called a coalition and v(T ) is called the worth of this
coalition.
Given a game, a power index may be computed to convert information about the worth that
coalitions can achieve into a personal attribution (of payoff) to each of the players:

π
p
i (v) = ∑

S⊂N:i/∈S
ps
(

v(S∪{i})− v(S)
)

for each i ∈ N, where ps represents the probability that a coalition S ∈ 2N (of cardinality s) with
i /∈ S forms.5

The Shapley value (Shapley, 1953) is a power index π p̂(v) with

p̂s =
1

n
(n−1

s

) =
s!(n− s−1)!

n!

for each s = 0,1, . . . ,n−1, where n is the number of players.

4.2 Boolean games
During my PhD, I studied Boolean games, which are a logical setting for succinctly representing
static games, taking advantage of the expressive power and conciseness of propositional logic.
After my PhD, I began interested in the study of the links between argumentation and Boolean
games. The main idea was to use specific tools of game theory, and some particular properties of
Boolean games, for computing the extensions of an argumentation framework (Dung, 1995).
I will start by introducing some basics of Boolean games.

4.2.1 Basic concepts on Boolean Games
For static games, extended form and normal form coincide, and utility functions are usually
represented explicitly, by listing the values for each combination of strategies. However, the number
of utility values which must be specified, that is, the number of possible combinations of strategies,
is exponential in the number of players, which renders such an explicit way of representing the
preferences of the players unreasonable when the number of players is not very small. This becomes
even more problematic when the set of strategies available to an agent consists in assigning a value
from a finite domain to each of a given set of variables (which is the case in many real-world
domains). In this case, representing utility functions explicitly leads to a description whose size
is exponential both in the number of agents (n× 2n values for n agents each with two available
strategies) and in the number of variables controlled by the agents (2×2p×2p values for two agents
each controlling p Boolean variables). Thus, in all these cases, specifying players’ preferences
explicitly is unreasonable, both because it would need exponential space, and because studying
these games (for instance by computing solution concepts such as pure-strategy Nash equilibria)
would require accessing all of these utility values at least once and would take time exponential in
the numbers of agents and variables in all cases.
A way out consists in using a language for representing individual preferences (either preference
relations or utility functions) on combinatorial (multivariable) domains in a structured and compact
way. These languages exploit to a large extent the structural properties of preferences (such as
conditional independencies between variables).

5So, coalitions of the same size have the same probability to form
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Boolean games introduced in (Dunne and van der Hoek, 2004; Harrenstein, 2004; Harrenstein
et al., 2001) are two-player and zero-sum games in which Player 1’s utility function (and Player
2’s utility function which is its opposite) is represented by a formula in propositional logic, called
the Boolean form of the game. These three restrictions (2-player, zero-sum, binary preferences)
strongly limit the expressiveness of the framework and were relaxed in (Bonzon, 2007; Bonzon
et al., 2006, 2009b).
Let V = {a,b, . . .} be a finite set of propositional variables, a Boolean game with n players on V
is a n-player game in which each strategy of each player consists in assigning a truth value to all
variables belonging to a subset of V . Each player’s preferences are given by a propositional formula
ϕi over variables of V .

Definition 4.1 [Boolean game]
A n-player Boolean game is a 4-tuple (N,V,π,Φ), with

• N = {1,2, . . . ,n} the set of players (also called agents)

• V a set of propositional variables

• π : N 7→V a control assignment function which defines a partition of V

• Φ = {ϕ1, . . . ,ϕn} a set of goals, each ϕi being a satisfiable propositional formula of LV
6

The control assignment function π associates with each player all variables she controls. πi denotes
the set of variables controlled by player i. As each variable is controlled by one and only one player,
{π1, . . . ,πn} is a partition of V .
The use of Boolean games allows a very compact representation of games. This point is illustrated
by the following example which is a simplified variant of the prisoner’s dilemma problem.

Example 4.2 Consider n prisoners (denoted by 1, . . . ,n), and only two kinds of sentence (jail
or freedom). The same proposal is made to each of them: “Either you cover your accomplices
(denoted by Ci, i = 1, . . . ,n) or you denounce them (¬Ci, i = 1, . . . ,n). Denouncing makes you
free while your partners will be sent to prison (except those who denounced you as well; these
ones will also be free). But if none of you chooses to denounce, everyone will be free7”.
Here is the representation of this game in normal form for n = 3:

strategy of 3: C3
HH

HHHH1
2

C2 ¬C2

C1 (1,1,1) (0,1,0)

¬C1 (1,0,0) (1,1,0)

strategy of 3: ¬C3
HH

HHHH1
2

C2 ¬C2

C1 (0,0,1) (0,1,1)

¬C1 (1,0,1) (1,1,1)

So, for n prisoners, we have a n-dimension matrix, therefore 2n n-tuples must be specified.
This game can be expressed much more compactly by the following Boolean game G =
(N,V,π,Φ), where

• N = {1,2, . . . ,n}
• V = {C1, . . . ,Cn}
• ∀i ∈ {1, . . . ,n},πi = {Ci}
• ∀i ∈ {1, . . . ,n},ϕi = (C1 ∧C2 ∧ . . .∧Cn)∨¬Ci.

■

6The notation LS denotes the subset of L defined on the set of propositional variables S, L being a propositional
logical language.

7Notice that the limitation to binary preferences makes it impossible to express that a player prefers the situation
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The choice of dichotomous utilities (where agents can only express plain satisfaction or plain
dissatisfaction, with no intermediate levels) is an important loss of generality. This restriction can
be relaxed by replacing the preference component of a Boolean game with an input expressed
in a (propositional) language for compact preference representation. Languages for preference
representation may be either ordinal (i.e., expressed by weak orders) or cardinal (i.e., expressed by
utility functions).

4.2.2 CP-nets
We consider here a very popular language for compact preference representation on combinatorial
domains, namely CP-nets.
This graphical model exploits conditional preferential independence to structure the decision
maker’s preferences under a ceteris paribus assumption. They were introduced in Boutilier et al.
(1999) and extensively studied in many subsequent papers, most notably (Boutilier et al., 2004a,b).
Although CP-nets generally consider variables with arbitrary finite domains, for the sake of
simplicity here we consider only “propositionalized” CP-nets, that is, CP-nets with binary variables
(note that this is not a real loss of generality, as all our definitions and results can be easily lifted to
the more general case of non-binary variables).
CP-nets are based on the comparison criterion Ceteris Paribus: if an agent expresses in natural
language a preference such that “a round table will be better in the living room than a square table”,
she does not want to say that any round table would be better than any square table; she wants to
express the fact that she prefers a round table to a square table if they do not significantly differ on
their other characteristics. This is the Ceteris Paribus principle which leads to the following notion
of independence:

Definition 4.2 [Conditionally preferentially independence]
Let V be a set of propositional variables and {X ,Y,Z} be a partition of V . X is conditionally
preferentially independent of Y given Z if and only if ∀z ∈ 2Z , ∀x1,x2 ∈ 2X and ∀y1,y2 ∈ 2Y

we have:
x1y1z ⪰ x2y1z if and only if x1y2z ⪰ x2y2z

For each variable X ∈ V , the agent specifies a set of parent variables Pa(X) that can affect her
preferences over the values of X . Formally, X and V \({X}∪Pa(X)) are conditionally preferentially
independent given Pa(X). This information is used to create the CP-net:

Definition 4.3 [CP-net]
Let V be a set of propositional variables. N = ⟨G,T ⟩ is a CP-net on V , where G is a directed
graph over V , and T is a set of conditional preference tables CPT (X j) for each X j ∈V . Each
CPT (X j) associates a linear order ≻ j

p with each instantiation p ∈ 2Pa(X j).

The preference information captured by a CP-net N can be viewed as a set of logical assertions
about an agent’s preference ordering over complete assignments to variables in the network. These
statements are generally not complete, that is, they do not determine a unique preference ordering.

Definition 4.4 [Induced preference relation]
The preference relation over outcomes induced by a CP-net N is denoted by ≻N , and defined
by ∀o,o′ ∈ 2V , o ≻N o′ if and only if N |= o ≻ o′.

Informally, a CP-net N is satisfied by ≻ if ≻ satisfies each of the conditional preferences expressed
in the CPTs of N under the ceteris paribus interpretation.

where he denounces and the others cooperate to the situation where everyone cooperates, and the latter to a situation
where everyone denounces. To do so we need a more sophisticated language (see Bonzon et al., 2009b).
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Example 4.3 Consider the following CP-net about my preferences for dinner. Variables S
and W correspond respectively to the soup and the wine. I strictly prefer to eat fish soup (S f )
rather than vegetable soup (Sv), and about wine, my preferences depend on the soup I eat: I
prefer red wine (Wr) with vegetable soup (Sv : Wr ≻Ww) and white wine (Ww) with fish soup
(S f : Ww ≻Wr). So D(S) = {S f ,Sv} and D(W ) = {Wr,Ww}.

W

S S f ≻ Sv

S f Ww ≻Wr

Sv Wr ≻Ww

The preference relation induced by this CP-net is the following. The bottom element (Sv ∧Ww)
is the worst case and the top element (S f ∧Ww) is the best case.

Sv ∧Ww

Sv ∧Wr

S f ∧Wr

S f ∧Ww

There is an arrow between the nodes (S f ∧Ww) and (Sv ∧Ww) because we can compare these
states, every other thing being equal.
In this case, we can completely order the possible states (from the most preferred one to the
least preferred one) :

(S f ∧Ww)≻ (S f ∧Wr)≻ (Sv ∧Wr)≻ (Sv ∧Ww)

This relation ≻ is the only ranking that satisfies this CP-net. ■

4.2.3 CP-Boolean games
In Bonzon et al. (2009b), Boolean games are generalized with non dichotomous preferences: they
are coupled with propositionalized CP-nets.

Definition 4.5 [CP-Boolean game]
A CP-Boolean game is a 4-uple G = (N,V,π,Φ), where N = {1, . . . ,n} is a set of players,
V = {x1, . . . ,xp} is a set of propositional variables, π : N 7→V is a control assignment function
which defines a partition of V , and Φ = ⟨N1, . . . ,Nn⟩. Each Ni is a CP-net on V whose graph is
denoted by Gi, and ∀i ∈ N, ⪰i=⪰Ni .

Each CP-net Ni is a compact representation of the preference relation of player i on S.

Definition 4.6 [Strategy, strategy profile]
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Let G = (N,V,π,Φ) be a CP-Boolean game. A strategy si for a player i is a πi-interpretation. A
strategy profile s is a n-tuple s = (s1, . . . ,sn) where for all i, si ∈ 2πi .

In other words, a strategy for i is a truth assignment for all the variables i controls. As {π1, . . . ,πn}
forms a partition of V , a strategy profile defines an (unambiguous) interpretation for V . Slightly
abusing notation and words, we write s ∈ 2V , to refer to the value assigned by s to some variable.
We make use of the following notations which are standard in game theory. Let G = (N,V,π,Φ) be
a Boolean game with N = {1, . . . ,n}, and s = (s1, . . . ,sn), s′ = (s′1, . . . ,s

′
n) be two strategy profiles.

• s−i denotes the projection of s onto N \{i}: s−i = (s1, . . . ,si−1,si+1, . . . ,sn)

• π−i denotes the set of the variables controlled by all players except i: π−i =V \πi

• (s′i,s−i) denotes the strategy profile obtained from s by replacing si with s′i without changing
the other strategies: (s′i,s−i) = (s1, . . . ,si−1,s′i,si+1, . . . ,sn).

Pure strategy Nash equilibria (PNE) are classically defined for games where preferences are
complete, which is not necessarily the case here. So we introduce the notion of strong PNE.

Definition 4.7 [Strong PNE]
Let G = (N,V,π,Φ) and Pre fG = ⟨⪰1, . . . ,⪰n⟩ the collection of preference relations on 2V

induced from Φ. Let s = (s1, . . . ,sn) ∈ 2V . s is a strong PNE (SPNE) for G iff ∀i ∈ {1, . . . ,n},
∀s′i ∈ 2πi ,(s′i,s−i)⪯i (si,s−i).

Example 4.4 Consider the CP-Boolean game G = (N,V,π,Φ) where N = {1,2}, V = {a,b,c},
π1 = {a,b}, π2 = {c}, N1 and N2, as well as ⪰1=⪰N1 and ⪰2=⪰N2 , are represented on the
following figure.
Arrows are oriented from more preferred to less preferred strategy profiles; we do not draw
edges that are obtained from others by transitivity; and the dashed arrows indicate the links
taken into account to compute Nash equilibria.

N1 ⪰1

C

B

A a ≻ a

b ≻ b

a∧b c ≻ c
a∧b c ≻ c
a∧b c ≻ c
a∧b c ≻ c

abc

abc

abc abc

abc abc

abc

abc

N2 ⪰2

C

B

A a ≻ a

a b ≻ b
a b ≻ b

b c ≻ c
b c ≻ c

abc
abc

abc

abc abc

abc
abc

abc

Using these partial pre-orders, the SPNE of G is {abc}.
■

The following proposition has been shown in Bonzon et al. (2009b).

Proposition 4.1 Let G = (N,V,π,Φ) be a CP-Boolean game such that graphs Gi are all identical
(∀i, j ∈ N, Gi = G j) and acyclic. Then G has one and only one strong PNE.

The proof of this result makes use of the forward sweep procedure (Boutilier et al., 2004a) for
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outcome optimization (this procedure consists of instantiating variables following an order compat-
ible with the graph, choosing for each variable its preferred value given the value of its parents).
Moreover, this SPNE can be built in polynomial time.

4.3 Argumentation and Boolean games
The leading idea here consists in translating an argumentation system AF into a Boolean CP-game
G, to use specific tools of game theory, and some particular properties of Boolean CP-games for
computing the extensions of AF. This is a joint work with Caroline Devred and Marie-Christine
Lagasquie-Schiex.8

This idea is born from the following facts:
• argumentation and games have many strong links, in particular, the fact that both can represent

interactions between rational agents

• a static game should allow the representation of an abstract argumentation framework: in
both cases, agents give their arguments (resp. strategies) without analyzing those of the other
agents, this analysis will be made afterward with the computation of extensions (resp. PNE)

• the graphical aspect of the CP-nets is similar to the graphical aspect of the argumentation
(interaction graph)

This work aims to establish a new link between argumentation and games, but not to obtain more
efficient algorithms for computing the extensions (there already exist many efficient algorithms
defined in literature (see Cayrol et al., 2003; Doutre and Mengin, 2001)).

4.3.1 Add-ons on argumentation theory
We already defined the basics of argumentation in Section 2.1 on page 9, but we will need some
other notions in the following.
An “elementary” cycle, as defined by Amgoud et al. (2008), is a cycle that does not contain another
cycle. However, as the classical definition of an “elementary” cycle in graph theory9 is not the same
as the one used in (Amgoud et al., 2008), we will use the word “minimal” instead of “elementary”
to avoid any ambiguity.

Definition 4.8 [Cycle, Minimal cycle]
Let X = {a0, . . . ,an} and Y = {b0, . . . ,bm} be two non-empty sequences of arguments of AF=
⟨A,R⟩.

• X is a cycle if and only if ∀i ≤ n−1, aiRai+1 and anRa0. n+1 is the length of X .

• Considering that X and Y are cycles, X strictly contains Y , denoted by Y ⊂ X , if and only
if m < n and ∃i = 0 . . .n such that ai = b0, a(i+1) modulo (n+1) = b1, . . . , a(i+m) modulo (n+1) =
bm.

• X is a minimal cycle if and only if X is a cycle and ∄ a cycle X ′ such that X ′ ⊂ X .

Example 4.5 In the following graph, the cycle {a,b,c} is not minimal because it contains the
minimal cycle {b,c}.

8Detailed proofs and algorithms can be found in (Bonzon et al., 2009a, 2010).
9In graph theory, an elementary cycle is a cycle in which a vertex cannot appear twice (see Berge, 1973).
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a b

c

■

We will also need the following properties (Amgoud et al., 2008; Doutre, 2002; Dung, 1995; Dunne
and Bench-Capon, 2001, 2002):

Proposition 4.2
Let AF= ⟨A,R⟩ be an argumentation framework such that A ̸=∅.

1. Each unattacked argument belongs to every preferred extension of AF (see Dung, 1995).

2. An acyclic argumentation framework AF contains only one preferred extension (see Doutre,
2002; Dunne and Bench-Capon, 2001, 2002).

3. If ∅ is the unique preferred extension then AF contains at least an odd-length cycle (see
Doutre, 2002; Dunne and Bench-Capon, 2001, 2002).

4. If AF does not contain a minimal odd-length cycle then its preferred extensions are not
empty (see Amgoud et al., 2008).

5. If AF does not contain a minimal odd-length cycle then each preferred extension is also
stable10 (see Amgoud et al., 2008).

Many works in argumentation consider that odd-length cycles may be considered paradoxes, as
they are a generalization of an argument attacking himself, in particular, if these cycles are minimal.
Even if some odd-length cycles may make sense, we consider in this work that argumentation
frameworks should not contain minimal odd-length cycles11. However, argumentation frameworks
with even-length cycles will be taken into account.
As an argumentation framework without any minimal odd-length cycle is coherent, an interesting
consequence occurs:

Corollary 4.1 Let AF= ⟨A,R⟩ be an argumentation framework without minimal odd-length
cycles. Let E ∈ Epr(AF) be a preferred extension of AF. Let a be an argument of AF. If there is
no attacker of a in E then a ∈ E.

4.3.2 Translation of an Argumentation system into a CP-Boolean game
The translation of an argumentation system into a CP-Boolean game can be done on argumentation
systems that do not contain any minimal odd-length cycle. We thus need to make a “precompilation”
of the argumentation system we want to translate, to remove the minimal odd-length cycles. This
removal can be done in polynomial time if we choose to remove all the odd-length cycle, even if
they are not minimal, or in exponential time if we remove only the minimal cycles:12

• To remove all odd-length cycles, the two following algorithms can be used:

– ISCYCLIC which returns true if there exists at least one cycle in the argumentation
graph. This algorithm is linear:

(Step 1) removing all the vertices which do not have predecessors;
(Step 2) iterating Step 1 until either all the remained vertices have at least one prede-

cessor (there is a cycle in the initial graph), or the graph is empty (there is no cycle
10One says that the argumentation framework is coherent (see Dung (1995)).
11And, if it is not the case, these minimal odd-length cycles will be removed from the argumentation framework.
12This algorithm is detailed in (Bonzon et al., 2009a, 2010).
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in the initial graph).

– REMODDCYCLES for removing the odd-length cycles if there are some of them in the
AF. This algorithm is polynomial:

(Step 1) computation of the Boolean adjacency matrix corresponding to all shortest
odd-length paths of attack (in terms of length); it is sufficient to take the Boolean
adjacency of the graph M (M(i, j) = 1 if there is an edge from i to j in AF) and
to compute Molc =M1 +M3 + . . .+M2n−1 with n = |N|;13

(Step 2) removal of all the arguments for which the diagonal element of the adjacency
matrix Molc is 1;

(Step 3) removal of all the edges having one removed argument as the endpoint or as
the start point.

One can say that as Algorithm ISCYCLIC does not directly detect odd-length cycles, it is
useless in the precompilation. However, as ISCYCLIC is a linear-time algorithm whereas
REMODDCYCLES is only a polynomial-time one, it is interesting to avoid an unnecessary
execution of REMODDCYCLES when AF is acyclic.

• The algorithm allowing to remove only minimal odd-length cycles is less efficient than the
previous ones (it is an exponential-time algorithm), but it allows the conservation of some
odd-length cycles which makes sense.

Let AF be an argumentation framework that does not contain minimal odd-length cycles. The
principles of the algorithm TRANSLAFTOCPBG allowing to translate such an AF into a CP-
Boolean game G are the following:

• each argument of AF is a variable of G;

• each variable is controlled by a different player (so we have as many players as variables);

• the CP-nets of all players are defined in the same way:

– the graph of the CP-net is exactly the directed graph of AF;
– the preferences over each variable v which is not attacked are v ≻ v (if an argument is

not attacked, we want to protect it; so the value true of the variable v is preferred to its
value false),

– the preferences over each variable v which is attacked by the set of variables R−1(v)
depends on these variables: if at least one variable w ∈R−1(v) is satisfied, v cannot be
satisfied (so we have

∨
w∈R−1(v) w : v ≻ v14); otherwise, if all variables w ∈R−1(v) are

not satisfied, v can be satisfied (and so
∧

w∈R−1(v) w : v ≻ v).

The construction of a CP-Boolean game G from an argumentation framework AF is made in
polynomial time (even if AF is cyclic and if we have to remove all its odd-length cycles).
The use of this algorithm implies the following property:

Proposition 4.3 Let AF = ⟨A,R⟩ be an argumentation framework without minimal odd-
length cycles. Let G = (N,V,π,Φ) be the CP-Boolean game obtained by translating AF using
TRANSLAFTOCPBG. s is a preferred extension of AF if and only if s is a SPNE fora G.

aRecall that s denotes a V -interpretation, that is if s = abc for example, this corresponds to the set {a,c}.

The translation of an AF into a CP-Boolean game is illustrated in the following example.

13The bound 2n−1 is obtained using a general result given by graph theory: if a directed graph contains a path from
a to b then there exists an elementary path – in the classical sense given by graph theory: a path in which each vertex
appears only once – from a to b.

14The formula w : v ≻ v (resp. w : v ≻ v) means that, for the value true (resp. false) of the variable w, the value
false of the variable v is preferred to its value true.
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Example 4.6 Consider the following acyclic argumentation systems, AF = ⟨{a,b,c,d,e},
{(b,a), (c,b), (d,b), (e,c)}⟩.

ab

c

d

e

By applying TRANSLAFTOCPBG, AF is transformed in a CP-Boolean game G = (N,V,π,Φ),
such that:

• V = {a,b,c,d,e}
• N = {1,2,3,4,5}
• π1 = {a}, π2 = {b}, π3 = {c}, π4 = {d} and π5 = {e}

The following CP-net represents the preferences of all players. To distinguish the CP-net from
the AF, nodes in the CP-net are in uppercase, whereas nodes in the AF are in lowercase.

A

b a ≻ a
b a ≻ a

B

c∨d b ≻ b
c∧d b ≻ bC

e c ≻ c
e c ≻ c

D

d ≻ d

E

e ≻ e

G has one SPNE {edcba} and AF has only one preferred extension {e,d,a}. ■

The following example shows the translation of a cyclic AF but with only even-length-cycles:

Example 4.7 Consider AF= ⟨{a,b},{(a,b), (b,a)}⟩.

a b

As AF is cyclic, but contains only even-length cycles, TRANSLAFTOCPBG can be applied. We
obtain G = (N,V,π,Φ), such that V = {a,b}, N = {1,2}, π1 = {a}, π2 = {b}. The following
CP-net represents the preferences of all players:

A
b a ≻ a
b a ≻ a B

a b ≻ b
a b ≻ b

G has two SPNEs {ab, ab} and AF has two preferred extensions {a}, {b}. ■

And then we give an example of an AF with odd-length cycles:

Example 4.8 Consider AF= ⟨{a,b,c,d,e}, {(a,b), (b,c), (c,d),(d,e), (e,c)}⟩. The initial AF
is cyclic and contains a minimal odd-length cycle. This cycle has to be removed before we can
apply TRANSLAFTOCPBG, and the final AF contains only a and b.
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Initial AF

a b c

d

e

Final AF

a b

So, by applying TRANSLAFTOCPBG, We obtain G = (N,V,π,Φ), such that V = {a,b},
N = {1,2}, with π1 = {a}, π2 = {b} and the following CP-net which represents the preferences
of all players:

Aa ≻ a B
a b ≻ b
a b ≻ b

G has one SPNE {ab} and the final AF (after removal of minimal odd-length cycles) has one
preferred extension {a}. ■

4.3.3 Computation of preferred extensions
Since preferred extensions correspond exactly to SPNEs, the main properties of the computation
of SPNE in CP-Boolean games can be applied. The first interesting case concerns the acyclic
argumentation frameworks:

Proposition 4.4 Let AF be an argumentation framework without minimal odd-length cycles.
Let G be the CP-Boolean game obtained from AF by applying TRANSLAFTOCPBG. If AF is
acyclic, AF has one and only one preferred extension which is computable in polynomial time
using G.

This proposition holds for the simple case of acyclic argumentation frameworks. The computation
of SPNE(s) for cyclic argumentation frameworks is more complex.
First, we need the algorithm COMPINTCYCLEFORPROP, which returns the cycle (or one of the
cycles if there are several) in a given set of variables which allows to reach more variables as
possible.
For instance, on the following graph:

a b c d

efg

h

i j

{a,b} allows to reach the variables a, b, c, d, e, f , and {i, j} allows to reach the variables i, j, c, d,
e, f . This type of cycle allows a more interesting propagation of values over the graph (if they are
the starting point of a propagation process then this propagation is more efficient).

Let N be the CP-net representing goals of players of a CP-Boolean game, the principles of
Algorithm COMPSPNEREC, allowing to recursively compute the SPNEs of a CP-Boolean game
obtained from an argumentation framework are the following:

• instantiation of all unattacked variables (which have no parents in N and are satisfied in the
SPNE)

• propagation of these instantiations as long as possible

• once all feasible instantiations have been done, loop:
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– if all variables have been instantiated, the SPNE can be returned
– else, with Algorithm COMPINTCYCLEFORPROP, the more interesting15 cycle C re-

maining is computed (there is one, otherwise, all variables would have been instantiated)
– using the current state of the current SPNE, create two new SPNEs; the first one contains

a variable of C instantiated to true, and the second one contains this same variable
instantiated to false

– propagation of these instantiations for each one of these SPNEs as long as possible.

Example 4.9 Using the following graph:

a b c d

efg

h

i j k l

the steps of the computation process are:
• g and h are instantiated to true (current state of SPNE = gh)

• a and d are instantiated to false (current state of SPNE = ghad)

• b is instantiated to true (current state of SPNE = ghadb)

• c is instantiated to false (current state of SPNE = ghadbc)

• at this point the simple propagation stops. We must compute the interesting cycles in the
remaining set of variables {e, f , i, j,k, l} and the result is {i, j}.

• the propagation process is restarted with the following current states of two SPNEs:
ghadbci and ghadbci

• . . .

• at the end of the propagation process, three instantiations are obtained ghadbcie f jkl,
ghadbcie f jkl and ghadbcie f jkl. These SPNEs correspond to the three preferred exten-
sions {g,h,b,e, j, l}, {g,h,b, f , i,k} and {g,h,b, i, f , l}.

■

The following proposition shows that Algorithm COMPSPNEREC allows to exactly compute the
set of SPNEs of the CP-Boolean game.

Proposition 4.5 Let G be a CP-Boolean game given by Algorithm TRANSLAFTOCPBG. Let
SP be the set of strategy profiles of G given by Algorithm COMPSPNEREC. s ∈ SP if and only
if s is a SPNE for G.

Another interesting question regarding the links between game and argumentation theory is to study
how the concepts of cooperative game theory can guide agents as to what argument should be put
forward in a debate.

4.4 Coalitional games for abstract argumentation
Strategical interactions between agents are central when we consider multi-agent debates. A central
problem faced by agents contributing in such a multiagent debate is that they have to put forward
arguments taking into account their own goals, but also how the audience (the other agents taking
part in the debate) may receive their arguments, and also possibly whether the rules of the debate

15That is, the cycle that allows the more efficient propagation.
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will allow them to put forward these arguments. Consider, for instance, the attitude of politicians
participating in public debates: their choice to embrace arguments often depends on factors like, for
instance, the popularity of the arguments, the share of voters supporting those arguments, a degree
of personal satisfaction, the consensus generated by those arguments in an assembly or a forum, the
contiguity with a political position, etc.
This results in a complex decision-making problem, where most of the parameters are likely to be
uncertain: what are the arguments known by other agents? What are their own goals? Perhaps the
most basic type of uncertainty is that it is virtually impossible to exactly predict what combination
of arguments will result from the debate. In this context, it is not clear how the debate will evolve,
and thus the decision as to what argument to put forward is a difficult one.
In this joint work with Nicolas Maudet and Stefano Moretti (Bonzon et al., 2014), we investigated
how to guide agents as to what move is good to play and proposed to exploit cooperative game
theory to account for the decision problem faced by an agent in this context.
We assume that each agent has (cardinal) preferences over single arguments v : A→ N, and that
they take part in a debate where the outcome is difficult to predict. It may be that they don’t know
how the debate will evolve, what are the arguments known by the other agents, or how people will
vote. The outcome is evaluated thanks to an argumentative filter, that is a function M(S) which
returns the valuable arguments. Then:

v(S) = ∑
a∈M(S)

v(a)

for each S ⊆A with |S| ≥ 2.
The argumentative filter may be (almost) any function M(S) which tells us which arguments are
valuable in the end. For instance:

• anything uttered: any argument just put forward during the debate is valuable

• final word: any unattacked argument in the debate outcome is valuable

• grounded extension: any acceptable argument under the grounded extension is valuable

Example 4.10 Let the following argumentation system, where the number next to an argument’s
name represents the valuation (cardinal preference) of the agent.

a|3 b|0

c|1

d|2

e|1

f |3

If the argumentative filter is:
• “anything uttered”, M(S) =A, and v(S) = 10.

• “final word”, M(S) = {c, f}, and v(S) = 4.

• “grounded extension”, M(S) = {c,e, f}, and v(S) = 5.
■

Definition 4.9 [Coalitional Argumentation Framework (CAF)]
A Coalitional Argumentation Framework (CAF) is a triple ⟨A,R,v⟩ where

• ⟨A,R⟩ is an argumentation framework;

• v : 2A → R is a map that associates to each coalition S ⊆A its “worth” for the user
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– ∀a ∈ A, v(a) is given by a cardinal preference relation over A
– ∀S ⊆ (A), with |S| ≥ 2, v(S) is computed thanks to the argumentative filter M(S)

Given a CAF ⟨A,R,v⟩, we study the problem of providing a measure representing the relevance of
arguments. The first idea is to compute the marginal contribution of each argument, as well as their
Shapley value (see Section 4.1.3 on page 103).

Example 4.11 Let M(S) be “final word”

a|0 b|1 c|−1

S : {a} {b} {c} {a,b} {a,c} {b,c} {a,b,c}
M(S) : {a} {b} {c} {a} {a,c} {b} {a}
v(S) : 0 1 −1 0 −1 1 0

We can now compute the marginal contributions of each argument:

S v(S) v(S)∪{a} v(S)∪{b} v(S)∪{c}
/0 0 0 1 -1
{a} 0 – 0 -1
{b} 1 0 – 1
{c} -1 -1 1 –
{a,b} 0 – – 0
{a,c} -1 – 0 –
{b,c} 1 0 – –

The Shapley value of each of these arguments is the following :

• π
p̂
a (v) =−1

2

• π
p̂
b (v) = 1

• π
p̂
c (v) =−1

2

■

The question is to figure out if the Shapley value is coherent in this context. We want to ensure
that both the structure of the argumentation framework and the worth of opinions as measured by v
are taken into account. To do so, we focus on properties such that a measure of relevance should
satisfy.
Let ⟨A,R,v⟩ be a CAF. We recall that R−

1 (a) is the set of direct attackers of a ∈ A, and denote
S(a) the set of arguments attacked by a: S(a) = {b ∈ A|a ∈R−

1 (b)}.

Symmetry (SYM) The Symmetry property says that the relevance of an argument does not depend
on its label.
Let i, j ∈ A be such that R−

1 (i) =R−
1 ( j), S(i) = S( j) and v(i) = v( j). A power index πp

satisfies the property of Symmetry (SYM) if and only if π
p
i (v) = π

p
j (v).

Disconnected Argument (DA) The Disconnected Argument property says that disconnected ar-
guments should receive as value of relevance precisely their utility.
Let i ∈ A be such that R−

1 (i) = S(i) = /0. A power index πp satisfies the property of
Disconnected Argument (DA) if and only if π

p
i (v) = v(i).

Efficiency (EFF) The Efficiency property imposes an upper bound over the total amount of
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relevance of arguments.
A power index πp satisfies the property of Efficiency (EFF) if and only if ∑i∈A π

p
i (v) =

∑i∈M(A) v(i).

Equal Impact of Attack (EIA) A consequence of an attack should equally affect both arguments
involved in the attack.
Let i, j ∈ A with i ̸= j. Consider a CAF ⟨A,R∪{(i, j)},vi j⟩. A power index πp satisfies the
property of Equal Impact of Attack (EIA) if and only if π

p
i (v)−π

p
i (vi j) = π

p
j (v)−π

p
j (vi j)

Additivity (ADD) Let CAF1 = ⟨A,R1,v1⟩ and CAF2 = ⟨A,R2,v2⟩ such that there exists CAF3 =
⟨A,R3,v1 + v2⟩. A power index πp satisfies the property of Additivity (ADD) if and only if
π

p
i (v1)+π

p
i (v2) = π

p
i (v1 + v2).

The sum of the relevance of each argument i in CAF1 and CAF2 must be equal to the
relevance of i in CAF3.

An axiomatic characterization can then be obtained:

Theorem 4.1 The Shapley value is the unique index that satisfies properties EFF, SYM, DA,
EIA and ADD.

Moreover, if in general, the Shapley value is hard to calculate since it requires a number of
operations that is exponential in the number of arguments, good computational properties can be
derived for the specific class of CAFs introduced in this section.
Assigning to each argument the status of ‘accepted’ or ‘rejected’ can be seen as a simplistic manner
to compare arguments in decision-making applications. The measure of importance for arguments
provided by the Shapley value in a CAF can be interpreted as a novel measure of acceptability,
provided that all the arguments are indifferent to the user.



5. Interaction in Task Allocation

With the rise of low-cost robotics and drones, multi-agent coordination (MAC) has proven very
effective for robotic teamwork (e.g. Marcolino et al., 2013; Vig and Adams, 2006). Many MAC
problems require multiple heterogeneous agents to concurrently perform a joint task, comprised of
sub-tasks. For example, in search and rescue problems (Beck et al., 2016), robots with complemen-
tary capabilities perform a set of tasks that jointly address a global task. Yet, the vast majority of
such solutions assume task independence. Moreover, as many communication disconnections or
breakdowns may occur in real-world applications, we need multi-agent task allocation mechanisms
in a decentralized and robust manner, to avoid the single-point failure possible in a centralized
configuration.
Such MAC problems are commonly solved via agent coalition formation (Shehory and Kraus, 1998).
Thus, the global task is accomplished by a set of coalitions comprising a coalition structure (Rahwan
et al., 2015). Optimal coalition formation and coalition structure generation are exponentially
complex. Recent progress led to complexity reduction in specific domains, however, optimal
solutions remain exponential. Task interdependence further increases complexity as the formation
of a coalition and its utility may depend on other coalitions. Distributed solutions that attempt to
ease complexity (e.g Michalak et al., 2010) opt for an anytime approach, where quality improves as
the formation process progresses.

In this chapter, we present a novel decentralized, anytime coalition formation and task allocation
mechanism, that diverges from the state of the art in several ways. Specifically, we address coalition
formation where sub-tasks and coalition utilities are interdependent, thus affecting the global utility
of the coalition structure. To address this, our mechanism simultaneously considers local and global
task requirements, accounting for interrelations thereof. Such interrelations are seldom considered
in the prior art. Additionally, our approach explicitly represents both qualitative and quantitative
information on agent characteristics and task requirements.
Our coalition formation and task allocation mechanism is fully decentralized, thus preventing a
single point of failure. Initially, agents only know their own characteristics, the global task and its
sub-tasks and their respective requirements, and the set of available agents. Gradually, agents may
accumulate information on the characteristics of other agents, potential coalitions and coalition
structures. Throughout the process, each agent matches task requirements against its characteristics
(and characteristics of other agents it learned about) and accordingly decides which coalition it
should join to maximize global utility.
Our mechanism comprises 2 stages. Stage I, denoted Feasible Interdependent Coalition Structure
Anytime Method (FICSAM), finds a feasible coalition structure if one exists. If a solution is found, in
stage II, denoted Improved Feasible Interdependent Coalition Structure Anytime Method (IFICSAM),
agents incrementally improve it in a decentralized manner via replacements of single agents in
the coalition structure, while maintaining feasibility (i.e. no single or global task requirements are
violated). Thus, we guarantee at any time, the generation of a solution that systematically increases
the global utility.
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Note that the main part of this work has been done by Douae Ahmadoun (Ahmadoun, 2022) during
her PhD thesis, in collaboration with Thales1, and co-supervised with Pavlos Moraitis.

5.1 Interdependent task allocation
We consider the problem of decentralized allocation for a set of interdependent tasks T = {t1, t2, . . . , t|T |}
necessary to accomplish a global task T , to a set of heterogeneous cooperative agents A =
{a1,a2, . . . ,a|A|}. The global task T represents the global goal that the team of cooperative agents
has to achieve.
A specific profile can describe each agent. For instance, in a given application, an agent can be
described by its type, ownership or not of a resource, position on a grid, remaining fuel, or distances
to the different tasks.

Definition 5.1 [Agent characteristics]
Consider a set of heterogeneous agents A = {a1,a2, . . . ,a|A|}. An agent ai ∈ A is described by a
set of attributes X = {x1, . . . ,x|X |} where xk(ai) denotes the value of ai under attribute k. Without
loss of generality, we consider each attribute as a function xk : A → Dk, Dk is the domain of
values for attribute k. We call these attributes agent characteristics.

We notice here that our model characteristics capture the qualitative values, like the type and
possession of a resource, as well as the quantitative values, like the position, quantity of the
remaining fuel, and distances to tasks simultaneously.
The agents have to perform tasks as defined below:

Definition 5.2 [Single task requirements]
A task t j ∈ T is described by a set of attributes Γt j ={γ1, . . .γm} where γl(t j) is the value of task
t j under the attribute l. Without loss of generality, we consider each attribute as a function
γl : T → Kl , Kl is the domain of values for attribute l. We call the attributes Γt j single task
requirements.

Task requirements also depend on the application and can be either qualitative or quantitative. A
requirement concerning a specific type of resource or agent is a qualitative requirement. By contrast,
a minimum number of available agents or maximal distances are quantitative requirements.

Macro-level requirements may be necessary to express the presence of interdependencies and to
check their manageability. As in single-task, task combination requirements are expressed by
instantiated attributes and focus each on a specific subset of agent characteristics. For a specific
combination of tasks, a joint demand is expected to be covered by the subsets of agents assigned to
the tasks of the task combination. For example, for two specific tasks that each requires at least
one resource of a certain type, the combination formed of those tasks may require the existence of
a supplementary resource of the same type among one of the tasks. It doesn’t matter which task
has the supplementary resource, but it is enough if one of them has it. This constraint concern the
two tasks and cannot be verified in all the situations for one of the two tasks without reckoning the
other one.

Definition 5.3 [Task combination requirements]
Consider a set of attributes Λcbt j ={λ1, ..,λn} concerning task combinations such that λl(cbt j) is
the value of task combination cbt j ∈ Tcbt , Tcbt ⊆ 2T , under attribute l. Without loss of generality,
we consider each attribute as a function λl : Tcbt → Fl , Fl is the domain of values for attribute l.
We call the attributes Λcbt j task combinations requirements.

1https://www.thalesgroup.com

https://www.thalesgroup.com
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Examples of single-task requirements can be the number of agents that allow accomplishing a task
or other application-related constraints that have to be satisfied for the tasks to be accomplished.
Task combination requirements can be seen as constraints that have to be satisfied to address the
interdependence among tasks (for example, temporal constraints imposing accomplishment order).
These task combination requirements are a general representation of the inter-task dependencies.
In real-world applications, several tasks can have joint requirements. For example, in a given
situation, two tasks (or more) may need to have a minimal number of resources as a single task
requirement and need mutually an additive resource, that the tasks’ coalitions might lend if needed.
A dependency, or a task combinations requirement, can even concern all the tasks at once.

Task requirements and task combination requirements are easily translated into constraints. Single-
task requirements can be seen as constraints defined locally on tasks. These must be satisfied for
the tasks to be performed. Task combination requirements can be seen as constraints over the global
task T that must be satisfied to address dependencies among tasks.

Combined characteristics of a set of agents may allow fulfilling task requirements, or generate
conflicts with such requirements.

Definition 5.4 [Fulfillment relation]
Let s = {a1, ...,a|s|} be a set of agents, Xs = {Xa1 , ...,Xa|s|} their characteristics, t j ∈ T a task and
▷◁ denoting the satisfaction (with respect to a mathematical operator) of the assignment of a
value to a requirement γl(t j) by the assignment of a value to some characteristic xk(ai).
We say that s can fulfil a requirement γl ∈ Γt j denoted scc ⟲ γl(t j) if there exists a combination of

characteristics cc = {xk, ...,xr} ⊆ Xa1∪, ...,∪Xa|s| such that ∑
|s|
i=1 xk(ai) ▷◁ γl(t j) for some xk ∈ cc

or xr(ai) ▷◁ γl(t j) for some xr ∈ cc with r ̸= k, saying (slightly abusing the notation) that cc ▷◁ γl .
In contrast, we say that scc has a conflict with the requirement γl ∈ Γt j , if ∃xk ∈ cc such that xk
is in conflict with this requirement γl denoted as xk ̸▷◁ γl .

When a subset of agents conflicts with a task requirement, it means that the subset cannot “con-
tribute” to the task according to this specific requirement. The violation of the requirement cannot
be amended adding any agent or agents of any possible combination of characteristics.

Agents can form coalitions to accomplish a task t j ∈ T .

Definition 5.5 [Coalitions]
Let a set of agents A = {a1,a2, ...,a|A|}, a set of tasks T = {t1, t2, ..., t|T |} composing the global
task T and τ : A → T a function assigning an agent ai to a task t j when ∃xk ∈ Xai , ∃γl ∈ Γt j such
that xk ▷◁ γl , and ∄xm ∈ Xai such that xm ̸▷◁ γp for any γp ∈ Γt j with p ̸= l. A coalition Ct j ∈ 2A

whose task is t j is a subset of agents Ct j ∈ 2A such that Ct j = {ai ∈ A | τ(ai) = t j}.

To perform a global task T we need a set of coalitions S, called coalition structure. Each coalition
Ct j ∈ S is assigned a task t j ∈ T . When S can accomplish T we call it a feasible coalition structure.
Formally:

Definition 5.6 [Feasible coalition structure]
Let a global task T = {t1, t2, ..., t|T |} and a coalition structure S = {Ct1 ,Ct2 , ...,Ct|T |} over the set
of tasks T . S is a feasible coalition structure (called also a feasible solution) denoted S f if
and only if ∀t j ∈ T such that Ct j ∈ S f it holds that ∀γl ∈ Γt j , there exists a set scc ⊆ Ct j such
that scc ⟲ γl(t j) and if Λcbt is a set of requirements concerning the combination of tasks then
XS f ▷◁ Λcbt .

Note that agents are single-task, i.e., they can accomplish only one task at a time (see Gerkey and
Matarić, 2004). Thus, an agent should exist in no more than one coalition of coalition structure.
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From the perspective of coalitions, this is equivalent to stating that two different coalitions cannot
contain the same agent, formally: Ct j ,Ctk ∈ S, j ̸= k then Ct j

⋂
Ctk = ∅. However, some agents

can have no task assigned to them, and thus not exist in any coalition of the structure, formally:⋃|T |
j=1Ct j ⊆ A.

A utility function is defined following the application’s needs. It should consider the globality of
the tasks to cover the interdependencies between tasks and not be simply a sum of utilities over
tasks.

Definition 5.7 [Coalition Structure Evaluation]
Consider CS = {S1, . . . ,Sn} be the set of all possible coalition structures that could be assigned
to a global task T . We introduce a set of criteria G such that for each gk ∈ G there exists a weak
order Gk upon the set CS, Gk ⊆ CS2 such that if (S,S′) ⊆ Gk, then S ⪰ S′ and ∃gk : CS → R,
gk(S)≥ gk(S′).

Note that we consider interdependent tasks. Hence, it is necessary to define a function that evaluates
a coalition structure S as a whole considering the interdependence among the coalitions in the
structure. Evaluating the whole structure based only on individual evaluations of the coalitions
would not be sufficient due to interdependencies between tasks and thus between coalitions.
Provided the conditions of commensurability, compensation and preferential independence are
satisfied among the criteria in G (see Bouyssou et al., 2000), a global additive value function uglobal
is applicable. However, our approach is generic and therefore other types of evaluation functions
could be considered.

5.2 Decentralized coalition formation
As stated above, the main aim of our work is to find the best feasible coalition structure with respect
to the global utility uglobal if it exists or detects the non-existence of a feasible coalition structure as
early as possible. We propose a decentralized solution approach based on token-passing among the
agents, and candidate members of different coalitions assigned to the tasks composing the global
task.
The process is divided into rounds. In each round, the token is circulated among the agents. The
round ends when all agents have received the token once. Agent ordering depends on application-
based criteria. For example, in an application with a specific hierarchy, the token may be sent from
the most important, and thus possibly best candidate in the team, to the less important, the one with
fewer resources and qualities for the application. In a spatial-placed application, the token can be
passed from an agent to its nearest agent.

In the beginning, each agent knows its own characteristics and the global task T to be accomplished.
Information about the other agents and the evolution of the coalition structure formation arrives
via the token-passing process. When agent ai sends the token to agent a j, the next agent adds
information on the best (with respect to uglobal) feasible coalition structure S formed so far, the
accumulated expertise (i.e. characteristics) XS of the participating agents in S, and the number of
agents nd who have not changed the coalition structure (have not decided to join a coalition).
Holding the token, agent ai may decide to join (or initiate) a coalition Ct j assigned to task t j, if it
can contribute to the accomplishment of task t j or if its participation can increase the global utility
function uglobal . Where applicable, agent ai updates the information it received with the changes it
had applied. Then, agent ai passes the token to the next agent. If it has not joined a coalition, it
passes the token to the next agent by forwarding the information from the previous agent.

We assume that agents can exchange messages and we describe the communication protocol
that organizes the messages exchanged between agents. Yet, the underlying communication
infrastructure (i.e. studying questions such as whether there is a message board, the agents
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acknowledge message receipts, communication is asynchronous, or there is any noise) is beyond
this work’s scope.

Concretely, our mechanism has two stages:

Stage I coincides with the first round. In this stage, agents try to find a feasible coalition structure
S f , if one exists. An agent joins a coalition only if it can satisfy some task requirements
not yet satisfied by other coalition members, regardless of the impact on uglobal (i.e., the
improvement of the uglobal value is not a precondition). If no S f is found in stage I, no such
S f exists considering the requirements of the tasks and the characteristics of the available
agents.
We call the method implementing this stage FICSAM.

Stage II implements our second method incrementally improving the feasible coalition structure
found so far. This method starts from round 2. Once a feasible coalition structure was found
at the end of round 1, agents improve uglobal via replacements or swaps between single or
groups of agents. The resulting improved structure must preserve feasibility by respecting all
the single-task and task combination requirements.
We call the method implementing the first stage combined with this second stage IFICSAM.

5.2.1 General Process
Here, we present the general process for the decentralization of the coalition formation generation.2

An agent participating in the process acts either as the process initiator or as a candidate member of
some coalitions of a certain coalition structure S.
An initiator agent ai starts by initializing the set of tasks it can perform Tai . It then picks one of
them, say t j, and initializes a coalition in the structure S that is assigned to t j. We mention here that
S is at the beginning a coalition structure with empty coalitions. Following this, the agent adds its
characteristics to XS (initially empty) that accumulate the characteristics of all the members of the
coalitions in structure S. Next, it checks the feasibility of the structure S.
In the unlikely case where structure S is feasible (e.g. if T contains only the task t j and t j is fulfilled
by this exact initiator agent), this coalition structure becomes an anytime coalition structure. Agent
ai considers S as a feasible coalition structure to explore and sends this proposal to all the agents
in A. Then, in both cases, whether coalition structure S is feasible or not, agent ai initializes the
decentralized process of coalition structure formation by sending a message to the next agent a j.
With this message, agent ai passes the token to agent a j, who enters the process. ai informs a j

about the structure S, the characteristics gathered so far XS, the current round R, and the number of
agents that did not change their decision in the last round (here zero). Figure 5.1 on the next page
presents globally the main steps the first agent goes through in the process.

When an agent ai acts as a candidate member of a coalition structure, its activity depends on the
messages it receives from other agents. This is illustrated in Figure5.2 on page 123. Three types of
messages exist.
In the case of a propose ’ats’ message, if an anytime solution is required, the coalition formation
process terminates with S as the best (with respect to uglobal) feasible coalition structure found so
far. This can occur either at the end of the first round or in the middle of any other round (i.e. all
the available agents cannot check whether they can contribute to improving this feasible coalition
structure).
Otherwise, the receiving agent considers that S is a feasible coalition structure that might be further
improved. For that, the receiving agent uses procedure decide. The message propose ‘gt’ means
that S is not a feasible coalition structure and the sender passes the token (gt meaning give token)
to the receiving agent who uses procedure decide to look whether it can contribute to the search for

2An interested reader can find the detailed algorithms in Ahmadoun (2022); Ahmadoun et al. (2021).
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Figure 5.1: First agent process

a feasible coalition structure. The message inform with Smsg = /0 informs the agents that no feasible
coalition structure has been found at the end of the first round and therefore the process ends with
failure, while the same message inform with Smsg ̸= /0 informs agents that the process ends with
a feasible and improved (with respect to the feasible coalition structure found in the first round)
solution, meaning that none of the available agents can furthermore improve the current feasible
coalition structure.

Decision Process

First, agent ai checks the feasibility of the received coalition structure S. This is done using a
feasibility checking procedure according to the feasibility criteria of the given application, based
on the single task and task combinations requirements of the application.
Then, if the process is in the first round, and the received coalition structure S is not yet feasible, the
agent computes a feasible structure, accounting for the set of tasks T that have to be accomplished,
task-level and combination-level requirements, and its potential contribution in case it joins S. This
is done by implementing a CSP (Constraint Satisfaction Problem) to generate a feasible coalition
structure if it exists.
When agent ai holds the token, it adds the information about its characteristics to XS, the set of
agent characteristics gathered by preceding agents. Thus, when agent ai gets the token in the first
round, it has to solve a locally centralized coalition formation problem based on the knowledge
accumulated so far. This knowledge concerns more precisely the agents that have already joined the
coalition structure and their characteristics. Based on this knowledge, agent ai tries to find whether
preceding agents, regarding their characteristics in XS, along with ai are sufficient for satisfying all
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Figure 5.2: Global process

of the requirements of both individual tasks and task combinations.

Requirements are modeled as hard constraints (see, for example, Dechter (2003)), and a CSP
problem is solved. Note that in the case where no feasible coalition structure is found in the
first round of the decision process (i.e., the CSP problem has no solution with the accumulated
knowledge on agents until now), the process is to be terminated as there is no solution at all. In this
case, the absence of a solution is proved the following way: as each agent transfers its characteristics
in XS with the token-passing, at the end of round 1 (marking a complete passage of the token to all
the agents) the last agent has complete knowledge of all the agents’ characteristics. If a solution
existed, this last agent would have found it using this knowledge running the CSP. Therefore, if
all the agents received the token and the last one did not find a solution, no solution exists and the
process can stop by sending end-process messages to all the agents. Otherwise, the process can
proceed to gradually improve the initial feasible structure.
This procedure allows to detect during the first round whether there is a feasible coalition structure,
i.e. whether the characteristics of the available agents in A are sufficient to accomplish the tasks in
T . Subsequently, either we seek afterward to improve the performance of the coalition structure
based on a decentralized approach (knowing that we have at least one feasible coalition structure) or
we abandon the effort by avoiding consuming resources unnecessarily. Thus, by not considering the
maximization of uglobal when looking for a feasible coalition structure during the first round, this
procedure avoids losing time and computation by trying to maximize the global utility for a problem
for which we could discover later on that it has no solution considering the available resources (i.e.,
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the agents A). That also allows an anytime method, which finds an applicable solution in a minimal
time and then improves it gradually.

Feasibility Check

To check if a coalition structure S is feasible or not, we also use a CSP. The modelization of the
CSP consists of a set of variables representing the agents’ assignments, their respective domains
where each represents an empty set or the task that is allocated to the agent depending on the
agent’s assignment in the coalition structure S, and the constraints corresponding to local and global
requirements.
If the coalition structure S is feasible, the solver returns it: this assignment satisfies the problem’s
constraints, meaning that all the requirements are fulfilled by the agents’ coalitions in S and thus
that S is feasible. Otherwise, it returns that no solution exists, meaning that the coalition structure
violates one or many constraints of the problem, making it unfeasible.

Solution Generation Method

The s-f-st procedure allows the deciding agent to find a feasible coalition structure or to conclude
the temporary non-existence of such an allocation. This agent uses the knowledge it has of agents
characteristics to look for the distribution of the tasks among agents, represented by a coalition
structure, where the requirements in ΓT and Λcbt are fulfilled. It is a sort of locally centralized
feasible coalition structure generator that only considers feasibility but not utility.
The goal is to find a feasible coalition structure where agents are assigned to tasks in T . A coalition
structure feasibility results from fulfilling the tasks and task combinations requirements by its
coalitions. Many centralized coalition formation solutions can answer this need, as the methods of
Shehory and Kraus (1998). We have chosen to use a CSP to make use of the mirroring between
task requirements and constraints.
A CSP is normally defined by three elements: a set of variables, a set of these variables’ respective
domains of values and a set of constraints. In our CSP model, variables represent agents’ assign-
ments and each variable’s domain is the set of singletons of tasks in T and the empty set. This way,
the decision of an agent, represented by its corresponding variable, can have as a value one of the
tasks, if a task is allocated to him, or no task otherwise. This allocation of tasks can be seen as a
coalition formation where each task has a coalition composed of agents whose variables have this
task as a value. Finally, the constraints of our CSP implement the single task requirements and the
task combination requirements satisfaction for the agents’ characteristics. The satisfaction of a
constraint is equivalent to the fulfillment of its requirement.

5.2.2 Improved FICSAM
As stated in the previous section, the algorithm’s first stage consists in finding a feasible coalition
structure to allow agents to have a decision that deals with the problem’s constraints represented
by the task requirements. This decision corresponds to an anytime solution. The second stage
incrementally improves feasible coalition structures in terms of utility. It starts from the second
round, once S f was found in round 1.

In this stage, agents examine improvements in uglobal through replacements or swaps between
single or groups of agents. The resulting improved structure must preserve the feasibility of the
improved solution for both single tasks and task combinations requirements.
To this end, agent ai can use different algorithms to search for better solutions. It can try to swap
its place with another agent or replace another agent allocated to a different task. It may also
swap its place with a certain agent in another coalition. And after each swapping trial, it should
check if the coalition structure that results from this possible change has a greater utility than
the old coalition structure. The next sections present in-depth that different versions exist of the
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improvement trials. After the call of one of these improvement algorithms, the agent checks the
returned coalition structure’s feasibility. If the algorithm returns an improved feasible coalition
structure, then this coalition structure becomes the current best feasible one and it corresponds to a
new anytime feasible coalition structure for all the agents. If the returned structure is not feasible,
the agent reconsiders the feasible coalition structure that it received from the previous agent.

Swap Improvement Process

Once agent ai receives the token, it assumes that the received structure S maximizes uglobal . It
then checks whether it can contribute to improving the global utility uglobal by exploring two
possibilities.
The first possibility consists of assigning agent ai to another task (and thus to another coalition).
To do so, agent ai examines the possibility to move to a coalition of one of the tasks that it can
contribute to. For each of these tasks, let’s say t j, it checks if its move to coalition Ct j can result in a
coalition structure that has a greater utility than the coalition structure with the best utility until now.
This is built on the idea that there may be a task t j ∈ Tai that, if ai contributes to its performance
instead of its contribution to its current task in S, uglobal increases.
The second possibility consists of switching the agents. Two possible scenarios are tested: the
deciding agent can either take the place of another agent already allocated in a coalition, whereas
the replaced agent leaves the coalition structure; or swap places with another agent. If such a
change increases the global utility uglobal of the resulting coalition structure, the resulting coalition
structure is kept as the best current coalition structure.

Combinations Improvement Process

Instead of the one-to-one swap proposed in the previous algorithm, agents may try to swap with
many agents in their efforts to improve the coalition structure utility.
Contrary to the previous algorithm where deciding agents consider only one-to-one swapping with
other agents, we propose now to increase the search space by considering many-to-one swaps. For
this, an agent ai checks whether, for each task t j ∈ Tai , it is beneficial to replace each member of
the coalition Ct j assigned to t j by a combination cb of agents that includes ai whose characteristics
match the requirements of task t j. As previously, these changes should only take place if they
increase the global utility of the coalition structure.
This algorithm, with its many-to-one swapping trials, allows for discovering a wider part of the
search space on the possible coalition structures. Nonetheless, due to its combinatorial complexity,
it does not scale well to large problems.

CSP Improvement Process

To deal with the highly combinatorial problem related to the many-to-one or many-to-many swaps,
we propose to use a CSP approach, by using single task requirements as hard constraints (i.e.,
required to be satisfied) to reduce the search space. The idea is to eliminate the coalition structures
in the search space that do not satisfy the problem’s constraints and thus the tasks’ requirements
before processing them and calculating their utility.
Selecting the optimal agents’ subset according to the requirements of the tasks and the preferences
dictated by the utility function in the application amounts to computing optimal subsets of a set
of items. For that, Binshtok et al. (2007) proposed the BB-CSP algorithm that allows finding the
optimal items’ subset regarding a preference specification.
A preference specification is a description of the problem’s elements, the item subsets, and a
preference order over the properties of these subsets. BB-CSP introduces a formalism for the
preference specification. It starts with the item properties designation based on which the set
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properties (Pk)k≤n are defined. Once the set properties are defined, set preferences are built over the
comparison of the values of these set properties through conditional value preference statements or
relative importance statements. The conditional value preference statement is when for specific
values of the properties Pi1 ,Pi2 , ...,Pi j , we prefer a value pk for the property Pk over a value p′k.
The relative importance statements are when for specific values of the properties Pi1 ,Pi2 , ...,Pi j , the
property Pk is more important than the property Pl and thus we prefer a better value for Pk even if
we compromise on Pl’s value. We can set preferences defining an order over the properties and their
values based on these comparison statements. This order generates a tree with different properties
combinations. Each node in this tree represents a combination of properties and is associated with
a set of candidate subsets. The leaf nodes represent combinations composed of all the properties
and assign a value for each property in (Pk)k≤n.
For example, let us consider a preference specification where there is only two set properties P1 and
P2, that are both boolean (i.e., they either take the value true or false and we note Pi when it is true
and Pi otherwise) and where P1 is more important than P2 and true properties are the preferred ones.
The resulting tree is as presented in Figure 5.3.

Figure 5.3: Example of a tree of CSP in Binshtok et al. (2007)

In searching for an optimal set, Binshtok et al. (2007) proposed a Branch & Bound search. This is
used to prune the nodes whose property combinations are sub-optimal. Then, a CSP is run in each
tree node and in the specified order by the preference tree. In this CSP, the variables representing
items take 1, if the item in question appears in the output subset or 0 otherwise. The CSP aims to
look for a subset of items that have associated preferred properties to its node. Since each tree node
is mapped to a CSP, the entire tree is viewed as a tree of CSP. The B&B on the tree-of-CSP enables
finding an optimal subset of items denoted Wopt regarding the preference specification.

In our model, the items are the agents, the item properties are the agent characteristics, and the
set properties are the requirements’ state of fulfillment by the set of agents in the set. We can, in
addition, define some new desired requirements that can lead to utility increases. For example, if a
given task requires at least two agents, but the more agents we have, the greater the utility function,
we can define the desired requirement of having four agents.
In Binshtok et al. (2007), only preferences are considered. Hence, the set properties preferred
values can be seen as soft constraints, and the goal is to satisfy the maximum preferred ones. In our
problem, however, for a given task t j ∈ T , t j’ requirements are hard constraints that we denote Ht j .
Besides, we add some soft constraints, denoted as Pt j for each task t j ∈ T , in a specific decreasing
order of importance (i.e. from the more important to the less important), helping orient the search
towards the subset of agents that, by doing the concerned task, increases the global utility. Hence,
the main adaptation concerns the addition of the hard constraints in the preference specification and
thus in the CSP’s tree. Instead of having an empty root for the tree of CSP, we are starting with the
set of true properties representing the hard constraints we want our subsets of agents to satisfy. This
guarantees the assigned coalition’s local feasibility. In Figure 5.4 on the facing page, an example
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of the tree of CSP over which we apply our adaptation of the algorithm in Binshtok et al. (2007),
where a task has three task requirements (| Γt j |= 3), and thus three hard constraints and two soft
constraints were added based on the utility function.

Figure 5.4: Example of the application tree

5.3 Experimental results
We illustrate the added value of our approach and evaluate its performance by benchmarking on a
sample application. We also compare with performances obtained using a centralized method.

Scenarios

We evaluate our approach with a set of scenarios generated automatically. These are used to
benchmark FICSAM, IFICSAM (the one-to-one and many-to-one variants) and a centralized
solution.
The scenarios are generated according to the following settings: a fleet of Unmanned Aerial Vehicles
(UAVs) is assigned a mission in a seaport. The (UAV) agents must inspect the hulls of boats in
the port. The UAVs are relying on Unmanned Surface Vehicles (USVs), where they can charge.
There are typically tens of UAV agents. However, to stretch-test our approach and compare it to a
centralized approach, we experimented with up to 100 agents and 20 tasks. The USVs are scattered
across the port so that the UAVs can easily charge for handling new tasks. Our scenario generator
implements this by randomly positioning USVs (with a uniform distribution) on the port grid. We
assume that the drones are initially uniformly positioned, but different distributions can be plausible
depending on the application.
Inspection tasks may require various sensors. Here, we rely on two sensor types: HD cameras
and LASERs (see for example, Agnisarman et al. (2019)). The quantity of each resource required
by a task depends on the boat hull. In our scenario generator, the number of resources of each
type is uniformly sampled between 0 and nagents

2·ntasks
. This maintains scenario diversity and simplifies

comparison across scenarios and settings, as averages are the same and can be compared without
normalization. In addition to resource constraints, the generator introduces task interdependence
via constraints on sets of tasks. Finally, each task has a deadline.
The scenario generator also generates UAV agents. For the sake of simplicity, all UAVs have the
same maximum speed. Therefore, the travel time to a task is proportional to the distance between
the task and the UAV. Given a grid size G, the generator randomly and uniformly draws UAV
distances from [G/2,G].
The agents are provided with sensors such that 25% of them have both sensors, 37.5% have only a
LASER, and 37.5% have only an HD camera.
The token-passing strategy implemented is based on inter-agent distances. An agent holding the
token sends it to the nearest agent that has not yet received the token in the current round.
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Finally, the global utility function is a normalized additive function computed for tasks and task
combinations by accumulating their values, meeting their requirements, matched against coalitions’
and agents’ characteristics. Specifically, the utility function we used is global and includes the
agents’ different properties regarding their allocated tasks. It sums the average of each of the
number of agents that respect the maximal distance defined by their tasks by a certain margin, the
number of allocated agents that have at least a resource, the number of agents, the number of tasks
with a supplementary agent in their coalitions and the number of tasks with coalitions containing
agents with a lifespan that exceeds a certain threshold.
The generator produces both feasible and infeasible scenarios. The latter is of interest for method
comparison, as it requires that the algorithms prove unsatisfiability, which might take a long time.
It is to be reminded that a centralized approach does not apply to the problem settings of these
scenarios, mainly to avoid the single point of failure problem as a result of the distributed nature of
the drones and the possibility of communication failures.

Setup

To understand the impact of the number of agents |A| and tasks |T |, simulations are performed
considering sample mission scenarios with |A| ∈ [5,100] and |T | ∈ [2,20]. Tasks are handled by
multiple agents. That is why we consider that the number of agents is always larger than the number
of tasks, hence |A| > |T |. The reported results include algorithms execution time taken by the
algorithms to terminate, the utilities of the structures they return and the number of exchanged
messages.
For each {|A|, |T |} pair, we executed 200 runs. In each run, the agent characteristics and task
requirement attributes are randomly generated.
The execution platform was a 3.70 GHz Intel(R) Core(TM) i9-10900X CPU running Python, the
MiniZinc toolchain and the Chuffed solver.

Centralised

To compare the results and performances of our algorithms, we developed a decentralized method.
Our decentralized approach allows agents to make local decisions and avoid mission crashes
because of a single point of failure. However, the comparison to a centralized solution facilitates
evaluating our solution’s distance from optimum and execution time.
For the centralized method, we modeled our allocation problem as an lCOP and solved it with the
Lazy Clause Generation-based constraint solver Chuffed (Chu et al., 2018) through the constraint
modeling language MiniZinc (Nethercote et al., 2007).
Since the proof of unsatisfiability or the proof of optimality might be very long, we instrumented our
code with a timeout. Whenever the search is interrupted, we consider the problem as unsatisfiable
for the first case and as the best solution found so far for the second case. In addition, to prevent
pathological cases, we filter the instances with a series of necessary and sufficient conditions (for
example, if the number of available agents is less than the sum of the required number of agents in
all the tasks, it is useless to run the COP). Hence, no need to call the solver in such cases, which
might take a long time to prove unsatisfiability.

Swap Improvement Process

We present in the following tables 5.1 and 5.2 the results of the application of our algorithms
FICSAM, IFICSAM with the one-to-one swapping variant, and the aforementioned centralized
approach for each metric. Every single result in the table is an average of experiments with 200
randomly generated scenarios by the scenario generator. The three methods were all tested on the
same scenarios. The remainder of this section presents the results in terms of global utility value
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for the system, runtime, and the number of messages exchanged for the decentralized version (this
metric has no meaning for the centralized approach).

Nb of Agents Nb of Tasks
Average Utilities Average Execution Time (in s)

FICSAM IFICSAM COP FICSAM IFICSAM COP

5 2 0.58 0.73 0.83 0.9 (± 0.0) 1.4 (± 0.0) 0.2 (± 0.0)
10 2 0.59 0.79 0.85 1.6 (± 0.0) 3.0 (± 0.1) 0.2 (± 0.0)
10 5 0.55 0.70 0.78 1.7 (± 0.0) 2.9 (± 0.1) 48.0 (± 5.3)
20 2 0.53 0.73 0.85 3.6 (± 0.01) 6.8 (± 0.1) 0.2 (± 0.0)
20 5 0.53 0.75 0.86 3.4 (± 0.1) 6.1 (± 0.1) 0.2 (± 0.0)
20 10 0.53 0.70 0.79 42.0 (± 6.9) 43.9 (± 7.0) 1184.4 (± 9.0)
50 2 0.51 0.67 0.85 7.0 (± 0.2) 11.6 (± 0.3) 4.6 (± 6.0)
50 5 0.49 0.67 0.86 69.1 (± 11.1) 76.4 (± 11.3) 0.3 (± 0.0)
50 10 0.54 0.71 0.86 387.6 (± 25.4) 398.4 (± 25.4) 25.1 (± 7.2)
50 20 0.44 0.61 0.80 212.6 (± 25.1) 222.2 (± 25.1) 1195.7 (± 4.5)

100 2 0.48 0.62 0.85 70.2 (± 14.2) 83.4 (± 14.3) 1.8 (± 0.4)
100 5 0.48 0.61 0.86 189.7 (± 24.1) 209.3 (± 24.0) 1.2 (± 7.3)
100 10 0.48 0.63 0.86 446.5 (± 24.7) 468.9 (± 24.4) 32.0 (± 7.3)
100 20 0.53 0.65 0.83 1043.9 (± 45.8) 1073.8 (± 45.8) 1158.6 (± 12.6)

Table 5.1: Experimental results on average time and utilities for FICSAM and IFICSAM in its
swap (1-to-1) variant compared with the centralized method

Not surprisingly, the utilities of the solutions generated by the decentralized approaches are below
those of the centralized approach (that are optimal, except for cases when the time limit is reached).
However, impressively, they are rather close to that optimum. FICSAM solution utilities, being
the first feasible coalition structures agents find, are below those of IFICSAM solutions where
agents continue searching for other feasible coalition structures with better utilities. The utilities
of FICSAM are consistently above 50% of the utilities of the centralized approach. IFICSAM
utilities are always above 70% of the utilities of the centralized approach utilities and are at 75%
from optimum on average. IFICSAM’s search for a better solution through inversion shows that
even without reaching optimality, this policy allows finding significantly better solutions in a
decentralized manner. We observed that performance slightly degrades for a large number of agents

Number of Agents Number of Tasks
Average Number of Messages

FICSAM IFICSAM

5 2 18.4 25.9
10 2 36.8 71.7
10 5 38.0 61.8
20 2 71.5 177.2
20 5 71.8 170.7
20 10 75.6 158.2
50 2 178.3 557.6
50 5 176.0 576.3
50 10 181.7 526.8
50 20 180.3 511.7

100 2 351.3 1349.9
100 5 349.7 1204.1
100 10 350.6 1419.5
100 20 362.2 1147.1

Table 5.2: Experimental results on the average number of messages for FICSAM and IFICSAM in
its swap (1-to-1) variant compared with the centralised method
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(50 or 100). We believe that this may result from difficulties in finding an initial solution.
Notice that our algorithms terminate quickly. For the largest instances with 100 agents and 20
tasks, despite the message exchange overhead and the computations performed by disparate agents,
both FICSAM and IFICSAM are faster than the centralized algorithm on almost all the tests we
performed. Further, the latter, given a 1200 seconds timeout, sometimes terminates without reaching
an optimal solution. That is the case where the problem is the most combinatorial, typically when
the ratio of the number of available agents per task is the tightest. Otherwise, the runtime varies
across scenarios. It depends not only on the number of agents and the number of tasks but also on
scenario complexity. For instance, in scenarios with a larger number of tasks, a smaller average
number of agents is needed for each task. Therefore, the problem becomes simpler in some cases
as its combinatorial complexity is lower, which favors decentralized algorithms. For instance,
for 50 agents, scenarios with 20 tasks take less time than those with 10 tasks. Eventually, there
are scenarios where the centralized solution is clearly out of the question for the execution time.
Consequently, not only our approach comes close to the optimal in terms of the solution’s utility
but it can still provide solutions in realistic times when the centralized method fails to.
Additional tasks, keeping the number of agents fixed, increase the difficulty for agents to find
the first solution and send an anytime message to other agents. This can explain the drop in the
number of exchanged messages when there are more tasks for the same number of agents. When
the number of tasks is very small, the problem is inverted; the number of agents required for each
task is larger. This agent multiplicity produces many symmetries among the variables representing
the agents in the centralized COP solution, imposing additional computation. This can explain why
the centralized algorithm for 50 and 100 agents, requires more time to solve scenarios with two
tasks compared to scenarios with five.
As mentioned above, some of the generated scenarios are infeasible because task requirements
cannot be covered by the generated set of agents. In such cases, the number of exchanged messages
in our mechanism is always twice the number of agents. This results from the number of token-
passing messages, to which we add the number of end messages with the mentioned failure. The
token is passed via a message to all agents, from each to the next one. Then the last one that
receives the token without succeeding in finding a solution sends to its previous end message and
so on until the first agent is reached.
Moreover, FICSAM and IFICSAM take significantly less time than the centralized algorithm to
terminate when there is a large number of agents and tasks. For 20 agents and 10 tasks, for example,
they terminate after 70 seconds on average, while the centralized algorithm takes 400 seconds.
For 50 agents and 10 tasks, they terminate after 360 seconds while the centralized, interrupted
by the timeout, takes 1200 seconds. This observation sheds light on the cost of computing
an unsatisfiability certificate by COP methods. This cost appears significantly larger than the
computational cost exhibited by the decentralized approaches presented in this paper.

CSP Improvement Process

We also wanted to put in evidence the added value of the CSP Improvement Process. We recall that
this algorithm uses CSP techniques for each task to find the better coalition locally. In this way,
the decision-maker agent performs a many-to-one swapping of this coalition with the one that is
already assigned to that task, aiming to find another coalition structure with a greater utility. We
used the same generator for the experiments, and we replaced the LASER sensors with arms. The
agents with the arms can lift objects, and two armed agents are needed to lift each object. This is
why we added a constraint requiring a couple of armed agents for each task since one armed agent
cannot perform the lifting alone.
In addition to the application’s hard constraints, we also used an ordered list of preferences (i.e.,
soft constraints). With the first preference, we considered only agents that are not assigned to
the current coalition structure to minimize the chances of breaking the feasibility of the resulting
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coalition structure after the swapping. With the second preference, we considered only agents
whose positions are closer to the task’s position by also considering a supplementary margin. With
the third preference, we considered only agents with greater autonomy than the minimum required
for this task by also considering an additional margin. These preferences helped us orient the
research towards feasible coalition structures with better utilities.

For each {|A|, |T |} couple, we executed 1000 runs.

Number
of

Agents

Number
of

Tasks

Average Utilities Cases where
IFICSAM (many to 1)
solutions are optimalFICSAM

IFICSAM
COP

1 to 1 many to 1

5 2 0.46 0.48 0.85 0.88 60%
10 2 0.44 0.53 0.64 0.89 8%
10 5 0.52 0.53 0.52 0.86 6%

Table 5.3: Experimental results on average time and utilities for FICSAM and IFICSAM in its two
variants (1-to-1 and many-to-many) compared with the centralised method

For small instances of our scenarios (where the number of agents does not exceed 10), the use
of the CSP Improvement Process allows to find the locally best subset that increases the global
utility in the five first iterations. However, for instances with more agents, the scenarios generator
must be updated for generating scenarios with more constraints on combinations involving several
agents, which are recurrent in real-world applications. Moreover, the number of iterations has to be
configured (i.e., increased) for the application time limits and the problem’s size for approaching
the optimal solution. Finally, more soft constraints can be added to help this approach become
more efficient. This is an ongoing task.
Nevertheless, the results on small instances show that, on average, the CSP Improvement Process
outperforms the one-to-one swapping in many instances just by adding one single task requiring
specific combinations of agent characteristics. In this case, the first variant of our IFICSAM
algorithm (i.e., the one-to-one swapping) fails to obtain a coalition structure with a greater utility.
The reason is that this algorithm can only add or exchange an agent with one agent each time and
cannot add couples of armed agents to the coalitions.
Consequently, the CSP Improvement Process may improve global utility. Our experiments focused
on small instances, but our objective for future work is to create an optimized scenario generator to
demonstrate its efficiency also for larger instances.





6. Conclusion and Perspectives

This final chapter concludes this manuscript with a discussion of the various perspectives I hope to
explore over the next few years.

6.1 Conclusion
Thanks to my position at Université Paris Cité and my collaborations, I have had the opportunity to
work on a variety of subjects, which all have in common the study of interactions among intelligent
agents.
The starting point for my research work was the study of Boolean games during my PhD. My
recruitment to the DAI team, alongside colleagues working in the field of argumentation, led me to
draw a link between games and argumentation frameworks. I then started to study interactions in
a multi-agent system through argumentation, firstly in the context of the study of argumentative
protocols.
I then turned my attention to argumentative semantics, and more particularly to the study of
ranking-based semantics, their properties, and the proposal of new families of semantics.
More recently, I have been interested in the study of interactions in task allocation and proposed a
decentralized, anytime coalition formation and task allocation mechanism.

6.2 Perspectives
I present in this section different perspectives for more or less long-term work. In the interest of
brevity, I will not mention all the possibilities in all the areas of research cited in this manuscript.
One of the common features of the proposals presented in this section is the desire to seize the
opportunities offered by the latest advances in artificial intelligence, explainability and machine
learning.

6.2.1 Explainability of argumentation protocols
We place ourselves within the framework of argumentation protocols (see e.g. Bonzon and Maudet
(2011); Dupuis de Tarlé et al. (2022)). One of the aims of such argumentative debates is to
enable consensual decision-making between agents with different points of view. These exchanges
are also likely to enable other agents to learn and possibly adopt new beliefs (arguments). A
direct application of this work is linked to collective decision-making in societies of agents (town
planning, project funding within a university or laboratory...). In recent years, several debate
systems have been developed on the Internet to enable users to exchange opinions (e.g. Debatepedia
and Debategraph). The success of these platforms, in their current form, seems to suggest that
they could become an important source of exchange and information, just as Wikipedia is at this
moment.
Recently, the notion of Explainable Artificial Intelligence (XAI) has seen a resurgence of attention
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from researchers. This resurgence is motivated by the fact that many AI applications have limited
use, or are not appropriate at all, due to ethical concerns and a lack of confidence on the part of their
users. To enable users to adopt argumentation-based systems, it is essential to be able to explain
the conclusions of debates. It is necessary to be able to justify the decision proposed, or the result
returned, in most applications using argumentation techniques, particularly when these applications
are intended for a non-specialist audience. However, to the best of our knowledge, no work has
been done to explain the acceptability of the outcome of a debate to an audience that is either expert
or non-expert in argumentation.
The scientific challenges we have identified are as follows:

Enriching existing argumentative protocols by allowing agents to vote for or against arguments.
Adding a voting mechanism would bring us closer to existing protocols in online platforms,
most of which allow users to vote for or against a given argument. Such voting mechanisms
raise several questions, particularly in terms of the semantics used: the meaning of votes
is often unclear and can vary greatly depending on the platform in question. Does a vote
mean that an argument is valid, that it is relevant, or that it should be accepted? All these
interpretations have a meaning and can give rise to different semantics. Questions are also
raised about the protocol itself: for example, is voting allowed just after an argument has
been presented, or only at the very end of the debate, once all the arguments have been given?
Can users delete votes? Issues relating to strategic decision-making in the arguments put
forward by agents (Hadoux et al., 2015) or in votes can also be studied.

Notion of impact In order to explain the results of a protocol, it will be necessary to list and
quantify the impact of the elements involved in the acceptability of arguments and the
outcome of the debate. These elements concern arguments via existing relationships (attack
or support), votes (positive or negative) attributed by users to arguments and/or attacks, but
also, if the information is available, data on the agents taking part in the debate. Extending
or defining methods based on power indices (e.g. the Shapley value) could be useful for
defining several families of methods for assessing the influence of these different elements.

Evaluation Finally, we will need to test and evaluate both the protocols and the explanation meth-
ods on real data (online debates for which data is available). This will require the automatic
(or semi-automatic) provision of ’good’ explanations for the results of the argumentation
protocols. One possible way forward comes from Miller (2019), which brings together and
analyses a large body of existing work from the social sciences on the subject of human
explicability.

6.2.2 Automated negotiations for online dispute resolution
In the last few years a new way of solving conflicts in different domains, called Online Dispute
Resolution (ODR), has appeared as an alternative solution to the traditional way of courts. ODR
platforms can help solve a dispute in an amicable, inexpensive way, without going to court. If this
may be implemented differently by different administrators and may evolve, it often includes at least
two stages: (i) negotiation (the claimant and respondent negotiate directly with each other through
the ODR platform) and, if (i) fails, (ii) facilitated settlement (the ODR administrator appoints
a neutral representative, who communicates with the parties in an attempt to settle). Therefore,
in ODR the opponents still discuss and interact directly, although this is done through an online
platform. The time loss, but also the anxiety and the emotional charge may still be present.
To completely avoid those factors, we propose1 to push even further the online dispute resolution
by proposing automation of the ODR process through automated argumentation-based negotiations.
The links between formal argumentation and legal reasoning have already been highlighted in

1This idea has been proposed in an ANR (Agence nationale de la recherche) project that is currently under review
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various works, such as (Al-Abdulkarim et al., 2014; Bench-Capon et al., 2005, 2009; Collenette
et al., 2020; Gordon, 2005). In particular, the approach of Collenette et al. (2020) has shown that
the use of argumentation to model decisions of the European Court of Human Rights was not only
more efficient than approaches based on machine learning (in terms of the accuracy of the results
provided) but also more easily explained.
Thus, we aim to develop an online platform where the litigants will not interact anymore directly
with their opponents, but through software agents that will be acting as artificial lawyers representing
the litigants. If the negotiation between (virtual) lawyers fails, then a (virtual) judge will take into
consideration the arguments of the opposing parties for making a decision. The litigants will then
have the possibility either to accept the agreement found by the artificial lawyers or the decision
taken by the artificial judge or to refuse and go for a real trial.
In that latter case, the platform will be able to provide human lawyers representing litigants in a
real trial with the appropriate laws/past cases and the argument developed during the automated
dispute resolution.

The scientific challenges we have identified are as follows:

Argumentation-based reasoning mechanism The unified reasoning mechanism for the artificial
lawyers and judges we consider is the result of an original integration of two different
mechanisms, namely (i) a mechanism for reasoning with law/jurisdiction and (ii) a mechanism
for reasoning with past cases. For (i), to express the strength of arguments, we consider
using argumentation-based reasoning with rules and preferences (Kakas and Moraitis, 2003).
For (ii), as the decisions on past cases should have followed some rules and considered
preferences, we will extract those rules and preferences from reasoning with cases, via
its argumentation-based incarnation. However, the knowledge to be used in (i) and (ii) is
very broad (many jurisdictions and cases for different areas) and must be acquired by legal
experts. Thus, we consider automatically extracting this knowledge from texts stored in
public repositories using machine learning (ML) techniques (LeCun et al., 2015; Mochales
and Moens, 2011) which will then be validated by legal experts.

Negotiation protocols and strategies For the automated negotiations, we will need to implement
protocols defining the rules for the exchange of arguments by the virtual layers. For this,
we will adapt the work proposed in (Kakas and Moraitis, 2006b). However, to choose the
winning arguments in a negotiation, negotiators need to have a certain (often incomplete)
knowledge of their opponents to adapt their strategy. It is therefore desirable to provide
lawyers with such incomplete knowledge of the possible arguments that could be used by
their opponents. For the representation of this incomplete knowledge, we will use the work
proposed in (Dimopoulos et al., 2018). As this framework is an abstract one, the challenge
and originality here will be twofold: we will have to propose a structured version of the
abstract framework proposed in (Dimopoulos et al., 2021) using a deductive logic-based
representation of the arguments, and we will need to propose techniques for learning/inferring
argument structures with the additional requirement that certain arguments and especially
certain types of attacks be considered by uncertainty.

6.2.3 Generative argumentative Artificial Intelligence
Generative pre-trained Large Language Models (LLM) have garnered much attention and interest
in recent years. They have significantly contributed to advancing the state of the art in Natural
Language Processing (NLP) for an impressive number of tasks as suggested by (Bang et al., 2023).
However, as identified by these authors, LLMs are unreliable in performing reasoning tasks. Our
objective2 is to propose a generative argumentative AI that would combine current advances in

2This idea has been proposed in an ANR project that is currently under review
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language modeling with “classic” generative AI methods and work carried out in computational
argumentation for automated human-like reasoning. In doing so, we hope to (1) better characterize
and overcome the limitations of statistical language models in reasoning tasks and (2) connect
argumentation theory to NLP to automatically provide the necessary inputs to an argumentative
reasoning mechanism.
Current practices focus on learning argumentation patterns from data, to use them in future
situations that appear similar to those learned from. However, those methods do not facilitate
justification of the reasoning and explanation of claims provided by the system. We aim to deliver
learning and reproduction of human reasoning from texts, with an emphasis on argumentative
reasoning. Therefore, our research hypothesis is that once we succeed in learning structures and
relations between arguments, in learning to construct new arguments from learned arguments, and
finally in learning patterns of argumentative reasoning, we will be able to reproduce argumentative
reasoning in an automated manner. This should be done through modeling within a structured
preference-based argumentation framework (e.g. Kakas and Moraitis, 2003). We will then be able
to automatically build a generative AI model capable of learning to reason, to explain its reasoning
trace and the knowledge on which the reasoning is based, thus explaining its decisions.

The scientific challenges we have identified are as follows:

Automatically parsing argumentation structures As a first step, we intend to take advantage of
existing data sets annotated with argumentation structure to train a statistical parser.

Automated generation of new arguments The system must be able to generate new arguments to
automatically improve its current knowledge by combining parts of the knowledge provided
by the learned arguments and by interaction with the user.

Automated revision of argumentation theories This is necessary when some claims of the sys-
tem are contradicted by new knowledge acquired either through learning from texts or through
interaction with the user who could put forward compelling arguments.
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