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Abstract—There already exist some links between argumenta- games, where agents choose their strategies in paraltbhuti
tion and game theory. For instance, dynamic games can be usedgbserving the others’ choices).
for simulating interactions between agents in an argumentton A problem of this approach is the difficulty to express

process. In this paper, we establish a new link between these . . . - -1 - . i
domains in a static framework: we show how an argumentation efficiently this utility function= A way out consists in using a

framework can be translated into a CP-Boolean game and language for representing ag_ents’ preferences striactured .
how this translation can be used for computing extensions of and compactway. An interesting use of these languages in

argumentation semantics. We give formal algorithms to do so  Game theory is given by Boolean games: each agent has
Index Terms—Al and games, Knowledge representation and contro| over a set ofboolean (binary) variables and her
reasoning, Argumentation . " 7
preferences consist in a specifiompositional formulahat she
I. INTRODUCTION wants to be satisfied (a propositional formula is a very cazhpa

. . . representation of preferences — see [7], [8]); unfortupaties
Argumenta_non hgs becomg an mfluent_lal approach to tref?'zfmework is also very restricted because of the dichotofmy o
Al problems including defeasible reasoning and some for

of dialogue between agents (see e.g. [1], [2], [3], [4], [5]) rB?eferences (a formula can only lee or false). However,

o : , S?me recent works have shown the possibility to extend these
Argumentation is basically concerned with the exchange Q : . -
: : , . games by the use @P-netsin place of a simple propositional
interacting arguments. Usually, the interaction takesftim . ) .
fcgmula (see [9]). In this context, some interesting result

o ol etk Por xame, o9 0eelhout complesty et (or nstance, ertyn 1 3 oven
; . R . strategy profile is a pure Nash equilibrium” is a polynomial
set of assumptions entails the conclusion according to some . .
logical inference schema; then a conflict occurs for insﬂangrOblem when each CP-net is acyclic).
if the conclusion of an argument contradicts an assumption o Argumentation and game theory already have some com-
another argument. mon points. For instance, in [6], [10], games are used for
The main issue for any theory of argumentation is th@efining proof theories and algorithms for some acceptgbili
selection of acceptable sets of arguments, based on the We&gblems in argumentation. However, the considered games
arguments interact. Intuitively, an acceptable set of awgnts are always dynamic and there is no specific work concerning
must be in some sense “coherent.d, no conflict in this static games and argumentation. The aim of this paper is to
set) and “strong enough’e(g, able to defend itself againstidentify a possible translation of an argumentation framw
all attacking arguments). This concept of acceptability ba into a particular static game (a CP-Boolean game) in order to
explored through argumentation frameworks (AF), and espeg@mpute preferred extensions using solution conceptsrotga
cially Dung’s framework ([6]), which abstracts from the na theory (pure strategy Nash equilibrium: PNE). So, we want to
of the arguments, and represents interaction under the dbrmestablish a new link between argumentation and games and
a binary relation “attack” on a set of arguments. Howevelfien to give a new way for computing preferred extension,
even in the abstract framework of Dung, the complexity afven if this new way is not more efficient than the existing
the associated problems remains prohibitive in the genegdgorithms (see for instance [11], [12], [13], [10]).

case (for instance, “verifying if a given set of arguments is the paper is organized as follows : Dung’s abstract frame-
a preferred extension” is @NP-complete problem). work and CP-Boolean games are respectively recalled in

In another way, game theory attempts to formally ana|y§§ction Il and Section lll. Section IV presents the core_of
strategic interactions between agents. Roughly speakingthis paper: how to translate an argumentation framework int
non-cooperative game consists of a set of agents (or playefsCP-Boolean game and how to use this game for computing

and for each agent, a set of possible strategies and a utilit
9 b 9 yBecause the number of possible combinations of strategiezpgonential

function mapplng. eve':y pOSSIble combln_a'uon of Strateg'?rﬁthe number of players and in the number of variables ctiattdy each
to a real value (in this paper, we consider ordpe-shot player.



extensions of argumentation semantics. Some related wotlkatargumentation frameworks should not contain odd-length
are presented in Section V and Section VI concludes. cycles* however, argumentation frameworks with even-length
cycles will be taken into account. When there is no odd-lengt

Il. ARGUMENTATION FRAMEWORKS(AF) ] -
cycle, an interesting consequence occurs:
In [6], Dung has proposed an abstract framework for argu'Conseq. 1:Let AF — (4, %) be an AF without odd-length

mentation in which he focuses only on the definition of thg cle. LetE be a preferred extension @fF. Let a be an
status of arguments. For that purpose, he assumes that aa% : '

. i . iment ofAF. If there is no attacker o in E thenacE.
of arguments is given, as well as the different conflicts agnon ' )
them. We briefly recall that abstract framework: Proof: ~We can apply Prop. 1.5. S& is a stable

Def. 1: An argumentation framework (AR a pair(4, R ) extension. So, if we assume teg E then, because is
of a set4 of arguments and a binary relaticf on 4 called stable,3b € E such thatbRa. But this fact is impossible
the attack relation Vaj,a; € 4, a®a; means that; attacks because there is no attackeraf E. Soac E. u

a; (or a; is attackedby &;). An AF may be represented by a
directed graph, called thateraction graph whose nodes are
arguments and edges represent the attack relation.

In Dung’s framework, theacceptability of an argument Let us start by introducing some background. Mebe a
depends on its membership to some sets, called extensidiféte set of propositional variables aigd be the propositional
These extensions characterize collective acceptabiligt. language built fromV and the usual connectives as well as
AF = (4,R), SC 4. The main characteristic properties are:the Boolean constants (true) and L (false). Formulas ofL.y

Def. 2: Sis conflict-freefor AF iff there exists noa;, a; are denoted by, y, etc. 2/ is the set of the interpretations
in S such thatayRaj. An argumenta is acceptable w.rt. S for V, with the usual convention that fM € 2 andx eV,
for AF iff Vb e 4 such thatbRa, Ic € S such thatc®b. Sis M gives the valuarue to x if x&€ M andfalse otherwise. Let
acceptabldor AF iff Yae S, ais acceptable w.r.iSfor AF. X CV. 2% is the set ofX -interpretations X-interpretations are

Then severasemantics for acceptabilityave been defined denoted by listing all variables of, with a =~ symbol when
in [6]. For instance: the variable is set t@lse: for instance, leX = {a,b,d}, then

Def. 3: Sis anadmissible sefor AF iff Sis conflict-free the X-interpretationM = {a,d} is denotedabd. A preference
and acceptable foAF. S is a preferred extensiorof AF iff relation = is a reflexive and transitive binary relation (not
S is C-maximal among the admissible sets faF. Sis a necessarily complete) orY 2ConsiderM,M’ € 2. The strict
stable extensionf AF iff Sis conflict-free ands attacks each preference- associated with- is defined as usual byl >~ M’
argument which does not belong iff M =M’ and notM’ = M.

These notions are illustrated on the following example.

Ex. 1: ConsiderAF = ({a,b,c,d,e}, {(b,a), (c,b), (d,b), A CP-net

Ill. CP-BOOLEAN GAMES

(e,c)}) represented by: In this section, we consider a very popular language for
e compact preference representation on combinatorial dmnai
C>>b—>a namely CP-nets. This graphical model exploits conditional
d

preferential independence in order to structure the dmtisi
maker’s preferences undercateris paribusassumption [15],
[16]. Although CP-nets generally consider variables withi-a
trary finite domains, here we consider only “propositioredi”

{e,c} is not conflict-freep is not acceptable w.r.{e}; ais
acceptable w.r.{e d}; {d,a} is an admissible set ar&, d, a}
is the preferred and stable extensionAst.

We will need the following properties ([6], [12], [13], [14] . L d
Prop. 1: Let AF — (4, ®) such thatd + o. CP-nets, that is, CP-nets with binary variables.

1) Each unattacked argument belongs to every preferr QDef. 4 Let V be a set OT propc_)s_,itional variable_s and
extension ofAF (see [6]). ,Y,Z} be a partition ol/. X is conditionally preferentially

i i i z X
2) An acyclic argumentation frameworkF contains only mdependsntof Y glyen Z iff vz & 2%, Vx1,% € 27 and
one preferred extension (see [12], [13], [14]). VY1, Y2 € 2" we havexqyiz = xpyiz iff x1yz = XoYoz

3) If o is the unique preferred extension thah contains ~ FOr €ach variableX, the agent specifies a set parent
at least an odd-length cycle (see [12], [13], [14]). variables P#X) that can affect her preferences over the values
4) If AF does not contain an odd-length cycle then it8f X. Formally, X andV'\ ({X} UPa(X)) are conditionally
preferred extensions are not empty (see [12], [13], [14]5).referent|ally independent giveRa(X). This information is
5) If AF does not contain an odd-length cycle then eadffed to create the CP-net: N .
preferred extension is also stablsee [12], [13], [14]).  Def. 5: Let V be a set of propositional variables( =
Note that many works in argumentation domain considég»Z) is @CP-neton \/ whereg is a directed graph ovef,
that odd-length cycles may be considered as paradoxes28d 7 is a set of conditional preference tablB®T(X;) for
they are a generalization of an argument attacking himesf. €achX; € V. EachCPT(X;) associates a linear orderp with
agree with this opiniohand, in this paper, we will consider€ach instantiationp € 27i).

20ne says that the argumentation framework is coherent jge [ 4And, if it is not the case, these odd-length cycles will be seed of the
SEven if some odd-length cycles may make sense. argumentation framework.



The preference information captured by a CP-fAétcan a CP-net orV whose graph is denoted hgi, andVi € N,
be viewed as a set of logical assertions about a user’s prefer=r-;.
ence ordering over complete assignments to variables in thé'he control assignment functiammaps each player to the
network. These statements are generally not completeisthatvariables she controls and each variable is controlled & on
they do not determine a unique preference ordering. and only one agerttj.e., {ry,..., ™} forms a partition oV,

Ex. 2: Consider the CP-net given by Figure 1 about my Def. 7: Let G=(N,V,,®) be a CP-Boolean game. A
preferences for the dinner. Variabl& and W correspond strategy sfor a playelri is aTg-interpretation. Astrategy profile
respectively to the soup and the wine. | strictly prefer to eais an-tuples= (si,...,s) where for alli, 5 € 2.

a fish soup §,) rather than a vegetable souf§)( and about  In other words, a strategy faris a truth assignment for alll
wine, my preferences depend on the soup | eat: | prefer rée variables controls. As{m,...,T,} forms a partition of
wine (W) with vegetable soupq : W > W,) and white wine V, a strategy profile defines an (unambiguous) interpretation
(W) with fish soup 8, : W, = W). SoD(S) = {Sp, S} and for V. Slightly abusing notation and words, we wrie 2V,
D(W) = {W W }. to refer to the value assigned yto some variable.
In the rest of the paper, we make use of the following nota-
tions which are standard in game theory: &t (N,V, 1, ®)
be a Boolean game witN = {1,...,n}, ands= (sq,...,S),
s =(s,,...,s,) be two strategy profiles;_; denotes the projec-
tion ofsontoN\ {i}: s_i =(s1,...,5-1,5+1,---,Sn); Similarly,
@ Sp | Wh - We 1_; denotes the set of the variables controlled by all players
S | We-Wh excepti: T =V \ m; finally, (§,s-i) denotes the strategy
profile obtained frons by replacings with § without changing
the other strategiess,s i) = (s1,...,S-1,5,S+1,---,5)-
Fig. 1. CP-net "My dinner” A pure strategy Nash equilibrium (PNE) is a strategy profile
such that each player’s strategy is a best response to tee oth

Figure 2 represents the preference relation induced by thiayers’ strategies. PNEs are classically defined for games

CP-net. The bottom elemen§ (\\W,) is the worst case and\yhere preferences are complete, which is not necessasly th

the top element§, AW,) is the best case. case here. So we introduce the notionsabng PNE.
So AW Def..8: Let G=(N,V,, ®) .and Prefc = (=1,...,=n) the
collection of preference relations o 2nduced from®. Let

s=(s1,...,%) € 2V. sis a strong PNE(SPNE) for G iff
Vie{l,...,n}, Vg € 2™ (5,5) =i (S,S-i)-

The following proposition has been shown in [9].

Prop. 2: Let G= (N,V,1,®) be a CP-Boolean game such
that graphgj; are all identical (i, j € N, Gi = Gj) and acyclic.
ThenG has one and only one strong PNE.

The proof of this result makes use of tf@ward sweep
procedure [15] for outcome optimization (this procedura-co
sists in instantiating variables following an order conilpat
with the graph, choosing for each variable its preferredeal
S\O@n the value of its parents). Moreover, as shown in [9§ th

Fig. 2. Preference graph induced by the CP-net “My dinner”

There is an arrow between the nod8sAW,) and(§ AW,)
because we can compare these states, every other thing b

equal, . . SPNE can be built in polynomial time.
In this case, we can completely order the possible states
(from the most preferred one to the least preferred one) : IV. ARGUMENTATION AND CP-BOOLEAN GAMES
(SoAWD) = (SpAWE) = (S AWE) = (S AW) Our objective here is to transform & into a CP-Boolean

_ ) ) ) o ) gameG, and thus to use well-known tools of game theory, and
This relation’- is the only ranking that satisfies this CP-netmore specifically properties of CP-Boolean games, in order
to find the preferred extensions @&fF. By this work, we

) ~mainly want to establish a new link between argumentation
Boolean games [7], [8] yield a compact representation ghq games.

2-player zero-sum static games with binary preferences. In
[9], Boolean games are generalized with non dichotomo#s Translation of an argumentation framework into a CP-
preferences: they are coupled with propositionalized €R-n Boolean game

Def. 6: A CP-Boolean gamés a 4-upleG = (N,V,tL®),  Thjs transformation is done by Algorithm 1. This algorithm

where N is a set of playersV is a set of propositional assumes the existence of two others algorithms:
variables,t: N — V is a control assignment function which

defines a partition o¥/, and ® = (A3,...,Ap). Each 4§ is 5The set of all variables controlled bywill be written 1§ instead ofr(i).

B. CP-Boolean games



= |sCycLIc which returnstrue if there exists at least one Algorithm 1: Translation of an argumentation system into

cycle in the argumentation gragh, a CP-Boolean game
= REMODDCYCLES for removing the odd-length cycles if begin
there are some of them in the AF. /* INPUT: AF = (4, ®) an argumentation system */

The execution of these two algorithms can be viewed as | /* OUTPUTS:G = (N,V, 1, ®) a CP-Boolean gameyF
a precompilation step of Algorithm 1. One can say that | after removal of odd-length cyles */
as Algorithm kCycLIC does not directly detect odd-length gré‘l?rféor‘:; :;AR'ABLES' I = current agenta = current
cycles, it is useless in the precompilation of Algorithm 1.
However, as $CvcLICc is a linear-time algorithm whereas /* if necessary, removal of the odd-length cycles */
REMODDCYCLES is only a polynomial-time one, we think if 1IsCycLIC(AF) then AF = REMODDCYCLES(AF)
that it is interesting to avoid an unnecessary execution of | /*no more odd-length cycle iAF */
REMODDCYCLES whenAF is acyclic. [* computation of the CPTs for each argument */

Let_AF be an argumentation f_ramework Which_ does not for ﬁeﬂ?f((;) — & thenCPT(a) —axa
contain odd-length cycles, the principles of Algorithm % ar /* unattacked argument */
the following: else

= each argument ofF is a variable ofG;

= each variable is controlled by a different player (so we

have as many players as variables);

[* case of the other arguments */
CPT(a) = {Vveg1av:a-a}
U {Aveg1aV:a>3a}

= the CP-nets of all players are defined in the same way: I* computation of the CP-neN( */
— the graph of the CP-net is exactly the directed graph | = (AF.UacaCPT(a)) /it is the attack graph*/
f A?:' P y grap [* after removal of odd-length cycles, */
0 ’ . . . /* associated with the CPTs of each argument */
— the preferences over each variaMewhich is not /* computation ofN, V, Ttand @ */
attacked are = v (if an argument is not attacked, we i=1
want to protect it; so the valueue of the variablev N=o . .
is preferred to its valualse) V=24 /* each argument is a variable */
— the preferences over each v’ariabmhich is attacked for ae A do
p . 1 . N=NuU{i} [* an agent per each argument */
by the set of variable® ~*(v) depends on these vari- = {a} /* i controls only this argument */
ables: if at least one variable< ® ~1(v) is satisfied, A =N /* the same CP-net for each agent */
v cannot be satisfied (so we haVg,cg -1, W: V- I=i+1
\8); otherwise, if all variablesy € ® ~(v) are not sat- retun (G = (N,V, 10 (A4, Nv))), AF)

isfied, v can be satisfied (and $§,cg-1(,) W: V- V). end
The construction of a CP-Boolean gam@efrom an argu-
mentation frameworldF is made in polynomial time (even if

AF is cyclic and if we have to remove its odd-length cyclesjrgumentation framework both obtained fraxd by applying
The use of this algorithm implies the following property: a|gorithm 1.

Prop. 3: Let AF = (4, R ) be an argumentation frameworks js a preferred extension @ iff sis a SPNE fot G.
Let G= (N,V,,®) be the CP-Boolean game aAd’ be the

Proof: Let us first study the= direction.

Let sbe a preferred extension aF’. Assume thars is not
a SPNE of the CP-Boolean game associated.36g,N,
35 € 2™, 3s_; € 2™, such that(s,s_j) =i (s,5-i). Let

6This algorithm is linear:

(Step 1) removing all the vertices which do not have prederss
(Step 2) iterating Step 1 until either all the remained eedihave

at least one predecessor (there is a cycle in the initialhgrap the X be the Var'a/ble i/ such thatrg = {x} (x is also an
graph is empty (there is no cycle in the initial graph). argument ofAF’). We have several cases:
= R 1(x) =@ (% is unattacked). We know from
This algorithm is polynomial: Algorithm 1 that we haveCPT(x) = X = X;. As
(Step 1) computation of the Boolean adjacency matrix cpmeding (Slpii) i (S,5-i), we know thans =% (X € 9).
to all the minimal odd-length paths of attack; it is suffi¢cién take But, we know from Prop. 1.1 than iﬁ’l(xi) -

the Boolean adjacency of the grapi (M(]i, j) =1 if there is an
edge fromi to j in AF) and to computeM©'® = mt M3+ +
M1 with n = | 4| (the bound 2— 1 is obtained using a general
result given by graph theory: if a directed graph containsath p

thenx; € s. We have a contradiction.
= R 1(x) # @ (there exists at least one attackemxgf
We know from Algorithm 1 that we havePT(x) =

from a to b then there exists a simple path — a path in which each {Vwey(fl(xi)W DX o= %}U {/\wey(fl(xi)W DX o= Xt
vertex appears only one — fromto b); _ ) There are two cases:
g?t;/p[)o%g ir;}nl”lpval of all the arguments for which the diagofethent — Vx; such that R, Xj ¢s. SO!/\weytl(xi) w holds

and usingCPT(x;), we can deduce that > %;. So,
as (§,5-i) =i (S,5-i), S =% and § = x. Thus,
X is not in s. But this is in contradiction with

(Step 3) removal of all the edges having one removed arguasent
end point or as start point.

8The formulaw: v >~ v (resp.W: V- V) means that, for the valueue (resp. B
false) of the variablew, the valuefalse of the variablev is preferred to its 9Recall thats denotes & -interprétation, that is i§= abc for example, this
valuetrue. corresponds to the s¢h,c}.



the conclusion obtained applying Conseq. 1 which  {b} (AF is cyclic, but contains only even-length cycles). The

says thak; € s (AF' is an argumentation framework following CP-net represents the preferences of all players
without odd-length cycle and there is no attacker brasa o ab=b

of x in the preferred extensiog). So this case is . A B _ I
impossible. ) bra-a “"~__ " abx>b
~ At least one argument; in X (x) belongs to G has two SPNEs{ab, ab} and AF has two preferred

S. S0, Viweg -1(x)W holds and usingPT(x) we
can deduce that > x;. So, as(s{,s_i) =i (S,S-i),
s = X;. But, this is in contradiction with the fact

extensions{a}, {b}.
Ex. 5: ConsiderAF = ({a,b,c,d,e}, {(a,b), (b,c), (c,d),

thats must be conflict-freexj € s andx; € ). So (d,e), (&c)}). The initial AF is cyclic, and contains an odd-
this case is also impossible. length cycle, which has to be removed. The fira will

In conclusion, each case is impossible if we assume  contain onlya andb.

thatsis not a SPNE. Sas is a SPNE. Initial graph for AF e Final graph forAF

Let us study now the= direction. a b C/d a—>D

Lets=(sy,...,Sn) be a SPNE foG. Assume that is not - . . .
a preferred extension ofF’; so, eithers is not conflict- So, by applying Algorithm 1, we hav# = {a,b}, N =

free (@x,x; € s such that®x; or X;®x), or S is not {1,_2}, with Ty = {a}, ™ = {b} and the following CP-net
acceptablefx; € s, 3xj € 4 such thatx; R x and Ax € s which represents the preferences of all players:
such thaty R X;). ab-b
= sis not conflict-free: a-a A B ab-b
- X.xj € s such thatgRx;. As x € s, we know G has one SPNHab} and the finalAF (after removal of

thatV/ye g -1(x,) W holds and usin@PT(x;) we can

conclude thaix; = xj. As we know thans is a odd-length cyclgshas one preferred extensiga}.

SPNE, we have for the playgrwho controlsx, B. Computation of preferred extensions

Vs, Vs_j, (sj,s-j) =j (sj,5-j). So,sj =X and . .

xj ¢ s, which is a contradiction. Since prefe_rred extensions correspond exactl_y to SPNEs, th
— 3x,Xj € s such thatxjRx. As X € sandsis a main properties about computation of SPNE in CP-Boolean

SPNE, we know thax; >- %;; 50, usingCPT(x;), we games can be applied. The first interesting case concerns the

can conclude thal\ycg -1(x) W holds. So.xj ¢s, acyclic argumentation frameworks:

which is a contradiction.

» sis not acceptabledx; € s, 3xj € A4 such thatxj R x;
and Px € s such thatx R xj. As X € sandsis a

Prop. 4: Let AF be an argumentation framework. L&tbe
the CP-Boolean game amF’ be the argumentation frame-

SPNE, we know thak - %, and usingCPT(x), we work both obtained fromiF by applying Algorithm 1.

can deduce thaf\ycg-1(x)W holds. AsxjRxi, we If AF’ is acyclic,AF’ has one and only one preferred extension

know thatx; € s. So,X; > xj and usingCPT(x;) we which is computable in polynomial time usir®

can deduce thaf/ycg-1(x) W holds. That means that Proof: The transformation ofAF in the CP-Boolean

there existsq € s such tha € R (x;), which is a game by applying Algorithm 1 is done in polynomial

contradiction. time. Then, the computation of the SPNE of this game
In conclusion, each case is impossible if we assume using the forward sweep procedure is also computable in
that s is not a preferred extension. Sse,is a preferred polynomial time (see Prop. 2 in [9]) and Prop. 3 shows
extension. u that this SPNE corresponds to the preferred extension of

AF’ (AF after removal of odd-length cycles). ]

Ex. 3: ConsiderAF = ({a,b,c,d,e}, {(b,a), (c,b), (d,b),
(e.c)}) (AF is acyclic) and transform it in a CP-Boolean game This proposition holds for the simple case of acyclic ar-
G=(N,V,,®). By applying Algorithm 1,V = {a,b,c,d,e} gumentation frameworks. The computation of SPNE(s) for
and N = {1,2,3,4,5}, with Ty = {a}, T/ = {b}, Te = {c}, cyclic argumentation frameworks is much more complex.
Ty = {d} andTs = {e}. The following CP-net represents theqowever, Algorithms 2 and 3 allow to compute such solution
preferences of all playet$ concept when the argumentation framework contains even-

ec-c cvd: Beb ' length cycles.
e-e ec-¢c cAd bsb g: ar g These algorithms assume the existence of Algorithome-
E C -ar INTCYCLEFORPROP which returns the cycle (or one of the
/B A cycles if there are several) in a given set of variables which
D— permits to reach more variables as posstblEor instance, on
d-d the following graph:
G has one SPNEedcha}l and AF has only one preferred
extension{e,d,a}. . 111gis félgorithm uses the notion of Boolean adjacency masiRlgorithm
. . _ . EMODDCYCLES!
EX'. 4: ConsiderAF = ({a,b}, {(a,b), (b’.a)}>' By applying = computation of the Boolean adjacency matfi€2P corresponding to
Algorithm 1,V = {a,b} andN = {1,2}, with Ty = {a}, T = all minimal paths in the graph reduced to the given set ofates:
M= M+ M?+ M3+ ...+ M2 with n = [V|; M3P(i) will denote
101n order to distinguish the CP-net to the AF, nodes in the €Pane in (M3Pi,1),..., M3P(i,n));

uppercase, whereas nodes in the AF are in lowercase. m ToSee =V; C = J; end?=false;



g fe—e——1Ij“ >j Algorithm 3: CoMPSPNEReC: Recursive computation of
| | SPNEs of a CP-Boolean game obtained from an argumen-
a__b c d h tation framework

{a,b} permits to reach the variables b, ¢, d, e, f, and  begin
{i,j} permits to reach the variablésj, c, d, e, f. These cycles [*INPUTS: afCP-_Bglolean game = (N6V7_TL ®), q
are more interesting than the other ones for the propagation IF;::Sseétoofv\g:gbleessr:mgg;n?n;?anﬁg;éig?te :
of values over the graph (if they are the starting point of a Out = set of variables already instantiatedfatse*/
propagation process then this propagation is more efficient I* OUTPUTS: a set of SPNESP*/

Let A’ be the CP-net representing goals of players of a | /* LOCAL VARIABLES: v= current variablen=

CP-Boolean game, the principles of Algorithms 2 and 3 are; | cardinal ofR C = set of variables forming a cycle*/
= instantiation of all unattacked variables (which have no | it R— & then

parents inA and are satisfied in the SPNE); /* all variables are instantiated: a SPNE is found */
= propagation of these instantiations as long as possible; | return {(InOut)}
= once all feasible instantiations have been done, loop: else _ o
— if all variables have been instantiated, the SPNE can n=|R| /*n=number of variables remaining to be
instantiated */
be returned; for ve R do
— else, with Algorithm @MPINTCYCLEFORPROP, the /* simple propagation process */
more interesting cycleC remaining is computed if Pa(v) C Outthen _ .
(there is one, otherwise all variables would have been {naﬂllf‘ﬁe{(}? are instantiated faise */
instantiated); R=R\ {v}
— using the current state of the current SPNE, create else
two new SPNEs; the first one contains a variable of if (Pa(v)NIn)# o then
C instantiated tarue, the second one contains this /* at least 1 parent instantiated taie */
same variable instantiated false L Out= Outu{v}
— propagation of these instantiations for each one of L R=R\{v}
these SPNEs as long as possible. i e IR| then

/* none variable instantiated in For instruction */
C = CoMPINTCYCLEFORPRORG, R)

Algorithm 2: Computation of SPNEs of a CP-Boolean

game obtained from an argumentation framework ;/eTu;(J(P(C)
begin CoMPSPNEReC(G, R\ {v}, Inu{v}, Out) U
/* INPUTS: a CP-Boolean gamé = (N,V, T, ®), where L ComMPSPNEREC(G, R\{v}, In, Outu{v}))
D= (Ng,...,Ap) ¥ else
[* OUTPUTS: a set of SPNESP*/ /* at least 1 variable instantiated in For instr. */
/* LOCAL VARIABLES: v = current variableJn = (resp. | return COMPSPNEREC(G, R, In, Out)
Out =) set of variables instantiated taie (resp.false), =
R = set of variables remaining to be instantiated */ end
In=g, Out=g, R=V * Initialization */
[* Instantiation of all variables without parents */
for ve Rdo — —
— C——
if Pa(v) = @ then ? I f e K—
R & b—C—d——h
the steps of the computation process are:
[* propagation by a recursive process */ . .
ret%ranQOMPSPKIEEc(G R |ﬁ out) = g and h are instantiated tarue (current state of SPNE
end = gh);
» thena and d are instantiated tdalse (current state of
. Using the followi h: SPNE = ghad),
Ex. 6: Using the following graph: = thenb is instantiated tarue (current state of SPNE-
= |oop: while NOTend?) do ghad b)' . )
V= top(ToSee); ToSee = ToSee \ {V}; = thenc is instantiated tdalse (current state of SPNE
if (Aw € ToSee s.t. M3P(v) C M3P(w)) then ghadx);
/* no var. permitting to reach more var. thart/ N . . .
C—CU{V}; = at this point the simple propagation stops; so we must
Yw € ToSee do if M3P(v) = M3P(w) thenC=CuU{w} ; compute the interesting cycles in the remaining set of
end? =true; variables(e, f.i, j,k 1) and the result igi, j);
else if ToSee is empty thenend? =true; . . ! .
= ReturnC = the propagation process is restarted with the following

current states of two SPNEghadbci and ghadbxi;



= S0, at the end of the propagation process, three SPNEs @reManaging odd-length cycles
obtainedghadbcie fjkl, ghadicief jkl andghadbeiefikl.  of course, the removal of odd-length cycles has an impor-
These SPNEs correspond to the three preferred extensigii influence on the computation of the SPNE(s) and thistpoin
{g.h,b.ej,1}, {g.h,b, f,i.k} and{g,h,b,i, f,I}. could be considered as problematic in some cases if one does
The following proposition shows that Algorithms 2 and 310t agree with our initial assumption: in general, an oduth
allow to exactly compute the set of SPNEs of the CP-Booleasicle may be considered as a paradox. Of course, we know
game. that some odd-length cycles make sense, in particular when

Prop. 5: Let G be a CP-Boolean game given by Algothey are not strict odd-length cycles. But the work presgnte

rithm 1. Let SP be the set of strategy profiles @ given
by Algorithms 2 and 3s € SPiff sis a SPNE forG.

Proof: Let us first study the=- direction.

Let se SP. Assume thars is not a SPNE of the CP-
Boolean game associated. S,€ N, Els{ €2 Jsj e
2™, such that(s,s_i) =i (S,5-i).

Let x; be the variable i/ such thatg = {x }. We have
several cases:

= Pa(x)=@. We know from Algorithm 1 that we have

CPT(x) =X > %Xi. As (,5-i) =i (S,5-i), we know

than § = x;. But, we know from Algorithm 2 than

X € s. We have a contradiction.

= Pa(x) # @. We know from Algorithm 1 that we have

C?—(Xi) = {Vvepax)V: X = Xi} U{Avepax)V: X =

i}

— All variables inPa(x;) are not satisfiedf\yepax) v
holds. In this case, we know that - X;. So, as
(5,5-i) =i (s,5-i), we haves =x;. But, we know
from Algorithm 2 than ifPa(x;) C Out, that is if all
variables inPa(x;) are not satisfied, then we have
X € In, sox; € s, which leads to a contradiction.

— At least one variable inPa(x) is satisfied:
Vvepa(x) V holds. In this case, we know that- X;.
So, as(s,s-i) =i (S,S-i), § = X. But, we know
from Algorithm 2 than if Pa(xj)) NnIn # @, that
is if at least one variable iPa(x) is satisfied,
then we haveg € Out, soX; € s, which leads to a
contradiction.

Sosis a SPNE forG.
Let us study now the= direction.
Let s=(s1,...,5n) be a SPNE foriG. We have to show
thanse SP, that isVi, if § =X thenx; € In elsex; € Out
(case corresponding ® = X;).
= Pa(x)=@. We know from Algorithm 1 that we have
CPT(x) =% = X. As sis a SPNE, we know than
s = X. Moreover, we know from Algorithm 2 than
X € In.
= Pa(x ) # @. We know from Algorithm 1 that we have
C}FjT(Xi) = {\/vePa(xi)V SXi - Xi} U {/\vePa(xi)V “Xi -
Xi}.
— All variables inPa(x;) are not satisfiedf\yepax) v
holds and, in this case, we know that- X;. So,
assis a SPNE, we know thag = x;. Moreover,
we know from Algorithm 3 than ifPa(x;) C Out,
that is if all variables inPa(x;) are not satisfied,
then we haves € In.
— At least one variable inPa(x) is satisfied:
vvepa(mv holds and, in this case, we know that
Xi = X. So, assis a SPNE, we know thag = X;.
Moreover, we know from Algorithm 3 than if
Pa(x) NIn # @, that is if at least one variable in
Pa(x) is satisfied, then we hawe € Out.

Sose SP. |

in this paper is preliminary and the removal of this kind of
cycles guarantees some important properties (see Progd 1 an
Conseq. 1). The treatment of odd-length cycles will be the
subject of a future work.

Ex. 7: Consider AF = ({b,c,d,e}, {(b,c), (c,d), (d,e),
(e,c)}). The initial AF is cyclic, and it contains an odd-length
cycle which will be removed and the final AF will contain

only b.
Initial graph e Final graph

b——c< g b

So, by applying Algorithm 1, we havé = {b}, N = {1},
with Ty = {b} and the following CP-net which represents the
preferences of all players:

b-b B

So,G has one SPNEb} which corresponds to the preferred
extension of the finaAF. However, it does not correspond
to the preferred extension of the initi&lF which was the
set{b,d}. If we consider that the odd-length cycle generally
is a paradox, so that its arguments are not significant, we
can consider thaf{b} is a more realistic extension than
{b,d} (however this is not the approach chosen by the main
semantics for acceptability).

Ex. 8: ConsiderAF = ({a,b,c,d,e}, {(a,b), (b,a), (c,b),
(c,d), (d,e), (e,c)}). The initial AF is cyclic, and it contains
an odd-length cycle which will be removed and the final AF

will contain onlya andb.
Initial graph ¢ Final graph

S VN
a__ a__ b

By applying Algorithm 1, we hav® = {a,b}, N = {1,2},
with Ty = {a}, ™ = {b} and the following CP-net which
represents the preferences of all players:

bra-a A/_\B ab-b
b:a-a ~_ ab-b
So, G has two SPNESab,ab} which correspond to the

two preferred extensions of the finAF. However, they do
not correspond to the preferred extension of the init&l
which was only the sefa}. In this case, to take into account
the extension{b} means that the attack— b is considered
as not significant (because an odd-length cycle generaly is
paradox and its arguments are not significant; so, they ¢anno
be able to provide a realistic attack against other argushent

b——~cZ—d

V. SOME RELATED WORKS

The main related work for our paper concerns the link
between argumentation and games identified by Dung: in [6],



anAF is used to solve a classical cooperative game (the stabff®# A. Bondarenko, P. Dung, R. Kowalski, and F. Toni, “An ahst,

marriage problem). He uses the argumenta®fto represent
the possible issues of the game, and the attack relation
express the conflicts between issues. This link has also been

argumentation-theoretic approach to default reasonifgdjficial Intel-
ligence vol. 93, pp. 63-101, 1997.

flﬁ L. Amgoud, N. Maudet, and S. Parsons, “Modelling dialegusing

used in [17] in order to prove the acceptability of an argutmen 5
a special dynamic game has been exhibited in which a playél]

is the proponent and the second one is the opponent. Tl

main differences with our work are first the static nature of

our game, and secondly the number and the role of the pIayefﬂ.

Mentioned in the introduction of this paper, the second
important related work is the computation of preferred ex-

tensions. Some algorithms already exist (see for instahtle [

[12], [13], [10]). It is important to note that our algorittare
not more efficient than the existing ones.

Another related work refers to the use of an argument as'a
literal in a propositional formula. This idea can also berfdu

in [18], [19], [20] (for instance, in [19], a characterizati of a

(8]
&l

[10]

preferred extension is given under the form of a proposition

formula).

(11]

The last kind of related works concerns the treatment of

the odd-length cycles. In the literature, distinct apphesc

exist: these cycles can appear in e, but are forbidden in [12]
the extensions (see for instance [21]), or these cycles ean b
accepted and treated as even-length cycles for computeng iy,
extensions (see for instance [22]). Our approach correfspon

to the first case: odd-length cycles can appear inAReut

[14]

they will be removed for the computation of the extensiongs,

(see Algorithm 1).

VI. CONCLUSION

[16]

In this paper, we show how to translate an argumentation

framework AF into a CP-Boolean game, and how this gam

allows to compute preferred extensions of the original

fin

using pure strategy Nash equilibria. We give three formal

algorithms allowing respectively to transform tié& into a

CP-Boolean game, and to compute the preferred extensions

argumentation,” ifFourth International Conference on MultiAgent Sys-
tems (ICMAS’2000), Boston, MA, US3ul. 2000, pp. 31-38.

C. I. Chesiievar, A. G. Maguitman, and R. P. Loui, “Logicabdels of
argument,”ACM Computing surveysol. 32, no. 4, pp. 337-383, 2000.
P. M. Dung, “On the acceptability of arguments and itsdamental role
in nonmonotonic reasoning, logic programming and n-pergames,”
Artificial Intelligence vol. 77, pp. 321-357, 1995.

P. Harrenstein, W. van der Hoek, J.-J. Meyer, and C. VWéte,
“Boolean Games,” irProceedings of the 8th International Conference
on Theoretical Aspects of Rationality and Knowledge (TARK'J. van
Benthem, Ed., vol. Theoretical Aspects of Rationality ambWledge,
San Francisco. Morgan Kaufmann, 2001, pp. 287-298.

P. Harrenstein, “Logic in Conflict,” Ph.D. dissertatiobtrecht Univer-
sity, 2004.

E. Bonzon, M. Lagasquie-Schiex, J. Lang, and B. Zanijtti@ompact
preference representation and boolean gamlesitnal of Autonomous
Agents and Multi-Agent Systemal. 18, no. 1, pp. 1-35, 2009.

C. Cayrol, S. Doutre, and J. Mengin, “On decision pratserelated to
the preferred semantics for argumentation framewora,jrnal of logic
and computationvol. 13, pp. 377-403, 2003.

S. Doutre and J. Mengin, “Preferred Extensions of Argamation
Frameworks: Computation and Query Answering,13C€AR 2001 ser.
LNAI, A. L. R. Goré and T. Nipkow, Eds., vol. 2083. Springeenag,
2001, pp. 272-288.

P. E. Dunne and T. J. Bench-Capon, “Complexity and cotorial
properties of argument systems,” University of Liverpodepartment
of Computer Science (U.L.C.S.), Technical report, 2001.

——, “Coherence in finite argument systemytificial Intelligence vol.
141, no. 1-2, pp. 187-203, 2002.

S. Doutre, “Autour de la sémantique préférée des syassem
d’argumentation,” These, Université Paul Sabatier, |IRAI02.

C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, aBd Poole,
“CP-nets : A Tool for Representing and Reasoning with Caokt
Ceteris ParibusPreference Statementdfurnal of Artificial Intelligence
Researchvol. 21, pp. 135-191, 2004.

——, “Preference-Based Constrained Optimization v@#-nets,"Com-
putational Intelligencevol. 20, no. 2, pp. 137-157, 2004, special Issue
on Preferences.

C. Cayrol, S. Doutre, and J. Mengin, “Dialectical Prddfeories for the
Credulous Preferred Semantics of Argumentation Framesyoirk Proc
of ECSQARU2001, pp. 668-679.

] N. Creignou, “The class of problems that are linearlyiealent to satis-

of AF. Moreover, we show that once odd-cycles are removéd]

from AF, if the resulting argumentation frameworkF’ is

acyclic, then the preferred extensionsA# are computable

in polynomial time.

[20]
[21]

Clearly, a limitation of our results is that we considefzz]

argumentation framework containing no odd-length cydlés.
explained this choice by the fact that our study is prelimmna
and that such argumentation frameworks have some important

properties. However it would be interesting to study these

argumentation frameworks, because some odd-length cycles

may make sense. So a future work will be to see if our results
still apply in a more general case, and if it is not the case,

how we can modify our algorithms to do so.
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