
Translation of an argumentation framework
into a CP-boolean game

E. Bonzon
CRIP5, Université Paris Descartes

45 rue des Saints Pères
75006 Paris, France

elise.bonzon@mi.parisdescartes.fr

C. Devred
LERIA, Université d’Angers

2 Boulevard Lavoisier
49045 Angers Cedex 01, France

caroline.devred@info.univ-angers.fr

M-C. Lagasquie-Schiex
IRIT, Université Paul Sabatier

118 route de Narbonne
F-31062 Toulouse Cedex 9, France

lagasq@irit.fr

Abstract—There already exist some links between argumenta-
tion and game theory. For instance, dynamic games can be used
for simulating interactions between agents in an argumentation
process. In this paper, we establish a new link between these
domains in a static framework: we show how an argumentation
framework can be translated into a CP-Boolean game and
how this translation can be used for computing extensions of
argumentation semantics. We give formal algorithms to do so.

Index Terms—AI and games, Knowledge representation and
reasoning, Argumentation

I. I NTRODUCTION

Argumentation has become an influential approach to treat
AI problems including defeasible reasoning and some forms
of dialogue between agents (see e.g, [1], [2], [3], [4], [5]).

Argumentation is basically concerned with the exchange of
interacting arguments. Usually, the interaction takes theform
of a conflict, called attack. For example, a logical argument
can be a pair〈set of assumptions, conclusion〉, where the
set of assumptions entails the conclusion according to some
logical inference schema; then a conflict occurs for instance
if the conclusion of an argument contradicts an assumption of
another argument.

The main issue for any theory of argumentation is the
selection of acceptable sets of arguments, based on the way
arguments interact. Intuitively, an acceptable set of arguments
must be in some sense “coherent” (e.g., no conflict in this
set) and “strong enough” (e.g., able to defend itself against
all attacking arguments). This concept of acceptability can be
explored through argumentation frameworks (AF), and espe-
cially Dung’s framework ([6]), which abstracts from the nature
of the arguments, and represents interaction under the formof
a binary relation “attack” on a set of arguments. However,
even in the abstract framework of Dung, the complexity of
the associated problems remains prohibitive in the general
case (for instance, “verifying if a given set of arguments is
a preferred extension” is acoNP-complete problem).

In another way, game theory attempts to formally analyze
strategic interactions between agents. Roughly speaking,a
non-cooperative game consists of a set of agents (or players),
and for each agent, a set of possible strategies and a utility
function mapping every possible combination of strategies
to a real value (in this paper, we consider onlyone-shot

games, where agents choose their strategies in parallel, without
observing the others’ choices).

A problem of this approach is the difficulty to express
efficiently this utility function.1 A way out consists in using a
language for representing agents’ preferences in astructured
and compactway. An interesting use of these languages in
Game theory is given by Boolean games: each agent has
control over a set ofboolean (binary) variables and her
preferences consist in a specificpropositional formulathat she
wants to be satisfied (a propositional formula is a very compact
representation of preferences – see [7], [8]); unfortunately, this
framework is also very restricted because of the dichotomy of
preferences (a formula can only betrue or false). However,
some recent works have shown the possibility to extend these
games by the use ofCP-netsin place of a simple propositional
formula (see [9]). In this context, some interesting results
about complexity exist (for instance, “verifying if a given
strategy profile is a pure Nash equilibrium” is a polynomial
problem when each CP-net is acyclic).

Argumentation and game theory already have some com-
mon points. For instance, in [6], [10], games are used for
defining proof theories and algorithms for some acceptability
problems in argumentation. However, the considered games
are always dynamic and there is no specific work concerning
static games and argumentation. The aim of this paper is to
identify a possible translation of an argumentation framework
into a particular static game (a CP-Boolean game) in order to
compute preferred extensions using solution concepts of game
theory (pure strategy Nash equilibrium: PNE). So, we want to
establish a new link between argumentation and games and
then to give a new way for computing preferred extension,
even if this new way is not more efficient than the existing
algorithms (see for instance [11], [12], [13], [10]).

The paper is organized as follows : Dung’s abstract frame-
work and CP-Boolean games are respectively recalled in
Section II and Section III. Section IV presents the core of
this paper: how to translate an argumentation framework into
a CP-Boolean game and how to use this game for computing

1Because the number of possible combinations of strategies is exponential
in the number of players and in the number of variables controlled by each
player.

extensions of argumentation semantics. Some related works
are presented in Section V and Section VI concludes.

II. A RGUMENTATION FRAMEWORKS(AF)

In [6], Dung has proposed an abstract framework for argu-
mentation in which he focuses only on the definition of the
status of arguments. For that purpose, he assumes that a set
of arguments is given, as well as the different conflicts among
them. We briefly recall that abstract framework:

Def. 1: An argumentation framework (AF)is a pair〈A ,R 〉
of a setA of arguments and a binary relationR on A called
the attack relation. ∀ai,a j ∈ A , aiR a j means thatai attacks
a j (or a j is attackedby ai). An AF may be represented by a
directed graph, called theinteraction graph, whose nodes are
arguments and edges represent the attack relation.

In Dung’s framework, theacceptability of an argument
depends on its membership to some sets, called extensions.
These extensions characterize collective acceptability.Let
AF = 〈A ,R 〉, S⊆ A . The main characteristic properties are:

Def. 2: S is conflict-free for AF iff there exists noai , a j

in S such thataiR a j . An argumenta is acceptable w.r.t. S
for AF iff ∀b∈ A such thatbR a, ∃c∈ S such thatcR b. S is
acceptablefor AF iff ∀a∈ S, a is acceptable w.r.t.S for AF.

Then severalsemantics for acceptabilityhave been defined
in [6]. For instance:

Def. 3: S is an admissible setfor AF iff S is conflict-free
and acceptable forAF. S is a preferred extensionof AF iff
S is ⊆-maximal among the admissible sets forAF. S is a
stable extensionof AF iff S is conflict-free andS attacks each
argument which does not belong toS.

These notions are illustrated on the following example.
Ex. 1: ConsiderAF = 〈{a,b,c,d,e}, {(b,a), (c,b), (d,b),

(e,c)}〉 represented by:

e c

d
b a

{e,c} is not conflict-free;b is not acceptable w.r.t.{e}; a is
acceptable w.r.t.{e,d}; {d,a} is an admissible set and{e,d,a}
is the preferred and stable extension ofAF.

We will need the following properties ([6], [12], [13], [14]):
Prop. 1: Let AF = 〈A ,R 〉 such thatA 6= ∅.

1) Each unattacked argument belongs to every preferred
extension ofAF (see [6]).

2) An acyclic argumentation frameworkAF contains only
one preferred extension (see [12], [13], [14]).

3) If ∅ is the unique preferred extension thenAF contains
at least an odd-length cycle (see [12], [13], [14]).

4) If AF does not contain an odd-length cycle then its
preferred extensions are not empty (see [12], [13], [14]).

5) If AF does not contain an odd-length cycle then each
preferred extension is also stable2 (see [12], [13], [14]).

Note that many works in argumentation domain consider
that odd-length cycles may be considered as paradoxes, as
they are a generalization of an argument attacking himself.We
agree with this opinion3 and, in this paper, we will consider

2One says that the argumentation framework is coherent (see [6]).
3Even if some odd-length cycles may make sense.

thatargumentation frameworks should not contain odd-length
cycles;4 however, argumentation frameworks with even-length
cycles will be taken into account. When there is no odd-length
cycle, an interesting consequence occurs:

Conseq. 1:Let AF = 〈A ,R 〉 be an AF without odd-length
cycle. Let E be a preferred extension ofAF. Let a be an
argument ofAF. If there is no attacker ofa in E thena∈ E.

Proof: We can apply Prop. 1.5. SoE is a stable
extension. So, if we assume thata 6∈ E then, becauseE is
stable,∃b∈ E such thatbR a. But this fact is impossible
because there is no attacker ofa in E. So a∈ E. �

III. CP-BOOLEAN GAMES

Let us start by introducing some background. LetV be a
finite set of propositional variables andLV be the propositional
language built fromV and the usual connectives as well as
the Boolean constants⊤ (true) and⊥ (false). Formulas ofLV

are denoted byϕ,ψ, etc. 2V is the set of the interpretations
for V, with the usual convention that forM ∈ 2V and x ∈V,
M gives the valuetrue to x if x∈ M and false otherwise. Let
X ⊆V. 2X is the set ofX-interpretations. X-interpretations are
denoted by listing all variables ofX, with a ¯ symbol when
the variable is set tofalse: for instance, letX = {a,b,d}, then
the X-interpretationM = {a,d} is denotedabd. A preference
relation � is a reflexive and transitive binary relation (not
necessarily complete) on 2V . ConsiderM,M′ ∈ 2V . The strict
preference≻ associated with� is defined as usual byM ≻M′

iff M � M′ and notM′ � M.

A. CP-net

In this section, we consider a very popular language for
compact preference representation on combinatorial domains,
namely CP-nets. This graphical model exploits conditional
preferential independence in order to structure the decision
maker’s preferences under aceteris paribusassumption [15],
[16]. Although CP-nets generally consider variables with arbi-
trary finite domains, here we consider only “propositionalized”
CP-nets, that is, CP-nets with binary variables.

Def. 4: Let V be a set of propositional variables and
{X,Y,Z} be a partition ofV. X is conditionally preferentially
independentof Y given Z iff ∀z ∈ 2Z, ∀x1,x2 ∈ 2X and
∀y1,y2 ∈ 2Y we have:x1y1z� x2y1z iff x1y2z� x2y2z.

For each variableX, the agent specifies a set ofparent
variables Pa(X) that can affect her preferences over the values
of X. Formally, X and V \ ({X}∪Pa(X)) are conditionally
preferentially independent givenPa(X). This information is
used to create the CP-net:

Def. 5: Let V be a set of propositional variables.N =
〈G ,T 〉 is a CP-net on V, whereG is a directed graph overV,
andT is a set of conditional preference tablesCPT(Xj) for
eachXj ∈V. EachCPT(Xj) associates a linear order≻ j

p with
each instantiationp∈ 2Pa(Xj).

4And, if it is not the case, these odd-length cycles will be removed of the
argumentation framework.

The preference information captured by a CP-netN can
be viewed as a set of logical assertions about a user’s prefer-
ence ordering over complete assignments to variables in the
network. These statements are generally not complete, thatis,
they do not determine a unique preference ordering.

Ex. 2: Consider the CP-net given by Figure 1 about my
preferences for the dinner. VariablesS and W correspond
respectively to the soup and the wine. I strictly prefer to eat
a fish soup (Sp) rather than a vegetable soup (Sl), and about
wine, my preferences depend on the soup I eat: I prefer red
wine (Wr) with vegetable soup (Sl : Wr ≻Wb) and white wine
(Wb) with fish soup (Sp : Wb ≻ Wr). So D(S) = {Sp,Sl} and
D(W) = {Wr ,Wb}.

W

S Sp ≻ Sl

Sp Wb ≻Wr

Sl Wr ≻Wb

Fig. 1. CP-net “My dinner”

Figure 2 represents the preference relation induced by this
CP-net. The bottom element (Sl ∧Wb) is the worst case and
the top element (Sp∧Wb) is the best case.

Sl ∧Wb

Sl ∧Wr

Sp∧Wr

Sp∧Wb

Fig. 2. Preference graph induced by the CP-net “My dinner”

There is an arrow between the nodes(Sp∧Wb) and(Sl ∧Wb)
because we can compare these states, every other thing being
equal.

In this case, we can completely order the possible states
(from the most preferred one to the least preferred one) :

(Sp∧Wb) ≻ (Sp∧Wr) ≻ (Sl ∧Wr) ≻ (Sl ∧Wb)

This relation≻ is the only ranking that satisfies this CP-net.

B. CP-Boolean games

Boolean games [7], [8] yield a compact representation of
2-player zero-sum static games with binary preferences. In
[9], Boolean games are generalized with non dichotomous
preferences: they are coupled with propositionalized CP-nets.

Def. 6: A CP-Boolean gameis a 4-upleG = (N,V,π,Φ),
where N is a set of players,V is a set of propositional
variables,π : N 7→V is a control assignment function which
defines a partition ofV, and Φ = 〈N1, . . . ,Nn〉. EachNi is

a CP-net onV whose graph is denoted byGi , and ∀i ∈ N,
�i=�Ni

.
The control assignment functionπ maps each player to the

variables she controls and each variable is controlled by one
and only one agent,5 i.e., {π1, . . . ,πn} forms a partition ofV.

Def. 7: Let G = (N,V,π,Φ) be a CP-Boolean game. A
strategy si for a playeri is aπi-interpretation. Astrategy profile
s is a n-tuple s= (s1, . . . ,sn) where for alli, si ∈ 2πi .

In other words, a strategy fori is a truth assignment for all
the variablesi controls. As{π1, . . . ,πn} forms a partition of
V, a strategy profile defines an (unambiguous) interpretation
for V. Slightly abusing notation and words, we writes∈ 2V ,
to refer to the value assigned bys to some variable.

In the rest of the paper, we make use of the following nota-
tions which are standard in game theory: letG = (N,V,π,Φ)
be a Boolean game withN = {1, . . . ,n}, ands= (s1, . . . ,sn),
s′ = (s′1, . . . ,s

′
n) be two strategy profiles;s−i denotes the projec-

tion of sontoN\{i}: s−i = (s1, . . . ,si−1,si+1, . . . ,sn); similarly,
π−i denotes the set of the variables controlled by all players
except i: π−i = V \ πi ; finally, (s′i ,s−i) denotes the strategy
profile obtained fromsby replacingsi with s′i without changing
the other strategies:(s′i ,s−i) = (s1, . . . ,si−1,s′i ,si+1, . . . ,sn).

A pure strategy Nash equilibrium (PNE) is a strategy profile
such that each player’s strategy is a best response to the other
players’ strategies. PNEs are classically defined for games
where preferences are complete, which is not necessarily the
case here. So we introduce the notion ofstrongPNE.

Def. 8: Let G = (N,V,π,Φ) and Pre fG = 〈�1, . . . ,�n〉 the
collection of preference relations on 2V induced fromΦ. Let
s = (s1, . . . ,sn) ∈ 2V . s is a strong PNE (SPNE) for G iff
∀i ∈ {1, . . . ,n}, ∀s′i ∈ 2πi

,(s′i ,s−i) �i (si ,s−i).
The following proposition has been shown in [9].
Prop. 2: Let G = (N,V,π,Φ) be a CP-Boolean game such

that graphsGi are all identical (∀i, j ∈N, Gi =G j) and acyclic.
ThenG has one and only one strong PNE.

The proof of this result makes use of theforward sweep
procedure [15] for outcome optimization (this procedure con-
sists in instantiating variables following an order compatible
with the graph, choosing for each variable its preferred value
given the value of its parents). Moreover, as shown in [9], this
SPNE can be built in polynomial time.

IV. A RGUMENTATION AND CP-BOOLEAN GAMES

Our objective here is to transform anAF into a CP-Boolean
gameG, and thus to use well-known tools of game theory, and
more specifically properties of CP-Boolean games, in order
to find the preferred extensions ofAF. By this work, we
mainly want to establish a new link between argumentation
and games.

A. Translation of an argumentation framework into a CP-
Boolean game

This transformation is done by Algorithm 1. This algorithm
assumes the existence of two others algorithms:

5The set of all variables controlled byi will be written πi instead ofπ(i).

ISCYCLIC which returnstrue if there exists at least one
cycle in the argumentation graph,6

REMODDCYCLES for removing the odd-length cycles if
there are some of them in the AF.7

The execution of these two algorithms can be viewed as
a precompilation step of Algorithm 1. One can say that
as Algorithm ISCYCLIC does not directly detect odd-length
cycles, it is useless in the precompilation of Algorithm 1.
However, as ISCYCLIC is a linear-time algorithm whereas
REMODDCYCLES is only a polynomial-time one, we think
that it is interesting to avoid an unnecessary execution of
REMODDCYCLES whenAF is acyclic.

Let AF be an argumentation framework which does not
contain odd-length cycles, the principles of Algorithm 1 are
the following:

each argument ofAF is a variable ofG;
each variable is controlled by a different player (so we
have as many players as variables);
the CP-nets of all players are defined in the same way:

– the graph of the CP-net is exactly the directed graph
of AF;

– the preferences over each variablev which is not
attacked arev≻ v (if an argument is not attacked, we
want to protect it; so the valuetrue of the variablev
is preferred to its valuefalse),

– the preferences over each variablev which is attacked
by the set of variablesR −1(v) depends on these vari-
ables: if at least one variablew∈R −1(v) is satisfied,
v cannot be satisfied (so we have

W

w∈R −1(v) w : v≻
v8); otherwise, if all variablesw∈R −1(v) are not sat-
isfied,v can be satisfied (and so

V

w∈R −1(v) w : v≻ v).
The construction of a CP-Boolean gameG from an argu-

mentation frameworkAF is made in polynomial time (even if
AF is cyclic and if we have to remove its odd-length cycles).

The use of this algorithm implies the following property:
Prop. 3: Let AF = 〈A ,R 〉 be an argumentation framework.

Let G = (N,V,π,Φ) be the CP-Boolean game andAF′ be the

6This algorithm is linear:
(Step 1) removing all the vertices which do not have predecessors;
(Step 2) iterating Step 1 until either all the remained vertices have
at least one predecessor (there is a cycle in the initial graph), or the
graph is empty (there is no cycle in the initial graph).

7This algorithm is polynomial:
(Step 1) computation of the Boolean adjacency matrix corresponding
to all the minimal odd-length paths of attack; it is sufficient to take
the Boolean adjacency of the graphM (M (i, j) = 1 if there is an
edge fromi to j in AF) and to computeM olc =M 1 +M 3 + . . . +
M 2n−1 with n = |A | (the bound 2n−1 is obtained using a general
result given by graph theory: if a directed graph contains a path
from a to b then there exists a simple path – a path in which each
vertex appears only one – froma to b);
(Step 2) removal of all the arguments for which the diagonal element
of M olc is 1;
(Step 3) removal of all the edges having one removed argumentas
end point or as start point.

8The formulaw : v≻ v (resp.w : v≻ v) means that, for the valuetrue (resp.
false) of the variablew, the valuefalse of the variablev is preferred to its
value true.

Algorithm 1 : Translation of an argumentation system into
a CP-Boolean game

begin
/* INPUT: AF = 〈A,R 〉 an argumentation system */
/* OUTPUTS: G = (N,V,π,Φ) a CP-Boolean game,AF
after removal of odd-length cyles */
/* LOCAL VARIABLES: i = current agent,a = current
argument */

/* if necessary, removal of the odd-length cycles */
if ISCYCLIC(AF) then AF = REMODDCYCLES(AF)
/* no more odd-length cycle inAF */
/* computation of the CPTs for each argument */
for a∈ A do

if R −1(a) = ∅ then CPT(a) = a≻ a
/* unattacked argument */

else
/* case of the other arguments */

CPT(a) = {
W

v∈R −1(a) v : a≻ a}
∪ {

V

v∈R −1(a) v : a≻ a}

/* computation of the CP-netN */
N = 〈AF,∪a∈ACPT(a)〉 /* it is the attack graph*/

/* after removal of odd-length cycles, */
/* associated with the CPTs of each argument */

/* computation ofN, V, π and Φ */
i = 1
N = ∅
V = A /* each argument is a variable */
for a∈ A do

N = N∪{i} /* an agent per each argument */
πi = {a} /* i controls only this argument */
Ni = N /* the same CP-net for each agent */
i = i +1

return (G = (N,V,π,〈N1, . . . ,N|V|〉), AF)
end

argumentation framework both obtained fromAF by applying
Algorithm 1.
s is a preferred extension ofAF′ iff s is a SPNE for9 G.

Proof: Let us first study the⇒ direction.
Let s be a preferred extension ofAF′. Assume thans is not
a SPNE of the CP-Boolean game associated. So,∃i ∈ N,
∃s′i ∈ 2πi , ∃s−i ∈ 2π−i , such that(s′i ,s−i) ≻i (si ,s−i). Let
xi be the variable inV such thatπi = {xi} (xi is also an
argument ofAF′). We have several cases:

R −1(xi) = ∅ (xi is unattacked). We know from
Algorithm 1 that we haveCPT(xi) = xi ≻ xi . As
(s′i ,s−i) ≻i (si ,s−i), we know thansi = xi (xi 6∈ s).
But, we know from Prop. 1.1 than ifR −1(xi) = ∅
thenxi ∈ s. We have a contradiction.
R −1(xi) 6= ∅ (there exists at least one attacker ofxi).
We know from Algorithm 1 that we haveCPT(xi) =
{

W

w∈R −1(xi) w : xi ≻ xi} ∪ {
V

w∈R −1(xi) w : xi ≻ xi}.
There are two cases:

– ∀x j such thatx jR xi , x j 6∈ s. So,
V

w∈R −1(xi) w holds
and usingCPT(xi), we can deduce thatxi ≻ xi . So,
as (s′i ,s−i) ≻i (si ,s−i), si = xi and s′i = xi . Thus,
xi is not in s. But this is in contradiction with

9Recall thats denotes aV-interprétation, that is ifs= abc for example, this
corresponds to the set{a,c}.

the conclusion obtained applying Conseq. 1 which
says thatxi ∈ s (AF′ is an argumentation framework
without odd-length cycle and there is no attacker
of xi in the preferred extensions). So this case is
impossible.

– At least one argumentx j in R −1(xi) belongs to
s. So,

W

w∈R −1(xi) w holds and usingCPT(xi) we
can deduce thatxi ≻ xi . So, as(s′i ,s−i) ≻i (si ,s−i),
si = xi . But, this is in contradiction with the fact
that s must be conflict-free (x j ∈ s and xi ∈ s). So
this case is also impossible.

In conclusion, each case is impossible if we assume
that s is not a SPNE. So,s is a SPNE.

Let us study now the⇐ direction.
Let s= (s1, . . . ,sn) be a SPNE forG. Assume thats is not
a preferred extension ofAF′; so, eithers is not conflict-
free (∃xi ,x j ∈ s such thatxiR x j or x jR xi), or s is not
acceptable (∃xi ∈ s, ∃x j ∈ A such thatx jR xi and 6 ∃xk ∈ s
such thatxkR x j).

s is not conflict-free:
– ∃xi ,x j ∈ s such thatxiR x j . As xi ∈ s, we know

that
W

w∈R −1(x j) w holds and usingCPT(x j) we can
conclude thatx j ≻ x j . As we know thans is a
SPNE, we have for the playerj who controlsx j ,
∀s′j , ∀s− j , (sj ,s− j) ≻ j (s′j ,s− j). So, sj = x j and
x j 6∈ s, which is a contradiction.

– ∃xi ,x j ∈ s such thatx jR xi . As xi ∈ s and s is a
SPNE, we know thatxi ≻ xi ; so, usingCPT(xi), we
can conclude that

V

w∈R −1(xi) w holds. So,x j 6∈ s,
which is a contradiction.

s is not acceptable:∃xi ∈ s, ∃x j ∈ A such thatx jR xi
and ∄xk ∈ s such thatxkR x j . As xi ∈ s and s is a
SPNE, we know thatxi ≻ xi , and usingCPT(xi), we
can deduce that

V

w∈R −1(xi) w holds. As x jR xi , we
know thatx j 6∈ s. So,x j ≻ x j and usingCPT(x j) we
can deduce that

W

w∈R −1(x j) w holds. That means that
there existsxk ∈ s such thatxk ∈ R −1(x j), which is a
contradiction.

In conclusion, each case is impossible if we assume
that s is not a preferred extension. So,s is a preferred
extension. �

Ex. 3: ConsiderAF = 〈{a,b,c,d,e}, {(b,a), (c,b), (d,b),
(e,c)}〉 (AF is acyclic) and transform it in a CP-Boolean game
G = (N,V,π,Φ). By applying Algorithm 1,V = {a,b,c,d,e}
and N = {1,2,3,4,5}, with π1 = {a}, π2 = {b}, π3 = {c},
π4 = {d} andπ5 = {e}. The following CP-net represents the
preferences of all players10:

E C

D

B A

e≻ e
e: c≻ c
e: c≻ c

d ≻ d

c∨d: b≻ b
c∧d: b≻ b

b: a≻ a
b: a≻ a

G has one SPNE{edcba} and AF has only one preferred
extension{e,d,a}.

Ex. 4: ConsiderAF = 〈{a,b},{(a,b), (b,a)}〉. By applying
Algorithm 1,V = {a,b} andN = {1,2}, with π1 = {a}, π2 =

10In order to distinguish the CP-net to the AF, nodes in the CP-net are in
uppercase, whereas nodes in the AF are in lowercase.

{b} (AF is cyclic, but contains only even-length cycles). The
following CP-net represents the preferences of all players:

A B
b: a≻ a
b: a≻ a

a: b≻ b
a: b≻ b

G has two SPNEs{ab, ab} and AF has two preferred
extensions{a}, {b}.

Ex. 5: ConsiderAF = 〈{a,b,c,d,e}, {(a,b), (b,c), (c,d),
(d,e), (e,c)}〉. The initial AF is cyclic, and contains an odd-
length cycle, which has to be removed. The finalAF will
contain onlya andb.

a b c d

eInitial graph for AF

a b

Final graph forAF

So, by applying Algorithm 1, we haveV = {a,b}, N =
{1,2}, with π1 = {a}, π2 = {b} and the following CP-net
which represents the preferences of all players:

A Ba≻ a a: b≻ b
a: b≻ b

G has one SPNE{ab} and the finalAF (after removal of
odd-length cycles) has one preferred extension{a}.

B. Computation of preferred extensions

Since preferred extensions correspond exactly to SPNEs, the
main properties about computation of SPNE in CP-Boolean
games can be applied. The first interesting case concerns the
acyclic argumentation frameworks:

Prop. 4: Let AF be an argumentation framework. LetG be
the CP-Boolean game andAF′ be the argumentation frame-
work both obtained fromAF by applying Algorithm 1.
If AF′ is acyclic,AF′ has one and only one preferred extension
which is computable in polynomial time usingG.

Proof: The transformation ofAF in the CP-Boolean
game by applying Algorithm 1 is done in polynomial
time. Then, the computation of the SPNE of this game
using the forward sweep procedure is also computable in
polynomial time (see Prop. 2 in [9]) and Prop. 3 shows
that this SPNE corresponds to the preferred extension of
AF′ (AF after removal of odd-length cycles). �

This proposition holds for the simple case of acyclic ar-
gumentation frameworks. The computation of SPNE(s) for
cyclic argumentation frameworks is much more complex.
However, Algorithms 2 and 3 allow to compute such solution
concept when the argumentation framework contains even-
length cycles.

These algorithms assume the existence of Algorithm COMP-
INTCYCLEFORPROP which returns the cycle (or one of the
cycles if there are several) in a given set of variables which
permits to reach more variables as possible.11 For instance, on
the following graph:

11This algorithm uses the notion of Boolean adjacency matrix as Algorithm
REMODDCYCLES:

computation of the Boolean adjacency matrixM ap corresponding to
all minimal paths in the graph reduced to the given set of variables:
M ap= M +M 2 +M 3 + . . .+M 2n with n = |V|; M ap(i) will denote
(M ap(i,1), . . . ,M ap(i,n));
ToSee = V; C = ∅; end?=false;

a b c d h

g f e i j

{a,b} permits to reach the variablesa, b, c, d, e, f , and
{i, j} permits to reach the variablesi, j, c, d, e, f . These cycles
are more interesting than the other ones for the propagation
of values over the graph (if they are the starting point of a
propagation process then this propagation is more efficient).

Let N be the CP-net representing goals of players of a
CP-Boolean game, the principles of Algorithms 2 and 3 are:

instantiation of all unattacked variables (which have no
parents inN and are satisfied in the SPNE);
propagation of these instantiations as long as possible;
once all feasible instantiations have been done, loop:

– if all variables have been instantiated, the SPNE can
be returned;

– else, with Algorithm COMPINTCYCLEFORPROP, the
more interesting cycleC remaining is computed
(there is one, otherwise all variables would have been
instantiated);

– using the current state of the current SPNE, create
two new SPNEs; the first one contains a variable of
C instantiated totrue, the second one contains this
same variable instantiated tofalse

– propagation of these instantiations for each one of
these SPNEs as long as possible.

Algorithm 2 : Computation of SPNEs of a CP-Boolean
game obtained from an argumentation framework

begin
/* INPUTS: a CP-Boolean gameG = (N,V,π,Φ), where
Φ = 〈N1, . . . ,Nn〉 */
/* OUTPUTS: a set of SPNEsSP */
/* LOCAL VARIABLES: v = current variable,In = (resp.
Out =) set of variables instantiated totrue (resp.false),
R= set of variables remaining to be instantiated */

In = ∅, Out = ∅, R= V /* Initialization */
/* Instantiation of all variables without parents */
for v∈ R do

if Pa(v) = ∅ then
R= R\{v}
In = In∪{v}

/* propagation by a recursive process */
return COMPSPNEREC(G, R, In, Out)

end

Ex. 6: Using the following graph:

loop: while NOT(end?) do
v = top(ToSee); ToSee = ToSee\{v};
if (∄w∈ ToSee s.t.M ap(v) ⊂M ap(w)) then
/* no var. permitting to reach more var. thanv */

C = C∪{v} ;
∀w∈ ToSee do if M ap(v) =M ap(w) thenC = C∪{w} ;
end?=true;

else if ToSee is empty thenend?=true;
ReturnC

Algorithm 3 : COMPSPNEREC: Recursive computation of
SPNEs of a CP-Boolean game obtained from an argumen-
tation framework
begin

/* INPUTS: a CP-Boolean gameG = (N,V,π,Φ),
R= set of variables remaining to be instantiated,
In = set of variables already instantiated totrue,
Out = set of variables already instantiated tofalse*/

/* OUTPUTS: a set of SPNEsSP */
/* LOCAL VARIABLES: v = current variable,n =
cardinal ofR, C = set of variables forming a cycle*/

if R= ∅ then
/* all variables are instantiated: a SPNE is found */
return {(InOut)}

else
n = |R| /* n = number of variables remaining to be
instantiated */
for v∈ R do

/* simple propagation process */
if Pa(v) ⊆ Out then

/* all parents are instantiated tofalse */
In = In∪{v}
R= R\{v}

else
if (Pa(v)∩ In) 6= ∅ then

/* at least 1 parent instantiated totrue */
Out = Out∪{v}
R= R\{v}

if n = |R| then
/* none variable instantiated in For instruction */
C = COMPINTCYCLEFORPROP(G, R)
v = TOP(C)
return (

COMPSPNEREC(G, R\{v}, In∪{v}, Out) ∪
COMPSPNEREC(G, R\{v}, In, Out∪{v}))

else
/* at least 1 variable instantiated in For instr. */
return COMPSPNEREC(G, R, In, Out)

end

a b c d h

g f e i j k l

the steps of the computation process are:

g and h are instantiated totrue (current state of SPNE
= gh);
then a and d are instantiated tofalse (current state of
SPNE= ghad);
then b is instantiated totrue (current state of SPNE=
ghadb);
then c is instantiated tofalse (current state of SPNE=
ghadbc);
at this point the simple propagation stops; so we must
compute the interesting cycles in the remaining set of
variables(e, f , i, j,k, l) and the result is(i, j);
the propagation process is restarted with the following
current states of two SPNEs:ghadbci andghadbci;

so, at the end of the propagation process, three SPNEs are
obtainedghadbcie f jkl , ghadbcief jkl andghadbcie f jkl.
These SPNEs correspond to the three preferred extensions
{g,h,b,e, j, l}, {g,h,b, f , i,k} and{g,h,b, i, f , l}.

The following proposition shows that Algorithms 2 and 3
allow to exactly compute the set of SPNEs of the CP-Boolean
game.

Prop. 5: Let G be a CP-Boolean game given by Algo-
rithm 1. Let SP be the set of strategy profiles ofG given
by Algorithms 2 and 3.s∈ SP iff s is a SPNE forG.

Proof: Let us first study the⇒ direction.
Let s ∈ SP. Assume thans is not a SPNE of the CP-
Boolean game associated. So,∃i ∈ N, ∃s′i ∈ 2πi , ∃s−i ∈
2π−i , such that(s′i ,s−i) ≻i (si ,s−i).
Let xi be the variable inV such thatπi = {xi}. We have
several cases:

Pa(xi) = ∅. We know from Algorithm 1 that we have
CPT(xi) = xi ≻ xi . As (s′i ,s−i) ≻i (si ,s−i), we know
than si = xi . But, we know from Algorithm 2 than
xi ∈ s. We have a contradiction.
Pa(xi) 6= ∅. We know from Algorithm 1 that we have
CPT(xi) = {

W

v∈Pa(xi) v : xi ≻ xi}∪ {
V

v∈Pa(xi) v : xi ≻
xi}.

– All variables inPa(xi) are not satisfied:
V

v∈Pa(xi) v
holds. In this case, we know thatxi ≻ xi . So, as
(s′i ,s−i)≻i (si ,s−i), we havesi = xi . But, we know
from Algorithm 2 than ifPa(xi)⊆Out, that is if all
variables inPa(xi) are not satisfied, then we have
xi ∈ In, so xi ∈ s, which leads to a contradiction.

– At least one variable inPa(xi) is satisfied:
W

v∈Pa(xi) v holds. In this case, we know thatxi ≻ xi .
So, as(s′i ,s−i) ≻i (si ,s−i), si = xi . But, we know
from Algorithm 2 than if Pa(xi)∩ In 6= ∅, that
is if at least one variable inPa(xi) is satisfied,
then we havexi ∈ Out, so xi ∈ s, which leads to a
contradiction.

So s is a SPNE forG.
Let us study now the⇐ direction.
Let s= (s1, . . . ,sn) be a SPNE forG. We have to show
thans∈ SP, that is∀i, if si = xi thenxi ∈ In elsexi ∈ Out
(case corresponding tosi = xi).

Pa(xi) = ∅. We know from Algorithm 1 that we have
CPT(xi) = xi ≻ xi . As s is a SPNE, we know than
si = xi . Moreover, we know from Algorithm 2 than
xi ∈ In.
Pa(xi) 6= ∅. We know from Algorithm 1 that we have
CPT(xi) = {

W

v∈Pa(xi) v : xi ≻ xi}∪ {
V

v∈Pa(xi) v : xi ≻
xi}.

– All variables inPa(xi) are not satisfied:
V

v∈Pa(xi) v
holds and, in this case, we know thatxi ≻ xi . So,
as s is a SPNE, we know thansi = xi . Moreover,
we know from Algorithm 3 than ifPa(xi) ⊆ Out,
that is if all variables inPa(xi) are not satisfied,
then we havexi ∈ In.

– At least one variable inPa(xi) is satisfied:
W

v∈Pa(xi) v holds and, in this case, we know that
xi ≻ xi . So, ass is a SPNE, we know thansi = xi .
Moreover, we know from Algorithm 3 than if
Pa(xi)∩ In 6= ∅, that is if at least one variable in
Pa(xi) is satisfied, then we havexi ∈ Out.

So s∈ SP. �

C. Managing odd-length cycles

Of course, the removal of odd-length cycles has an impor-
tant influence on the computation of the SPNE(s) and this point
could be considered as problematic in some cases if one does
not agree with our initial assumption: in general, an odd-length
cycle may be considered as a paradox. Of course, we know
that some odd-length cycles make sense, in particular when
they are not strict odd-length cycles. But the work presented
in this paper is preliminary and the removal of this kind of
cycles guarantees some important properties (see Prop. 1 and
Conseq. 1). The treatment of odd-length cycles will be the
subject of a future work.

Ex. 7: Consider AF = 〈{b,c,d,e}, {(b,c), (c,d), (d,e),
(e,c)}〉. The initial AF is cyclic, and it contains an odd-length
cycle which will be removed and the final AF will contain
only b.

b c d

eInitial graph

b

Final graph

So, by applying Algorithm 1, we haveV = {b}, N = {1},
with π1 = {b} and the following CP-net which represents the
preferences of all players:

Bb≻ b

So,G has one SPNE{b} which corresponds to the preferred
extension of the finalAF. However, it does not correspond
to the preferred extension of the initialAF which was the
set{b,d}. If we consider that the odd-length cycle generally
is a paradox, so that its arguments are not significant, we
can consider that{b} is a more realistic extension than
{b,d} (however this is not the approach chosen by the main
semantics for acceptability).

Ex. 8: ConsiderAF = 〈{a,b,c,d,e}, {(a,b), (b,a), (c,b),
(c,d), (d,e), (e,c)}〉. The initial AF is cyclic, and it contains
an odd-length cycle which will be removed and the final AF
will contain only a andb.

a b c d

eInitial graph

a b

Final graph

By applying Algorithm 1, we haveV = {a,b}, N = {1,2},
with π1 = {a}, π2 = {b} and the following CP-net which
represents the preferences of all players:

A B
b: a≻ a
b: a≻ a

a: b≻ b
a: b≻ b

So, G has two SPNEs{ab,ab} which correspond to the
two preferred extensions of the finalAF. However, they do
not correspond to the preferred extension of the initialAF
which was only the set{a}. In this case, to take into account
the extension{b} means that the attackc→ b is considered
as not significant (because an odd-length cycle generally isa
paradox and its arguments are not significant; so, they cannot
be able to provide a realistic attack against other arguments).

V. SOME RELATED WORKS

The main related work for our paper concerns the link
between argumentation and games identified by Dung: in [6],

anAF is used to solve a classical cooperative game (the stable
marriage problem). He uses the arguments ofAF to represent
the possible issues of the game, and the attack relation to
express the conflicts between issues. This link has also been
used in [17] in order to prove the acceptability of an argument:
a special dynamic game has been exhibited in which a player
is the proponent and the second one is the opponent. The
main differences with our work are first the static nature of
our game, and secondly the number and the role of the players.

Mentioned in the introduction of this paper, the second
important related work is the computation of preferred ex-
tensions. Some algorithms already exist (see for instance [11],
[12], [13], [10]). It is important to note that our algorithms are
not more efficient than the existing ones.

Another related work refers to the use of an argument as a
literal in a propositional formula. This idea can also be found
in [18], [19], [20] (for instance, in [19], a characterization of a
preferred extension is given under the form of a propositional
formula).

The last kind of related works concerns the treatment of
the odd-length cycles. In the literature, distinct approaches
exist: these cycles can appear in theAF, but are forbidden in
the extensions (see for instance [21]), or these cycles can be
accepted and treated as even-length cycles for computing the
extensions (see for instance [22]). Our approach corresponds
to the first case: odd-length cycles can appear in theAF but
they will be removed for the computation of the extensions
(see Algorithm 1).

VI. CONCLUSION

In this paper, we show how to translate an argumentation
frameworkAF into a CP-Boolean game, and how this game
allows to compute preferred extensions of the originalAF
using pure strategy Nash equilibria. We give three formal
algorithms allowing respectively to transform theAF into a
CP-Boolean game, and to compute the preferred extensions
of AF. Moreover, we show that once odd-cycles are removed
from AF, if the resulting argumentation frameworkAF′ is
acyclic, then the preferred extensions ofAF′ are computable
in polynomial time.

Clearly, a limitation of our results is that we consider
argumentation framework containing no odd-length cycles.We
explained this choice by the fact that our study is preliminary
and that such argumentation frameworks have some important
properties. However it would be interesting to study these
argumentation frameworks, because some odd-length cycles
may make sense. So a future work will be to see if our results
still apply in a more general case, and if it is not the case,
how we can modify our algorithms to do so.

REFERENCES

[1] P. Krause, S. Ambler, M. Elvang, and J. Fox, “A logic of argumentation
for reasoning under uncertainty,”Computational Intelligence, vol. 11
(1), pp. 113–131, 1995.

[2] H. Prakken and G. Vreeswijk, “Logics for defeasible argumentation,” in
Handbook of Philosophical Logic, D. Gabbay and F. Guenthner, Eds.
Kluwer Academic, 2002, vol. 4, pp. 218–319.

[3] A. Bondarenko, P. Dung, R. Kowalski, and F. Toni, “An abstract,
argumentation-theoretic approach to default reasoning,”Artificial Intel-
ligence, vol. 93, pp. 63–101, 1997.

[4] L. Amgoud, N. Maudet, and S. Parsons, “Modelling dialogues using
argumentation,” inFourth International Conference on MultiAgent Sys-
tems (ICMAS’2000), Boston, MA, USA, Jul. 2000, pp. 31–38.

[5] C. I. Chesñevar, A. G. Maguitman, and R. P. Loui, “Logicalmodels of
argument,”ACM Computing surveys, vol. 32, no. 4, pp. 337–383, 2000.

[6] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-persongames,”
Artificial Intelligence, vol. 77, pp. 321–357, 1995.

[7] P. Harrenstein, W. van der Hoek, J.-J. Meyer, and C. Witteveen,
“Boolean Games,” inProceedings of the 8th International Conference
on Theoretical Aspects of Rationality and Knowledge (TARK’01), J. van
Benthem, Ed., vol. Theoretical Aspects of Rationality and Knowledge,
San Francisco. Morgan Kaufmann, 2001, pp. 287–298.

[8] P. Harrenstein, “Logic in Conflict,” Ph.D. dissertation, Utrecht Univer-
sity, 2004.

[9] E. Bonzon, M. Lagasquie-Schiex, J. Lang, and B. Zanuttini, “Compact
preference representation and boolean games,”Journal of Autonomous
Agents and Multi-Agent Systems, vol. 18, no. 1, pp. 1–35, 2009.

[10] C. Cayrol, S. Doutre, and J. Mengin, “On decision problems related to
the preferred semantics for argumentation frameworks,”Journal of logic
and computation, vol. 13, pp. 377–403, 2003.

[11] S. Doutre and J. Mengin, “Preferred Extensions of Argumentation
Frameworks: Computation and Query Answering,” inIJCAR 2001, ser.
LNAI, A. L. R. Goré and T. Nipkow, Eds., vol. 2083. Springer-Verlag,
2001, pp. 272–288.

[12] P. E. Dunne and T. J. Bench-Capon, “Complexity and combinatorial
properties of argument systems,” University of Liverpool,Department
of Computer Science (U.L.C.S.), Technical report, 2001.

[13] ——, “Coherence in finite argument system,”Artificial Intelligence, vol.
141, no. 1-2, pp. 187–203, 2002.

[14] S. Doutre, “Autour de la sémantique préférée des systèmes
d’argumentation,” Thèse, Université Paul Sabatier, IRIT,2002.

[15] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, andD. Poole,
“CP-nets : A Tool for Representing and Reasoning with Conditional
Ceteris ParibusPreference Statements,”Journal of Artificial Intelligence
Research, vol. 21, pp. 135–191, 2004.

[16] ——, “Preference-Based Constrained Optimization withCP-nets,”Com-
putational Intelligence, vol. 20, no. 2, pp. 137–157, 2004, special Issue
on Preferences.

[17] C. Cayrol, S. Doutre, and J. Mengin, “Dialectical ProofTheories for the
Credulous Preferred Semantics of Argumentation Frameworks,” in Proc
of ECSQARU, 2001, pp. 668–679.

[18] N. Creignou, “The class of problems that are linearly equivalent to satis-
fiability or a uniform method for provingNP-completeness,”Theoretical
Computer Science, vol. 145, pp. 111–145, 1995.

[19] P. Besnard and S. Doutre, “Characterization of semantics for argument
systems,” inProc. of KR, 2004, pp. 183–193.

[20] S. Coste-Marquis, C. Devred, and P. Marquis, “Constrained argumenta-
tion frameworks,” inProc. of KR, 2006, pp. 112–122.

[21] ——, “Prudent semantics for argumentation frameworks,” in Proc. of
ICTAI, 2005, pp. 568–572.

[22] P. Baroni, M. Giacomin, and G. Guida, “Scc-recursiveness: a general
schema for argumentation semantics,”Artifical Intelligence, vol. 168,
pp. 162–210, 2005.

