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Abstract

There already exist some links between argumentation and game ttr@ory.
instance, dynamic games can be used for simulating interactions betgeseis a
in an argumentation process. In this paper, we establish a new link betihresn
domains in a static framework: we show how an argumentation frameeark
be translated into a CP-Boolean game and how this translation can be used fo
computing extensions of argumentation semantics. We give formalithlignsrto
do so.

1 Introduction

Argumentation has become an influential approach to trearéthlems including de-
feasible reasoning and some forms of dialogue betweena(pd e.g, [1, 2, 3, 4, 5]).

Argumentation is basically concerned with the exchangatefracting arguments.
Usually, the interaction takes the form of a conflict, callthck. For example, a
logical argument can be a paset of assumptions, conclusijorwhere the set of as-
sumptions entails the conclusion according to some logidatence schema; then a
conflict occurs for instance if the conclusion of an arguneamtradicts an assumption
of another argument.

The main issue for any theory of argumentation is the seleaf acceptable sets
of arguments, based on the way arguments interact. Irdlyifian acceptable set of
arguments must be in some sense “coherantj,(no conflict in this set) and “strong
enough” .9, able to defend itself against all attacking arguments)is Thncept of
acceptability can be explored through argumentation freonies (AF), and especially
Dung’s framework ([6]), which abstracts from the nature led arguments, and rep-
resents interaction under the form of a binary relationd@tt on a set of arguments.
However, even in the abstract framework of Dung, the coniplef the associated
problems remains prohibitive in the general case (for msta“verifying if a given set
of arguments is a preferred extension” iscd\P-complete problem).
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In another way, game theory attempts to formally analyzgegic interactions be-
tween agents. Roughly speaking, a non-cooperative ganséstonf a set of agents (or
players), and for each agent, a set of possible strategéea atility function mapping
every possible combination of strategies to a real valuth{gpaper, we consider only
one-shogames, where agents choose their strategies in paraltehutiobserving the
others’ choices).

A problem of this approach is the difficulty to express efiitig this utility func-
tion.! A way out consists in using a language for representing agpreferences in a
structuredandcompactway. An interesting use of these languages in game theory is
given by Boolean games: each agent has control over abebtdan(binary) variables
and her preferences consist in a spegifpositional formulahat she wants to be sat-
isfied (a propositional formula is a compact representaifqreferences — see [7, 8]);
unfortunately, this framework is also very restricted hessaof the dichotomy of pref-
erences (a formula can only bee or false). However, some recent works have shown
the possibility to extend these games by the useé®ietsin place of a simple propo-
sitional formula (see [9]). In this context, some intenegtresults about complexity
exist (for instance, “verifying if a given strategy profikea pure Nash equilibrium” is
a polynomial problem when each CP-net is acyclic).

Argumentation and game theory already have some commotspdiar instance,
in [6, 10], games are used for defining proof theories andrélgos for some accept-
ability problems in argumentation. However, the considgf@mes are always dynamic
and there is no specific work concerning static games andraegtation. The aim of
this paper is to identify a possible translation of an argotagion framework into a
particular static game (a CP-Boolean game) in order to coenpreferred extensions
using solution concepts of game theory (pure strategy Nastilerium: PNE). So, we
want to establish a new link between argumentation and gameéshen give a new
way for computing preferred extensions, even if this new igayot more efficient than
the existing algorithms (see for instance [11, 12, 13, 10]).

The paper is organized as follows : Dung’s abstract framkwaod CP-Boolean
games are respectively recalled in Section 2 and Sectior@ioB 4 presents the core
of this paper: how to translate an argumentation framewatd & CP-Boolean game
and how to use this game for computing extensions of arguatientsemantics. Sec-
tion 5 gives an application of our approach on a classicaingia of decision making
issued from [14]. Some related works are presented in Se6tiand Section 7 con-
cludes.

Note that this paper is an extented version of [15]. This mapment essentially
concerns the odd-length cycles which are taken into acdbtimey are not minimal.
So, new algorithms are given and new properties hold. Weagpty our approach on
a classical problem of decision making.

1Because the number of possible combinations of strategieg@ential in the number of players and
in the number of variables controlled by each player.



2 Argumentation frameworks (AF)

In[6], Dung has proposed an abstract framework for arguatiemtin which he focuses
only on the definition of the status of arguments. For thappse, he assumes that a
set of arguments is given, as well as the different confliaterag them. We briefly
recall that abstract framework:

Definition 1 An argumentation framework (AR} a pair (4, R ) of a set4 of argu-
ments and a binary relatiorR, on A4 called theattack relation Va;,a; € 4, &R a;
means that aattacksa; (or a; is attackedoy a). An AF may be represented by a
directed graph, called thénteraction graphwhose nodes are arguments and edges
represent the attack relation.

In Dung’s framework, thacceptability of an argumertepends on its membership
to some sets, called extensions. These extensions chiézaatellective acceptability.
LetAF = (4,R), SC 4. The main characteristic properties are:

Definition 2 S isconflict-freefor AF iff there exists nojaa; in S such that @& a;. An
argument a isacceptable w.r.tS for AF iff Vb € 4 such that IR a, 3¢ € S such that
CRb. S isacceptabldor AF iff Vae€ S, a is acceptable w.r.t. S fairF.

Then severatemantics for acceptabilityave been defined in [6]. For instance:

Definition 3 S is anadmissible sefor AF iff S is conflict-free and acceptable faF.

S is apreferred extensioaf AF iff S isC-maximal among the admissible setsA¢t. S

is astable extensioof AF iff S is conflict-free and S attacks each argument which does
not belong to S.

These notions are illustrated on the following example.

Example 1 ConsiderAF = ({a,b,c,d,e}, {(b,a), (c,b), (d,b), (e c)}) represented

by:
e——
C>b—>a
d

{e,c} is not conflict-free; b is not acceptable w.{e}; a is acceptable w.r.t{e,d};
{d,a} is an admissible set angk, d,a} is the preferred and stable extensionA®.

We will also need the notions of cycle and “elementary” cyele defined in [16];
in [16], an “elementary” cycle is a cycle which does not cam&mother cycle; however,
this is not the classical definition of an “elementary” cyiclgraph theory. So, even if
we use the same notion as that given in [16], we choose to wskexrword (“minimal”
instead of “elementary”) in order to avoid ambiguity wittetboncept given in graph
theory:

2In graph theory, an elementary cycle is a cycle in which a werésnot appear twice (see [17]).



Definition 4 Let X = {ap,...,an} and Y= {by,...,bm} be two non-empty sequences
of arguments oAF = (4, R ).

= X is acycleif and only ifVi <n—1, R a1 and &R ap. n+ 1is the length of
X.

= Considering that X and Y are cycles sKictly containsy, denoted by Y- X, if
and only if m< n anddi = 0...n such that 8= bo, & 1) modulo(n+1) = b1, -

&(i+m) modulo(n+1) = Bm.

= X is aminimal cycleif and only if X is a cycle andd a cycle X such that X X.

Example 2 In the following graph, the cyclga, b, c} is not minimal because it con-
tains the minimal cycléb, c}°.

a\—/b
We will need the following properties ([6, 12, 13, 18, 16]):
Proposition 1 LetAF = (4, R) such that4 # 0.

1. Each unattacked argument belongs to every preferreshsixtie ofAF (see [6]).

2. An acyclic argumentation framewoBE contains only one preferred extension
(see [12, 13, 18]).

3. If 0 is the unique preferred extension thaR contains at least an odd-length
cycle (see [12, 13, 18]).

4. If AF does not contain a minimal odd-length cycle then its preféextensions
are not empty (see [16])

5. If AF does not contain a minimal odd-length cycle then each pedlezxtension
is also stablé (see [16]f

Note that many works in argumentation domain consider tdatlength cycles
may be considered as paradoxes, as they are a generaliagbéinrargument attacking
himself, in particular, if these cycles are minimal. We agwéth this opiniod and, in

SNote that, following the classical definition of an elementaycle in graph theory, both cycles are
elementary.

“Note that in [12, 13, 18], one can find a similar property contgy argumentation systems without
odd-length cycles (minimal or not).

50One says that the argumentation framework is coherent (sge [6]

SHere too, a similar variant exists in [12, 13, 18] for arguméatasystems without odd-length cycles
(minimal or not).

"Even if some odd-length cycles may make sense.



this paper, we will consider thatgumentation frameworks should not contain minimal
odd-length cycle& however, argumentation frameworks with even-length cyelél
be taken into account.

As an argumentation framework without any minimal odd-taraycle is coherent,
an interesting consequence occurs:

Corollary 1 LetAF = (4, R ) be an AF without minimal odd-length cycle. Let E be a
preferred extension &F. Let a be an argument @fF. If there is no attacker of ain E
then ac E.

Proof: We can apply Prop. 1.5. 3bis a stable extension. So, if we assume that
a ¢ E then, becauskE is stabledb € E such thab® a. But this fact is impossible
because there is no attackeradh E. Soac E. [ ]

3 CP-Boolean games

Let us start by introducing some background. Webe a finite set of propositional
variables and.y be the propositional language built frovhand the usual connectives
as well as the Boolean constants(true) and L (false). Formulas ofLy are denoted
by ¢,, etc. 2 is the set of the interpretations gt with the usual convention that for
M € 2V andx € V, M gives the valugrue to x if x € M andfalse otherwise. LeX C V.
2% is the set ofX -interpretations X-interpretations are denoted by listing all variables
of X, with a~ symbol when the variable is sefdize: for instance, leX = {a,b,d},
then theX-interpretationM = {a,d} is denotedabd. A preference relatior- is a
reflexive and transitive binary relation (not necessaritynplete) on ¥. Consider
M,M’ € 2V. The strict preference associated with- is defined as usual byl > M’

iff M = M’ and notM’ = M.

3.1 CP-net

In this section, we consider a very popular language for @onpreference representa-
tion on combinatorial domains, namely CP-nets. This gregdlhmodel exploits condi-
tional preferential independence in order to structuredh@sion maker’s preferences
under aceteris paribusssumption [19, 20]. Although CP-nets generally consider v
ables with arbitrary finite domains, here we consider ontpfysitionalized” CP-nets,
that is, CP-nets with binary variables.

Definition 5 Let V be a set of propositional variables afH,Y,Z} be a partition of
V. X isconditionally preferentially independeot Y given Z iffyz € 27, ¥xq,xp € 2%
andVyz,y» € 2¥ we have: xy1z > xoy1Z iff X1yoz > Xoyoz.

8And, if it is not the case, these minimal odd-length cycles bélremoved of the argumentation frame-
work.



For each variableX, the agent specifies a set pdrent variables PeX) that can
affect her preferences over the valuesXof Formally, X andV \ ({X} UPa(X)) are
conditionally preferentially independent givea(X). This information is used to cre-
ate the CP-net:

Definition 6 LetV be a set of propositional variable®/ = (G,7T) is aCP-net orV,
where G is a directed graph over V, and’ is a set of conditional preference tables
CPT(X;) for each % € V. Each CPTX;) associates a linear order}, with each
instantiation pe 2PaX)).

The preference information captured by a CP<Retan be viewed as a set of log-
ical assertions about a user’s preference ordering ovepletenassignments to vari-
ables in the network. These statements are generally nqtletanthat is, they do not
determine a unique preference ordering.

Example 3 Consider the CP-net given by Figure 1 about my preferenaghéadinner.
Variables S and W correspond respectively to the soup anditie | strictly prefer to
eat a fish soup (s} rather than a vegetable soup,{Sand about wine, my preferences
depend on the soup | eat: | prefer red wine JWlith vegetable soup (SW; = W,)
and white wine (W) with fish soup (§: W, >~ W). So OS) = {S,,S} and DW) =

{We, Wb}

W wow

Figure 1: CP-net “My dinner”

Figure 2 represents the preference relation induced by @fsnet. The bottom
element (§AW,) is the worst case and the top elemerg fS\,) is the best case.

Sp AW

Figure 2: Preference graph induced by the CP-net “My dinner”

There is an arrow between the nodg§, AW,) and (§ AW,) because we can
compare these states, every other thing being equal.



In this case, we can completely order the possible statem(the most preferred
one to the least preferred one) :

(SpAWD) = (SpAWE) = (S AWE) > (S AW)

This relation> is the only ranking that satisfies this CP-net.

3.2 CP-Boolean games

Boolean games [7, 8] yield a compact representation of geplaero-sum static games
with binary preferences. In [9], Boolean games are germ@ahvith non dichotomous
preferences: they are coupled with propositionalized €8:n

Definition 7 A CP-Boolean gamis a 4-uple G= (N,V, 11, @), where N is a set of play-
ers, V is a set of propositional variableg, N — V is a control assignment function
which defines a partition of V, arl = (A4, ..., Ay). Each4{ is a CP-net onV whose
graph is denoted by, andvi € N, =i==4;.

The control assignment functiammaps each player to the variables she controls
and each variable is controlled by one and only one aYest, {r,...,T,} forms a
partition ofV.

Definition 8 Let G= (N,V, T, ®) be a CP-Boolean game. #rategys for a player i
is a Tg-interpretation. Astrategy profiles is a n-tuple s= (s1,...,Sy) where for all i,
5 €2,

In other words, a strategy faiis a truth assignment for all the variablesontrols.
As {m,...,T,} forms a partition ofV, a strategy profile defines an (unambiguous)
interpretation folV. Slightly abusing notation and words, we write 2V, to refer to
the value assigned ksto some variable.

In the rest of the paper, we make use of the following notatighich are standard
in game theory: le6 = (N,V, 1, ®) be a Boolean game witN = {1,...,n}, ands=
(st,---,%), 8 =(s},...,5,) be two strategy profiles,_; denotes the projection sbnto
N\{i}: s.i =(s1,...,5-1,5+1,---,Sn); Similarly, TL_; denotes the set of the variables
controlled by all players except T; =V \ 13; finally, (§,s_i) denotes the strategy
profile obtained frons by replacings with § without changing the other strategies:
(8,5-i) = (Sty--,S-1,5,S+41,---,Sn)-

A pure strategy Nash equilibrium (PNE) is a strategy profilehsthat each player’s
strategy is a best response to the other players’ stratd@jdiss are classically defined
for games where preferences are complete, which is not seilgsthe case here. So
we introduce the notion ftrongPNE.

Definition 9 Let G= (N,V,1,®) and Pre§ = (>1,...,=n) the collection of prefer-
ence relations or?¥ induced from®. Let s= (S1,.--,%) € 2V, sis astrong PNE
(SPNE) for G iffvi € {1,...,n}, VS{ € 2”,(#,&0 =i (s,550)-

The following proposition has been shown in [9].

9The set of all variables controlled bvill be written 5 instead ofri(i).



Proposition 2 Let G= (N,V, T, @) be a CP-Boolean game such that graghsare all
identical (7i, j € N, Gi = Gj) and acyclic. Then G has one and only one strong PNE.

The proof of this result makes use of tioeward sweegprocedure [19] for outcome
optimization (this procedure consists in instantiatingalales following an order com-
patible with the graph, choosing for each variable its prefévalue given the value of
its parents). Moreover, as shown in [9], this SPNE can b lougolynomial time.

4 Argumentation and CP-Boolean games

Our objective here is to transform aF into a CP-Boolean gam&, and thus to
use well-known tools of game theory, and more specificalgpprties of CP-Boolean
games, in order to find the preferred extensionafaf By this work, we mainly want
to establish a new link between argumentation and games.

4.1 Translation of an argumentation framework into a CP-Bookan
game

This transformation is done by Algorithm 1. However, the oé¢his algorithm as-
sumes the existence of some other algorithms which makedackifprecompilation”
of the argumentation system to translate. The aim of thies¢pmpilation” is the re-
moval of the minimal odd-length cycles. This removal can beealin polynomial time

if we choose to removell the odd-length cycle, even if they are not minimal, or it will
be done in exponential time if we remowaly the minimal cycles:

= To remove all odd-length cycles, the two following algonith can be used:

— IsCycLic which returngrue if there exists at least one cycle in the argu-
mentation grapA®

— REMODDCYCLES for removing the odd-length cycles if there are some of
them in the AF:!
10This algorithm is linear:
(Step 1) removing all the vertices which do not have predecsss

(Step 2) iterating Step 1 until either all the remained vertibave at least one predecessor (there is a cycle
in the initial graph), or the graph is empty (there is no cynléhie initial graph).

11This algorithm is polynomial:

(Step 1) computation of the Boolean adjacency matrix cormedipg to all shortest odd-length paths of
attack (in term of length); it is sufficient to take the Boalezdjacency of the grapff (M (i,j) =1
if there is an edge frorto j in AF) and to compute '€ = a1+ M3+ ...+ M1 with n = | 4|
(the bound B — 1 is obtained using a general result given by graph theogydifected graph contains
a path froma to b then there exists an elementary path — in the classical séreelyy graph theory:
a path in which each vertex appears only once — fecmb);

(Step 2) removal of all the arguments for which the diagonahel& of MOlCis 1

(Step 3) removal of all the edges having one removed argumenigsoint or as start point.



One can say that as AlgorithrsCycLic does not directly detect odd-length cy-
cles, it is useless in the precompilation of Algorithm 1. Hwer, as $CycCLIC

is a linear-time algorithm whereassERODDCYCLES is only a polynomial-time
one, we think that it is interesting to avoid an unnecesseaggtion of REMOD-
DCYCLES whenAF is acyclic.

= To remove only minimal odd-length cycles, Algorithm 4 givenAppendix
can be used. This algorithm is less efficient than the previmes (it is an
exponential-time algorithm) but it allows the conservataf some odd-length
cycles which make sense.

Let AF be an argumentation framework which does not contain miraah@-length
cycles, the principles of Algorithm 1 are the following:

= each argument ofF is a variable ofG;

= each variable is controlled by a different player (so we tewenany players as
variables);

= the CP-nets of all players are defined in the same way:

— the graph of the CP-net is exactly the directed graphrof

— the preferences over each variablehich is not attacked are- Vv (if an
argument is not attacked, we want to protect it; so the value of the
variablev is preferred to its valuéalse),

— the preferences over each variablehich is attacked by the set of variables
R ~1(v) depends on these variables: if at least one variatdte® ~1(v) is
satisfied v cannot be satisfied (so we haVg,cg -1, W : V > V!?); other-

wise, if all variablesw € ® ~1(v) are not satisfiedy can be satisfied (and
SO Aweg -1y WV = V).

The construction of a CP-Boolean ga@drom an argumentation framewore
is made in polynomial time (even &F is cyclic and if we have to remove all its odd-
length cycles).

The use of this algorithm implies the following property:

Proposition 3 LetAF = (4, R ) be an argumentation framework without minimal odd-
length cycle. Let G= (N,V, T, ®) be the CP-Boolean game obtained frad by ap-
plying Algorithm 1. s is a preferred extensionAs iff s is a SPNE fol® G.

Proof: Let us first study thes- direction.

Let s be a preferred extension aF. Assume thars is not a SPNE of the CP-
Boolean game associated. Soe N, 35 € 2%, 3s_; € 2™, such tha(g,s_i) >
(s,s-i). Letx be the variable itV such thatrg = {x;} (x; is also an argument of
AF’). We have several cases:

12The formulaw : v - v (resp.W: v - v) means that, for the valueue (resp.false) of the variablew, the
valuefalse of the variablev is preferred to its valugue.
13Recall thais denotes & -interpretation, that is i§ = abc for example, this corresponds to the §atc}.



Algorithm 1: Translation of an argumentation system into a CP-Boolegney

begin

[* INPUT: AF = (4, R ) an argumentation system without minimal odd-length cycle
*/

* OUTPUTS: G = (N,V, 1, ®) a CP-Boolean game */

/* LOCAL VARIABLES: i = current agenta = current argument */

[* computation of the CPTs for each argument */
forae 4do
if ®1(a)=0thenCPT(a)=a>a
/* unattacked argument */
else
[* case of the other arguments */
CPT(a) = {vvex—l(a)v :a- a}
U {Aveg1qV:a-a}

[* computation of the CP-nex/ */
AN = (AF,Uae 2CPT(a)) [* it is the attack graph of\F */

/* associated with the CPTs of each argument */
[* computation ofN, V, rand® */

i=1

N=0

V=24 [* each argument is a variable */

for a€ 4 do
N=NuU{i} /* an agent per each argument */
= {a} I* i controls only this argument */
A =N * the same CP-net for each agent */
i=i+1

return (G= (N,V, T, (.‘7\[1,...,7\4\,‘>),AF)

end

= ®1(x) =0 (x is unattacked). We know from Algorithm 1 that we have
CPT(x) =% > %. As(5,s_i) =i (S,5-i), we know tharns =X (X & 9).
But, we know from Prop. 1.1 than it{*l(xi) = 0thenx; €s. We have a
contradiction.

= R 1(x) # 0 (there exists at least one attackexgf We know from Algo-
rithm 1 that we hav€PT(X) = {Vweg 1) W: X = X} U{Aweg 1(x)W:
Xi = %i }. There are two cases:
— VXj such thakj R x;, Xj €. SO,/\WGR—l(Xi>WhO|dS and usin@PT(x),
we can deduce tha§ - %. So, as(s,s_i) =i (S,S-i), § = % and
§ = X. Thus,x is notins. But this is in contradiction with the con-
clusion obtained applying Conseq. 1 which says that s (AF is an
argumentation framework without odd-length minimal cycle and there
is no attacker ok; in the preferred extensics). So this case is impos-
sible.
— At least one argument; in & ~(x) belongs tos. S0, Ve g-1(x)W
holds and usin@€PT(x;) we can deduce that >~ X. So, as(s{,s,i) =i

10



(s,s-i), S = X%. But, this is in contradiction with the fact thatmust
be conflict-free Xj € sandx; € s). So this case is also impossible.
In conclusion, each case is impossible if we assumestisatot a SPNE. So,
sis a SPNE.

Let us study now the= direction.

Lets= (si,...,5) be a SPNE foG. Assume thas is not a preferred extension
of AF; so, eithersis not conflict-free x;, X; € ssuch thai; ® x; or xj X i), or sis
not acceptabled; € s, 3xj € A4 such thak; R x; and Ax € ssuch that R ;).

= sis not conflict-free:

— 3%, Xj € ssuch thak R xj. Asx € s, we know that\/weg{‘—l(xj) w holds
and usingCPT(xj) we can conclude that; > x;. As we know than
sis a SPNE, we have for the playgrwho controlsx;, VS’J-, vs_j,
(sj,S-j) =j (Sj:5-j)- So,sj =Xj andx; ¢ s, which is a contradiction.

— 3Jx,Xj € ssuch thatxjRx. Asx € sandsis a SPNE, we know that
X > Xi; SO, usingCPT(x;), we can conclude that\wexfl(mw holds.
So,xj ¢ s, which is a contradiction.

= sis not acceptabledx; € s, Ixj € A4 such thatx;j R x; and?x, € ssuch that
XcRXj. Asx € sandsis a SPNE, we know thag - X;, and usingCPT(x;),
we can deduce thﬁwex—l(x‘.)w holds. Asxj R x;, we know thak; ¢ s. So,
Xj = xj and usingCPT(x;) we can deduce thaf\,cg-1(x)W holds. That
means that there existg € s such thatx € ﬂ{*l(x,-), which is a contradic-
tion.

In conclusion, each case is impossible if we assumestisatot a preferred exten-
sion. Sosis a preferred extension. [ |

Example 4 ConsiderAF = ({a,b,c,d,e}, {(b,a), (c,b), (d,b), (e c)}) (AF is acyclic)
and transform it in a CP-Boolean game-5(N,V,,®). By applying Algorithm 1,
V ={ab,c,d, e} and N={1,2,3,4,5}, withtyg = {a}, o = {b}, T8 = {c}, Tu = {d}
andTi = {e}. The following CP-net represents the preferences of ailquig*:

e:c-c -
e-e ec-c cvVdib-b
C tAd:b>b

B
D/
—d

oo
L ol
Y Y
CUR

>

d

G has one SPNEedcba} andAF has only one preferred extensi¢e d, a}.

141n order to distinguish the CP-net to the AF, nodes in the @Pare in uppercase, whereas nodes in the
AF are in lowercase.

11



Example 5 ConsiderAF = ({a,b},{(a,b), (b,a)}). By applying Algorithm 1, \&=
{a,b} and N= {1,2}, with m = {a}, ™ = {b} (AF is cyclic, but contains only even-
length cycles, so Algorithm 1 can be applied). The follow@fernet represents the
preferences of all players:

a

B &

.ar-
.a A

a
=a

o ol
ol o

—
—

;

G has two SPNE§ab, ab} andAF has two preferred extensioda}, {b}.

Example 6 ConsiderAF = ({a,b,c,d,e}, {(a,b), (b,c), (c,d), (d,e), (ec)}). The
initial AF is cyclic, and contains a minimal odd-length cycle; so beforapply Algo-
rithm 1, this cycle is removed. The firel will contain only a and b.

Initial graph for AF /(Ta Final graph forAF
a b o d a—->Db

So, by applying Algorithm 1, we have¥{a,b}, N={1,2}, withy = {a}, Tp, =
{b} and the following CP-net which represents the preferentadl players:

a-a A B &

o ol
ol o

—
-

Ql

G has one SPNEab} and the finaAF (after removal of minimal odd-length cycles
has one preferred extensida}.

Example 7 ConsiderAF = ({a,b,c}, {(a,b), (b,c), (c,a), (c,b)}). The initial AF is
cyclic, and contains one not minimal odd-length cycle and prinimal even-length
cycle. As the odd-length cycle is not minimal, we do not haverhove any cycle.

7

c

So, by applying Algorithm 1, we have{a,b,c}, N={1,2,3}, with g = {a},
™ = {b}, ™3 = {c} and the following CP-net which represents the preferenéedl o
players:
ave:b>b
aAt:b-Db
B

N/

b:t>c
b:c>tT
G has one SPNEabc} andAF has one preferred extensidi}.

S

~a
=a

oo
>

12



4.2 Computation of preferred extensions

Since preferred extensions correspond exactly to SPNEsm#in properties about
computation of SPNE in CP-Boolean games can be applied. idtenfieresting case
concerns the acyclic argumentation frameworks:

Proposition 4 Let AF be an argumentation framework without minimal odd-length
cycles. Let G be the CP-Boolean game obtained fadtrby applying Algorithm 1.

If AF is acyclic,AF has one and only one preferred extension which is computable
polynomial time using G.

Proof: The transformation oAF in the CP-Boolean game by applying Algorithm 1
is done in polynomial time. Then, the computation of the SPNE of this gamg usin
the forward sweep procedure is also computable in polynomial time (ege P

in [9]) and Prop. 3 shows that this SPNE corresponds to the prefextedsion of
AF. [

This proposition holds for the simple case of acyclic argntatgon frameworks.
The computation of SPNE(s) for cyclic argumentation frames is much more com-
plex. However, Algorithms 2 and 3 allow to compute such soiutoncept when the
argumentation framework contains cycles except minimdHedgth cycles.

These algorithms assume the existence of:

= Algorithm CoMPINTCYCLEFORPROP which returns the cycle (or one of the
cycles if there are several) in a given set of variables wipiemits to reach
more variables as possibfe

= Algorithm ComPINTVARFORPROPWhiIch returns a variable of the cycle which
permits to reach more variables as possfle

For instance, on the following graph:

15This algorithm uses the notion of Boolean adjacency matriklgsrithm REMODDCYCLES:

computation of the Boolean adjacency matfig@P corresponding to all shortest paths in the graph
reduced to the given set of variable®3° = 3¢ + M2 + M3 +...+ M2 with n = |V|; M3(i) will
denote( M3P(i,1),..., M3P(i,n));

ToSee =V; C = 0; end? =false;

— loop: while NOTEnd?) do

v =top(ToSee); ToSee = ToSee \ {V};

if (Aw € ToSee s.t. M3P(v) C M3P(w)) then

/* no var. permitting to reach more var. thari/
C=CU{v};
Yw € ToSee do if M3P(v) = M3P(w) thenC =CuU {w} ;
end? =true;

else ifToSee is empty therend? =true;

ReturnC

16This algorithm can be very simple: return the variable wheseihg degree is the greatest.
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{a,b} permits to reach the variablesb, c, d, e, f, and{i, j} permits to reach the

variablesi, |, c, d, e, f. These cycles are more interesting than the other onesdor th

propagation of values over the graph (if they are the stioint of a propagation
process then this propagation is more efficient). And ambag/ériables of the cycle
{i,j}, the variabld (leaving degre¥ of i = 2) is more interesting than the variatjle
(leaving degree of = 1).

Let A’ be the CP-net representing goals of players of a CP-Boolaaregthe
principles of Algorithms 2 and 3 are:

= instantiation of all unattacked variables (which have neepts inAl and are
satisfied in the SPNE);

= propagation of these instantiations as long as possible;
= once all feasible instantiations have been done, loop:

— if all variables have been instantiated, the SPNE can bemrediy

— else, with Algorithm @MPINTCYCLEFORPROP, the more interesting cy-
cle C remaining is computed (there is one, otherwise all vargbleuld
have been instantiated);

— using the current state of the current SPNE, create two neMESPthe
first one contains a variable & (chosen by Algorithm ©MPINTVAR-
ForPRoOPIn order to make the propagation more efficient) instandiate
true, the second one contains this same variable instantiatiatbéo note
that, when odd-length cycles exist in the graph, some itistéons are im-
possible (see Example 9); However, at this stage of the ighgorwe are
not able to know what are the impossible instantiations;asohecking
process is needed at the end of the propagation process;

— propagation of these instantiations for each one of theESRs long as
possible.

= checking process of each obtained instantiation in ordetetect impossible
instantiations due to the existence of non minimal odd#emgcles; the points
which must be checked are exactly the same ones which ane iratkeaccount
for propagating values:

— either a variable and one of its parents belonging to the $astentiation,

— or a variable not belonging to an instantiation without afyt® parents
belong to this instantiation.

1"The leaving degree of a vertex in a graph is the number of egge#nl the vertex.
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These problems can be appeared neither with an acyclic dbmglause of the
simplicity of the propagation process), nor with a graphtaming even-length
cycles (because in an even-length cycle, if a variable igimited tarue, its
parents are always instantiateddtse and vice-versa).

Algorithm 2: Computation of SPNEs of a CP-Boolean game obtained from an
argumentation framework

begin

[* INPUTS: a CP-Boolean gan® = (N,V, T ®), where® = (A4, ..., Ap) */

[* OUTPUTS: a set of SPNESP*/

/* LOCAL VARIABLES: v = current variableln = (resp.Out =) set of variables
instantiated tarue (resp.false), R = set of variables remaining to be instantiated */

In=0,0ut=0,R=V /* Initialization */
[* Instantiation of all variables without parents */
for ve Rdo

if Pa(v) = 0 then

L R=R\{v}

In=1Inu{v}

[* propagation by a recursive process */
return COMPSPNER:C(G, R, In, Out)

end

Example 8 Using the following graph:

a__b %3 d h

the steps of the computation process are:

g and h are instantiated toue (current state of SPNE gh);

then a and d are instantiated false (current state of SPNE ghad);
then b is instantiated toue (current state of SPNE- ghadb);

then c is instantiated téalse (current state of SPNE ghadix);

at this point the simple propagation stops; so we must coenthé interesting
cycles in the remaining set of variablés f i, j,k,1) and the resultigi, j); then

we select in this cycle the most interesting variable (thlictv has the largest
leaving degree); in this example and following this pointvidw, | and | are

equivalent;

the propagation process is restarted with the followingrent states of two SP-
NEs: gladbci and gradii;

15



Algorithm 3: CoMPSPNEReC: Recursive computation of SPNEs of a CP-
Boolean game obtained from an argumentation framework

begin
[* INPUTS: a CP-Boolean gam® = (N,V, T, ®),

R = set of variables remaining to be instantiated,

In = set of variables already instantiatedae,

Out = set of variables already instantiateddize */
[* OUTPUTS: a set of SPNESP*/
/* LOCAL VARIABLES: v = current variablen = cardinal ofR, C = set of
variables forming a cycleges= Boolean variable to check if the instanciation is
correct */

if R=0then
[* all variables are instantiated: a SPNE is perhaps found */
[* checking process of the instantiation */
res= true
for ve Indo
| if Pa(v)nIn# 0thenres= false

for ve Outdo
| if Pa(v) C Outthenres= false

| if resthen return {(InOut)} I* a correct SPNE has been found */
else
n=|R /* n=number of variables remaining to be instantiated */
for ve Rdo

[* simple propagation process */
if Pa(v) C Outthen
[* all parents are instantiated taise */
In=InuU{v}
L R=R\{v}
else
if (Pa(v)NIn) s 0then
[* at least one parent instantiatedttoe */
Out = OutU {v}
R=R\{v}

n=|R| then
[* none variable instantiated in For instruction */
C = COMPINTCYCLEFORPROAG, R)
v = COMPINTVARFORPRORG, R, C)
return (
COMPSPNEREC(G, R\ {v}, InU{v}, Out) U
CoMPSPNEREC(G, R\ {v}, In, OutU{v}))

=

Ise
/* at least 1 variable instantiated in For instr. */
| return COMPSPNEREC(G, R, In, Out)

0]

end
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= S0, at the end of the propagation process, three instantiatare obtained gidbcie fjkl,
ghadbcief jkl and gradbcie fjkl. Moreover, all these instantiations are consid-
ered correct by the checking procé%sso they are SPNEs and these SPNEs
correspond to the three preferred extensidgsh, b, e, j,1}, {g,h,b, f,i,k} and

{g.h,b,i, f.1}.

Example 9 Using the following graph:

a— b

%

the steps of the computation process are:

= No variable is without parents, no propagation is possibii#e must compute
the most interesting cycle then the most interesting végiabthis cycle; in this
example, both cycles are interesting but the interest adabées differ:

a allows to reach the variable b

b allows to reach the variable ¢
c allows to reach the variable a and b

so, in terms of the effectiveness of the propagation, the mtesesting
variable will be ¢

= the propagation process is started with the following catrstates of two sets:
{c} and{c};
= S0, at the end of the propagation process, two sets are adaldoab} and {cab}.
The checking process begins:
— For the first set, we have ks {c}, Out= {a,b}. We have Pec)Nin = 0;
Pa(a) Z Out and Pdb) ¢ Out. We return{abc}
— For the second set, we have#n{a}, Out= {b,c}. But, Pgc) C Out. So,
we do not return anything.

Thus, we obtain one SPN#Bc which corresponds to the preferred extensioh,

The following proposition shows that Algorithms 2 and 3 allim exactly compute
the set of SPNEs of the CP-Boolean game.

Proposition 5 Let G be a CP-Boolean game given by Algorithm 1. Let SP be the se
of strategy profiles of G given by Algorithms 2 and & SP iff s is a SPNE for G.

18Note that, in this example, the checking process was usedessibe there is no odd-length cycle.
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Proof:
Let us first study thes direction.

Letse SP. Assume tharsis not a SPNE of the CP-Boolean game associated. So,
JieN, 35 €2™,3sj € 2™, such thals,s_i) =i (S,5-i).
Letx; be the variable iv such thatg = {x;}. We have several cases:

= Pa(x;) = 0. We know from Algorithm 1 that we hav@PT(x;) = X >~ X;. As
(§,5-i) =i (s,5-i), we know thars, = X;. But, we know from Algorithm 2
thanx € s. We have a contradiction.

= Pa(x;) # 0. We know from Algorithm 1 that we hav@PT(xi) = {Vyeparx) V:
Xi =% U {/\\,Epa(xi)v ;X =% }. Several cases appear:

— All variables inPa(;) are not satisfiedf\,cpax) v holds andPa(x;) C
Out. By CPT(x;), we know thatx; > %. So, ags,s-i) >i (S,S-i), we
haves = X; which is equivalent tog € Out. But, we know from the
checking test of Algorithm 3 that this cadea(x;) C Out andx; € Out)
does not produce a strategy profile;sg SP, that is in contradiction
with the initial assumption.

— Atleastone variable iRa(x;) is satisfied:\/\cpa x) v holds andPa(x;) N
In # 0. By CPT(x;), we know thaw; > x;. So, as(s{,s_i) =i (S,5-i),
s = X; which is equivalent to; € In. But, we know from the checking
test of Algorithm 3 that this cas®é(x;) NIn # 0 andx; € In) does not
produce a strategy profile; soZ SP, that is in contradiction with the
initial assumption.

Sosis a SPNE folG.

Let us study now the= direction.

Let s be a SPNE of the CP-Boolean game associated. Assums ¢h&f. So,
either3x; € In such thaPa(x) NIn # 0 or Ix € Out such thaPa(x;) C Out. Let’s
study these both cases:

= Jx € In (i.e. §=X) such thatPa(x;) NIn # 0. As Pa(x;) # 0 (because
In is not the empty set +n containsx; — and its intersection witRa(x;) is
not empty), we know from Algorithm 1 th&@PT(X;) = {Vyepax) Vi Xi =
X} U{Avepaix)V: X% = Xi}. As 3v € Pa(x) such that € In, we know that
%i i Xi. So there exists = % such that(s/,s_i) =i (s,5_i), Sosis not a
SPNE; that is in contradiction with the initial assumption.

= Jx € Out (i.e. § =X%;) such thatPa(x;) C Out. At this point, there are two
possibilities:

— Pa(x) = 0; so we know from Algorithm 1 thaEPT(x;) = X; > X;. So
there exists = x; such that(s,s_j) =i (s,s-i), sosis not a SPNE;
that is in contradiction with the initial assumption.

— Pa(x) # 0; so we know from Algorithm 1 thea@PT(X;) = {Vyeparx) V:
Xi =X }U{ Aveparx) Vi Xi = Xi }. AsPa(x;) C Out, we havevv € Pa(x;),
v € Out, and we know thak =i Xi. So there exists = x such that
(§,5-i) =i (s,5-i), sosis not a SPNE; that is in contradiction with the
initial assumption.

Thus,se SP. [ |
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4.3 Managing minimal odd-length cycles

Of course, the removal of minimal odd-length cycles has apoitant influence on
the computation of the SPNE(S) and this point could be cemsitias problematic in
some cases if one does not agree with our initial assumpirogeneral, a minimal
odd-length cycle may be considered as a paradox.

This initial assumption is also justified by the fact that soimteresting argumen-
tation systems make sense only without minimal odd-lengttes (see [16] and Sec-
tion 5).

Moreover, the removal of this kind of cycles guarantees sonp@rtant properties
(see Prop. 1 and Conseq. 1).

Example 10 ConsiderAF = ({b,c,d,e}, {(b,c), (c,d), (d,e), (e,c)}). The initial AF
is cyclic, and it contains a minimal odd-length cycle whicii e removed and the
final AF will contain only b.

Initial graph Final graph

|
b—cZ—d b

So, by applying Algorithm 1, we have¥{b}, N = {1}, with Ty = {b} and the
following CP-net which represents the preferences of alyets:

b>b B

So, G has one SPNfb} which corresponds to the preferred extension of the final
AF. However, it does not correspond to the preferred extensidhe initial AF which
was the sefb,d}. If we consider that the minimal odd-length cycle generaha
paradox, so that its arguments are not significant, we carsicten that{b} is a more
realistic extension thafb,d} (however this is not the approach chosen by the main
semantics for acceptability).

Example 11 ConsiderAF = ({a,b,c,d, e}, {(a,b), (b,a), (c,b), (c,d), (d,e), (e,c)}).
The initial AF is cyclic, and it contains a minimal odd-length cycle whidl e re-
moved and the final AF will contain only a and b.

Initial graph @ Final graph

a

N
~— a b

b<—=~C——d s

By applying Algorithm 1, we have ¥ {a,b}, N={1,2}, withm = {a}, m = {b}
and the following CP-net which represents the preferented players:

— . absb

A\/B abs-b

D o

—
-

o ©

olo
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So, G has two SPNEsb, ab} which correspond to the two preferred extensions
of the finalAF. However, they do not correspond to the preferred extensfaime
initial AF which was only the sdia}. In this case, to take into account the extension
{b} means that the attack-e b is considered as not significant (because a minimal
odd-length cycle generally is a paradox and its argumengsrent significant; so, they
cannot be able to provide a realistic attack against othejuanents).

5 An application in decision making: the omelet prob-
lem

This application is a classical problem of decision makifrg[16], Amgoud and al.
have proposed to formalize it using a special argumentaystem which does not
contain minimal odd-length cycles.

In this example, an agent prepares an omelet and shouldedetiether or not to
add an egg to a 5 eggs omelet knowing that the remaining eggbmagtten. The
possible actions of this agents are: “to break the egg djrecthe omelet”, “to break
the egg in a cup”, “to throw away the egg”. And the agent wantsetlize different
goals presented here in the order of their importance: “dovaste the omelet”, “do
not waste the 6th egg”, “to have a 6 eggs omelet”, “to avoidritaa cup to wash”.

This problem can be described in argumentation by the fatigwystem proposed
in [16]:

= the set of argumentd is composed with six arguments:

— argumenty; in favor of “to break the egg directly in the omelet” when the
egg is not rotten

— argument, in favor of “to break the egg directly in the omelet” when the
egg is rotten

— argumentag in favor of “to break the egg in a cup” when the egg is not
rotten

— argumenty in favor of “to break the egg in a cup” when the egg is rotten
— argumenss in favor of “to throw away the egg” when the egg is not rotten
— argumentg in favor of “to throw away the egg” when the egg is rotten

= the attack relation ot is built using two constraints:

— an argument in favor of an actiotis in conflict with an argument in favor
of another actiory

— there is a preference relation between the arguments ebtainthe pref-
erence relation on the goals

Considering that the agent is quite sure that the egg is gdogioud and al pro-
poses in [16] the following representation of this system:
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VAR

V4

This argumentation system does not have minimal odd-lenygtles and it can be
translated into the following CP-net following Algorithm 1

a1>al
a: a3>a3%‘//\\ aVag as - as
aj: ag > ag / \ a A\adz: as >~ as
aiVag ag - a4 al 9 ~ A

N3 -y \ / a1l 3 - 3

a4 V35 32 = ap
AN A - A
And, using Algorithms 2 and 3, the SPNE of this CP-ne{ &:a,azasasas } which
corresponds to the preferred extensi@a,ay} which supports the action “to break
the egg directly in the omelet”. Of course, this result issistent with that proposed

by [16].

6 Some related works

The main related works for our paper concern the link betwagmumentation and
games identified by Dung: in [6], a&F is used to solve a classical cooperative game
(the stable marriage problem). Dung uses the argumerts @f represent the possible
issues of the game, and the attack relation to express tliictobetween issues. This
link has also been used in [21] in order to prove the accetabf an argument: a
special dynamic game has been exhibited in which a playériptoponent and the
second one is the opponent; note that this use of dynamicganagumentation is
always a highly studied topic (see for instance [22, 23]) ain differences with our
work are first the static nature of our game, and secondly tineber and the role of
the players.

Another proposition which mixes argumentation and gamerthis the work made by
Rahwan and Larson (see [24]). They transpose the notion ohaméssm design of a
game in argumentation; thus, for a given semantics, thgyga®a special mechanism
for designing argumentation protocols adapted to this séin®g It is still a dynamic
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and strategic view of argumentation which is very distaotfrours: unlike their point
of view, we are not interested by the way that the agents exgghtheir arguments but
by the interactions between these arguments themselves.

Mentioned in the introduction of this paper, another impottrelated works are
about the computation of preferred extensions. Some #hgosi already exist (see for
instance [11, 12, 13, 10]). It is important to note that owoaithms are not more
efficient than the existing ones, but give another way to agsfhose extensions, and
allow to use classical game theory concepts to do so.

Another related works refer to the use of an argument asrallitea propositional
formula. This idea can also be found in [25, 26, 27] (for ins®, in [26], a characteri-
zation of a preferred extension is given under the form ofogesitional formula).

The last kind of related works concerns the treatment of thélength cycles.
In the literature, distinct approaches exist: these cycégsappear in thaF, but are
forbidden in the extensions (see for instance [28]), ordhegles can be accepted
and treated as even-length cycles for computing the extesgsee for instance [29]).
Our approach corresponds to a particular subcase of thedgstminimalodd-length
cycles can appear in thi= but they will be removed before the translation and the
computation of the extensions (see Algorithms 1 and 4). khee our algorithms
allow to treat every argumentation framework correspogdinthe proposition made
by Amgoud and al ([16]), as, by construction, these arguatant systems contain no
minimal odd-length cycle.

7 Conclusion

In this paper, we show how to translate an argumentationeveork AF into a CP-
Boolean game, and how this game allows to compute prefextedsions of the orig-
inal AF using pure strategy Nash equilibria. We give four formabaitpms allowing
respectively to transform th&F into a CP-Boolean game, and to compute the preferred
extensions oAF. Moreover, we show that once minimal odd-cycles are reméneed
AF, if the resulting argumentation framework is acyclic, thke preferred extensions
of AF are computable in polynomial time.

Clearly, a limitation of our results is that we consider anguntation framework
containing no minimal odd-length cycle. We explained thiice by the fact that
such argumentation frameworks have some important piepertowever it would
be interesting to study these argumentation frameworksaus® some minimal odd-
length cycles may make sense. So a future work will be to mamlif algorithms for
allowing the translation of any cyclic argumentation fravoek. Nevertheless, note
that, in the current state, our work can already take int@awctthe most frequently
used argumentation frameworks (those that are coherettite @me proposed by [16]).
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Algorithm 4 : Removal of minimal cycles in an argumentation system

begin
[* INPUTS: AF = (4, R ) an argumentation system */
[* OUTPUTS: AF after removal of its minimal odd-length cycles */
/* LOCAL VARIABLES:
M = Boolean adjacency matrix representing the transitive closufg, of
SC= set of minimal cycles oAF,
C,C' = cycles (sequences of arguments),
AF’ = AF reduced to its cycles */
/* USED SUBFUNCTIONS:
TRANSITIVECLOSURHAF) = function computing the transitive closure &f
and returning the corresponding Boolean adjacency matrix,
REDUCTIONTOCYCLES(AF, M) = function which returns the argumentation
system corresponding #&F reduced to its cycles,
DIIKSTRA(AF,X,y) = function returning the shortest non-empty path between
two verticesx andy in AF,
ADDCYCLETOSETOFCYCLES(SCC) = function adding a cycl€ to the set
of cyclesSC
REMSUBAF(AF,C) = function which removes a cycle to AF

M = TRANSITIVECLOSUREAF)
SC=0
AF’ = REDUCTIONTOCYCLES(AF, M) /* AF’ contains only the cycles @fF */
for each vertex x oAF’ do
/* by construction ofaAF’, x belongs at least to an cycle */
C = DIIKSTRA(AF X,X) /* Cis the shortest non-empty cycle containing
x*/
if there exists no cycle’& SC such that Cc C then
/* Cis a minimal cycle */
L ADDCYCLETOSETOFCYCLES(SC C)

for each cycle of S@o

if C is an odd-length cycléhen
/* C must be removed taF /*

AF = REMSUBAF(AF,C)

return AF
end
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