
Argumentation and CP-Boolean games

Elise Bonzon∗ Caroline Devred†

Marie-Christine Lagasquie-Schiex‡

Abstract

There already exist some links between argumentation and game theory.For
instance, dynamic games can be used for simulating interactions between agents
in an argumentation process. In this paper, we establish a new link betweenthese
domains in a static framework: we show how an argumentation frameworkcan
be translated into a CP-Boolean game and how this translation can be used for
computing extensions of argumentation semantics. We give formal algorithms to
do so.

1 Introduction

Argumentation has become an influential approach to treat AIproblems including de-
feasible reasoning and some forms of dialogue between agents (see e.g, [1, 2, 3, 4, 5]).

Argumentation is basically concerned with the exchange of interacting arguments.
Usually, the interaction takes the form of a conflict, calledattack. For example, a
logical argument can be a pair〈set of assumptions, conclusion〉, where the set of as-
sumptions entails the conclusion according to some logicalinference schema; then a
conflict occurs for instance if the conclusion of an argumentcontradicts an assumption
of another argument.

The main issue for any theory of argumentation is the selection of acceptable sets
of arguments, based on the way arguments interact. Intuitively, an acceptable set of
arguments must be in some sense “coherent” (e.g., no conflict in this set) and “strong
enough” (e.g., able to defend itself against all attacking arguments). This concept of
acceptability can be explored through argumentation frameworks (AF), and especially
Dung’s framework ([6]), which abstracts from the nature of the arguments, and rep-
resents interaction under the form of a binary relation “attack” on a set of arguments.
However, even in the abstract framework of Dung, the complexity of the associated
problems remains prohibitive in the general case (for instance, “verifying if a given set
of arguments is a preferred extension” is acoNP-complete problem).

∗LIPADE, Universit́e Paris Descartes, France - elise.bonzon@parisdescartes.fr
†LERIA, Universit́e d’Angers, France - caroline.devred@info.univ-angers.fr
‡IRIT, Universit́e Paul Sabatier, France - lagasq@irit.fr

1

In another way, game theory attempts to formally analyze strategic interactions be-
tween agents. Roughly speaking, a non-cooperative game consists of a set of agents (or
players), and for each agent, a set of possible strategies and a utility function mapping
every possible combination of strategies to a real value (inthis paper, we consider only
one-shotgames, where agents choose their strategies in parallel, without observing the
others’ choices).

A problem of this approach is the difficulty to express efficiently this utility func-
tion.1 A way out consists in using a language for representing agents’ preferences in a
structuredandcompactway. An interesting use of these languages in game theory is
given by Boolean games: each agent has control over a set ofboolean(binary) variables
and her preferences consist in a specificpropositional formulathat she wants to be sat-
isfied (a propositional formula is a compact representationof preferences – see [7, 8]);
unfortunately, this framework is also very restricted because of the dichotomy of pref-
erences (a formula can only betrue or false). However, some recent works have shown
the possibility to extend these games by the use ofCP-netsin place of a simple propo-
sitional formula (see [9]). In this context, some interesting results about complexity
exist (for instance, “verifying if a given strategy profile is a pure Nash equilibrium” is
a polynomial problem when each CP-net is acyclic).

Argumentation and game theory already have some common points. For instance,
in [6, 10], games are used for defining proof theories and algorithms for some accept-
ability problems in argumentation. However, the considered games are always dynamic
and there is no specific work concerning static games and argumentation. The aim of
this paper is to identify a possible translation of an argumentation framework into a
particular static game (a CP-Boolean game) in order to compute preferred extensions
using solution concepts of game theory (pure strategy Nash equilibrium: PNE). So, we
want to establish a new link between argumentation and gamesand then give a new
way for computing preferred extensions, even if this new wayis not more efficient than
the existing algorithms (see for instance [11, 12, 13, 10]).

The paper is organized as follows : Dung’s abstract framework and CP-Boolean
games are respectively recalled in Section 2 and Section 3. Section 4 presents the core
of this paper: how to translate an argumentation framework into a CP-Boolean game
and how to use this game for computing extensions of argumentation semantics. Sec-
tion 5 gives an application of our approach on a classical example of decision making
issued from [14]. Some related works are presented in Section 6 and Section 7 con-
cludes.

Note that this paper is an extented version of [15]. This improvement essentially
concerns the odd-length cycles which are taken into accountif they are not minimal.
So, new algorithms are given and new properties hold. We alsoapply our approach on
a classical problem of decision making.

1Because the number of possible combinations of strategies is exponential in the number of players and
in the number of variables controlled by each player.

2

2 Argumentation frameworks (AF)

In [6], Dung has proposed an abstract framework for argumentation in which he focuses
only on the definition of the status of arguments. For that purpose, he assumes that a
set of arguments is given, as well as the different conflicts among them. We briefly
recall that abstract framework:

Definition 1 An argumentation framework (AF)is a pair 〈A ,R 〉 of a setA of argu-
ments and a binary relationR on A called theattack relation. ∀ai ,a j ∈ A , aiR a j

means that ai attacksa j (or a j is attackedby ai). An AF may be represented by a
directed graph, called theinteraction graph, whose nodes are arguments and edges
represent the attack relation.

In Dung’s framework, theacceptability of an argumentdepends on its membership
to some sets, called extensions. These extensions characterize collective acceptability.
Let AF = 〈A ,R 〉, S⊆ A . The main characteristic properties are:

Definition 2 S isconflict-freefor AF iff there exists no ai , aj in S such that aiR a j . An
argument a isacceptable w.r.t.S for AF iff ∀b ∈ A such that bR a, ∃c ∈ S such that
cR b. S isacceptablefor AF iff ∀a∈ S, a is acceptable w.r.t. S forAF.

Then severalsemantics for acceptabilityhave been defined in [6]. For instance:

Definition 3 S is anadmissible setfor AF iff S is conflict-free and acceptable forAF.
S is apreferred extensionof AF iff S is⊆-maximal among the admissible sets forAF. S
is astable extensionof AF iff S is conflict-free and S attacks each argument which does
not belong to S.

These notions are illustrated on the following example.

Example 1 ConsiderAF = 〈{a,b,c,d,e}, {(b,a), (c,b), (d,b), (e,c)}〉 represented
by:

e c

d
b a

{e,c} is not conflict-free; b is not acceptable w.r.t.{e}; a is acceptable w.r.t.{e,d};
{d,a} is an admissible set and{e,d,a} is the preferred and stable extension ofAF.

We will also need the notions of cycle and “elementary” cycle, as defined in [16];
in [16], an “elementary” cycle is a cycle which does not contain another cycle; however,
this is not the classical definition of an “elementary” cyclein graph theory2. So, even if
we use the same notion as that given in [16], we choose to use another word (“minimal”
instead of “elementary”) in order to avoid ambiguity with the concept given in graph
theory:

2In graph theory, an elementary cycle is a cycle in which a vertex cannot appear twice (see [17]).

3

Definition 4 Let X = {a0, . . . ,an} and Y= {b0, . . . ,bm} be two non-empty sequences
of arguments ofAF = 〈A ,R 〉.

X is acycle if and only if∀i ≤ n−1, aiR ai+1 and anR a0. n+1 is the length of
X.

Considering that X and Y are cycles, Xstrictly containsY, denoted by Y⊂ X, if
and only if m< n and∃i = 0. . .n such that ai = b0, a(i+1) modulo(n+1) = b1, . . . ,
a(i+m) modulo(n+1) = bm.

X is aminimal cycleif and only if X is a cycle and6 ∃ a cycle X′ such that X′ ⊂X.

Example 2 In the following graph, the cycle{a,b,c} is not minimal because it con-
tains the minimal cycle{b,c}3.

a b

c

We will need the following properties ([6, 12, 13, 18, 16]):

Proposition 1 Let AF = 〈A ,R 〉 such thatA 6= /0.

1. Each unattacked argument belongs to every preferred extension ofAF (see [6]).

2. An acyclic argumentation frameworkAF contains only one preferred extension
(see [12, 13, 18]).

3. If /0 is the unique preferred extension thenAF contains at least an odd-length
cycle (see [12, 13, 18]).

4. If AF does not contain a minimal odd-length cycle then its preferred extensions
are not empty (see [16])4

5. If AF does not contain a minimal odd-length cycle then each preferred extension
is also stable5 (see [16])6

Note that many works in argumentation domain consider that odd-length cycles
may be considered as paradoxes, as they are a generalizationof an argument attacking
himself, in particular, if these cycles are minimal. We agree with this opinion7 and, in

3Note that, following the classical definition of an elementary cycle in graph theory, both cycles are
elementary.

4Note that in [12, 13, 18], one can find a similar property concerning argumentation systems without
odd-length cycles (minimal or not).

5One says that the argumentation framework is coherent (see [6]).
6Here too, a similar variant exists in [12, 13, 18] for argumentation systems without odd-length cycles

(minimal or not).
7Even if some odd-length cycles may make sense.

4

this paper, we will consider thatargumentation frameworks should not contain minimal
odd-length cycles;8 however, argumentation frameworks with even-length cycles will
be taken into account.

As an argumentation framework without any minimal odd-length cycle is coherent,
an interesting consequence occurs:

Corollary 1 Let AF = 〈A ,R 〉 be an AF without minimal odd-length cycle. Let E be a
preferred extension ofAF. Let a be an argument ofAF. If there is no attacker of a in E
then a∈ E.

Proof: We can apply Prop. 1.5. SoE is a stable extension. So, if we assume that
a 6∈ E then, becauseE is stable,∃b∈ E such thatbR a. But this fact is impossible
because there is no attacker ofa in E. Soa∈ E. ¥

3 CP-Boolean games

Let us start by introducing some background. LetV be a finite set of propositional
variables andLV be the propositional language built fromV and the usual connectives
as well as the Boolean constants⊤ (true) and⊥ (false). Formulas ofLV are denoted
by ϕ,ψ, etc. 2V is the set of the interpretations forV, with the usual convention that for
M ∈ 2V andx∈V, M gives the valuetrue to x if x∈ M andfalse otherwise. LetX ⊆V.
2X is the set ofX-interpretations. X-interpretations are denoted by listing all variables
of X, with a ¯ symbol when the variable is set tofalse: for instance, letX = {a,b,d},
then theX-interpretationM = {a,d} is denotedabd. A preference relationº is a
reflexive and transitive binary relation (not necessarily complete) on 2V . Consider
M,M′ ∈ 2V . The strict preference≻ associated withº is defined as usual byM ≻ M′

iff M º M′ and notM′ º M.

3.1 CP-net

In this section, we consider a very popular language for compact preference representa-
tion on combinatorial domains, namely CP-nets. This graphical model exploits condi-
tional preferential independence in order to structure thedecision maker’s preferences
under aceteris paribusassumption [19, 20]. Although CP-nets generally consider vari-
ables with arbitrary finite domains, here we consider only “propositionalized” CP-nets,
that is, CP-nets with binary variables.

Definition 5 Let V be a set of propositional variables and{X,Y,Z} be a partition of
V . X isconditionally preferentially independentof Y given Z iff∀z∈ 2Z, ∀x1,x2 ∈ 2X

and∀y1,y2 ∈ 2Y we have: x1y1zº x2y1z iff x1y2zº x2y2z.

8And, if it is not the case, these minimal odd-length cycles willbe removed of the argumentation frame-
work.

5

For each variableX, the agent specifies a set ofparent variables Pa(X) that can
affect her preferences over the values ofX. Formally, X andV \ ({X}∪Pa(X)) are
conditionally preferentially independent givenPa(X). This information is used to cre-
ate the CP-net:

Definition 6 Let V be a set of propositional variables.N = 〈G ,T 〉 is a CP-net onV,
whereG is a directed graph over V , andT is a set of conditional preference tables
CPT(Xj) for each Xj ∈ V. Each CPT(Xj) associates a linear order≻ j

p with each
instantiation p∈ 2Pa(Xj).

The preference information captured by a CP-netN can be viewed as a set of log-
ical assertions about a user’s preference ordering over complete assignments to vari-
ables in the network. These statements are generally not complete, that is, they do not
determine a unique preference ordering.

Example 3 Consider the CP-net given by Figure 1 about my preferences for the dinner.
Variables S and W correspond respectively to the soup and thewine. I strictly prefer to
eat a fish soup (Sp) rather than a vegetable soup (Sl), and about wine, my preferences
depend on the soup I eat: I prefer red wine (Wr) with vegetable soup (Sl : Wr ≻ Wb)
and white wine (Wb) with fish soup (Sp : Wb ≻ Wr). So D(S) = {Sp,Sl} and D(W) =
{Wr ,Wb}.

W

S Sp ≻ Sl

Sp Wb ≻Wr

Sl Wr ≻Wb

Figure 1: CP-net “My dinner”

Figure 2 represents the preference relation induced by thisCP-net. The bottom
element (Sl ∧Wb) is the worst case and the top element (Sp∧Wb) is the best case.

Sl ∧Wb

Sl ∧Wr

Sp∧Wr

Sp∧Wb

Figure 2: Preference graph induced by the CP-net “My dinner”

There is an arrow between the nodes(Sp ∧Wb) and (Sl ∧Wb) because we can
compare these states, every other thing being equal.

6

In this case, we can completely order the possible states (from the most preferred
one to the least preferred one) :

(Sp∧Wb) ≻ (Sp∧Wr) ≻ (Sl ∧Wr) ≻ (Sl ∧Wb)

This relation≻ is the only ranking that satisfies this CP-net.

3.2 CP-Boolean games

Boolean games [7, 8] yield a compact representation of 2-player zero-sum static games
with binary preferences. In [9], Boolean games are generalized with non dichotomous
preferences: they are coupled with propositionalized CP-nets.

Definition 7 A CP-Boolean gameis a 4-uple G= (N,V,π,Φ), where N is a set of play-
ers, V is a set of propositional variables,π : N 7→V is a control assignment function
which defines a partition of V , andΦ = 〈N1, . . . ,Nn〉. EachNi is a CP-net on V whose
graph is denoted byGi , and∀i ∈ N,ºi=ºNi

.

The control assignment functionπ maps each player to the variables she controls
and each variable is controlled by one and only one agent,9 i.e., {π1, . . . ,πn} forms a
partition ofV.

Definition 8 Let G= (N,V,π,Φ) be a CP-Boolean game. Astrategysi for a player i
is a πi-interpretation. Astrategy profiles is a n-tuple s= (s1, . . . ,sn) where for all i,
si ∈ 2πi .

In other words, a strategy fori is a truth assignment for all the variablesi controls.
As {π1, . . . ,πn} forms a partition ofV, a strategy profile defines an (unambiguous)
interpretation forV. Slightly abusing notation and words, we writes∈ 2V , to refer to
the value assigned bys to some variable.

In the rest of the paper, we make use of the following notations which are standard
in game theory: letG = (N,V,π,Φ) be a Boolean game withN = {1, . . . ,n}, ands=
(s1, . . . ,sn), s′ = (s′1, . . . ,s

′
n) be two strategy profiles;s−i denotes the projection ofsonto

N \ {i}: s−i = (s1, . . . ,si−1,si+1, . . . ,sn); similarly, π−i denotes the set of the variables
controlled by all players excepti: π−i = V \ πi ; finally, (s′i ,s−i) denotes the strategy
profile obtained froms by replacingsi with s′i without changing the other strategies:
(s′i ,s−i) = (s1, . . . ,si−1,s′i ,si+1, . . . ,sn).

A pure strategy Nash equilibrium (PNE) is a strategy profile such that each player’s
strategy is a best response to the other players’ strategies. PNEs are classically defined
for games where preferences are complete, which is not necessarily the case here. So
we introduce the notion ofstrongPNE.

Definition 9 Let G= (N,V,π,Φ) and Pre fG = 〈º1, . . . ,ºn〉 the collection of prefer-
ence relations on2V induced fromΦ. Let s= (s1, . . . ,sn) ∈ 2V . s is astrong PNE
(SPNE) for G iff∀i ∈ {1, . . . ,n}, ∀s′i ∈ 2πi ,(s′i ,s−i) ¹i (si ,s−i).

The following proposition has been shown in [9].

9The set of all variables controlled byi will be written πi instead ofπ(i).

7

Proposition 2 Let G= (N,V,π,Φ) be a CP-Boolean game such that graphsGi are all
identical (∀i, j ∈ N,Gi = G j) and acyclic. Then G has one and only one strong PNE.

The proof of this result makes use of theforward sweepprocedure [19] for outcome
optimization (this procedure consists in instantiating variables following an order com-
patible with the graph, choosing for each variable its preferred value given the value of
its parents). Moreover, as shown in [9], this SPNE can be built in polynomial time.

4 Argumentation and CP-Boolean games

Our objective here is to transform anAF into a CP-Boolean gameG, and thus to
use well-known tools of game theory, and more specifically properties of CP-Boolean
games, in order to find the preferred extensions ofAF. By this work, we mainly want
to establish a new link between argumentation and games.

4.1 Translation of an argumentation framework into a CP-Boolean
game

This transformation is done by Algorithm 1. However, the useof this algorithm as-
sumes the existence of some other algorithms which make a kind of “precompilation”
of the argumentation system to translate. The aim of this “precompilation” is the re-
moval of the minimal odd-length cycles. This removal can be done in polynomial time
if we choose to removeall the odd-length cycle, even if they are not minimal, or it will
be done in exponential time if we removeonly the minimal cycles:

To remove all odd-length cycles, the two following algorithms can be used:

– ISCYCLIC which returnstrue if there exists at least one cycle in the argu-
mentation graph,10

– REMODDCYCLES for removing the odd-length cycles if there are some of
them in the AF.11

10This algorithm is linear:

(Step 1) removing all the vertices which do not have predecessors;

(Step 2) iterating Step 1 until either all the remained vertices have at least one predecessor (there is a cycle
in the initial graph), or the graph is empty (there is no cycle in the initial graph).

11This algorithm is polynomial:

(Step 1) computation of the Boolean adjacency matrix corresponding to all shortest odd-length paths of
attack (in term of length); it is sufficient to take the Boolean adjacency of the graphM (M (i, j) = 1
if there is an edge fromi to j in AF) and to computeM olc = M 1 +M 3 + . . .+M 2n−1 with n = |A |
(the bound 2n−1 is obtained using a general result given by graph theory: ifa directed graph contains
a path froma to b then there exists an elementary path – in the classical sense given by graph theory:
a path in which each vertex appears only once – froma to b);

(Step 2) removal of all the arguments for which the diagonal element ofM olc is 1;

(Step 3) removal of all the edges having one removed argument as end point or as start point.

8

One can say that as Algorithm ISCYCLIC does not directly detect odd-length cy-
cles, it is useless in the precompilation of Algorithm 1. However, as ISCYCLIC

is a linear-time algorithm whereas REMODDCYCLES is only a polynomial-time
one, we think that it is interesting to avoid an unnecessary execution of REMOD-
DCYCLES whenAF is acyclic.

To remove only minimal odd-length cycles, Algorithm 4 givenin Appendix
can be used. This algorithm is less efficient than the previous ones (it is an
exponential-time algorithm) but it allows the conservation of some odd-length
cycles which make sense.

Let AF be an argumentation framework which does not contain minimal odd-length
cycles, the principles of Algorithm 1 are the following:

each argument ofAF is a variable ofG;

each variable is controlled by a different player (so we haveas many players as
variables);

the CP-nets of all players are defined in the same way:

– the graph of the CP-net is exactly the directed graph ofAF;

– the preferences over each variablev which is not attacked arev≻ v (if an
argument is not attacked, we want to protect it; so the valuetrue of the
variablev is preferred to its valuefalse),

– the preferences over each variablev which is attacked by the set of variables
R −1(v) depends on these variables: if at least one variablew∈ R −1(v) is
satisfied,v cannot be satisfied (so we have

W

w∈R −1(v) w : v ≻ v12); other-

wise, if all variablesw ∈ R −1(v) are not satisfied,v can be satisfied (and
so

V

w∈R −1(v) w : v≻ v).

The construction of a CP-Boolean gameG from an argumentation frameworkAF
is made in polynomial time (even ifAF is cyclic and if we have to remove all its odd-
length cycles).

The use of this algorithm implies the following property:

Proposition 3 LetAF = 〈A ,R 〉 be an argumentation framework without minimal odd-
length cycle. Let G= (N,V,π,Φ) be the CP-Boolean game obtained fromAF by ap-
plying Algorithm 1. s is a preferred extension ofAF iff s is a SPNE for13 G.

Proof: Let us first study the⇒ direction.

Let s be a preferred extension ofAF. Assume thans is not a SPNE of the CP-
Boolean game associated. So,∃i ∈ N, ∃s′i ∈ 2πi , ∃s−i ∈ 2π−i , such that(s′i ,s−i) ≻i
(si ,s−i). Let xi be the variable inV such thatπi = {xi} (xi is also an argument of
AF′). We have several cases:

12The formulaw : v≻ v (resp.w : v≻ v) means that, for the valuetrue (resp.false) of the variablew, the
valuefalse of the variablev is preferred to its valuetrue.

13Recall thatsdenotes aV-interpretation, that is ifs= abc for example, this corresponds to the set{a,c}.

9

Algorithm 1 : Translation of an argumentation system into a CP-Boolean game

begin
/* INPUT: AF = 〈A ,R 〉 an argumentation system without minimal odd-length cycle
*/
/* OUTPUTS:G = (N,V,π,Φ) a CP-Boolean game */
/* LOCAL VARIABLES: i = current agent,a = current argument */

/* computation of the CPTs for each argument */
for a∈ A do

if R −1(a) = /0 then CPT(a) = a≻ a
/* unattacked argument */

else
/* case of the other arguments */

CPT(a) = {
W

v∈R −1(a) v : a≻ a}
∪ {

V

v∈R −1(a) v : a≻ a}

/* computation of the CP-netN */
N = 〈AF,∪a∈ACPT(a)〉 /* it is the attack graph ofAF */

/* associated with the CPTs of each argument */
/* computation ofN, V, π andΦ */
i = 1
N = /0
V = A /* each argument is a variable */
for a∈ A do

N = N∪{i} /* an agent per each argument */
πi = {a} /* i controls only this argument */
Ni =N /* the same CP-net for each agent */
i = i +1

return (G = (N,V,π,〈N1, . . . ,N|V|〉), AF)

end

R −1(xi) = /0 (xi is unattacked). We know from Algorithm 1 that we have
CPT(xi) = xi ≻ xi . As (s′i ,s−i) ≻i (si ,s−i), we know thansi = xi (xi 6∈ s).
But, we know from Prop. 1.1 than ifR −1(xi) = /0 thenxi ∈ s. We have a
contradiction.

R −1(xi) 6= /0 (there exists at least one attacker ofxi). We know from Algo-
rithm 1 that we haveCPT(xi) = {

W

w∈R −1(xi) w : xi ≻ xi}∪{
V

w∈R −1(xi) w :
xi ≻ xi}. There are two cases:

– ∀x j such thatx jR xi , x j 6∈ s. So,
V

w∈R −1(xi) w holds and usingCPT(xi),
we can deduce thatxi ≻ xi . So, as(s′i ,s−i) ≻i (si ,s−i), si = xi and
s′i = xi . Thus,xi is not ins. But this is in contradiction with the con-
clusion obtained applying Conseq. 1 which says thatxi ∈ s (AF is an
argumentation framework without odd-length minimal cycle and there
is no attacker ofxi in the preferred extensions). So this case is impos-
sible.

– At least one argumentx j in R −1(xi) belongs tos. So,
W

w∈R −1(xi) w
holds and usingCPT(xi) we can deduce thatxi ≻ xi . So, as(s′i ,s−i) ≻i

10

(si ,s−i), si = xi . But, this is in contradiction with the fact thats must
be conflict-free (x j ∈ sandxi ∈ s). So this case is also impossible.

In conclusion, each case is impossible if we assume thats is not a SPNE. So,
s is a SPNE.

Let us study now the⇐ direction.

Let s= (s1, . . . ,sn) be a SPNE forG. Assume thats is not a preferred extension
of AF; so, eithers is not conflict-free (∃xi ,x j ∈ ssuch thatxiR x j or x jR xi), or s is
not acceptable (∃xi ∈ s, ∃x j ∈ A such thatx jR xi and 6 ∃xk ∈ s such thatxkR x j).

s is not conflict-free:

– ∃xi ,x j ∈ ssuch thatxiR x j . As xi ∈ s, we know that
W

w∈R −1(x j) w holds
and usingCPT(x j) we can conclude thatx j ≻ x j . As we know than
s is a SPNE, we have for the playerj who controlsx j , ∀s′j , ∀s− j ,
(sj ,s− j) ≻ j (s′j ,s− j). So,sj = x j andx j 6∈ s, which is a contradiction.

– ∃xi ,x j ∈ s such thatx jR xi . As xi ∈ s ands is a SPNE, we know that
xi ≻ xi ; so, usingCPT(xi), we can conclude that

V

w∈R −1(xi) w holds.
So,x j 6∈ s, which is a contradiction.

s is not acceptable:∃xi ∈ s, ∃x j ∈ A such thatx jR xi and∄xk ∈ s such that
xkR x j . As xi ∈ sands is a SPNE, we know thatxi ≻ xi , and usingCPT(xi),
we can deduce that

V

w∈R −1(xi) w holds. Asx jR xi , we know thatx j 6∈ s. So,
x j ≻ x j and usingCPT(x j) we can deduce that

W

w∈R −1(x j) w holds. That

means that there existsxk ∈ s such thatxk ∈ R −1(x j), which is a contradic-
tion.

In conclusion, each case is impossible if we assume thats is not a preferred exten-
sion. So,s is a preferred extension. ¥

Example 4 ConsiderAF = 〈{a,b,c,d,e}, {(b,a), (c,b), (d,b), (e,c)}〉 (AF is acyclic)
and transform it in a CP-Boolean game G= (N,V,π,Φ). By applying Algorithm 1,
V = {a,b,c,d,e} and N= {1,2,3,4,5}, with π1 = {a}, π2 = {b}, π3 = {c}, π4 = {d}
andπ5 = {e}. The following CP-net represents the preferences of all players14:

E C

D

B A

e≻ e
e: c≻ c
e: c≻ c

d ≻ d

c∨d: b≻ b
c∧d: b≻ b

b: a≻ a
b: a≻ a

G has one SPNE{edcba} andAF has only one preferred extension{e,d,a}.

14In order to distinguish the CP-net to the AF, nodes in the CP-net are in uppercase, whereas nodes in the
AF are in lowercase.

11

Example 5 ConsiderAF = 〈{a,b},{(a,b), (b,a)}〉. By applying Algorithm 1, V=
{a,b} and N= {1,2}, with π1 = {a}, π2 = {b} (AF is cyclic, but contains only even-
length cycles, so Algorithm 1 can be applied). The followingCP-net represents the
preferences of all players:

A B
b: a≻ a
b: a≻ a

a: b≻ b
a: b≻ b

G has two SPNEs{ab, ab} andAF has two preferred extensions{a}, {b}.

Example 6 ConsiderAF = 〈{a,b,c,d,e}, {(a,b), (b,c), (c,d), (d,e), (e,c)}〉. The
initial AF is cyclic, and contains a minimal odd-length cycle; so before to apply Algo-
rithm 1, this cycle is removed. The finalAF will contain only a and b.

a b c d

eInitial graph for AF

a b

Final graph forAF

So, by applying Algorithm 1, we have V= {a,b}, N = {1,2}, with π1 = {a}, π2 =
{b} and the following CP-net which represents the preferences of all players:

A Ba≻ a
a: b≻ b
a: b≻ b

G has one SPNE{ab} and the finalAF (after removal of minimal odd-length cycles)
has one preferred extension{a}.

Example 7 ConsiderAF = 〈{a,b,c}, {(a,b), (b,c), (c,a), (c,b)}〉. The initial AF is
cyclic, and contains one not minimal odd-length cycle and one minimal even-length
cycle. As the odd-length cycle is not minimal, we do not have to remove any cycle.

a b

c

So, by applying Algorithm 1, we have V= {a,b,c}, N = {1,2,3}, with π1 = {a},
π2 = {b}, π3 = {c} and the following CP-net which represents the preferences of all
players:

A B

C

c: a≻ a
c: a≻ a

a∨c: b≻ b
a∧c: b≻ b

b: c≻ c
b: c≻ c

G has one SPNE{abc} andAF has one preferred extension{c}.

12

4.2 Computation of preferred extensions

Since preferred extensions correspond exactly to SPNEs, the main properties about
computation of SPNE in CP-Boolean games can be applied. The first interesting case
concerns the acyclic argumentation frameworks:

Proposition 4 Let AF be an argumentation framework without minimal odd-length
cycles. Let G be the CP-Boolean game obtained fromAF by applying Algorithm 1.
If AF is acyclic,AF has one and only one preferred extension which is computablein
polynomial time using G.

Proof: The transformation ofAF in the CP-Boolean game by applying Algorithm 1
is done in polynomial time. Then, the computation of the SPNE of this game using
the forward sweep procedure is also computable in polynomial time (see Prop. 2
in [9]) and Prop. 3 shows that this SPNE corresponds to the preferredextension of
AF. ¥

This proposition holds for the simple case of acyclic argumentation frameworks.
The computation of SPNE(s) for cyclic argumentation frameworks is much more com-
plex. However, Algorithms 2 and 3 allow to compute such solution concept when the
argumentation framework contains cycles except minimal odd-length cycles.

These algorithms assume the existence of:

Algorithm COMPINTCYCLEFORPROP which returns the cycle (or one of the
cycles if there are several) in a given set of variables whichpermits to reach
more variables as possible15

Algorithm COMPINTVARFORPROPwhich returns a variable of the cycle which
permits to reach more variables as possible16.

For instance, on the following graph:

15This algorithm uses the notion of Boolean adjacency matrix asAlgorithm REMODDCYCLES:

– computation of the Boolean adjacency matrixM ap corresponding to all shortest paths in the graph
reduced to the given set of variables:M ap=M +M 2 +M 3 + . . .+M 2n with n = |V|; M ap(i) will
denote(M ap(i,1), . . . ,M ap(i,n));

– ToSee = V; C = /0; end?=false;

– loop: while NOT(end?) do
v = top(ToSee); ToSee = ToSee\{v};
if (∄w∈ ToSee s.t.M ap(v) ⊂M ap(w)) then
/* no var. permitting to reach more var. thanv */

C = C∪{v} ;
∀w∈ ToSee do if M ap(v) =M ap(w) thenC = C∪{w} ;
end?=true;

else ifToSee is empty thenend?=true;

– ReturnC

16This algorithm can be very simple: return the variable whose leaving degree is the greatest.

13

a b c d h

g f e i j

{a,b} permits to reach the variablesa, b, c, d, e, f , and{i, j} permits to reach the
variablesi, j, c, d, e, f . These cycles are more interesting than the other ones for the
propagation of values over the graph (if they are the starting point of a propagation
process then this propagation is more efficient). And among the variables of the cycle
{i, j}, the variablei (leaving degree17 of i = 2) is more interesting than the variablej
(leaving degree ofj = 1).

Let N be the CP-net representing goals of players of a CP-Boolean game, the
principles of Algorithms 2 and 3 are:

instantiation of all unattacked variables (which have no parents inN and are
satisfied in the SPNE);

propagation of these instantiations as long as possible;

once all feasible instantiations have been done, loop:

– if all variables have been instantiated, the SPNE can be returned;

– else, with Algorithm COMPINTCYCLEFORPROP, the more interesting cy-
cle C remaining is computed (there is one, otherwise all variables would
have been instantiated);

– using the current state of the current SPNE, create two new SPNEs; the
first one contains a variable ofC (chosen by Algorithm COMPINTVAR-
FORPROP in order to make the propagation more efficient) instantiated to
true, the second one contains this same variable instantiated tofalse; note
that, when odd-length cycles exist in the graph, some instantiations are im-
possible (see Example 9); However, at this stage of the algorithm, we are
not able to know what are the impossible instantiations; so,a checking
process is needed at the end of the propagation process;

– propagation of these instantiations for each one of these SPNEs as long as
possible.

checking process of each obtained instantiation in order todetect impossible
instantiations due to the existence of non minimal odd-length cycles; the points
which must be checked are exactly the same ones which are taken into account
for propagating values:

– either a variable and one of its parents belonging to the sameinstantiation,

– or a variable not belonging to an instantiation without any of its parents
belong to this instantiation.

17The leaving degree of a vertex in a graph is the number of edges leaving the vertex.

14

These problems can be appeared neither with an acyclic graph(because of the
simplicity of the propagation process), nor with a graph containing even-length
cycles (because in an even-length cycle, if a variable is instantiated totrue, its
parents are always instantiated tofalse and vice-versa).

Algorithm 2 : Computation of SPNEs of a CP-Boolean game obtained from an
argumentation framework

begin
/* INPUTS: a CP-Boolean gameG = (N,V,π,Φ), whereΦ = 〈N1, . . . ,Nn〉 */
/* OUTPUTS: a set of SPNEsSP*/
/* LOCAL VARIABLES: v = current variable,In = (resp.Out =) set of variables
instantiated totrue (resp.false), R= set of variables remaining to be instantiated */

In = /0, Out = /0, R= V /* Initialization */
/* Instantiation of all variables without parents */
for v∈ R do

if Pa(v) = /0 then
R= R\{v}
In = In∪{v}

/* propagation by a recursive process */
return COMPSPNEREC(G, R, In, Out)

end

Example 8 Using the following graph:

a b c d h

g f e i j k l

the steps of the computation process are:

g and h are instantiated totrue (current state of SPNE= gh);

then a and d are instantiated tofalse (current state of SPNE= ghad);

then b is instantiated totrue (current state of SPNE= ghadb);

then c is instantiated tofalse (current state of SPNE= ghadbc);

at this point the simple propagation stops; so we must compute the interesting
cycles in the remaining set of variables(e, f , i, j,k, l) and the result is(i, j); then
we select in this cycle the most interesting variable (that which has the largest
leaving degree); in this example and following this point ofview, i and j are
equivalent;

the propagation process is restarted with the following current states of two SP-
NEs: ghadbci and ghadbci;

15

Algorithm 3 : COMPSPNEREC: Recursive computation of SPNEs of a CP-
Boolean game obtained from an argumentation framework

begin
/* INPUTS: a CP-Boolean gameG = (N,V,π,Φ),

R= set of variables remaining to be instantiated,
In = set of variables already instantiated totrue,
Out = set of variables already instantiated tofalse */

/* OUTPUTS: a set of SPNEsSP*/
/* LOCAL VARIABLES: v = current variable,n = cardinal ofR, C = set of
variables forming a cycle,res= Boolean variable to check if the instanciation is
correct */

if R= /0 then
/* all variables are instantiated: a SPNE is perhaps found */
/* checking process of the instantiation */
res= true
for v∈ In do

if Pa(v)∩ In 6= /0 then res= false

for v∈ Out do
if Pa(v) ⊆ Out then res= false

if resthen return {(InOut)} /* a correct SPNE has been found */

else
n = |R| /* n = number of variables remaining to be instantiated */
for v∈ R do

/* simple propagation process */
if Pa(v) ⊆ Out then

/* all parents are instantiated tofalse */
In = In∪{v}
R= R\{v}

else
if (Pa(v)∩ In) 6= /0 then

/* at least one parent instantiated totrue */
Out = Out∪{v}
R= R\{v}

if n = |R| then
/* none variable instantiated in For instruction */
C = COMPINTCYCLEFORPROP(G, R)
v = COMPINTVARFORPROP(G, R, C)
return (
COMPSPNEREC(G, R\{v}, In∪{v}, Out) ∪
COMPSPNEREC(G, R\{v}, In, Out∪{v}))

else
/* at least 1 variable instantiated in For instr. */
return COMPSPNEREC(G, R, In, Out)

end

16

so, at the end of the propagation process, three instantiations are obtained ghadbcie f jkl,
ghadbcief jkl and ghadbcie f jkl. Moreover, all these instantiations are consid-
ered correct by the checking process18, so they are SPNEs and these SPNEs
correspond to the three preferred extensions{g,h,b,e, j, l}, {g,h,b, f , i,k} and
{g,h,b, i, f , l}.

Example 9 Using the following graph:

a b

c

the steps of the computation process are:

No variable is without parents, no propagation is possible.We must compute
the most interesting cycle then the most interesting variable of this cycle; in this
example, both cycles are interesting but the interest of variables differ:

– a allows to reach the variable b

– b allows to reach the variable c

– c allows to reach the variable a and b

– so, in terms of the effectiveness of the propagation, the most interesting
variable will be c

the propagation process is started with the following current states of two sets:
{c} and{c};

so, at the end of the propagation process, two sets are obtained{cab} and{cab}.
The checking process begins:

– For the first set, we have In= {c}, Out = {a,b}. We have Pa(c)∩ In = /0;
Pa(a) 6⊆ Out and Pa(b) 6⊆ Out. We return{abc}

– For the second set, we have In= {a}, Out = {b,c}. But, Pa(c) ⊆ Out. So,
we do not return anything.

Thus, we obtain one SPNEabc which corresponds to the preferred extension{c},

The following proposition shows that Algorithms 2 and 3 allow to exactly compute
the set of SPNEs of the CP-Boolean game.

Proposition 5 Let G be a CP-Boolean game given by Algorithm 1. Let SP be the set
of strategy profiles of G given by Algorithms 2 and 3. s∈ SP iff s is a SPNE for G.

18Note that, in this example, the checking process was useless because there is no odd-length cycle.

17

Proof:

Let us first study the⇒ direction.

Let s∈ SP. Assume thans is not a SPNE of the CP-Boolean game associated. So,
∃i ∈ N, ∃s′i ∈ 2πi , ∃s−i ∈ 2π−i , such that(s′i ,s−i) ≻i (si ,s−i).
Let xi be the variable inV such thatπi = {xi}. We have several cases:

Pa(xi) = /0. We know from Algorithm 1 that we haveCPT(xi) = xi ≻ xi . As
(s′i ,s−i) ≻i (si ,s−i), we know thansi = xi . But, we know from Algorithm 2
thanxi ∈ s. We have a contradiction.

Pa(xi) 6= /0. We know from Algorithm 1 that we haveCPT(xi)= {
W

v∈Pa(xi) v :
xi ≻ xi}∪{

V

v∈Pa(xi) v : xi ≻ xi}. Several cases appear:

– All variables inPa(xi) are not satisfied:
V

v∈Pa(xi) v holds andPa(xi) ⊆
Out. By CPT(xi), we know thatxi ≻ xi . So, as(s′i ,s−i) ≻i (si ,s−i), we
havesi = xi which is equivalent toxi ∈ Out. But, we know from the
checking test of Algorithm 3 that this case (Pa(xi) ⊆ Out andxi ∈ Out)
does not produce a strategy profile; sos 6∈ SP; that is in contradiction
with the initial assumption.

– At least one variable inPa(xi) is satisfied:
W

v∈Pa(xi) vholds andPa(xi)∩
In 6= /0. By CPT(xi), we know thatxi ≻ xi . So, as(s′i ,s−i) ≻i (si ,s−i),
si = xi which is equivalent toxi ∈ In. But, we know from the checking
test of Algorithm 3 that this case (Pa(xi)∩ In 6= /0 andxi ∈ In) does not
produce a strategy profile; sos 6∈ SP; that is in contradiction with the
initial assumption.

Sos is a SPNE forG.

Let us study now the⇐ direction.
Let s be a SPNE of the CP-Boolean game associated. Assume thats 6∈ SP. So,
either∃xi ∈ In such thatPa(xi)∩ In 6= /0 or ∃xi ∈ Out such thatPa(xi)⊆ Out. Let’s
study these both cases:

∃xi ∈ In (i.e. si = xi) such thatPa(xi)∩ In 6= /0. As Pa(xi) 6= /0 (because
In is not the empty set –In containsxi – and its intersection withPa(xi) is
not empty), we know from Algorithm 1 thatCPT(xi) = {

W

v∈Pa(xi) v : xi ≻
xi}∪{

V

v∈Pa(xi) v : xi ≻ xi}. As ∃v∈ Pa(xi) such thatv∈ In, we know that
xi ≻i xi . So there existss′i = xi such that(s′i ,s−i) ≻i (si ,s−i), sos is not a
SPNE; that is in contradiction with the initial assumption.

∃xi ∈ Out (i.e. si = xi) such thatPa(xi) ⊆ Out. At this point, there are two
possibilities:

– Pa(xi) = /0; so we know from Algorithm 1 thatCPT(xi) = xi ≻ xi . So
there existss′i = xi such that(s′i ,s−i) ≻i (si ,s−i), sos is not a SPNE;
that is in contradiction with the initial assumption.

– Pa(xi) 6= /0; so we know from Algorithm 1 thatCPT(xi) = {
W

v∈Pa(xi) v :
xi ≻ xi}∪{

V

v∈Pa(xi) v : xi ≻ xi}. AsPa(xi)⊆Out, we have∀v∈Pa(xi),
v ∈ Out, and we know thatxi ≻i xi . So there existss′i = xi such that
(s′i ,s−i)≻i (si ,s−i), sos is not a SPNE; that is in contradiction with the
initial assumption.

Thus,s∈ SP. ¥

18

4.3 Managing minimal odd-length cycles

Of course, the removal of minimal odd-length cycles has an important influence on
the computation of the SPNE(s) and this point could be considered as problematic in
some cases if one does not agree with our initial assumption:in general, a minimal
odd-length cycle may be considered as a paradox.

This initial assumption is also justified by the fact that some interesting argumen-
tation systems make sense only without minimal odd-length cycles (see [16] and Sec-
tion 5).

Moreover, the removal of this kind of cycles guarantees someimportant properties
(see Prop. 1 and Conseq. 1).

Example 10 ConsiderAF = 〈{b,c,d,e}, {(b,c), (c,d), (d,e), (e,c)}〉. The initialAF
is cyclic, and it contains a minimal odd-length cycle which will be removed and the
final AF will contain only b.

b c d

eInitial graph

b

Final graph

So, by applying Algorithm 1, we have V= {b}, N = {1}, with π1 = {b} and the
following CP-net which represents the preferences of all players:

Bb≻ b

So, G has one SPNE{b} which corresponds to the preferred extension of the final
AF. However, it does not correspond to the preferred extensionof the initial AF which
was the set{b,d}. If we consider that the minimal odd-length cycle generallyis a
paradox, so that its arguments are not significant, we can consider that{b} is a more
realistic extension than{b,d} (however this is not the approach chosen by the main
semantics for acceptability).

Example 11 ConsiderAF = 〈{a,b,c,d,e}, {(a,b), (b,a), (c,b), (c,d), (d,e), (e,c)}〉.
The initial AF is cyclic, and it contains a minimal odd-length cycle which will be re-
moved and the final AF will contain only a and b.

a b c d

eInitial graph

a b

Final graph

By applying Algorithm 1, we have V= {a,b}, N = {1,2}, with π1 = {a}, π2 = {b}
and the following CP-net which represents the preferences of all players:

A B
b: a≻ a
b: a≻ a

a: b≻ b
a: b≻ b

19

So, G has two SPNEs{ab,ab} which correspond to the two preferred extensions
of the finalAF. However, they do not correspond to the preferred extensionof the
initial AF which was only the set{a}. In this case, to take into account the extension
{b} means that the attack c→ b is considered as not significant (because a minimal
odd-length cycle generally is a paradox and its arguments are not significant; so, they
cannot be able to provide a realistic attack against other arguments).

5 An application in decision making: the omelet prob-
lem

This application is a classical problem of decision making.In [16], Amgoud and al.
have proposed to formalize it using a special argumentationsystem which does not
contain minimal odd-length cycles.

In this example, an agent prepares an omelet and should decide whether or not to
add an egg to a 5 eggs omelet knowing that the remaining egg maybe rotten. The
possible actions of this agents are: “to break the egg directly in the omelet”, “to break
the egg in a cup”, “to throw away the egg”. And the agent wants to realize different
goals presented here in the order of their importance: “do not waste the omelet”, “do
not waste the 6th egg”, “to have a 6 eggs omelet”, “to avoid having a cup to wash”.

This problem can be described in argumentation by the following system proposed
in [16]:

the set of argumentsA is composed with six arguments:

– argumenta1 in favor of “to break the egg directly in the omelet” when the
egg is not rotten

– argumenta2 in favor of “to break the egg directly in the omelet” when the
egg is rotten

– argumenta3 in favor of “to break the egg in a cup” when the egg is not
rotten

– argumenta4 in favor of “to break the egg in a cup” when the egg is rotten

– argumenta5 in favor of “to throw away the egg” when the egg is not rotten

– argumenta6 in favor of “to throw away the egg” when the egg is rotten

the attack relation onA is built using two constraints:

– an argument in favor of an actionx is in conflict with an argument in favor
of another actiony

– there is a preference relation between the arguments obtained by the pref-
erence relation on the goals

Considering that the agent is quite sure that the egg is good,Amgoud and al pro-
poses in [16] the following representation of this system:

20

a1

a2

a3

a4

a5

a6

This argumentation system does not have minimal odd-lengthcycles and it can be
translated into the following CP-net following Algorithm 1:

A1

A2

A3

A4

A5

A6

a1 ≻ a1

a4∨a6: a2 ≻ a2
a4∧a6: a2 ≻ a2

a1: a3 ≻ a3
a1: a3 ≻ a3

a1∨a6: a4 ≻ a4
a1∧a6: a4 ≻ a4

a1∨a3: a5 ≻ a5
a1∧a3: a5 ≻ a5

a1: a6 ≻ a6
a1: a6 ≻ a6

And, using Algorithms 2 and 3, the SPNE of this CP-net is:{a1a2a3a4a5a6} which
corresponds to the preferred extension{a1,a2} which supports the action “to break
the egg directly in the omelet”. Of course, this result is consistent with that proposed
by [16].

6 Some related works

The main related works for our paper concern the link betweenargumentation and
games identified by Dung: in [6], anAF is used to solve a classical cooperative game
(the stable marriage problem). Dung uses the arguments ofAF to represent the possible
issues of the game, and the attack relation to express the conflicts between issues. This
link has also been used in [21] in order to prove the acceptability of an argument: a
special dynamic game has been exhibited in which a player is the proponent and the
second one is the opponent; note that this use of dynamic games in argumentation is
always a highly studied topic (see for instance [22, 23]). The main differences with our
work are first the static nature of our game, and secondly the number and the role of
the players.
Another proposition which mixes argumentation and game theory is the work made by
Rahwan and Larson (see [24]). They transpose the notion of mechanism design of a
game in argumentation; thus, for a given semantics, they propose a special mechanism
for designing argumentation protocols adapted to this semantics. It is still a dynamic

21

and strategic view of argumentation which is very distant from ours: unlike their point
of view, we are not interested by the way that the agents exchange their arguments but
by the interactions between these arguments themselves.

Mentioned in the introduction of this paper, another important related works are
about the computation of preferred extensions. Some algorithms already exist (see for
instance [11, 12, 13, 10]). It is important to note that our algorithms are not more
efficient than the existing ones, but give another way to compute those extensions, and
allow to use classical game theory concepts to do so.

Another related works refer to the use of an argument as a literal in a propositional
formula. This idea can also be found in [25, 26, 27] (for instance, in [26], a characteri-
zation of a preferred extension is given under the form of a propositional formula).

The last kind of related works concerns the treatment of the odd-length cycles.
In the literature, distinct approaches exist: these cyclescan appear in theAF, but are
forbidden in the extensions (see for instance [28]), or these cycles can be accepted
and treated as even-length cycles for computing the extensions (see for instance [29]).
Our approach corresponds to a particular subcase of the firstcase:minimalodd-length
cycles can appear in theAF but they will be removed before the translation and the
computation of the extensions (see Algorithms 1 and 4). Moreover, our algorithms
allow to treat every argumentation framework corresponding to the proposition made
by Amgoud and al ([16]), as, by construction, these argumentation systems contain no
minimal odd-length cycle.

7 Conclusion

In this paper, we show how to translate an argumentation framework AF into a CP-
Boolean game, and how this game allows to compute preferred extensions of the orig-
inal AF using pure strategy Nash equilibria. We give four formal algorithms allowing
respectively to transform theAF into a CP-Boolean game, and to compute the preferred
extensions ofAF. Moreover, we show that once minimal odd-cycles are removedfrom
AF, if the resulting argumentation framework is acyclic, thenthe preferred extensions
of AF are computable in polynomial time.

Clearly, a limitation of our results is that we consider argumentation framework
containing no minimal odd-length cycle. We explained this choice by the fact that
such argumentation frameworks have some important properties. However it would
be interesting to study these argumentation frameworks, because some minimal odd-
length cycles may make sense. So a future work will be to modify our algorithms for
allowing the translation of any cyclic argumentation framework. Nevertheless, note
that, in the current state, our work can already take into account the most frequently
used argumentation frameworks (those that are coherent, asthe one proposed by [16]).

References
[1] P. Krause, S. Ambler, M. Elvang, and J. Fox. A logic of argumentation for reasoning under

uncertainty.Computational Intelligence, 11 (1):113–131, 1995.

22

[2] H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. In Handbook of Philo-
sophical Logic, volume 4, pages 218–319. Kluwer Academic, 2002.

[3] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning.Artificial Intelligence, 93:63–101, 1997.

[4] L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumentation. In
Proc. of ICMAS, pages 31–38, 2000.

[5] C. Ches̃nevar, A. Maguitman, and R. Loui. Logical models of argument.ACM Computing
surveys, 32(4):337–383, 2000.

[6] P. M. Dung. On the acceptability of arguments and its fundamental rolein nonmonotonic
reasoning, logic programming and n-person games.Artificial Intelligence, 77:321–357,
1995.

[7] P. Harrenstein, W. van der Hoek, JJ. Meyer, and C. Witteveen. Boolean Games. InProc. of
TARK, pages 287–298, 2001.

[8] P. Harrenstein.Logic in Conflict. PhD thesis, Utrecht University, 2004.

[9] E. Bonzon, MC. Lagasquie-Schiex, J. Lang, and B. Zanuttini. Compact preference rep-
resentation and boolean games.Journal of Autonomous Agents and Multi-Agent Systems,
18(1):1–35, 2009.

[10] C. Cayrol, S. Doutre, and J. Mengin. On decision problems relatedto the preferred se-
mantics for argumentation frameworks.Journal of logic and computation, 13:377–403,
2003.

[11] S. Doutre and J. Mengin. Preferred Extensions of ArgumentationFrameworks: Compu-
tation and Query Answering. In A. Leitsch R. Goré and T. Nipkow, editors,IJCAR 2001,
volume 2083 ofLNAI, pages 272–288. Springer-Verlag, 2001.

[12] P. Dunne and T. Bench-Capon. Complexity and combinatorial properties of argument sys-
tems. Tech. report, U.L.C.S., 2001.

[13] P. Dunne and T. Bench-Capon. Coherence in finite argument system.Artificial Intelligence,
141(1-2):187–203, 2002.

[14] L. Savage.The foundations of statistics. Dover, New-York, 1972.

[15] E. Bonzon, C. Devred, and MC. Lagasquie-Schiex. Translationof an argumentation frame-
work into a CP-Boolean game. InProc. of ICTAI, pages 522–529. IEEE Computer Society,
2009.

[16] L. Amgoud, Y. Dimopoulos, and P. Moraı̈tis. Making decisions through preference-based
argumentation. InProc. of KR, pages 113–124, 2008.

[17] C. Berge.Graphs and Hypergraphs. North-Holland Mathematical Library, 1973.

[18] Sylvie Doutre. Autour de la śemantique pŕef́erée des systèmes d’argumentation. Thèse,
Universit́e Paul Sabatier, IRIT, 2002.

[19] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets : A Tool for Rep-
resenting and Reasoning with ConditionalCeteris ParibusPreference Statements.Journal
of Artificial Intelligence Research, 21:135–191, 2004.

[20] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. Preference-Based Con-
strained Optimization with CP-nets.Computational Intelligence, 20(2):137–157, 2004.

[21] C. Cayrol, S. Doutre, and J. Mengin. Dialectical Proof Theories for the Credulous Preferred
Semantics of Argumentation Frameworks. InProc of ECSQARU, pages 668–679, 2001.

23

[22] Phan Minh Dung and Phan Minh Thang. A unified framework for representation and
development of dialectical proof procedures in argumentation. InProceedings of Interna-
tional Joint conference on Artificial Intelligence (IJCAI), Pasadena, California, USA, 2009.
Springer Verlag.

[23] Phan Minh Thang, Phan Minh Dung, and Nguyen Duy Hung. Toward a common frame-
work for dialectical proof procedure in abstract argumentation.Journal of Logic and Com-
putation, 19(6):1071–1109, 2009.

[24] Iyad Rahwan and Kate Larson. Argumentation and game theory. In Iyad Rahwan
and Guillermo Simari, editors,Argumentation in Artificial Intelligence, pages 321–339.
Springer, 2009.

[25] N. Creignou. The class of problems that are linearly equivalent tosatisfiability or a uniform
method for provingNP-completeness.Theoretical Computer Science, 145:111–145, 1995.

[26] P. Besnard and S. Doutre. Characterization of semantics for argument systems. InProc. of
KR, pages 183–193, 2004.

[27] S. Coste-Marquis, C. Devred, and P. Marquis. Constrained argumentation frameworks. In
Proc. of KR, pages 112–122, 2006.

[28] S. Coste-Marquis, C. Devred, and P. Marquis. Prudent semantics for argumentation frame-
works. InProc. of ICTAI, pages 568–572, 2005.

[29] P. Baroni, M. Giacomin, and G. Guida. Scc-recursiveness: a general schema for argumen-
tation semantics.Artifical Intelligence, 168:162–210, 2005.

24

Algorithm 4 : Removal of minimal cycles in an argumentation system

begin
/* INPUTS: AF = 〈A ,R 〉 an argumentation system */
/* OUTPUTS:AF after removal of its minimal odd-length cycles */
/* LOCAL VARIABLES:

M = Boolean adjacency matrix representing the transitive closure ofR ,
SC= set of minimal cycles ofAF,
C,C′ = cycles (sequences of arguments),
AF′ = AF reduced to its cycles */

/* USED SUBFUNCTIONS:
TRANSITIVECLOSURE(AF) = function computing the transitive closure ofR

and returning the corresponding Boolean adjacency matrix,
REDUCTIONTOCYCLES(AF,M) = function which returns the argumentation

system corresponding toAF reduced to its cycles,
DIJKSTRA(AF,x,y) = function returning the shortest non-empty path between

two verticesx andy in AF,
ADDCYCLETOSETOFCYCLES(SC,C) = function adding a cycleC to the set

of cyclesSC
REMSUBAF(AF,C) = function which removes a cycleC to AF

M = TRANSITIVECLOSURE(AF)
SC= /0
AF′ = REDUCTIONTOCYCLES(AF,M) /* AF′ contains only the cycles ofAF */
for each vertex x ofAF′ do

/* by construction ofAF′, x belongs at least to an cycle */
C = DIJKSTRA(AF′,x,x) /* C is the shortest non-empty cycle containing
x */
if there exists no cycle C′ ∈ SC such that C′ ⊂C then

/* C is a minimal cycle */
ADDCYCLETOSETOFCYCLES(SC, C)

for each cycle of SCdo
if C is an odd-length cyclethen

/* C must be removed toAF /*
AF = REMSUBAF(AF,C)

return AF
end

25

