
Actes IAF 2013

Using Rewriting Rules to Compute Successful
Modifications of an Argumentation System

Dionysios Kontarinis1 Alan Perotti2 Elise Bonzon1 Nicolas Maudet3

Leon van der Torre4 Serena Villata5

1 LIPADE, Université Paris Descartes, {dionysios.kontarinis,elise.bonzon}@parisdescartes.fr
2 Turin University, perotti@unito.it

3 LIP6, Université Pierre et Marie Curie, nicolas.maudet@lip6.fr
4 University of Luxembourg, leon.vandertorre@uni.lu
5 INRIA, Sophia Antipolis, serena.villata@inria.fr

Résumé

Cet article s’intéresse à une approche par systèmes de
règles de réécriture du calcul de modifications minimales à
effectuer dans un système d’argumentation. Nous étudions
tout d’abord les propriétés de ces modifications minimales,
puis nous présentons une procédure spécifique dont nous
détaillons les propriétés.

Abstract

In this article, we define a procedure which computes the
minimal change of an argumentation system that achieves
some goal. We first study the properties of such minimal
changes. Then we present a procedure based on a set of
rewriting rules, and we analyse its properties.

1 Introduction

Debates are pursued with the aim to obtain at the end a
set of accepted arguments. During these debates, each agent
tries to argue in such a way that his own argumentative
goals belong to the final set of accepted arguments. Given
the number of participants and of proposed arguments, it is
a challenging task to identify the part of the debate to focus
on, to compute how possible moves would affect the current
state of the debate, and finally to understand which kind of
move is better to play. A move modifies the current debate
by either adding or removing attacks. A successful move
brings about the acceptance or rejection of a particular argu-
mentative goal, that is, ensuring that a designated argument
belongs (or not) to some (all) extension(s). Specifically, we
shall focus on (subset-)minimal successful moves, called
target sets [3]. Our first contribution in this paper is to pro-
vide some general properties of such (minimal) successful

moves. We then put forward a rewriting procedure and a set
of dedicated rules which exploits the recent attack seman-
tics of [10] to compute target sets. Then, we investigate the
properties of this procedure.

Our work is inspired by proof theories for abstract argu-
mentation frameworks, as in the work of [9], which treat the
problem of how to prove the acceptance (or non-acceptance)
of an argument under some semantics. The main new ele-
ments introduced here are the following. First, we consider
dynamic systems where attacks can be added and removed.
Second, we focus on minimal change required to achieve
acceptance (or non-acceptance) of an argument and we ana-
lyze the properties of minimal change.

Recently, the question of the dynamics of argumentation
systems has been studied by several authors [5, 2, 1]. Most
relevant to our work is the recent work of Baumann [1]. He
studies different types of expansions, that is, different ways
to modify the current system. For instance the most general
kind, arbitrary expansions, allow any modification of the
system (addition/deletion of attacks). Formally, the problem
studied is as follows : given a current argumentation system
(AS), given a “goal set” E, find a minimal expansion such
that E belongs to at least one extension of the modified AS.
The notion of minimality differs from ours, since it relies
on a pseudometric measuring the distance (in terms of the
number of differences between AS). Another key difference
is that our expansions are typically constrained. Most im-
portantly, our work focuses on the design of a procedure
which returns the target sets in a given situation.

The paper is organized as follows. Section 2 provides
some basic background on abstract argumentation theory [7]
and the notion of acceptability. Section 3 formalizes the

notion of target sets. In Section 4 we give a set of rewriting
rules which are used to define a rewriting procedure and
then we prove some of its properties. Finally, Section 5
concludes.

2 Background

In this section, we provide the basic concepts of abstract
argumentation frameworks, as proposed by Dung [7], in
which the exact content of arguments is left unspecified.
In the definition of argumentation system we provide here,
the difference compared to [7] is that, we do not only have
the standard attack relation (here denoted→), but we also
have two more relations : the +

; relation which denotes
the attacks which can be added in the system, and the −;
relation which denotes the attacks which can be removed
from the system.

Definition 2.1 We define an argumentation system as a
tuple AS = 〈A,→,

+
;,

−
;〉, where A is a set of arguments,

→⊆ A×A is a binary attack relation between arguments,
+
;⊆ A×A is a binary relation which contains the pairs of
arguments which can be added in→, and −

;⊆ A×A is a
binary relation which contains the pairs of arguments which
can be removed from→.

Notice that −;⊆→ and that +
;∩→= {}. Moreover, from

now on, we will suppose that the set of arguments |A| is
finite.

In Dung’s framework, the acceptability of an argument
depends on its membership to some sets, called extensions.

Definition 2.2 Let AS = 〈A,→,
+
;,

−
;〉 be an argumenta-

tion system. Let C ⊆ A. The set C is conflict-free iff 6 ∃a,b ∈
C such that a→ b. An argument a ∈ A is acceptable w.r.t.
C iff ∀x ∈ A : if x→ a, then ∃y ∈C such that y→ x.

Several types of extensions (sets of arguments satisfying
some properties) have been defined by Dung [7].

Definition 2.3 A conflict-free set of arguments C is :
– An admissible extension iff each argument of C is ac-

ceptable w.r.t. C.
– A preferred extension iff it is a maximal (w.r.t. ⊆) ad-

missible extension.
– A complete extension iff ∀x ∈ A : if x is acceptable

w.r.t. C, then x ∈C.
– A grounded extension iff it is the minimal (w.r.t. ⊆)

complete extension.
Admissible, preferred, complete and grounded semantics
will be respectively denoted Adm, Pref, Comp and Gr in the
rest of the paper.

The next question is to decide, given a semantics, which
arguments are acceptable. In the case of the admissible, pre-
ferred and complete semantics, two notions of acceptability
can be defined.

Definition 2.4 Let AS = 〈A,→,
+
;,

−
;〉 be an argumenta-

tion system, and let a ∈ A.
Argument a is said credulously accepted w.r.t. system
AS under semantics S ∈ {Adm,Pre f ,Comp,Gr}, denoted
S∃(a,AS), iff a belongs to at least one extension of AS under
the S semantics.
Argument a is said sceptically accepted w.r.t. AS under se-
mantics S ∈ {Adm,Pre f ,Comp,Gr}, denoted S∀(a,AS), iff
a it belongs to all the extensions of AS under the S seman-
tics.

Notice that {} is always an admissible extension, the-
refore it holds that Adm∀(a,AS) = {}. Thus, sceptical ac-
ceptability under admissible semantics is not an interesting
notion, and we will not refer to it anymore.

Furthermore, as there always exists a unique grounded
extension, there is no difference between credulous and
sceptical acceptability for grounded semantics. So, if argu-
ment a ∈ A is accepted under the grounded semantics, then
we simply denote this by Gr(a,AS). Moreover, as stated
in [7], an argument a ∈ A belongs to the grounded extension
if and only if it is sceptically accepted under the complete
semantics (thus, Gr(a,AS)⇔Comp∀(a,AS)). We will use
this latter notation to refer to the grounded extension.

In the rest of the paper, we will denote by Sem =
{Adm,Pre f ,Comp} the set of admissible, preferred and
complete semantics.

Finally, for the sake of readability, if there is no danger of
confusing which argumentation system we refer to, we will
simply write ∀S∈ Sem, S∃(a), or S∀(a), without mentioning
the AS.

The following property states that the set of arguments
which are credulously accepted under the admissible seman-
tics, are the same as those accepted under the preferred, or
the complete semantics.

Property 1 [7] Let AS = 〈A,→,
+
;,

−
;〉 be an argumenta-

tion system, where |A| is finite, and a ∈ A. It holds that
Adm∃(a,AS)⇔ Pre f∃(a,AS)⇔Comp∃(a,AS).

The case of sceptical acceptability is a bit different. Every
argument sceptically accepted under complete semantics is
also sceptically accepted under preferred semantics, but the
inverse does not hold in the general case.

Property 2 [7] Let AS = 〈A,→,
+
;,

−
;〉 be an argumenta-

tion system, where |A| is finite, and a ∈ A. It holds that
Comp∀(a,AS)⇒ Pre f∀(a,AS). The inverse does not neces-
sarily hold.

As we have just seen, Dung’s semantics [7] are stated
in terms of sets of arguments, but it is also possible to
express them using argument labeling [8, 4]. Roughly, an
argument is labeled in if all its attackers are labeled out, it
is labeled out if it has at least an attacker which is labeled
in and undec otherwise. Villata et al. [10] introduce attack
semantics where arguments are accepted when there are no
successful attacks on them. An attack a→ b is in (denoted
a 1→ b) when its attacker is in, undec (denoted a ?→ b) when
its attacker is undec, and out (denoted a 0→ b) when its
attacker is out. Thus, an attack is successful when it is in or
undec, and unsuccessful when it is out.

The difference among these two semantics may be ex-
plained by means of a simplified version of the example
proposed in [10] and visualized in Figure 1. In argument
semantics, an extension for a semantics S ∈ Sem contains a
and c. Thus, b is rejected whereas a and c are accepted. In
attack semantics, the attacks a→ b and c→ b are successful,
whereas b→ c is unsuccessful.

a
b

c

accepted

rejected

accepted

Argument semantics

a b

c

1

0 1

Attack semantics

FIGURE 1 – Two argumentation semantics

Boella et al. [3] propose a new kind of labelling, called
conditional labelling. The idea is to provide the agents with
a way to discover the arguments they should attack to get a
particular argument accepted or rejected. Conditional label-
ling extends the idea of argument labelling [4] by assigning
a triple of propositional formulae, called conditional labels,
to every argument in the framework. Given a conditional
labelling, the agents have complete knowledge about the
consequences of the attacks they may raise on the accep-
tability of each argument without having to recompute the
labelling for each possible set of attacks they may raise.

3 Argumentative goals and target sets

In this work, we consider that attacks are the core com-
ponents of an argumentation system (we note that the same
choice is made in Baumann [1]) and thus prefer to commit
to the attack semantics. So, we assume that the arguments
of a system cannot change (neither new arguments can be
added, nor arguments can be removed). Instead, what may
happen, is the addition of new attacks and the removal of
some attacks already in the system. A central notion, related
to this type of change, is the following notion of atom.

Definition 3.1 Let AS = 〈A,→,
+
;,

−
;〉 be an argumenta-

tion system, and let a,b ∈ A be two arguments. An atom of
AS is defined as follows.
Atom(AS) ::=> | ⊥| a +→ b | a −→ b | a 1→ b | a ?→ b | a 0→
b | a

1
� b | a

?
� b | a

0
� b | PRO(a) | CON(a)

The atoms >, ⊥, a +→ b, a −→ b, a 1→ b, a ?→ b, and a 0→ b

are called closed atoms, whereas the atoms a
1
� b, a

?
� b,

a
0
� b, PRO(a) and CON(a) are called open atoms.

Let Atoms(AS) denote the set of all the atoms constructable
from AS.

The atom a +→ b (resp. a −→ b) indicates the action of
adding (resp. removing) the attack a→ b. The atoms with

double arrow a
1
� b (resp. a

?
� b, resp. a

0
� b) indicate that

we must find a way for attack a→ b to become ‘1’ (resp.
‘?’, resp. ‘0’). On the other hand, the atoms with simple
arrow a 1→ b (resp. a ?→ b, resp. a 0→ b), indicate that we
have already found a way for attack a→ b to become ‘1’
(resp. ‘?’, resp. ‘0’). Finally, the atom ⊥ indicates failure,
and the atom > indicates success. As it is evident, our focus
is on attacks, so the use of attack semantics [10] is more
convenient than the use of argument semantics.

Before continuing, let us provide a table which summa-
rizes the different types of arrows we have introduced in our
notation so far.

Notation Type Meaning
a→ b Relation a attacks b

a +
; b Relation a→ b can be added

a −; b Relation a→ b can be removed
a +→ b Atom add a→ b

a −→ b Atom remove a→ b

a 1→ b Atom (closed) a→ b has been set ‘1’

a ?→ b Atom (closed) a→ b has been set ‘?’

a 0→ b Atom (closed) a→ b has been set ‘0’

a
1
� b Atom (open) a→ b must be set ‘1’

a
?
� b Atom (open) a→ b must be set ‘?’

a
0
� b Atom (open) a→ b must be set ‘0’

Using only the atoms a +→ b and a −→ b, we define the
notion of move on a system :

Definition 3.2 Let AS = 〈A,→,
+
;,

−
;〉 be an argumenta-

tion system. Let m = {a x→ b | x∈ {+,−}} be a set of atoms.
Then, m is called move on AS iff ∀(a +→ b) ∈ m, (a,b) ∈ +

;,
and ∀(a −→ b) ∈ m, (a,b) ∈ −;.

Definition 3.3 Let AS = 〈A,→,
+
;,

−
;〉 be an argumenta-

tion system, and let m be a move on AS. We define the resul-
ting system of playing move m on AS as the argumentation
system ∆(AS,m) = 〈A,→m,

+
;m,

−
;m〉, such that :

(1) (a,b) ∈→m iff either (a,b) ∈→ and (a −→ b) 6∈ m, or
(a +→ b) ∈ m.

(2) (a,b) ∈ +
;m iff either (a,b) ∈ +

; and (a +→ b) 6∈ m, or
(a −→ b) ∈ m.

(3) (a,b) ∈ −;m iff either (a,b) ∈ −; and (a −→ b) 6∈ m, or
(a +→ b) ∈ m.

If we are able to play a move on AS = 〈A,→,
+
;,

−
;〉, we

may be motivated to play it by the desire to satisfy a specific
goal. Let us formally define this notion of goal.

Definition 3.4 Let Systems denote a set of argumentation
systems. Let Props denote a set of properties, such that
each property can refer to any AS ∈ Systems. We define the
function f : Props × Systems → {true, f alse}, such that
∀P∈ Props,∀AS∈ Systems, it holds that f (P,AS) = true iff
property P, when referring to system AS, holds ; otherwise
f (P,AS) = f alse.
A property P may be chosen as a positive goal. In that case,
we say that goal P is satisfied in AS iff f (P,AS) = true.
Also, a negated property ¬P may be chosen as a negative
goal. In that case, we say that goal ¬P is satisfied in AS iff
f (P,AS) = f alse (that is iff f (¬P,AS) = true).

If we adopt a specific goal (either positive or negative)
which is not satisfied in AS, then we search for possible
moves on AS, leading to a modified system AS′ in which
that goal is satisfied. Any move on AS which achieves this,
is a successful move. That move is also a target set if the
changes it makes on the initial system are minimal.

Definition 3.5 Let AS = 〈A,→,
+
;,

−
;〉 be an argumenta-

tion system, and Props be a set of properties. Let m be a
move on AS, and P ∈ Props be a property. Let g be a goal,
such that g is P or ¬P.
m is called successful move for goal g iff goal g is satisfied
in ∆(AS,m), that is if f (g,∆(AS,m)) = true.
m is called target set for goal g iff m is minimal w.r.t. ⊆
among all the successful moves for g.

Let us now describe the types of goals (positive and ne-
gative) that we focus on. In the following, let AS = 〈A,→,
+
;,

−
;〉 be an argumentation system, and let m be a move on

AS. We will focus on the acceptance of a single argument
d ∈ A called the issue. Also, let X ∈ {∃,∀}, and let S ∈ Sem
(we remind that Sem = {Adm,Pre f ,Comp}).

(1) Let SX (d) be a positive goal. We define :
– The set of successful moves MS

X = {m | SX (d) is
satisfied in ∆(AS,m)}.

– The set of target sets TS
X = {m | m ∈MS

X , and m is
minimal w.r.t. ⊆ among the elements ofMS

X}
(2) Let ¬SX (d) be a negative goal. We define :

– The set of successful movesMS
¬X = {m | ¬SX (d) is

satisfied in ∆(AS,m)}.
– The set of target sets TS

¬X = {m | m ∈MS
¬X , and m

is minimal w.r.t. ⊆ among the elements ofMS
¬X}

The following example aims at clarifying these notions.

Example 1 Let AS = 〈A,→,
+
;,

−
;〉 be an ar-

gumentation system such that A = {a,b,c,d,e},
→= {(a,b),(b,a),(c,d),(e,d)}, +

;= {(a,c),(b,c)},
−
;= {(c,d),(e,d)}, and d ∈ A is the issue.

dc

a

e

b

AS

Non-removable attacks are represented by thick arrows,
removable attacks by simple arrows, and addable attacks
by dotted arrows. Argument d does not belong to any ad-
missible extension of AS. If our goal is to put d in some
admissible (or preferred, or complete) extension, then there
are three target sets for this goal : TS

∃ = {{e
−→ d,c −→

d},{e −→ d,a +→ c},{e −→ d,b +→ c}}. Also, {e −→ d,b +→
c,a +→ c} ∈MS

∃, because this move is successful for the
previous goal, though it is not a target set, because it is not
minimal. Now, regarding sceptical preferred semantics, it
holds that TPre f

∀ = {{e −→ d,c −→ d},{e −→ d,b +→ c,a +→
c}}. Finally, as far as grounded semantics is concerned,
T

Comp
∀ = {{e −→ d,c −→ d}}.

We now provide some properties of the sets of succesful
moves and of the sets of target sets.

Property 3 It holds that

M
Comp
∀ ⊆MPre f

∀ ⊆MS
∃

MS
¬∃ ⊆M

Pre f
¬∀ ⊆M

Comp
¬∀

Proof 3 Let us prove the relation regarding the positive
goals. If move m ∈MComp

∀ , then d is accepted in AS′ =
∆(AS,m) under complete semantics (using sceptical accep-
tability), so d belongs in all the complete extensions of AS′,
therefore in all the preferred extensions of AS′. So, it holds
that m∈MPre f

∀ . Thus, we have proved thatMComp
∀ ⊆MPre f

∀ .
Moreover, if m ∈MPre f

∀ , then d belongs in all the prefer-
red extensions of AS′, therefore d belongs in at least one
preferred extension of AS′ (so, it also belongs in at least
one admissible, and in at least one complete extension of
AS′). Thus, it holds that m ∈MS

∃, and we have proved that

M
Pre f
∀ ⊆MS

∃. As a result,MComp
∀ ⊆MPre f

∀ ⊆MS
∃. Similarly,

we can prove the second relation, regarding the negative
goals.

On the other hand, if we consider the corresponding target
sets, the relationsTComp

∀ ⊆TPre f
∀ ,TPre f

∀ ⊆TS
∃ andTComp

∀ ⊆
TS
∃, do not hold in the general case.

Ex. 1, cont. In this example, the relation TPre f
∀ ⊆TS

∃ does
not hold. Small modifications of this example can show that,
in the general case, neitherTComp

∀ ⊆TPre f
∀ norTComp

∀ ⊆TS
∃

hold.

Similarly, for the negative goals, there are examples (omit-
ted due to the lack of space) showing that the relations
TS
¬∃⊆T

Pre f
¬∀ ,TPre f

¬∀ ⊆T
Comp
¬∀ andTS

¬∃⊆T
Comp
¬∀ do not hold

in the general case.
Next, we highlight a link between the sets of target sets.

Property 4 If m is a move such that m∈TComp
∀ and m∈TS

∃,
then m ∈TPre f

∀ (1)
Moreover, if m is a move such that m ∈TS

¬∃ and m ∈TComp
¬∀ ,

then m ∈TPre f
¬∀ (2)

Proof 4 (1) By contradiction, let m ∈TComp
∀ , m ∈TS

∃ and
assume that m 6∈ TPre f

∀ . Now, m ∈ TComp
∀ implies that

m ∈MComp
∀ (as m is minimal w.r.t. ⊆ among the moves in

M
Comp
∀). Then, from m ∈MComp

∀ it follows that m ∈MPre f
∀

(from Property 3). Moreover, we assumed that m 6∈TPre f
∀ , so

there must exist another move m′ ⊂m, such that m′ ∈TPre f
∀

(and, of course, m′ ∈MPre f
∀). From m′ ∈MPre f

∀ , we get that
m′ ∈MS

∃ (from Property 3). Finally, from m′ ∈MS
∃ and

m ∈TS
∃, it follows that m⊆ m′. Contradiction, since above

we had m′ ⊂ m. Therefore, m ∈TPre f
∀ .

We can prove (2) in a similar way.

Now that we have given some properties of the successful
moves and of the target sets, we can define our rewriting
procedure which shall allow us to compute all the target sets
for some types of goals.

4 Rewriting Rules and Procedure

In this section we define a rewriting procedure which
computes all the target sets for some types of goals. The
procedure does this in a goal-driven manner, as it concen-
trates on the “relevant” attacks for a given goal. It starts
from the issue and, going backwards, considers the attacks
against the issue, then the attacks against the previous atta-
cking arguments and so on.

The notion of atom is the basis of the procedure. The
connectors ∧ and ∨ are used in order to link atoms, forming
conjuncts and formulas.

Definition 4.1
Con junct ::= Atom | (Con junct ∧Con junct)
Formula ::=Con junct | (Con junct ∨Con junct)
Let Con juncts denote the set of all possible conjuncts, and
let Formulas denote the set of all possible formulas.
A conjunct which contains at least one open atom is called
open conjunct. Otherwise, it is called closed conjunct.
A formula which contains at least one open conjunct is cal-
led open formula. Otherwise, it is called closed formula.

Having given the definitions of atom, conjunct and for-
mula, we now proceed to the definition of some rewriting
rules. There are two types of rewriting rules, atom expan-
sions and atom simplifications. An atom expansion replaces
a conjunct which features an open atom, by the disjunction
of some new conjuncts. An atom simplification replaces two
(or more) atoms in a conjunct by a single atom. Rewriting
rules are indicated by the the ‘ :’ sign.

Definition 4.2 Let AS = 〈A,→,
+
;,

−
;〉 be an argumenta-

tion system, with a,b ∈ A. Let p, q and r be conjunctions
of (zero or more) atoms, and let x,y ∈ {1,?,0}. Finally, we
denote by P (X) the powerset of a set X. The rewriting rules
are presented in Figure 2.

Let us briefly explain the intuition behind these rules. In
the following, instead of saying that an attack is successful
or unsuccessful, we say that it is ‘1’, or ‘?’, or ‘0’. The
expansion rule for PRO(a) states that, if there are no attacks
against a, then we have no changes to make. But, if there
are attacks against a, we must remove a subset of them, and
make the rest of the attacks against it ‘0’. Notice that, if
(x,a) ∈ +

;, then we introduce the atom x 0→ a which is used
as a type of marker. If we try to add this attack in the future,
then this marker will cause the firing of a simplification
rule (as we will see below). The expansion rule for CON(a)
states that there must be one attack against a (either already
in the system, or added at this point) which is either ‘1’ or

‘?’. The expansion rule for a
1
� b, states that in order for

this attack to be ‘1’, a subset of the attacks against it must
be removed, and the rest must be ‘0’. The expansion rule

for a
0
� b, states that in order for this attack to be ‘0’, one

attack (either already in the system, or added in it) must

be ‘1’. Finally, the expansion rule for a
?
� b is the longest,

but the intuition behind it is straightforward. It states that
in order for an attack to be ‘?’, the following must hold :
Firstly, a subset of its incoming attacks (either already in
AS, or added at this point) must be ‘?’ (notice that this set
cannot be empty). Secondly, the rest of its incoming attacks
must be either removed (the attacks in the set S′) or they
must be ‘0’. Thirdly, notice that if (x,a) ∈ +

;, then the atom

x 0→ a is used again as a marker, preventing the addition of
a ‘1’ attack against a in the future.

Atom expansions :
(1) PRO(a) :>, if {(x,a)|(x,a) ∈→}= {}∨

S∈P ({(x,a)|(x,a)∈ −;})(
∧

(x,a)∈S((x
−→ a)∧ (x 0→ a))∧

∧
(x,a)∈(→\S)(x

0
� a)∧

∧
(x,a)∈ +

;
(x 0→ a)), otherwise.

(2) CON(a) :⊥, if {(x,a)|(x,a) ∈ (→∪ +
;)}= {}∨

(x,a)∈→((x
1
� a)∨ (x

?
� a))∨

∨
(x,a)∈ +

;
(((x +→ a)∧ (x

1
� a))∨ ((x +→ a)∧ (x

?
� a))), otherwise.

(3) p ∧ (a
1
� b) ∧ q :

∨
S∈P ({(x,a)|(x,a)∈ −;})(p ∧ (a 1→ b) ∧ q ∧

∧
(x,a)∈S((x

−→ a) ∧ (x 0→ a)) ∧
∧

(x,a)∈(→\S)(x
0
� a) ∧∧

(x,a)∈ +
;
(x 0→ a))

(4) p∧ (a
0
� b)∧q :⊥, if {(x,a)|(x,a) ∈ (→∪ +

;)}= {}∨
(x,a)∈→(p∧ (a 0→ b)∧q∧ (x

1
� a))∨

∨
(x,a)∈ +

;
(p∧ (a 0→ b)∧q∧ (x +→ a)∧ (x

1
� a)), otherwise.

(5) p∧ (a
?
� b)∧q :⊥, if {(x,a)|(x,a) ∈ (→∪ +

;)}= {}∨
S∈P ({(x,a)|(x,a)∈(→∪ +

;)}),S 6={}
∨

S′∈P ({(x,a)|(x,a)∈(−;\S)})(p∧ (a ?→ b)∧ q∧
∧

(x,a)∈(→∩S)(x
?
� a)∧

∧
(x,a)∈(+;∩S)

((x +→

a)∧ (x
?
� a))∧

∧
(x,a)∈S′((x

−→ a)∧ (x 0→ a))∧
∧

(x,a)∈(→\(S∪S′))(x
0
� a)∧

∧
(x,a)∈(+;\S)(x

0→ a)), otherwise.

Atom simplifications :
(1) (a) p∧ (a

x
� b)∧q∧ (a x→ b)∧ r : p∧q∧ r∧ (a x→ b) (2) p∧ (a

x
� b)∧q∧ (a

x
� b)∧ r : p∧q∧ r∧ (a

x
� b)

(b) p∧ (a x→ b)∧q∧ (a
x
� b)∧ r : p∧q∧ r∧ (a x→ b) (4) p∧ (a

x
� b)∧q∧ (a

y
� b)∧ r :⊥, if x 6= y

(3) (a) p∧ (a
x
� b)∧q∧ (a y→ b)∧ r :⊥, if x 6= y (5) p∧ (a x→ b)∧q∧ (a y→ b)∧ r :⊥, if x 6= y

(b) p∧ (a y→ b)∧q∧ (a
x
� b)∧ r :⊥, if x 6= y (6) p∧ ⊥ ∧r :⊥

FIGURE 2 – Rewriting rules

Now, as far as the simplification rules are concerned :
Rules 1 and 2 are used to ensure that each attack is “treated”
only once (and they ensure the termination of the procedure).
Rules 3, 4 and 5 are fired when some attack is set to be both
‘1’ and ‘0’ (or ‘?’ and ‘1’, or finally ‘?’ and ‘0’), at the same
time. In that case, the ⊥ atom is introduced. Rule 6 states
that the ⊥ atom removes all other atoms found in the same
conjunct with it.

Let us now informally describe the rewriting procedure.
It starts with a formula of the type PRO(d), or CON(d) and
then uses the expansion rules to rewrite it, thus obtaining
another formula with more (or at least the same number of)
conjuncts. After the application of an expansion rule, there
follows (possibly) a series of simplifications. The expansion
and simplification steps are repeated, until the procedure
computes a closed formula. Then, it returns a set of moves,
one move for each conjunct of the closed formula.

Note that this kind of procedure is classical in rewriting
systems, as for example in the system Maude [6].

Definition 4.3 Let AS = 〈A,→,
+
;,

−
;〉 be an argumenta-

tion system, and let d ∈ A. The rewriting procedure RP
takes as input a formula denoted initF, such that either
initF = PRO(d), or initF =CON(d), and returns a set of

moves denoted Md . More specifically, the set of returned
moves is denoted M PRO

d if initF = PRO(d), and it is deno-
ted M CON

d if initF =CON(d). The procedure’s algorithm
is Algorithm 1.

Ex. 1, cont. Let the input formula to the RP procedure be
initF = PRO(d). Let f0 denote the initial formula PRO(d),
and fi+1 denote the formula we obtain after the application
of an expansion rule on fi. The procedure begins as follows :
f0 = PRO(d), f1 = (e −→ d∧ e 0→ d∧ c −→ d∧ c 0→ d)∨
(e −→ d∧ e 0→ d∧ c

0
� d)∨ (e

0
� d∧ c −→ d∧ c 0→ d)∨

(e
0
� d∧ c

0
� d), f2 = . . .

Once RP computes a closed formula fn, there are no more
expansion rules to apply. Then, the procedure returns a
move for each conjunct of fn (unless that conjunct is ⊥). In
this example, RP returns the following set of three moves :
M PRO

d = {{e −→ d,c −→ d}, {e −→ d,b +→ c}, {e −→ d,a +→
c}}.

A series of applications of expansion rules leading to
a closed formula, can be illustrated as the gradual expan-
sion of a tree, called “expansion-tree”. The nodes of an
expansion-tree are conjuncts. Initially, an expansion-tree

Data : An argumentation system AS = 〈A,→,
+
;,

−
;〉,

initF = PRO(d) or initF =CON(d), d ∈ A.
Result : A set of moves Md .
Initialise formula currF := initF ;
while currF is an open formula do

Arbitrarily choose a conjunct (p∧atExp∧q) of
currF , which contains the open atom atExp ;
if p∧atExp∧q : (p∧q∧ r1)∨·· ·∨ (p∧q∧ rk) is
an atom expansion rule then

Update currF , by replacing (p∧atExp∧q)
with (p∧q∧ r1)∨·· ·∨ (p∧q∧ rk) ;

end
while a simplification can be applied on some
conjunct of currF do

Arbitrarily choose such a simplification,
and apply it ;

end
end
Initialise the set of moves Md := {} ;
foreach conjunct C of currF do

if C 6=⊥ then
m := {a x→ b | a x→ b appears in C, and
x ∈ {+,−}} ;
Add m into the set Md ;

end
end
return Md ;

Algorithm 1 : The rewriting procedure RP

has only one node-conjunct (which is initF). When an ex-
pansion rule is applied in a node-conjunct (the application
is simply called “expansion”) a number of child nodes are
created for that node. This way the expansion-tree gets big-
ger after each expansion, until at some point all its leaves
are closed conjuncts. Then, the procedure computes Md
from the leaves of the expansion-tree.

Now, let us highlight some properties that the RP proce-
dure has, when it is coupled with the above expansion and
simplification rules. First, RP always terminates (provided
a finite number of arguments in the system we refer to).
Second, for given input formula initF , RP always returns
the same set of moves Md .

Property 5 Termination of RP
Let AS = 〈A,→,

+
;,

−
;〉 be an argumentation system. Then,

the procedure RP always terminates.

Proof 5 Let fcl , fop, fat : Con juncts→N, which, for every
conjunct c, return the number of its a x→ b atoms (fcl), the
number of its a

x
� b atoms (fop), and such that fat(c) =

fcl(c) + fop(c). In order to prove the termination of RP,
we must prove that, after a finite number of expansions, a
closed formula (without open atoms) is computed by RP.

First, notice that for any conjunct c of any formula computed
by RP, and ∀(a,b) ∈ (→∪ +

;) : If atom a
x
� b is in c, then

it is there only once (simplification rule 2) ; there is no

atom a
y
� b with x 6= y in c (simplification rule 4) ; there

is no atom a x→ b in c (simplification rule 1) ; and finally,
there is no atom a

y→ b with x 6= y in c (simplification rule
3). Similarly, notice that if atom a x→ b is in c, then it is
there only once (because simplification rule 1 would have
removed any atom a

x
� b, therefore no second atom a x→

b can appear in c) ; there is no atom a
y→ b with x 6= y

in c (simplification rule 5) ; there is no atom a
x
� b in c

(simplification rule 1) ; and finally, there is no atom a
y
� b

with x 6= y in c (simplification rule 3). Therefore, it holds that
fat(c)≤ |(→∪

+
;)|. From this inequality and from fat(c) =

fcl(c)+ fop(c), it follows that fop(c)≤ |(→∪
+
;)|− fcl(c).

Now, let f ormi be an open formula computed by RP and
let ci be an open conjunct of f ormi which appears after
p expansions. 1 From the definition of the expansion and
simplification rules, it follows that when an open atom of
ci is expanded, then each of the conjuncts which replace ci,
contains one more a x→ b atom than ci (the only exception is
the initial formula PRO(d) or CON(d), which is expanded
without producing any a x→ b atoms). Therefore, it holds that
fcl(ci) = p−1. As a result, fop(ci)≤ |(→∪

+
;)|− (p−1).

Given that, in every expansion, a conjunct is replaced by a
finite number of new conjuncts (this follows directly from
the atom expansion rules and from the fact that |A| is finite),
by continuing the expansions, RP will eventually compute a
formula, such that every conjunct it has is either closed, or it
has been computed after p = |(→∪ +

;)|+1 expansions. In
the latter case, the conjunct is necessarily closed, because
fop(ci) ≤ 0, so ci contains no open atoms. Once a closed
formula is computed, the procedure RP returns one move for
every conjunct of that formula (except for the ⊥ conjuncts).
Therefore, RP always terminates.

Property 6 Determinism of RP
Let AS = 〈A,→,

+
;,

−
;〉 be an argumentation system. For

every input formula initF (such that initF = PRO(d) or
initF = CON(d) with d ∈ A), the RP procedure always
returns the same set of moves Md .

Proof 6 We shall just provide the sketch of this proof. In
order to prove that RP is deterministic, it suffices to prove
that if an arbitrary move can be computed by RP, then it is
always computed by RP. More specifically, we prove that for
any pair of expansion-trees t1 and t2 which are constructible
by RP, for every leaf node (closed conjunct) of t1, which
is not ⊥, there exists a leaf node of t2 which has exactly
the same a +→ b and a −→ b atoms. Now we explain how we

1. It is helpful here to consider the corresponding expansion-tree,
where the node-conjunct ci is found in depth p.

proceed in order to prove the above. Given an arbitrary leaf
of t1, we denote p1 the path which connects the root of t1
to that leaf. By checking the expansion rules which were
applied along p1, we calculate as follows a second path
p2 connecting the root of t2 to some node : we begin at the
root of t2, and we denote atExp the atom expanded at this
point. Next, we check if atExp was expanded in p1. If it was
not, then we do nothing. But, if it was expanded, then we
check the specific expansion rule applied in p1 for atExp.
Then, in t2, we choose the edge corresponding to the same
expansion rule which was applied in p1, and we add that
edge at the end of p2. So, p2 gets extended by one edge,
and we end up to a child node of the node we expanded. As
long as a new edge is added to p2, we repeat the previous
steps. Otherwise, we stop. At this point, we first prove that
the last node of p2 is necessarily a leaf of t2. Then, we prove
that every a +→ b and a −→ b atom appearing in the first leaf
necessarily appears in the second leaf, and vice-versa. This
proves that RP is determinist.

We now analyze the usefulness of the rewriting procedure
wrt. the different argumentative goals. We shall say that :

– the procedure is correct for goal g if every move it
returns is successful for g.

– the procedure is complete for goal g if it returns all the
target sets for g.

Property 7 Correctness and Completeness of RP
The following table illustrates for which goals the rewriting
procedure is correct and / or complete.

Goal Correctness Completeness
S∃(d) Yes Yes
Pre f∀(d) No No
Comp∀(d) No Yes
¬S∃(d) No No
¬Pre f∀(d) No ?
¬Comp∀(d) Yes Yes

Proof 7 Correctness of RP for S∃(d), that is M PRO
d ⊆MS

∃.
Let m ∈ M PRO

d . We must prove that m ∈MS
∃. The move

m ∈M PRO
d correponds to some conjunct, denoted cm, of the

closed formula computed by RP. From cm we can construct
the set of arguments D = {x | x 1→ y is an atom of cm}.
We will now prove that in ∆(AS,m) = 〈A,→m,

+
;m,

−
;m〉,

it holds that D is an admissible set of arguments which
defends argument d. First, let us assume that in ∆(AS,m)
the set D is not conflict-free. In that case there exist
two arguments x1,x2 ∈ D, such that (x1,x2) ∈→m. Now,

x1,x2 ∈ D implies that ∃x3,x4 ∈ A such that x1
1→ x3 and

x2
1→ x4 are atoms of cm. Given that x2

1→ x4 appears in cm,
and that (x1,x2) ∈→m, it follows that atom x1

0→ x2 must
also appear in cm (because of expansion rule 3). In turn,
this means that ∃x5 ∈ A such that x5

1→ x1 also appears

in cm (because of expansion rule 4). Similarly, given that
x1

1→ x3 appears in cm, it holds that x5
0→ x1 also appears

in cm. But, it is impossible for both x5
1→ x1 and x5

0→ x1 to
appear in the same conjunct (because simplification rules 3,
4 and 5 prevent this, by introducing the ⊥ atom). Therefore,
we have proved that D is conflict-free. Second, let us assume
that in the system ∆(AS,m), the set D does not defend all
its elements. In that case ∃x1 ∈ D and ∃x2 6∈ D such that
(x2,x1) ∈→m, and no argument of D attacks x2. The fact

that x1 ∈ D implies that ∃x0 ∈ A such that atom x1
1→ x0

appears in cm. So, from expansion rule 3, atom x2
0→ x1

also appears in cm, and as a result, ∃x3 ∈ A such that atom
x3

1→ x2 also appears in cm (otherwise, expansion rule 4
would have introduced atom ⊥ in cm). By definition of the
set D, notice that x3 ∈ D. Impossible, since we assumed
that no argument of D attacks x2 in ∆(AS,m). Therefore, we
have proved that D defends all its elements. Given that D is
conflict-free and it defends all its elements, it follows that D
is an admissible set of arguments. Finally, since for every
attack (x,d) ∈→m against the issue d, atom x 0→ d appears
in cm (because of expansion rule 1), it holds that argument
d is defended by the set D. From this, and from the fact that
D is admissible in ∆(AS,m), it follows that also D∪{d} is
admissible in ∆(AS,m). So, it holds that m ∈MS

∃, and we
have finally proved that M PRO

d ⊆MS
∃.

Correctness of RP for ¬Comp∀(d) (sketch of proof).
Let m ∈M CON

d . We must prove that m ∈MComp
¬∀ . The move

m correponds to some conjunct, denoted cm, of the closed
formula computed by RP. From the expansion rule for
CON(d), it follows that cm either contains an atom x 1→ d,

or it contains an atom x ?→ d. First, if cm contains an atom
x 1→ d, then there exists some admissible extension of
∆(AS,m) which contains argument x. So, d does not belong
to the grounded extension of ∆(AS,m), in other words

m ∈MComp
¬∀ . Second, if cm contains an atom x ?→ d, then in

the system ∆(AS,m) there exists a cycle of attacks and a
path of attacks coming from the cycle and leading to d. This
follows from the expansion rules 4 and 5, because when an

atom x
?
� y is expanded, then an atom z

?
� x is introduced,

and the only way to finally obtain a conjunct other than
⊥, is to create a cycle of ‘?’ attacks. Additionnally, from
expansion rule 5, it follows that every attack against an
argument of that cycle (or against an argument of the
path connected to that cycle) is set to be either ‘?’ or

‘0’. In this case, it is straightforward to prove that there
exists no argument of the grounded extension of ∆(AS,m)
which attacks an argument of the cycle (or of the path).
The fact that argument d is “connected” to such a cycle,
implies that d does not belong to the grounded extension

of ∆(AS,m). 2 Therefore, m ∈MComp
¬∀ , and we have proved

that M CON
d ⊆MComp

¬∀ .

Completeness of RP for S∃(d) (sketch of proof). Note
that the proof for completeness for Comp∀(d) is almost iden-
tical. The proof of completeness for ¬Comp∀(d) is omitted.
So, we want to prove that TS

∃ ⊆M PRO
d . Let t be a target

set such that t ∈ TS
∃. We shall prove that there exists an

expansion-tree, constructible by the RP procedure, which
has a leaf node containing all the atoms of t, and no additio-
nal x +→ y, or x −→ y atoms. If this is the case, and given that
RP is deterministic, it follows that RP will always compute
t. Let X = {x1

−→ d, . . . ,xn
−→ d} be a set of atoms, such that

{x1, . . . ,xn} are all the arguments attacking d in the initial
system. Naturally, t contains a subset of the atoms in X, de-
noted X ′ ⊆ X. On the other hand, we can prove that t cannot
contain any atoms of the form xi

+→ d. At this point, notice
that the RP procedure expands the root node (the conjunct
PRO(d)) and creates a number of child nodes. Each child
node has a different subset of X (because of the expansion
rule for PRO(d)). Therefore, there exists exactly one child
node of the root which contains exactly the atoms of X ′. Let
us denote that node n. Let {xk, . . . ,xl} denote the subset of
arguments whose attacks against d remain in ∆(AS, t). Then,
according to the expansion rule for PRO(d), the node n also

contains the atoms xk
0
� d, . . . , xl

0
� d. Since t contains the

atoms of X ′, plus some additional atoms (resulting from

further expansions of xk
0
� d, . . . , xl

0
� d), it can be de-

noted t = X ′∪Z. Notice that every atom of Z refers to an
attack necessarily “connected” to some argument of the set
{xk, . . . ,xl}. Lets focus on the attacks against d which are
not removed. Those attacking arguments must get attacked
back, in order for d to be reinstated. At this point, it is not
difficult to prove that : (A) It is impossible for any y −→ xi
atom to appear in t. (B) It is impossible for 2 or more atoms
y1

+→ xi, y2
+→ xi to appear in t. As a result, for every argu-

ment xi ∈ {xk, . . . ,xl} which atacks d, t can only contain 0
or 1 atoms of the type y +→ xi. We must make sure that RP
computes all the possible combinations of attacks reinsta-
ting d. Consider that the RP expands node n, by choosing

and expanding first xk
0
� d, and then, in every child node

of n, it chooses and expands the next atom xk+1
0
� d. It

continues this way, until it finally expands atom xl
0
� d in

every leaf node below n. After all these expansions, there
is a subtree created below node n, whose every leaf (these
leaves are not necessarily closed), contains either 0 or 1
atoms of the type y +→ xi for every xi ∈ {xk, . . . ,xl}. In other

2. In other words, if we used argument labelling, we would say that
attributing the undec label to all the arguments of that cycle and of that
path, is part of a valid labelling.

words, the procedure has created a node for every possible
combination of attacks which can reinstate d. Therefore,
there exists (exactly one) leaf-node of that subtree, which
contains exactly the atoms of t which add attacks against
the arguments of {xk, . . . ,xl}. Moreover, every such node, if

it contains atom y +→ xi, then it also contains atom y
1
� xi

(because the expansion rules demand that the added attacks
must be ‘1’). By continuing to search the graph backwards,
we consider the indirect attackers (and defenders) of d. The
procedure continues, similarly to the expansion of atom

PRO(d), and uses the expansion rules for the y
1
� xi atoms.

Therefore, after a finite number of expansions, the proce-
dure eventually computes a node which contains exacly the
combination of atoms in t. The last thing we must verify,
is that the simplification and expansion rules producing ⊥,
cannot lead to the “loss of a target set”. This means that
if a node is simplified into ⊥, then we must prove that it
would have been impossible for a target set to appear in the
subtree below that node. We begin with the only expansion
rule which can add the ⊥ atom : If there is a node n which

has the atom x
0
� y, and there is no potential attacker of x

in the system, then the expansion rule for x
0
� y adds the ⊥

atom. Having the x
0
� y atom in node n, means that all the

target sets found in the subtree below node n, must lead to
a modified system where there exists an argument attacking
x. Since x has no potential attackers, this can never happen,
therefore a ⊥ leaf can be added, without any loss of target
sets. And now the simplification rules which may give a ⊥
leaf : If there is a node n containing an atom of the type

x
0
� y, or x 0→ y, or x

1
� y, or x 1→ y, as well as an atom with

the opposite number (0/1), then a simplification rule is fired
and adds the ⊥ atom. Let us see why we can never “lose” a
target set by this type of simplification. We consider the case

where we have a node with both x
0
� y and x

1
� y (the other

cases are similar). The existence of both x
0
� y and x

1
� y in

the same node n, means that every eventual target set found
in the subtree below node n, leads to a modified system in
which some admissibe extension : (a) attacks argument x

(because of atom x
0
� y), and (b) contains argument x (be-

cause of atom x
1
� y). Of course this is impossible, as every

admissible extension is conflict-free. Therefore, no target
set could be found in that subtree, thus we can add the atom
⊥, without any losing of target sets.

The fact that RP is complete for the goals S∃(d),
Comp∀(d) and ¬Comp∀(d) is arguably one of its main ad-
vantages. Here we note that for all the above goals where RP
is not correct (or not complete) there exist counter-examples,
which were omitted due to the lack of space. The sole excep-
tion is the completeness for goal ¬Pre f∀(d), which remains
open so far. We will just provide a counter-example showing

that the relation TPre f
∀ ⊆M PRO

d (completeness of RP for
goal Pre f∀(d)) does not hold in the general case.
Ex. 1, cont. In this example, as we have already seen, it
holds that {e −→ d,b +→ c,a +→ c} ∈TPre f

∀ , but {e −→ d,b +→
c,a +→ c} 6∈M PRO

d . Therefore,TPre f
∀ ⊆M PRO

d does not hold
in the general case.

5 Conclusion

The dynamics of argumentation systems is a central and
compelling notion to address when debates are to be conside-
red among users or agents. However, the task of computing
which move to make in order to reach a given argumen-
tative goal is difficult. In this paper we focus on complex
simultaneous moves involving addition and retraction of
attacks. We first proved a number of results related to the re-
lation which holds among sets of successful moves. Then we
described an approach based on a dedicated rewriting proce-
dure, and proposed rules inspired from the attack semantics
[10]. This approach has the advantage of being relatively
easy to design and interpret. This is an important feature if
we consider a context where such moves are suggested to a
user, since for instance traces can provide human-readable
explanations of the result of the procedure. We then pre-
sented a number of results regarding the correctness and
completeness of the procedure : regarding positive goals,
it is correct and complete for the credulous version of the
semantics discussed in this paper ; while it is complete for
the sceptical version of the complete semantics, regardless
of the type of goal considered.

In order to implement the rewriting rules, we used the
Maude programming language 3 [6]. Maude is a high-level,
based on rewriting logic, declarative language which can
model systems. In fact a program in Maude is a logical
theory, and a computation made by that program is a logical
deduction using the axioms of the theory. Given its decla-
rative nature, our program was compact and relatively easy
to understand. Also, the way the Maude system operates
and performs the rewritings corresponds to the way that the
RP procedure works. These advantages were essential for
choosing Maude for the implementation.

The efficiency of our procedure requires further inves-
tigation. Interestingly, the work of [1] already mentioned
in the introduction may prove useful in that respect : first
note that a distance minimal expansion must be ⊆-minimal.
Furthermore, as our expansions are more constrained (not
all attacks can be added or removed), a minimal value for
their problem remains a minimal value for ours. Taken toge-
ther, this means that their lower bounds hold in our setting.
Thus, if the value function of [1] (which provides means to
compute simply such value) gives a value k, then we know
for sure that no target set of size < k can be found. This

3. http ://maude.cs.uiuc.edu

could be exploited in further developments of the rewriting
procedure to make it more efficient.

Références

[1] Ringo Baumann. What does it take to enforce an ar-
gument? minimal change in abstract argumentation.
In Luc De Raedt, Christian Bessière, Didier Dubois,
Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and
Peter J. F. Lucas, editors, ECAI, volume 242 of Fron-
tiers in Artificial Intelligence and Applications, pages
127–132. IOS Press, 2012.

[2] Ringo Baumann and Gerhard Brewka. Expanding
argumentation frameworks : Enforcing and monotoni-
city results. In Pietro Baroni, Federico Cerutti, Mas-
similiano Giacomin, and Guillermo Ricardo Simari,
editors, COMMA, volume 216 of Frontiers in Artificial
Intelligence and Applications, pages 75–86. IOS Press,
2010.

[3] Guido Boella, Dov Gabbay, Alan Perotti, Leendert
van der Torre, and Serena Villata. Conditional label-
ling for abstract argumentation. In Proc. of TAFA’11,
2011.

[4] Martin Caminada. On the issue of reinstatement in
argumentation. In JELIA’06, pages 111–123, 2006.

[5] Claudette Cayrol, Florence Dupin de Saint-Cyr, and
Marie-Christine Lagasquie-Schiex. Change in abstract
argumentation frameworks : Adding an argument. J.
Artif. Intell. Res. (JAIR), 38 :49–84, 2010.

[6] Manuel Clavel, Fransisco Durán, Steven Eker, Pa-
trick Lincoln, Narciso Martí-Oliet, José Meseguer, and
Jose F. Quesada. The maude system. In Proceedings
of the 10th International Conference on Rewriting
Techniques and Applications, RtA ’99, pages 240–243,
London, UK, UK, 1999. Springer-Verlag.

[7] Phan Minh Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning,
logic programming and n-persons games. Artificial
Intelligence, 77 :321–357, 1995.

[8] Hadassa Jakobovits and Dirk Vermeir. Robust seman-
tics for argumentation frameworks. J. Log. Comput.,
9(2) :215–261, 1999.

[9] Sanjay Modgil and Martin Caminada. Proof theories
and algorithms for abstract argumentation frameworks.
In Guillermo Simari and Iyad Rahwan, editors, Ar-
gumentation in Artificial Intelligence, pages 105–129.
Springer US, 2009.

[10] Serena Villata, Guido Boella, and Leendert van der
Torre. Attack semantics for abstract argumentation.
In Toby Walsh, editor, IJCAI, pages 406–413. IJ-
CAI/AAAI, 2011.

