Compact preference representation for Boolean games

Elise Bonzon, Marie-Christine Lagasquie-Schiex, an@mherLang
IRIT, UPS, F-31062 Toulouse Cédex 9, France
{bonzon,lagasq,lan@irit.fr

Abstract

Boolean games, introduced by [15, 14], allow for expressimmpactly two-players zero-sum
static games with binary preferences: an agent's strateggists of a truth assignment of the
propositional variables she controls, and a player's pesiees is expressed by a plain proposi-
tional formula. These restrictions (two-players, zermsbinary preferences) strongly limit the
expressivity of the framework. While the first two can be Bashcompassed by defining the
agents’ preferences as an arbitraryple of propositional formulas, relaxing the last one reeed
Boolean games to be coupled with a propositional languageofopact preference representation.
In this paper, we consider generalized Boolean games whayerp’ preferences are expressed
within two of these languages: prioritized goals and prawslized CP-nets.

1 Introduction

The framework of Boolean games, introduced by [15, 14],vadldor expressing compactly two-
players zero-sum static games with binary preferencesgenta strategy consists of a truth assign-
ment of the propositional variables she controls, and agulsypreferences is expressed by a plain
propositional formula. Arguably, these three restricsi¢two-players, zero-sum, binary preferences)
strongly limit the expressivity of the framework. The firatat can be easily encompassed by defin-
ing the agents’ preferences as an arbitragyple of propositional formulas (see [3], who addresses
complexity issues for these binamyplayers Boolean games). In this paper we focus on the timed o
which needs considerably more work to be dealt with. Theistapoint of our paper is that whereas

a single propositional formula (goap)cannot express more than a binary preference relation on in-
terpretations (models dif are strictly better than models e#), expressing arbitrary (non-binary)
preferences within a propositional framework is possibilaking use of @ropositional language for
compact preference representatiofihe study of such languages has been a very active issue for a
few years in the Al community. Several classes of languagsesdbon propositional logic have been
proposed and studied (see for instance [16, 8] for an owsrefehese languages).

A first question has to be addressed before going furtheuldlagents’ preferences be expressed in
a numerical way or in an ordinal way? This depends a lot on ttiems we want to deal with. While
some notions (such as pure Nash equilibria and dominatatkgies) can be defined in a purely
ordinal setting, other ones (such as mixed strategy Nasliletp) need quantitative (real-valued)
preferences. Here we choose to stick to ordinal settingdgaee numerical preferences in Boolean
games for further work — see Section 5), and we successintdgrate Boolean games with two of
these languages: firgirioritized goals and then gropositionalized) CP-nets

In Section 2, some background is given and we defipéayers, non zero-sum) Boolean games with
binary preferences. Boolean games are then enriched wihtjmed goals in Section 3, and with
propositionalized CP-nets in Section 4. Section 5 addsasdated work and further issues.
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2 n-players Boolean games

LetV ={a,b,...} be afinite set of propositional variables dngdbe the propositional language built
fromV and the usual connectives as well as the Boolean constafitee) and L (falsg. Formulas
of Ly are denoted by, U, etc. Aliteral is a formula of the fornx or of the form—x, wherexe V. A
termis a consistent conjunction of literals.

2V is the set of the interpretations fur, with the usual meaning that an interpretatMrgives the
valuetrue to a variablex if x € M, and the valudalseotherwise. = denotes classical logical con-
sequence. LeX C V. 2% is the set ofX-interpretations A partial interpretation (for V) is an
X-interpretation for som& C V. Partial interpretations are denoted by listing all vaealfX, with

a  symbol when the variable is set to false: for instanc tet{a,b,d}, then theX-interpretation
M = {a,d} is denotedibd. If {V1,...,Vp} is a partition oV and{Mg,...,M} are partial interpreta-
tions, whereMi; € 2%, (My, ..., M) denotes the interpretatidy U... UM,

Given a set of propositional variabl¥s a Boolean game o¥ [15, 14] is a zero-sum game with
two players(1 and 2), where the actions available to each player coimsiadsigning a truth value
to each variable in a given subset\6f The utility functions of the two players are represented by
a propositional formul@ formed upon the variables M and calledBoolean formof the gamé. ¢
represents the goal of Player 1: her payoff is 1 whés satisfied, and 0 otherwise. Since the game
is zero-surf, the goal of Player 2 isi¢. This simple framework can be extended in a straightforward
way to non zero-sum-players games (see [3], especially for complexity issuesgh player has a
goald; (a formula ofLy). Her payoff is 1 whenp; is satisfied, and 0 otherwise.

Definition 1 A n-players Boolean games a 4-uple(A,V, 1, ®), where A= {1,2,...,n} is a set of
players, V is a set of propositional variables A — V is a control assignment function arml =
(§1,...,9n) is a collection of formulas of\

The control assignment functiamassociates every player with the variables that she centFair
the sake of notation, the set of all the variables contrdiledis writtenTg instead ofrt(i). We require
that each variable be controlled by one and only one agent{im,...,T} forms a partition of
V. The original definition by [15, 14] is a special case of thisrengeneral framework, obtained by
lettingn =2 andd, = —¢;.

Definition 2 Let G= (AV, T, ®). A strategy s for a player i is amg-interpretation. Astrategy
profile S for G is an n-uple & (s1,%,...,S) where for all i, $ € 2™,

In other words, a strategy fois a truth assignment for all the variablesontrols. Remark that since
{m,...,m} forms a partition ofV, a strategy profil&S is an interpretation fo¥, i.e.,Sc 2¥. Q
denotes the set of all strategy profiles €r

The following notations are usual in game theory. Get (A,V, T, ®), S=(s1,...,%), S =(S},..., %)
be two strategy profiles f@. s_; denotes the projection &onA\ {i}: s.i=(S1,%,---,S-1,S+1,---,5)-
Similarly, Ti_; denotes the set of the variables controlled by all playecsgtx: ;i =V \ 15. Finally,
(s_i,§) denotes the strategy profile obtained fr8imy replacings with s without changing the other

strategies(s_i,§) = (S1,%,---,5-1,5,S+1;---,5n).-

Example 1 We consider here a Boolean n-players version of the wellsknprisoners’ dilemma.

n prisoners (denoted by ...,n) are kept in separate cells. The same proposal is made to efac
them: “Either you cover your accomplices;(C=1,...,n) or you denounce themC;, i =1,...,n).
Denouncing makes you freed while your partners will be septison (except those who denounced
you as well; these ones will be freed as well). But if none of gloooses to denounce, everyone
will be freed® This can be expressed much compactly by the following yepBoolean game
G=(AV,mo):

1The original definition in [15, 14] is inductive: a Booleannge consists of a finite dynamic game. We use here the
equivalent, simpler definition of [11], who showed that ttée-like construction is unnecessary.

2Stricto sensu, the obtained games are not zero-sum, butaodssim (the sum of utilities being 1) — the difference is
irrelevant and we use the terminology “zero-sum” neveese|

3The case where everyone will be freed if everyone denouheasthers is a side effect of our simplication of the prissher
dilemma.



strategy of3: C3 strategy of3: C3
2 — 2 —
1 C2 C2 1 C2 CZ
Cy (1,11) | (0,1,0) Cy (0,0.1) | (0,1,1)
C (1,0,0) | (1,1,0) C (1,0,1) | (1,1,2)

The explicit representation of this game in normal form wlowted exponential space, which illus-
trates the succinctness power of a representation by Boajeanes.

Each player i has two possible strategies; s {Ci}, s, = {Ci}. There are 8 strategy profiles for
G. Consider $= (C1,C,C3) and $ = (C3,C,,Cs). Under S, players 1, 2 and 3 have their goal
satisfied, while Ssatisfies only Player 1's goal.

This choice of binary utilities (where agents can only esprplain satisfaction or plain dissatis-
faction, with no intermediate levels) is a real loss of galisr. We would like now to allow for
associating an arbitrary preference relatiorCbwith each player.

A preference relatiorr is a reflexive and transitive binary relation (not nece$gsaomplete) orQ.

The strict preference associated with- is defined as usual by = S ifand only if §; »=; S and

not (S =i Sy).

A generalized Boolean game will be a 4-u@e= (A,V, T, @), whereA={1,...,n},V andmare as
before andd = (®1,...,P,), where for each, ®; is a compact representation (in some preference
representation language) of the preference relatioof agent on Q. We letPrefsc = (>1,...,=n).

A pure strategy Nash equilibrium (PNE) is a strategy profilehsthat each player’s strategy is an
optimum response to the other players’ strategies. How8WNEs are classically defined for games
where preferences are complete, which is not necessagilgabe here. Therefore we have to define
two notions of PNES, a weak one and a strong one (they are equiivalthe notion of maximal and
maximum equilibria in [14]).

Definition 3 Let G= (A,V, T, ®) and Pre = (>1,...,=n) the collection of preference relations on
Q induced from®. Let S= (sy,...,5) € Q.

S is aweak PNE(WPNE) for G iffvi € {1,...,n}, Vs € 2™ (§,5.i) #i (S,S-i)-

Sis astrong PNE (SPNE) for G iffvi € {1,....n}, Vs € 2™ (5,s.i) =i (S,5.i).

NEstrong(G) and NEyea G) denote respectively the set of strong and weak PNEs for G.

Clearly, any SPNE is a WPNE, that I$Estrong(G) € NEyeakG)).

3 Boolean games and prioritized goals

The preferences of a single player in this framework are esq&d by a set of goals ordered by a
priority relation:

Definition 4 A prioritized goal baseZX is a collection(Z'; ...; =P) of sets of propositional formulas.
! represents the set of goals of priority j, with the convemtieat the smaller j, the more prioritary
the formulas irx!.

In this context, several criteria can be used in order to geae preference relation from . We
recall below the three most common ones. In the followin§,# an interpretation of 2then we let

Sat(Szl) = {¢p €2} [ SE¢}.

Definition 5 LetX = (31;...;3P), and let S and ‘e two interpretations a2" .

Discrimin preference relation [7, 13, 2] S=%s¢S iff 3k € {1,..., p} such that:
SatS z¥) > Sat(S,3*) andvj < k, SatS 3)) = Sat(S, 2/)

Leximin preference relation [10, 2, 17] S~'®*S iff 3k € {1,..., p} such that:
|Sat(S,3¥)| > [SatS,z¥)| andV| < k, |Sat(S,Z})| = |SatS,31)|.



Best-out preference relation[10, 2] Let a(s) = min{ j such that3$ € =1, S}~ ¢}, with the conven-
tion min(@) = +o0. Then S-P°S'iff a(S) > a(S).

Note that-P° and>'e* are complete preference relations, whilésCis generally a partial preference
relation. Moreover, the following implications hold (seég)f

(S-"°8) = (S5 8) = (S-S (1) (S=9'S) = (S 8) = (S=°S) (2)

Definition 6 APG-Boolean gamés a 4-uple G= (A,V, 1, ®), where® = (23,...,%) is a collection
of prioritized goals bases. We dende= (3},...,3P), that is, =/ denotes the stratum j &, or
equivalently, the (multi)set of goals of priority j for plewi.

Note that the assumption that the number of priority levelthe same) for all players does not
imply a loss of generality, as adding empty strata to a gl base does not change the induced
preference relation.

We make use of the following notations:

e if Gis a PG-boolean game and: {disc lex bo} thenPrefg = (~5,...,>).

o NE;..{G) andNEg,ng(G) denote respectively the sets of all weak and strong NasHilegii
for Prefg.

Example 2 Let G= (AV,,®) with A={1,2},V ={a,b,c}, m ={a,c}, o = {b}, Z1 = (g;(—b,c)),

%2 = ((—b, ~¢); -a).

For each of the three criteria € {lex disc bo}, we draw the corresponding preference relations
Pref¢ = (>5,...,>=5). The arrows are oriented from more preferred to less pref@strategy profiles
(S is preferred to $is denoted by 5— $). To make the figures clearer, we do not draw edges that
are obtained from others by transitivity. The dotted arrdndicate the links taken into account in
order to compute Nash equilibria.

P1 Disc Lex BO
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aBg._—_;abc<—>a. Hch;f;abe—»abt




o Discrimin and Leximin: NEJSS/(G) = NEJ(G) = {abc}
e Best Out: NEB2,(G) = NES,,4(G) = {abc abc}

Lemmal Let>= (>1,...,=pn) and='= (=/,...,>=) be two collections of preference relations,
and let S be a strategy profile.

1. If = is contained in=" and if S is a SPNE for, then S is a SPNE for'.
2. If = is contained in~’ and if S is a WPNE fox-’/, then S is a WPNE for.

This lemma enables us to draw the following:

Proposition 1 Let G= (A,V, T, ®) be aPG-booleangame and Pfef (-§,...,=5). NEg'rSOCng( ) C
NEstrong( ) C NEstrong( and N IXG C NEwlsck(G C NEweak(G

We may now wonder whether a PG-boolean game caappeoximatedoy focusing on the firsk
strata of each player. Here, the aim is double: to obtain @lsin{ffor PNE computation) game and
to increase the possibility to find a significant PNE takintg iaccount the most prioritized strata.

Definition 7 Let G= (A= {1,...,n},V, T, ®) be a PG-boolean game, andk{1,...,p}. G K =
(A,V, T, ®!1~K)) denotes the keduced game ofG in which all players’ goals in G are reduced in

their k first strata:®1—K = (zIK  5[-K)

Lemma 2 Let G be a PG-boolean game. Then for every Rk, ce {discrlex bo}, and every i A,
we have: & =K g = S»7 ¢li-k-1 g and S;él Gl1-K g :>S>‘| cllok-1 g

Proposition 2 Let G be a PG-boolean game andddiscrlex bo}. If S is a SPNE (resp. WPNE)
for Prefé[lﬂk] of the game &X, then S is a SPNE (resp. WPNE) for ngj“(fl)] of the game
Gli—(k-1)]

This proposition leads in an obvious way thatGft! for PrefC does not have any SPNE (resp.
WPNE), then the gamé for Pref§ does not have any SPN% (resp. WPNE) whatever the criteria
used. The converse is false, as shown in the following exampl

Example 3 Let G with A= {1,2},V ={a, b} m={a}, p={b},Z1=(a—bb—a),=(a
—b; =b). We check that Nf2_(G) = NEstmng( ) = @. Let us now focus on thereduced game

Gl = (A V,L®Y) of G. We haval! = (a— b), 51 = (a < —b). We check that for any criterion
C, NE&ealXG[l]) = NEgtrong(G[l]) = {ﬁb}-

This example shows us that Proposition 2 can be used to findghielevel of approximation for a
PG-game. For instance, we may want to focus on the laigesth thatG' ¥ has a SPNE, and
similarly for WPNEs.

4 Boolean games and CP-nets

A problem with prioritized goals is the difficulty for the agteto express his preferences (from a
cognitive or linguistic point of view). In this Section we regider another very popular language
for compact preference representation on combinatoriadadios, namely CP-nets. This graphical
model exploits conditional preferential independenceriheoto structure decision maker’s prefer-
ences under aeteris paribusassumption. They were introduced in [6] and extensiveldistliin
many subsequent papers, especially [4, 5].

Although CP-nets generally consider variables with aabjtfinite domains, for the sake of simplicity
(and homogeneity with the rest of the paper) here we coneidgr‘propositionalized” CP-nets, that
is, CP-nets with binary variables (note that this is not & leess of generality, as all our definitions
and results can be easily lifted to the more general casermsbirary variables).



Definition 8 LetV be a set of propositional variables afid,Y,Z} a partition of V. X iscondition-
ally preferentially independent of Y given Z if and only i¥/z € 22, Vx1,x2 € 2X andVyy,y, € 2¥
we have : xy12 > Xoy1Z iff X1y2z = Xoyoz

For each variablX, the agent specifies a setpHrent variable$a(X) that can affect her preferences
over the values oK. Formally,X andV \ ({X} UPa(X)) are conditionally preferentially independent
givenPa(X). This information is used to create the CP-net:

Definition 9 LetV be a set of variablesy = (g, 7 ) isaCP-netonV, whereg is a directed graph
over V, and7 is a set of conditional preference tables CEX]) for each X € V. Each CPTX;)

associates a total order , with each instantiation g 2P2%)).

Definition 10 A CP-boolean gameis a 4-uple G= (A,V, 1, ®), where A= {1,...,n} is a set of
players, V= {Xq,...,Xp} is a set of variables an® = (A1, ..., An). Each4g is a CP-netonV.

Example 4 G = (A\V, T, ®) where A= {1,2} V = {a,b,c} m = {a,b}, ™o = {c}, A1 and 4, are
represented on the following figure.

= {a|b~b
b-b QZ alb-b
aAb|c>tC
aAb|tTc-c |b|c~T
< anb|tTt-c @’ b|T~c
aAb|c-cT 1 he
N1 =1 N> =2

Using these partial pre-orders, Nash equilibria are: N&ng= NEyeak= {abc}.

The first property concerns a very interesting case wherexiséence and the unicity of PNE hold:

Proposition 3 Let G= (A,V, ,®) be a CP-boolean game such the graphsre all identical {i, j,
Gi = gj) and acyclic. Then G has one and only one strong PNE.

The proof of this result makes use of tfward sweepprocedure [6, 4] for outcome optimiza-
tion (this procedure consists in instantiating variabt#kfving an order compatible with the graph,
choosing for each variable its preferred value given thaeval the parents).

The point is that in general the graphsfori € {1,...,n} may not be identical. However, they may
bemadeidentical, once remarked that a CP-gt 7 ) can be expressed as a CP-qgt, 7') as soon
as the set of edges ip is contained in the set of edgesdn. We may then take as common graph
(to all players) the graph whose set of edges isuthien of the set of edges df1,...,Gn. The only
problem is that the resulting graph may not be acyclic, inchltiase Proposition 3 is not applicable.
Formally:

Definition 11 Let G be a CP-boolean game. For each playegiijs denoted byV, Arc;), with Arg
being the set of edges of i's CP-net. Tureon graph of G is defined by; = (V,ArciU... UArcy).
Thenormalized game equivalent toG, denoted by G= {A V, 1, ®*}, is the game obtained from



G by rewriting, where the graph of each player's CP-net hasrbeeplaced by the graph of the
union of CP-nets of G and the CPT of each player's CP-net ardified in order to fit with the new
graph, keeping the same preferences (formalw,iyiﬂenotes the relation associated with G for
PI;;\yer i;s CPy—net in G, then we have for'Gvx € V such that x is a parent of y in*Gbut not in G,
st it et

The following lemma is straightforward:

Lemma 3 Let G be a CP-boolean game and @&s equivalent normalized game. Theri énd G
define the same preference relations on strategy profiles.

Therefore, ifG* is acyclic, then Proposition 3 applies, therefGiehas one and only one SPNE. Now,
sinceG andG* define the same pre-orders Onthe latter is also the only SPNE Gf (on the other
hand, if the graph o is cyclic, neither the unicity nor the existence of SPNEsuargnted).

Proposition 4 Let G= (A,V, 1, ®) be a CP-boolean game. If the union graph of G is acyclic then G
has one and only one strong PNE.

Example 4, continued: Players’ preferences in the normalized ganie(€quivalent to G) are rep-
resented by the CP-nets given on Figure 1. The union graphyislia, therefore Proposition 3 can
be applied and G has one and only one strong PNE (abc).

There is a last condition (less interesting in practice beedt is quite strong) guaranteeing the
existence and the unicity of a SPNE. This condition statasahy variable controlled by an agent is
preferentially independent on variables controlled byeotigents (in other words, the parents of any
variable controlled by a playéare also controlled by. In this case, each agent is able to instantiate
her variables in an unambiguously optimal way, accordirfgetopreferences.

Proposition 5 Let G= (A,V, T, ®) be a CP-boolean game such that for every playerA and for
every ve Tg, we have P&) € 15. Then G has one and only one SPNE.

alb-b alb=b

a>a c — a>a C —
a/\bOc>-C ajb-b aAb|c>T ajb-b

A1 aAb|t-c A2 aAb|T-c
anb|ct>c anb|c>-tT
aAb|c~-tT aAb|cTc-c

Figure 1: CP-net of Players 1 and 2’s preferences3or

5 Related work and conclusion

Apart of previous work on Boolean games [15, 14, 11], relatedk includes a few papers where
games are expressed within ordinal preferences withindeleloped Al frameworks.

In [12], a game in normal form is mapped intdagic program with ordered disjunctio(LPOD)
where each player owns a set of clauses that encode the 'plpsafierence over her possible actions
given every possible strategy profile of other players. #tiswn that PNE correspond exactly to the
most preferred answer sets. The given translation suffers & limitation, namely its size: the size
of the LPOD is the same as that of the normal form of the ganmeéstach player needs a number
of clauses equal to the number of possible other stratedjlggdor other players). However, this
limitation is due to the way LPODs are induced from games antdidcbe overwhelmed by allowing
to express the players’ preferences by any LPODs (in the sairieas our Section 3).



In [9], a strategic game is represented usiradaice logic programwhere a set of rules express that
a player will select a “best response” given the other plgiyahoices. Then, for every strategic game,
there exists a choice logic program such that the set ofestablels of the program coincides with
the set of Nash equilibria of the game. This property pravialsystematic method to compute Nash
equilibria for finite strategic games.

In [1], CP-nets are viewed as games in normal form and vicsaveEach playerrcorresponds to a
variableX; of the CP-net, whose domall(X;) is the set of available actions to the player. Prefer-
ences over a player’s actions given the other players’egfias are then expressed in a conditional
preference table. The CP-net expression of the game canismgsdoe more compact than its normal
form explicit representation, provided that some playpreferences depend only on the actions of
a subset of other players. A first important difference witin samework is that we allow players
to control an arbitrary set of variables, and thus we do netwplayers as variables; the only way
of expressing in a CP-net that a player controls severahbbas would consist in introducing a new
variable whose domain would be the set of all combinatiorediies for these variables—and the size
of the CP-net would then be exponential in the number of éeg A second important difference,
which holds as well for the comparison with [12] and [9], iatiplayers can express arbitrary prefer-
ences, including extreme cases where the satisfactionlafans goal may depend only of variables
controlled by other players. A last (less technical and nfiouadational) difference with both lines
of work, which actually explains the first two above, is tha @o notmapnormal form games into
anything but weexpresggames using a logical language.

Further work includes the investigation of other notionsc{sas dominated strategies) within the
two frameworks proposed in this paper, as well as the integraf other preference representation
languages within Boolean games.
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