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This  document  consists  in  the  3rd part  of  the  « Reinforcement  Learning »  chapter  of  the 
« Agent oriented learning » teaching unit of the Master MI computer course. It is based on 
part II chapters 5 and 6 of (Sutton & Barto 1998). The figures contained in this document are 
directly  taken from the  html version of (Sutton & Barto 1998). It concerns Monte-Carlo 
(MC) methods, temporal difference (TD) methods, action value methods such as Q-learning 
and Sarsa. The exemple of the grid world illustrates these methods.

Monte-Carlo

Introduction

The term Monte-Carlo (MC) consists in performing random simulations starting from a state 
we want to evaluate and to compute an empirical mean of the results. This method is suited 
when the transition probability function  Pa

ss’   and the return function Ra
ss’  of the MDP  are 

unknown. It is simple. The episodes must end. An episode is a simulation. The policy  π is 
given. We look at evaluating the states with Vπ, then we look at evaluating Qπ, . finally we 
look at how to improve a policy with MC control. 

Monte-Carlo Evaluation of a policy

π is given and we look for an approximation of Vπ. We store V(s) for every states. At the end 
of an episode, we update the mean value of the states encountered. Pseudo-code is given by 
figure 19.

Figure 19: MC evaluation of Vπ.



A back-up diagram shows the state to be updated and the states and transitions contributing to 
the update. Figure 20 gives the back-up diagram of the MC method. We start in a given state 
and we perform a random simulation by using the policy to evaluate. The simulation ends up 
in a terminal state. The cumulated reward received during the simulation is used to update the 
starting state. 

Figure 20: back-up diagram of MC estimation of Vπ.

In this method, the computation of the value of a state does not depend of the computation of 
the value of a neighbouring state. To this extent, (Sutton & Barto) says the MC method does 
not « bootstrap ». The cost of MC evaluation depends on the length of episodes. We may 
focus  on a  part  of  the state  space only.  NB:  if  the  policy  and the  environment  are  both 
deterministic,  some  states  can  remain  unvisited.  Therefore  it  important  to  introduce 
randmoness with the policy in such case.

Action value Monte Carlo estimation

It also possible to estimate Qπ(s, a) for each state s and action a in a similar way. 

Monte Carlo control

MC control means alternating policy improvement and policy evaluation, as shown by figure 
21.  

Figure 21: MC control.



Figure 22 shows an example of pseudo-code for MC control. Exploring starts mean that the 
first action is chosen randomly for a better exploration.

Figure 22: pseudo-code of MC control.



Monte-Carlo on the Grid World example:

Output of the GridWorld example for the MC control:

Monte Carlo Control: debut:
  <^>v    <^>v    <^>v    <^>v    <^>v
  <^>v    <^>v    <^>v    <^>v    <^>v
  <^>v    <^>v    <^>v    <^>v    <^>v
  <^>v    <^>v    <^>v    <^>v    <^>v
  <^>v    <^>v    <^>v    <^>v    <^>v
Monte Carlo Control: iteration 1:
  6.14   9.86   5.81   6.06   3.89
  3.80   4.33   3.41   3.10   2.58
  2.20   2.19   1.91   1.73   1.61
  1.35   1.28   1.16   1.08   1.06
  1.04   0.95   0.89   0.84   0.85
    >     <^>v    <       <^>v    <
   ^       ^       ^       ^       ^
   ^       ^       ^       ^       ^
   ^       ^       ^       ^       ^
   ^       ^       ^      <^       ^
Monte Carlo Control: iteration 2:
 19.66  21.87  19.66  16.51  14.88
 17.72  19.66  17.72  14.88  13.37
 15.96  17.72  15.96  13.37  12.01
 14.36  15.96  14.36  12.01  10.82
 12.87  14.36  12.87  11.20   9.73
    >     <^>v    <       <^>v    <
   ^>      ^      <^      <       <^
   ^>      ^      <^      <       <^
   ^>      ^      <^      <       <^
   ^>      ^      <^      <       <
Monte Carlo Control: iteration 3:
 19.66  21.87  19.66  17.37  15.63
 17.72  19.66  17.72  15.96  14.22
 15.96  17.72  15.96  14.36  12.82
 14.36  15.96  14.36  12.87  11.55
 12.87  14.36  12.87  11.57  10.43
    >     <^>v    <       <^>v    <
   ^>      ^      <^      <       <
   ^>      ^      <^      <^      <^
   ^>      ^      <^      <^      <^
   ^>      ^      <^      <^      <^
Monte Carlo Control: iteration 4:
 19.66  21.87  19.66  17.37  15.63
 17.72  19.66  17.72  15.96  14.36
 15.96  17.72  15.96  14.36  12.87
 14.36  15.96  14.36  12.87  11.57
 12.87  14.36  12.87  11.57  10.43
    >     <^>v    <       <^>v    <
   ^>      ^      <^      <       <
   ^>      ^      <^      <^      <^
   ^>      ^      <^      <^      <^
   ^>      ^      <^      <^      <^
Monte Carlo Control, fin.



TD-learning

Introduction

Temporal difference (TD) method is central in RL. TD learns through the agent experience, 
like MC. Like MC, TD is suited when the transition probability function Pa

ss’  and the return 
function Ra

ss’  of the MDP  are unknown. TD updates the value of states in function of the 
values of the neighbouring states, like in DP. In this meaning, TD bootstraps.

TD evaluation
For MC evaluation, the update rule can be written as:

V(st) <- V(st) +  α [ Rt - V(st)] (30a)

TD uses this update rule :

V(st) <- V(st) +  α [ rt+1 + γ  V(st+1) - V(st)] (30b)

The target of MC was Rt. Target of TD is rt+1 + γ  V(st+1). Equations 13 and 15 can be written :

Vπ(s) = Eπ { rt+1 + γ  Vπ(st+1)  | s = st  } (31)

Figure 23 gives the pseudo-code of TD(0)1.

Figure 23: TD(0) pour estimer Vπ.

Figure 24 gives the back-up diagram of TD(0). The update of state s only depends on the 
unique actual following state. Notice the difference with DP in which the update rule includes 
all the neighbouring states. 

Figure 24: back-up diagram of TD(0).

1 TD has a parameter λ. TD(λ) is not the scope of this teachning unit. λ=0 corresponds to the simplest case.



TD on the Grid World example:

Output of the GridWorld example:

Temporal Difference Control: debut:
  <^>v    <^>v    <^>v    <^>v    <^>v
  <^>v    <^>v    <^>v    <^>v    <^>v
  <^>v    <^>v    <^>v    <^>v    <^>v
  <^>v    <^>v    <^>v    <^>v    <^>v
  <^>v    <^>v    <^>v    <^>v    <^>v
Temporal Difference Control: iteration 1:
  7.08  10.94   6.25   6.75   4.14
  4.01   4.64   3.64   3.35   2.83
  2.46   2.46   2.08   1.94   1.78
  1.47   1.42   1.32   1.23   1.21
  1.14   1.03   0.99   0.96   0.97
    >     <^>v    <       <^>v    <
   ^       ^       ^       ^       ^
   ^       ^       ^       ^       ^
   ^       ^       ^       ^       ^
   ^       ^       ^       ^       ^
Temporal Difference Control: iteration 2:
 21.98  24.42  21.98  18.45  16.60
 19.78  21.98  19.78  16.60  14.94
 17.80  19.78  17.80  14.94  13.45
 16.02  17.80  16.02  13.45  12.10
 14.42  16.02  14.42  12.10  10.89
    >     <^>v    <       <^>v    <
   ^>      ^      <^      <       <^
   ^>      ^      <^      <       <^
   ^>      ^      <^      <       <^
   ^>      ^      <^      <       <^
Temporal Difference Control: iteration 3:
 21.98  24.42  21.98  19.42  17.48
 19.78  21.98  19.78  17.80  15.87
 17.80  19.78  17.80  16.02  14.35
 16.02  17.80  16.02  14.42  12.95
 14.42  16.02  14.42  12.98  11.67
    >     <^>v    <       <^>v    <
   ^>      ^      <^      <       <
   ^>      ^      <^      <^      <^
   ^>      ^      <^      <^      <^
   ^>      ^      <^      <^      <^
Temporal Difference Control: iteration 4:
 21.98  24.42  21.98  19.42  17.48
 19.78  21.98  19.78  17.80  16.02
 17.80  19.78  17.80  16.02  14.42
 16.02  17.80  16.02  14.42  12.98
 14.42  16.02  14.42  12.98  11.68
    >     <^>v    <       <^>v    <
   ^>      ^      <^      <       <
   ^>      ^      <^      <^      <^
   ^>      ^      <^      <^      <^
   ^>      ^      <^      <^      <^
Temporal Difference Control, fin.



Sarsa

Sarsa  (StateActionRewardStateAction)  is  a  control  method  that  improve  a  policy  and  its 
action value function. Figure (32) starts on state st with action at , then it uses the reward rt+1, 
next state st+1 and its action at+1. 

Figure 32

Sarsa updates Q with :

Q(st, at) <- Q(st, at)  +  α [ rt+1 + γ  Q(st+1, at+1)  - Q(st, at)] (32)

Figure (33) gives pseudo-code of Sarsa.

Figure 33

The policy is implicitly represented by the Q values. Action a' corresponds to the Q value 
used for updating. To this extent, Sarsa is said to be an « online » method. Action choice is ε-
greedy. It is possible to initialize Q values with high values to implicitly explore states less 
explored. 



Q-learning

Q-learning (Watkins 1989) is similar to Sarsa. The difference with sarsa lies in the update 
rule:

Q(st, at) <- Q(st, at)  +  α [ rt+1 + γ  maxa Q(st+1, a)  - Q(st, at)] (33)

Figure (36) gives the pseudo-code of Q-learning and figure (37) gives the back-up diagram.

Figure 36: Q-learning

Figure 37: Back-up diagram of Q-Learning.

QL is also said to be an « on-line » method. However the actual action a' is not necessarily the 
optimale action that corresponds to the update. To this extent,  QL is a slightly « offline » 
method.

Action choice is ε-greedy as for Sarsa. 



Q Learning on the Grid World example:

Q Learning: debut:
20 20 22 20 |25 25 25 25 |22 20 20 20 |21 22 22 21 |20 18 18 18 |
18 21 20 18 |20 22 20 20 |20 20 18 18 |18 20 18 18 |18 18 16 16 |
17 19 18 17 |18 20 18 18 |18 18 16 16 |17 18 16 16 |16 17 15 15 |
15 17 16 15 |16 18 16 16 |17 17 15 15 |16 16 14 14 |15 16 14 14 |
14 16 15 14 |14 16 14 14 |15 16 14 14 |14 15 13 13 |14 14 13 12 |
Policy: 
    >     <^>v    <         >     <     
   ^       ^      <^       ^      <^    
   ^       ^       ^       ^       ^    
   ^       ^       ^       ^       ^    
   ^       ^       ^       ^       ^    
delta = 12.544 improve = 96 nb_pas_total = 10000
19 19 22 19 |24 24 24 24 |22 19 19 19 |20 20 20 20 |18 16 16 16 |
17 20 20 17 |19 22 19 19 |20 20 17 17 |18 18 16 16 |16 16 14 14 |
16 18 18 15 |17 20 17 16 |18 18 15 15 |16 16 14 14 |15 15 13 13 |
14 16 16 14 |15 18 15 15 |16 16 14 14 |14 15 13 13 |13 14 12 12 |
13 15 14 13 |14 16 14 14 |14 14 12 12 |13 13 12 11 |12 13 11 11 |
Policy: 
    >     <^>v    <       <^>v    <     
   ^>      ^      <^      <^      <^    
   ^>      ^      <^      <^       ^    
   ^>      ^      <^       ^       ^    
   ^       ^      <^       ^       ^    
delta = 2.286 improve = 20 nb_pas_total = 20000
19 19 22 18 |24 24 24 24 |22 19 18 18 |19 19 19 19 |17 15 15 15 |
17 20 20 17 |18 22 18 18 |20 20 17 16 |18 17 15 15 |16 16 14 14 |
15 18 18 15 |16 20 17 16 |18 18 15 15 |16 16 13 13 |14 14 12 12 |
14 16 16 13 |15 18 15 15 |16 16 13 13 |14 14 12 12 |13 13 11 11 |
12 14 14 12 |13 16 13 14 |14 14 12 12 |13 13 11 11 |12 12 10 10 |
Policy: 
    >     <^>v    <       <^>v    <     
   ^>      ^      <^      <       <     
   ^>      ^      <^      <^      <^    
   ^>      ^      <^      <^      <^    
   ^>      ^      <^      <^      <^    
delta = 1.058 improve = 16 nb_pas_total = 30000
19 19 22 18 |24 24 24 24 |22 19 18 18 |19 19 19 19 |17 15 15 15 |
17 20 20 16 |18 22 18 18 |20 20 16 16 |18 17 15 15 |16 16 14 13 |
15 18 18 15 |16 20 16 16 |18 18 15 14 |16 16 13 13 |14 14 12 12 |
13 16 16 13 |15 18 15 15 |16 16 13 13 |14 14 12 12 |13 13 11 11 |
12 14 14 12 |13 16 13 13 |14 14 12 12 |13 13 11 11 |12 12 10 10 |
Policy: 
    >     <^>v    <       <^>v    <     
   ^>      ^      <^      <       <     
   ^>      ^      <^      <^      <^    
   ^>      ^      <^      <^      <^    
   ^>      ^      <^      <^      <^    
delta = 0.747 improve = 0 nb_pas_total = 40000
Q Learning: fin.



Rmax

Introduction

Rmax is a RL algorithm that builds and uses an environment model [Brafman & Tennenholtz 
2002]. « Environment model » means the reward function R and the transition function P. The 
model  is  not  correct  at  the  beginning  but  it  is  refined  as  long as  Rmax runs.  When the 
environment model is updated, Rmax computes the optimal value fonction V* for this model 
with the value iteration algorithm. The environment model is initialized optimistically with 
Rmax, the maximal reward. 

Rmax  solves  the  exploitation  –  exploration  dilemma.  Because  the  initial  rewards  are 
optimistic, the optimal policy computed by value iteration leads the agent to explore the less 
explored  states.  Futhermore,  since  value  iteration  computes  an  optimal  policy  given  the 
rewards,  it  is possible to say that  Rmax optimally  explores.  Of course,  the exploration is 
implicit. 

Rmax can be applied to stochastic games (multi-agent MDP) and not only to single-agent 
MDP.

Algorithm

Init:
Input: policy length = T
Building the model M' made up with N states  G1,  G2, ...,  GN, plus one fictitious state G0. 
Each state owns: 

state value V.
joint action matrix with, for each cell:

the reward initialized with Rmax.
List of next states with, for each next state:

number of times the transition has been performed. 
(list initialized with G0, with one actual transition performed).
Boolean variable «known» or not, initialized with false.
Joint action value Q.   

Execution
Repeat

(C) Compute the length-T policy P starting on current state, 
Execute P during T timesteps.
After each joint action and transition to a next state, 

update the reward
increment the count on this transition.
If the count > threshold then 

joint action is « known »
go to (C)

[Brafman & Tennenholtz 2002] proves that Rmax converges to the optimal policy.



Conclusion

This section sums up the properties of the RL methods and their ancestors. The methods are 
direct Bellmann equations solving, Dynamic programming (DP), Monte-Carlo (MC), Rmax, 
Temporal Differences (TD), QLearning (QL), Sarsa.

METHOD: Direct 
solving 

DP Rmax MC TD QL
Sarsa

iterative ? direct iterative iterative iterative iterative iterative

State visit ordered ordered Exper. Exper. Exper. Exper.

Update frequ. step step step episode step step

Envir. Mod ? yes yes built No No No

reward ? r r r R r r

function: V and/or Q V and/or Q V or Q V and/or  Q V Q

Kind of prob. small medium big Very big Very big Very big

off/on line? «off» «on» «off» «on»/«off» «on»

Figure 41: Summary of the properties of the methods.

Conversely  to  direct  Bellman  equations  solving,  DP is  an  iterative  method with  « policy 
evaluation », « policy improvement », « policy iteration » and « value iteration ». Rmax, MC, 
TD and QL are iterative as well. Conversely to DP that sweeps space states in a given order, 
actual experiment conducts the order of updating states in RL methods. MC updates with a 
cumulated reward while the other method « bootstrap » i.e. they update the current state with 
the next states and the present reward. Direct solving, DP, Rmax and MC uses V or Q. TD 
uses V. QL and Sarsa use Q. 

The interest of each method goes with the size of the problem to solve.: direct solving work 
for  « small »  problems.  DP  work  for  medium  size  problems.  Rmax  needs  to  have  the 
environment model in memory. TD, QL or Sarsa work for « very big » problems. 
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