
Apprentissage par renforcement (3)

Bruno Bouzy
1 october 2013

This document consists in the 3rd part of the « Reinforcement Learning » chapter of the
« Agent oriented learning » teaching unit of the Master MI computer course. It is based on
part II chapters 5 and 6 of (Sutton & Barto 1998). The figures contained in this document are
directly taken from the html version of (Sutton & Barto 1998). It concerns Monte-Carlo
(MC) methods, temporal difference (TD) methods, action value methods such as Q-learning
and Sarsa. The exemple of the grid world illustrates these methods.

Monte-Carlo

Introduction

The term Monte-Carlo (MC) consists in performing random simulations starting from a state
we want to evaluate and to compute an empirical mean of the results. This method is suited
when the transition probability function Pa

ss’ and the return function Ra
ss’ of the MDP are

unknown. It is simple. The episodes must end. An episode is a simulation. The policy π is
given. We look at evaluating the states with Vπ, then we look at evaluating Qπ, . finally we
look at how to improve a policy with MC control.

Monte-Carlo Evaluation of a policy

π is given and we look for an approximation of Vπ. We store V(s) for every states. At the end
of an episode, we update the mean value of the states encountered. Pseudo-code is given by
figure 19.

Figure 19: MC evaluation of Vπ.

A back-up diagram shows the state to be updated and the states and transitions contributing to
the update. Figure 20 gives the back-up diagram of the MC method. We start in a given state
and we perform a random simulation by using the policy to evaluate. The simulation ends up
in a terminal state. The cumulated reward received during the simulation is used to update the
starting state.

Figure 20: back-up diagram of MC estimation of Vπ.

In this method, the computation of the value of a state does not depend of the computation of
the value of a neighbouring state. To this extent, (Sutton & Barto) says the MC method does
not « bootstrap ». The cost of MC evaluation depends on the length of episodes. We may
focus on a part of the state space only. NB: if the policy and the environment are both
deterministic, some states can remain unvisited. Therefore it important to introduce
randmoness with the policy in such case.

Action value Monte Carlo estimation

It also possible to estimate Qπ(s, a) for each state s and action a in a similar way.

Monte Carlo control

MC control means alternating policy improvement and policy evaluation, as shown by figure
21.

Figure 21: MC control.

Figure 22 shows an example of pseudo-code for MC control. Exploring starts mean that the
first action is chosen randomly for a better exploration.

Figure 22: pseudo-code of MC control.

Monte-Carlo on the Grid World example:

Output of the GridWorld example for the MC control:

Monte Carlo Control: debut:
 <^>v <^>v <^>v <^>v <^>v
 <^>v <^>v <^>v <^>v <^>v
 <^>v <^>v <^>v <^>v <^>v
 <^>v <^>v <^>v <^>v <^>v
 <^>v <^>v <^>v <^>v <^>v
Monte Carlo Control: iteration 1:
 6.14 9.86 5.81 6.06 3.89
 3.80 4.33 3.41 3.10 2.58
 2.20 2.19 1.91 1.73 1.61
 1.35 1.28 1.16 1.08 1.06
 1.04 0.95 0.89 0.84 0.85
 > <^>v < <^>v <
 ^ ^ ^ ^ ^
 ^ ^ ^ ^ ^
 ^ ^ ^ ^ ^
 ^ ^ ^ <^ ^
Monte Carlo Control: iteration 2:
 19.66 21.87 19.66 16.51 14.88
 17.72 19.66 17.72 14.88 13.37
 15.96 17.72 15.96 13.37 12.01
 14.36 15.96 14.36 12.01 10.82
 12.87 14.36 12.87 11.20 9.73
 > <^>v < <^>v <
 ^> ^ <^ < <^
 ^> ^ <^ < <^
 ^> ^ <^ < <^
 ^> ^ <^ < <
Monte Carlo Control: iteration 3:
 19.66 21.87 19.66 17.37 15.63
 17.72 19.66 17.72 15.96 14.22
 15.96 17.72 15.96 14.36 12.82
 14.36 15.96 14.36 12.87 11.55
 12.87 14.36 12.87 11.57 10.43
 > <^>v < <^>v <
 ^> ^ <^ < <
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
Monte Carlo Control: iteration 4:
 19.66 21.87 19.66 17.37 15.63
 17.72 19.66 17.72 15.96 14.36
 15.96 17.72 15.96 14.36 12.87
 14.36 15.96 14.36 12.87 11.57
 12.87 14.36 12.87 11.57 10.43
 > <^>v < <^>v <
 ^> ^ <^ < <
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
Monte Carlo Control, fin.

TD-learning

Introduction

Temporal difference (TD) method is central in RL. TD learns through the agent experience,
like MC. Like MC, TD is suited when the transition probability function Pa

ss’ and the return
function Ra

ss’ of the MDP are unknown. TD updates the value of states in function of the
values of the neighbouring states, like in DP. In this meaning, TD bootstraps.

TD evaluation
For MC evaluation, the update rule can be written as:

V(st) <- V(st) + α [Rt - V(st)] (30a)

TD uses this update rule :

V(st) <- V(st) + α [rt+1 + γ V(st+1) - V(st)] (30b)

The target of MC was Rt. Target of TD is rt+1 + γ V(st+1). Equations 13 and 15 can be written :

Vπ(s) = Eπ { rt+1 + γ Vπ(st+1) | s = st } (31)

Figure 23 gives the pseudo-code of TD(0)1.

Figure 23: TD(0) pour estimer Vπ.

Figure 24 gives the back-up diagram of TD(0). The update of state s only depends on the
unique actual following state. Notice the difference with DP in which the update rule includes
all the neighbouring states.

Figure 24: back-up diagram of TD(0).

1 TD has a parameter λ. TD(λ) is not the scope of this teachning unit. λ=0 corresponds to the simplest case.

TD on the Grid World example:

Output of the GridWorld example:

Temporal Difference Control: debut:
 <^>v <^>v <^>v <^>v <^>v
 <^>v <^>v <^>v <^>v <^>v
 <^>v <^>v <^>v <^>v <^>v
 <^>v <^>v <^>v <^>v <^>v
 <^>v <^>v <^>v <^>v <^>v
Temporal Difference Control: iteration 1:
 7.08 10.94 6.25 6.75 4.14
 4.01 4.64 3.64 3.35 2.83
 2.46 2.46 2.08 1.94 1.78
 1.47 1.42 1.32 1.23 1.21
 1.14 1.03 0.99 0.96 0.97
 > <^>v < <^>v <
 ^ ^ ^ ^ ^
 ^ ^ ^ ^ ^
 ^ ^ ^ ^ ^
 ^ ^ ^ ^ ^
Temporal Difference Control: iteration 2:
 21.98 24.42 21.98 18.45 16.60
 19.78 21.98 19.78 16.60 14.94
 17.80 19.78 17.80 14.94 13.45
 16.02 17.80 16.02 13.45 12.10
 14.42 16.02 14.42 12.10 10.89
 > <^>v < <^>v <
 ^> ^ <^ < <^
 ^> ^ <^ < <^
 ^> ^ <^ < <^
 ^> ^ <^ < <^
Temporal Difference Control: iteration 3:
 21.98 24.42 21.98 19.42 17.48
 19.78 21.98 19.78 17.80 15.87
 17.80 19.78 17.80 16.02 14.35
 16.02 17.80 16.02 14.42 12.95
 14.42 16.02 14.42 12.98 11.67
 > <^>v < <^>v <
 ^> ^ <^ < <
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
Temporal Difference Control: iteration 4:
 21.98 24.42 21.98 19.42 17.48
 19.78 21.98 19.78 17.80 16.02
 17.80 19.78 17.80 16.02 14.42
 16.02 17.80 16.02 14.42 12.98
 14.42 16.02 14.42 12.98 11.68
 > <^>v < <^>v <
 ^> ^ <^ < <
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
Temporal Difference Control, fin.

Sarsa

Sarsa (StateActionRewardStateAction) is a control method that improve a policy and its
action value function. Figure (32) starts on state st with action at , then it uses the reward rt+1,
next state st+1 and its action at+1.

Figure 32

Sarsa updates Q with :

Q(st, at) <- Q(st, at) + α [rt+1 + γ Q(st+1, at+1) - Q(st, at)] (32)

Figure (33) gives pseudo-code of Sarsa.

Figure 33

The policy is implicitly represented by the Q values. Action a' corresponds to the Q value
used for updating. To this extent, Sarsa is said to be an « online » method. Action choice is ε-
greedy. It is possible to initialize Q values with high values to implicitly explore states less
explored.

Q-learning

Q-learning (Watkins 1989) is similar to Sarsa. The difference with sarsa lies in the update
rule:

Q(st, at) <- Q(st, at) + α [rt+1 + γ maxa Q(st+1, a) - Q(st, at)] (33)

Figure (36) gives the pseudo-code of Q-learning and figure (37) gives the back-up diagram.

Figure 36: Q-learning

Figure 37: Back-up diagram of Q-Learning.

QL is also said to be an « on-line » method. However the actual action a' is not necessarily the
optimale action that corresponds to the update. To this extent, QL is a slightly « offline »
method.

Action choice is ε-greedy as for Sarsa.

Q Learning on the Grid World example:

Q Learning: debut:
20 20 22 20 |25 25 25 25 |22 20 20 20 |21 22 22 21 |20 18 18 18 |
18 21 20 18 |20 22 20 20 |20 20 18 18 |18 20 18 18 |18 18 16 16 |
17 19 18 17 |18 20 18 18 |18 18 16 16 |17 18 16 16 |16 17 15 15 |
15 17 16 15 |16 18 16 16 |17 17 15 15 |16 16 14 14 |15 16 14 14 |
14 16 15 14 |14 16 14 14 |15 16 14 14 |14 15 13 13 |14 14 13 12 |
Policy:
 > <^>v < > <
 ^ ^ <^ ^ <^
 ^ ^ ^ ^ ^
 ^ ^ ^ ^ ^
 ^ ^ ^ ^ ^
delta = 12.544 improve = 96 nb_pas_total = 10000
19 19 22 19 |24 24 24 24 |22 19 19 19 |20 20 20 20 |18 16 16 16 |
17 20 20 17 |19 22 19 19 |20 20 17 17 |18 18 16 16 |16 16 14 14 |
16 18 18 15 |17 20 17 16 |18 18 15 15 |16 16 14 14 |15 15 13 13 |
14 16 16 14 |15 18 15 15 |16 16 14 14 |14 15 13 13 |13 14 12 12 |
13 15 14 13 |14 16 14 14 |14 14 12 12 |13 13 12 11 |12 13 11 11 |
Policy:
 > <^>v < <^>v <
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ ^
 ^> ^ <^ ^ ^
 ^ ^ <^ ^ ^
delta = 2.286 improve = 20 nb_pas_total = 20000
19 19 22 18 |24 24 24 24 |22 19 18 18 |19 19 19 19 |17 15 15 15 |
17 20 20 17 |18 22 18 18 |20 20 17 16 |18 17 15 15 |16 16 14 14 |
15 18 18 15 |16 20 17 16 |18 18 15 15 |16 16 13 13 |14 14 12 12 |
14 16 16 13 |15 18 15 15 |16 16 13 13 |14 14 12 12 |13 13 11 11 |
12 14 14 12 |13 16 13 14 |14 14 12 12 |13 13 11 11 |12 12 10 10 |
Policy:
 > <^>v < <^>v <
 ^> ^ <^ < <
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
delta = 1.058 improve = 16 nb_pas_total = 30000
19 19 22 18 |24 24 24 24 |22 19 18 18 |19 19 19 19 |17 15 15 15 |
17 20 20 16 |18 22 18 18 |20 20 16 16 |18 17 15 15 |16 16 14 13 |
15 18 18 15 |16 20 16 16 |18 18 15 14 |16 16 13 13 |14 14 12 12 |
13 16 16 13 |15 18 15 15 |16 16 13 13 |14 14 12 12 |13 13 11 11 |
12 14 14 12 |13 16 13 13 |14 14 12 12 |13 13 11 11 |12 12 10 10 |
Policy:
 > <^>v < <^>v <
 ^> ^ <^ < <
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
 ^> ^ <^ <^ <^
delta = 0.747 improve = 0 nb_pas_total = 40000
Q Learning: fin.

Rmax

Introduction

Rmax is a RL algorithm that builds and uses an environment model [Brafman & Tennenholtz
2002]. « Environment model » means the reward function R and the transition function P. The
model is not correct at the beginning but it is refined as long as Rmax runs. When the
environment model is updated, Rmax computes the optimal value fonction V* for this model
with the value iteration algorithm. The environment model is initialized optimistically with
Rmax, the maximal reward.

Rmax solves the exploitation – exploration dilemma. Because the initial rewards are
optimistic, the optimal policy computed by value iteration leads the agent to explore the less
explored states. Futhermore, since value iteration computes an optimal policy given the
rewards, it is possible to say that Rmax optimally explores. Of course, the exploration is
implicit.

Rmax can be applied to stochastic games (multi-agent MDP) and not only to single-agent
MDP.

Algorithm

Init:
Input: policy length = T
Building the model M' made up with N states G1, G2, ..., GN, plus one fictitious state G0.
Each state owns:

state value V.
joint action matrix with, for each cell:

the reward initialized with Rmax.
List of next states with, for each next state:

number of times the transition has been performed.
(list initialized with G0, with one actual transition performed).
Boolean variable «known» or not, initialized with false.
Joint action value Q.

Execution
Repeat

(C) Compute the length-T policy P starting on current state,
Execute P during T timesteps.
After each joint action and transition to a next state,

update the reward
increment the count on this transition.
If the count > threshold then

joint action is « known »
go to (C)

[Brafman & Tennenholtz 2002] proves that Rmax converges to the optimal policy.

Conclusion

This section sums up the properties of the RL methods and their ancestors. The methods are
direct Bellmann equations solving, Dynamic programming (DP), Monte-Carlo (MC), Rmax,
Temporal Differences (TD), QLearning (QL), Sarsa.

METHOD: Direct
solving

DP Rmax MC TD QL
Sarsa

iterative ? direct iterative iterative iterative iterative iterative

State visit ordered ordered Exper. Exper. Exper. Exper.

Update frequ. step step step episode step step

Envir. Mod ? yes yes built No No No

reward ? r r r R r r

function: V and/or Q V and/or Q V or Q V and/or Q V Q

Kind of prob. small medium big Very big Very big Very big

off/on line? «off» «on» «off» «on»/«off» «on»

Figure 41: Summary of the properties of the methods.

Conversely to direct Bellman equations solving, DP is an iterative method with « policy
evaluation », « policy improvement », « policy iteration » and « value iteration ». Rmax, MC,
TD and QL are iterative as well. Conversely to DP that sweeps space states in a given order,
actual experiment conducts the order of updating states in RL methods. MC updates with a
cumulated reward while the other method « bootstrap » i.e. they update the current state with
the next states and the present reward. Direct solving, DP, Rmax and MC uses V or Q. TD
uses V. QL and Sarsa use Q.

The interest of each method goes with the size of the problem to solve.: direct solving work
for « small » problems. DP work for medium size problems. Rmax needs to have the
environment model in memory. TD, QL or Sarsa work for « very big » problems.

Références

• R. Brafman, M. Tennenholtz, “Rmax – A General Polynomial Time Algorithm for Near-
Optimal Reinforcement Learning”, J. of Machine Learning Research, pages 213-231, 2002.
• R. Coulom, “Apprentissage par renforcement utilisant les réseaux de neurones, avec des
applications au contrôle moteur”, Ph.D. thesis, INPG, Grenoble, 2002.
• R. Sutton, A. Barto, “Reinforcement Learning”, MIT Press.
• R. Sutton, “Learning to Predict by the methods of Temporal Differences”, Machine
Learning 3, pages 9-44, Kluwer, 1988.
• C. Watkins, “Learning from delayed rewards”, Ph.D. thesis, Cambridge University, 1989.
• C. Watkins, P. Dayan, “Q-learning”, Machine Learning, 8, pages 279-292, 1992.

	Apprentissage par renforcement (3)
	Monte-Carlo
	Introduction
	Monte-Carlo Evaluation of a policy
	Action value Monte Carlo estimation
	Monte Carlo control
	Monte-Carlo on the Grid World example:

	TD-learning
	Introduction
	TD evaluation
	TD on the Grid World example:
	Sarsa
	Q-learning
	Q Learning on the Grid World example:

	Rmax
	Introduction
	Algorithm

	Conclusion
	Références

