Apprentissage par renforcement (3)

Bruno Bouzy
1 october 2013

This document consists in the 3™ part of the « Reinforcement Learning » chapter of the
« Agent oriented learning » teaching unit of the Master MI computer course. It is based on
part II chapters 5 and 6 of (Sutton & Barto 1998). The figures contained in this document are
directly taken from the html version of (Sutton & Barto 1998). It concerns Monte-Carlo
(MC) methods, temporal difference (TD) methods, action value methods such as Q-learning
and Sarsa. The exemple of the grid world illustrates these methods.

Monte-Carlo

Introduction

The term Monte-Carlo (MC) consists in performing random simulations starting from a state
we want to evaluate and to compute an empirical mean of the results. This method is suited
when the transition probability function P and the return function R%s of the MDP are
unknown. It is simple. The episodes must end. An episode is a simulation. The policy Tt is
given. We look at evaluating the states with V™, then we look at evaluating QT, . finally we
look at how to improve a policy with MC control.

Monte-Carlo Evaluation of a policy

Tt is given and we look for an approximation of V. We store V(s) for every states. At the end
of an episode, we update the mean value of the states encountered. Pseudo-code is given by
figure 19.

Initialize:
T« policy to be evaluated
V"« an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
(a) Generate an episode using
(b) For each state s appearing in the episode:
R+ return following the first occurrence of s
Append R to Returns(s)
V(s) « average(Returns(s))

Figure 19: MC evaluation of V',

A back-up diagram shows the state to be updated and the states and transitions contributing to
the update. Figure 20 gives the back-up diagram of the MC method. We start in a given state
and we perform a random simulation by using the policy to evaluate. The simulation ends up
in a terminal state. The cumulated reward received during the simulation is used to update the
starting state.

; terminal state

Figure 20: back-up diagram of MC estimation of V™.

In this method, the computation of the value of a state does not depend of the computation of
the value of a neighbouring state. To this extent, (Sutton & Barto) says the MC method does
not « bootstrap ». The cost of MC evaluation depends on the length of episodes. We may
focus on a part of the state space only. NB: if the policy and the environment are both
deterministic, some states can remain unvisited. Therefore it important to introduce
randmoness with the policy in such case.

Action value Monte Carlo estimation

It also possible to estimate Q"(s, a) for each state s and action a in a similar way.

Monte Carlo control

MC control means alternating policy improvement and policy evaluation, as shown by figure
21.
evaluation
0 —Q"
T Q
T—greedy (O

improvement

Figure 21: MC control.

Figure 22 shows an example of pseudo-code for MC control. Exploring starts mean that the
first action is chosen randomly for a better exploration.

Initialize, for all s € S, a € A(s):
(}(s,a) «— arbitrary
m(s) « arbitrary
Returns(s,a) « empty list

Repeat forever:
(a) Generate an episode using exploring starts and
(b) For each pair s,a appearing in the episode:
R < return following the first occurrence of s, a
Append R to Returns(s,a)
QQ(s,a) — average(Returns(s,a))
(¢) For each s in the episode:
m(8) «— arg max, (s, a)

Figure 22: pseudo-code of MC control.

Monte-Carlo on the Grid World example:

Output of the GridWorld example for the MC control:

Monte Carlo Control: debut:

<A>v <A>v <A>v <A>v <A>v
<A>v <A>v <A>v <A>v <A>v
<N>v <N>v <N>v <N>v <N>v
<>y <>y <>y <>y <>y
<NA>v <NA>v <NA>v <NA>v <NA>v
Monte Carlo Control: iteration 1:
6.14 9.86 5.81 6.06 3.89
3.80 4.33 3.41 3.10 2.58
2.20 2.19 1.91 1.73 1.61
1.35 1.28 1.16 1.08 1.06
1.04 0.95 0.89 0.84 0.85
> <N>v < <N>v <

Monte Carlo Control: iteration 2:
19.66 21.87 19.66 16.51 14.88
17.72 19.66 17.72 14.88 13.37
15.96 17.72 15.96 13.37 12.01
14.36 15.96 14.36 12.01 10.82
12.87 14.36 12.87 11.20 9.73

> <N>v < <N>v <
> n <N < <N
~> n <N < <N
~> ~ <N < <N
> n <N < <

Monte Carlo Control: iteration 3:
19.066 21.87 19.066 17.37 15.63
17.72 19.66 17.72 15.96 14.22
15.96 17.72 15.96 14.36 12.82
14.36 15.96 14.36 12.87 11.55
12.87 14.36 12.87 11.57 10.43

> <N>v < <N>v <
~> n <N < <
/\> A </\ </\ </\
/\> A </\ </\ </\
/\> A </\ </\ </\

Monte Carlo Control: iteration 4:
19.066 21.87 19.066 17.37 15.63
17.72 19.66 17.72 15.96 14.36
15.96 17.72 15.96 14.36 12.87
14.36 15.96 14.36 12.87 11.57
12.87 14.36 12.87 11.57 10.43

> <>V < <N>v <
> " <n < <
A A <A <A <A
> A~ <A <A <A
~> A <A <A <A

Monte Carlo Control, fin.

TD-learning

Introduction

Temporal difference (TD) method is central in RL. TD learns through the agent experience,
like MC. Like MC, TD is suited when the transition probability function Py and the return
function R%s of the MDP are unknown. TD updates the value of states in function of the
values of the neighbouring states, like in DP. In this meaning, TD bootstraps.

TD evaluation
For MC evaluation, the update rule can be written as:

V(s) <- V(s)) + o [Ri- V(sy)] (30a)
TD uses this update rule :
V(s) <- V(s) + O [11 +Y V(1) - V(s9)] (30b)
The target of MC was R.. Target of TD is ri+1 +Y V(sw+1). Equations 13 and 15 can be written :
Vi) =En {re1 +Y Vi(se1) |s=s } (31)

Figure 23 gives the pseudo-code of TD(0)'.

Initialize V'(s) arbitrarily, @ to the policy to be evaluated
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a «— action given by for s
Take action a; observe reward. r. and next state, s
Vi(s) «— V(s) +a|r+~V(s) — V(s)|
g — &

until s is terminal

Figure 23: TD(0) pour estimer V™.
Figure 24 gives the back-up diagram of TD(0). The update of state s only depends on the

unique actual following state. Notice the difference with DP in which the update rule includes
all the neighbouring states.

Figure 24: back-up diagram of TD(0).

' TD has a parameter A. TD(A) is not the scope of this teachning unit. A=0 corresponds to the simplest case.

TD on the Grid World example:

Output of the GridWorld example:

Temporal Difference Control: debut:

<A>v <A>v <A>v <A>v <A>v
<A>v <A>v <A>v <A>v <A>v
<N>v <N>v <N>v <N>v <N>v
<>y <>y <>y <>y <>y
<A>v <A>v <A>v <A>v <A>v

Temporal Difference Control: iteration 1:
7.08 10.94 6.25 6.75 4.14

4.01 4.64 3.64 3.35 2.83
2.46 2.46 2.08 1.94 1.78
1.47 1.42 1.32 1.23 1.21
1.14 1.03 0.99 0.96 0.97
> <N >v < <N >v <

Temporal Difference Control: iteration 2:
21.98 24.42 21.98 18.45 16.60

19.78 21.98 19.78 16.60 14.94

17.80 19.78 17.80 14.94 13.45

16.02 17.80 16.02 13.45 12.10

14.42 16.02 14.42 12.10 10.89

> <N>v < <N>v <
> n <N < <N
~> n <N < <N
~> ~ <N < <N
> n <N < <N

Temporal Difference Control: iteration 3:
21.98 24.42 21.98 19.42 17.48

19.78 21.98 19.78 17.80 15.87

17.80 19.78 17.80 16.02 14.35

16.02 17.80 16.02 14.42 12.95

14.42 16.02 14.42 12.98 11.67

> <N>v < <N>v <
~> n <N < <
/\> A </\ </\ </\
/\> A </\ </\ </\
/\> A </\ </\ </\

Temporal Difference Control: iteration 4:
21.98 24.42 21.98 19.42 17.48

19.78 21.98 19.78 17.80 16.02

17.80 19.78 17.80 16.02 14.42

16.02 17.80 16.02 14.42 12.98

14.42 16.02 14.42 12.98 11.68

> <>V < <N>v <
> " <n < <
A A <A <A <A
> A~ <A <A <A
~> A <A <A <A

Temporal Difference Control, fin.

Sarsa

Sarsa (StateActionRewardStateAction) is a control method that improve a policy and its
action value function. Figure (32) starts on state s; with action a: , then it uses the reward r,
next state sw1 and its action aw1.

r ¥
@ . HLE N . 24 N\ -— - -

t+1 - :
Sy " Sy &7 Ste2 g0
Figure 32

Sarsa updates Q with :

Q(Sta at) <- Q(St’ at) +a [w1 TY Q(Stﬂ, aﬁ'l) - Q(Sta a‘)] (32)

Figure (33) gives pseudo-code of Sarsa.

Initialize (s, a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g.. e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a' from s’ using policy derived from () (e.g., e-greedy)
Q(s.a) — Q(s,a) + a [ir' +vQ(s',a") — Q{s,_aj]
s s a«—a;

until s is terminal

Figure 33

The policy is implicitly represented by the Q values. Action a' corresponds to the Q value
used for updating. To this extent, Sarsa is said to be an « online » method. Action choice is €-
greedy. It is possible to initialize Q values with high values to implicitly explore states less
explored.

Q-learning

Q-learning (Watkins 1989) is similar to Sarsa. The difference with sarsa lies in the update
rule:

Q(St, at) <- Q(St, at) + [It+1 T Y mMaxa Q(St+1, a) - Q(St, at)] (33)

Figure (36) gives the pseudo-code of Q-learning and figure (37) gives the back-up diagram.

Initialize (s, a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., s-greedy)
Take action a. observe r, s
Q(s,a) — Q(s,a) + a|r + ymax, Q(s',a’) — Q(s,a))

8 — &'

until s is terminal

Figure 36: Q-learning

Figure 37: Back-up diagram of Q-Learning.
QL is also said to be an « on-line » method. However the actual action a' is not necessarily the
optimale action that corresponds to the update. To this extent, QL is a slightly « offline »
method.

Action choice is £-greedy as for Sarsa.

Q Learning on the Grid World example:

Q Learning: debut:
20 20 22 20 |25 25 25 25
18 21 20 18 20 22 20 20
17 19 18 17 |18 20 18 18
15 17 16 15 |16 18 16 16
14 16 15 14 |14 16 14 14
Policy:

> <A>v <

N N </\
delta = 12.544 improve =
19 19 22 19 |24 24 24 24
17 20 20 17 |19 22 19 19
16 18 18 15 |17 20 17 16
14 16 16 14 |15 18 15 15
13 15 14 13 |14 16 14 14
Policy:

> <A>v <

A A </\
delta = 2.286 improve =
19 19 22 18 |24 24 24 24
17 20 20 17 |18 22 18 18
15 18 18 15 |16 20 17 16
14 16 16 13 |15 18 15 15
12 14 14 12 |13 16 13 14
Policy:

> <A>v <
delta = 1.058 improve =
19 19 22 18 |24 24 24 24
17 20 20 16 |18 22 18 18
15 18 18 15 |16 20 16 16
13 16 16 13 |15 18 15 15
12 14 14 12 |13 16 13 13
Policy:

> <A>v <
delta = 0.747 improve =
Q Learning: fin.

[22 20 20 20 |21 22 22 21
[20 20 18 18 [18 20 18 18
[18 18 16 16 |17 18 16 16
[17 17 15 15 |16 16 14 14
[15 16 14 14 |14 15 13 13
> <
A </\

96 nb pas total = 10000
[22 19 19 19 |20 20 20 20
[20 20 17 17 |18 18 16 16
[18 18 15 15 [16 16 14 14
[16 16 14 14 |14 15 13 13
[14 14 12 12 |13 13 12 11
<>V <
< <
</\ A

20 nb _pas total = 20000
[22 19 18 18 [19 19 19 19
[20 20 17 16 [18 17 15 15
[18 18 15 15 |16 16 13 13
|16 16 13 13 |14 14 12 12
[14 14 12 12 |13 13 11 11
<A>v <
< <
< <
< <
<N <N

16 nb pas total = 30000
[22 19 18 18 |19 19 19 19
[20 20 16 16 |18 17 15 15
[18 18 15 14 [16 16 13 13
[16 16 13 13 [14 14 12 12
[14 14 12 12 |13 13 11 11
<>V <
< <
<N <N
<N <N
< <

0 nb pas total = 40000

120
|18
16
115
|14

|18
16
115
113
112

117
16
|14
113
12

117
16
|14
113
112

18
18
17
16
14

16
16
15
14
13

15
16
14
13
12

15
16
14
13
12

18
16
15
14
13

16
14
13
12
11

15
14
12
11
10

15
14
12
11
10

18
16
15
14
12

16
14
13
12
11

15
14
12
11
10

15
13
12
11
10

Rmax

Introduction

Rmax is a RL algorithm that builds and uses an environment model [Brafman & Tennenholtz
2002]. « Environment model » means the reward function R and the transition function P. The
model is not correct at the beginning but it is refined as long as Rmax runs. When the
environment model is updated, Rmax computes the optimal value fonction V* for this model
with the value iteration algorithm. The environment model is initialized optimistically with
Rmax, the maximal reward.

Rmax solves the exploitation — exploration dilemma. Because the initial rewards are
optimistic, the optimal policy computed by value iteration leads the agent to explore the less
explored states. Futhermore, since value iteration computes an optimal policy given the
rewards, it is possible to say that Rmax optimally explores. Of course, the exploration is
implicit.

Rmax can be applied to stochastic games (multi-agent MDP) and not only to single-agent
MDP.

Algorithm

Input: policy length =T
Building the model M' made up with N states Gi, Ga, ..., G, plus one fictitious state Go.
Each state owns:
state value V.
joint action matrix with, for each cell:
the reward initialized with Ruax.
List of next states with, for each next state:
number of times the transition has been performed.
(list initialized with Go, with one actual transition performed).
Boolean variable «known» or not, initialized with false.
Joint action value Q.

Execution
Repeat
(C) Compute the length-T policy P starting on current state,
Execute P during T timesteps.
After each joint action and transition to a next state,
update the reward
increment the count on this transition.
If the count > threshold then
joint action is « known »
go to (C)

[Brafman & Tennenholtz 2002] proves that Rmax converges to the optimal policy.

Conclusion

This section sums up the properties of the RL methods and their ancestors. The methods are
direct Bellmann equations solving, Dynamic programming (DP), Monte-Carlo (MC), Rmax,
Temporal Differences (TD), QLearning (QL), Sarsa.

METHOD: Direct DP Rmax MC TD QL
solving Sarsa
iterative ? direct iterative iterative |iterative iterative iterative
State visit ordered ordered Exper. |Exper. Exper. Exper.
Update frequ. |step step step episode step step
Envir. Mod ? |yes yes built No No No
reward ? r r r R r r
function: Vand/orQ |Vand/orQ [VorQ |Vandor Q |V Q
Kind of prob. |small medium big Very big Very big | Very big
off/on line? «ofty «ony «ofty «ony/«offty | «ony

Figure 41: Summary of the properties of the methods.

Conversely to direct Bellman equations solving, DP is an iterative method with « policy
evaluation », « policy improvement », « policy iteration » and « value iteration ». Rmax, MC,
TD and QL are iterative as well. Conversely to DP that sweeps space states in a given order,
actual experiment conducts the order of updating states in RL methods. MC updates with a
cumulated reward while the other method « bootstrap » i.e. they update the current state with
the next states and the present reward. Direct solving, DP, Rmax and MC uses V or Q. TD
uses V. QL and Sarsa use Q.

The interest of each method goes with the size of the problem to solve.: direct solving work
for «small » problems. DP work for medium size problems. Rmax needs to have the
environment model in memory. TD, QL or Sarsa work for « very big » problems.

Références

* R. Brafman, M. Tennenholtz, “Rmax — A General Polynomial Time Algorithm for Near-
Optimal Reinforcement Learning”, J. of Machine Learning Research, pages 213-231, 2002.

* R. Coulom, “Apprentissage par renforcement utilisant les réseaux de neurones, avec des
applications au controle moteur”, Ph.D. thesis, INPG, Grenoble, 2002.

* R. Sutton, A. Barto, “Reinforcement Learning”, MIT Press.

* R. Sutton, “Learning to Predict by the methods of Temporal Differences”,
Learning 3, pages 9-44, Kluwer, 1988.

« C. Watkins, “Learning from delayed rewards”, Ph.D. thesis, Cambridge University, 1989.
» C. Watkins, P. Dayan, “Q-learning”, Machine Learning, 8, pages 279-292, 1992.

Machine

	Apprentissage par renforcement (3)
	Monte-Carlo
	Introduction
	Monte-Carlo Evaluation of a policy
	Action value Monte Carlo estimation
	Monte Carlo control
	Monte-Carlo on the Grid World example:

	TD-learning
	Introduction
	TD evaluation
	TD on the Grid World example:
	Sarsa
	Q-learning
	Q Learning on the Grid World example:

	Rmax
	Introduction
	Algorithm

	Conclusion
	Références

