
Burnt Pancake Problem: New

Lower Bounds on the Diameter

and New Experimental

Optimality Ratios

Bruno Bouzy

LIPADE-TR-N° 3

May 2016

Burnt Pancake Problem: New Lower Bounds on the Diameter
and New Experimental Optimality Ratios

Bruno Bouzy1

1LIPADE, Paris Descartes University, France

Abstract

In this paper, we present new findings on the burnt pancake problem. First, while pre-

viously exact values of g(−IN) were known for N ≤ 20, we provide new exact values

for N ≤ 27. It results new lower bounds on the diameter for N ≤ 27. These results

are obtained with IDA* with the number of breakpoints as the heuristic function. Fur-

thermore, by means of a new heuristic function proven to be admissible on stacks of size

at most 15, we provide upper bounds on g(−IN) for N ≤ 30. While the exact value

of the diameter is known for N ≤ 17, with this new heuristic, we uncover some hard

positions, different from −IN for N ≤ 22. Our new heuristic function uses the number

of breakpoints, the number of anti-adjacencies, and a new feature, the number of wrong

adjacencies. Secondly, on stacks with a very high size (N ≤ 256), we give experimental

optimality ratio obtained with nested MCS using Cohen and Blum’s algorithm as basic

simulations.

Keywords: Burnt Pancake Problem, Planning, Heuristic Search, Monte-Carlo Search

1. Introduction

The burnt pancake problem is described as follows. A chef prepares a stack of pan-

cakes that come out all of different sizes on a plate. Each pancake has a burnt side. The

goal of the server is to order them with decreasing sizes, the largest pancake touching the

plate, the smallest pancake being at the top, and the burnt side being down. The server

can insert a spatula below a pancake and flip the substack situated above the spatula.

Email address: bruno.bouzy@parisdescartes.fr (Bruno Bouzy)

LIPADE-TR-3 May 20, 2016

He may repeat this action as many times as necessary. In the particular version, the goal

of the server is to sort a particular stack with a minimum number of flips. In the global

version, the question is to determine the maximum number of flips g(N) 1 to sort any

stack of N pancakes optimally. In the unburnt pancake problem, there is no burnt side,

and the orientation of pancakes has no importance.

The pancake problem is a puzzle, or a one-player game well-known in artificial intelli-

gence and in computer science under the name of sorting by prefix reversals (SBPR). Its

importance is caused by its similarity with the sorting by reversals (SBR) problem which

is fundamental in biology to understand the proximity between genomes of two different

species. For example, the SBR distance between a cabbage and a turnip is three [1].

The SBR problem has been studied in depth [2] for the last twenty years. The unburnt

pancake problem is NP-hard [3]. The complexity of the burnt pancake problem is not

known except for specific sub-class of problems for which it is polynomial [4].

Our goal is to augment the state of the art on the burnt pancake problem with

new findings. First, while previous values on g(−IN)2 were known for N ≤ 20 [5], we

provide exact values of g(−IN) for N ≤ 27. This result is simply obtained with IDA* [6]

and the number of breakpoints [7] as heuristic function. Consequently, while previous

exact values on the diameter were known for N ≤ 17 [5], and lower bounds on the

diameter were known for N ≤ 20, we provide lower bounds on the diameter for N ≤ 27.

Furthermore, we used a new heuristic function simply using the number of breakpoints

and the number of anti-adjacencies. This heuristic is proven admissible on a test set for

N ≤ 15. It speeds up the searches by a factor greater than 2, compared to the number of

breakpoints heuristic. With this new heuristic, we uncover some hard positions, different

from −IN for N ≤ 22. This shed some light on the knowledge of the diameter for N ≤ 22.

Until now, the best theoretical R-approximation on the burnt pancake problem is 2

[8]. In the current work, we give experimental optimality ratio obtained with Monte-

Carlo Search (MCS) [9] with nested levels using Cohen and Blum’s algorithm as basic

simulations. Under time constraints in which IDA* solves random positions for N ≤ 15

1g(N) denotes the diameter of the N burnt pancake problem, and not the cost of a partial plan in

the A* meaning.
2−IN and g(−IN) are defined in section 2.

LIPADE-TR-3 2

only, and obtains an experimental optimality ratio of 1.25, MCS solves random positions

with a very high size, with an experimental optimality ratio of 1.30 for N ≤ 32, between

1.30 and 1.50 for N ≤ 64, between 1.50 and 1.60 for N ≤ 128, between 1.60 and 2.0 for

N ≤ 256. These results extend the results concerning experimental optimality ratio in

the unburnt pancake problem MCS [10].

The paper is organized as follows. Section 2 defines the burnt pancake problem and

some useful notations. Section 3 relates work performed on the burnt pancake problem.

Section 4 presents our work and its experimental results. Section 5 concludes.

2. Definitions

Let N be the size of a permutation π and

[π(1), π(2), ..., π(N − 1), π(N)]

be the representation of π. The SBPR problem or pancake problem consists in reaching

the identity permutation

IN = [1, 2, ..., N − 1, N]

by applying a sequence of prefix reversals. A prefix reversal, or a flip, ρ(i) transforms

the permutation

[π(1), ..., π(i), π(i+ 1), ..., π(N)]

into

[π(i), ..., π(1), π(i+ 1), ..., π(N)].

Note that the top of the stack is on the left, and the bottom is on the right. Each number

π(i) corresponds to the size of the pancake situated at position i. The cut corresponds

to the location of the spatula inserted between two pancakes.

In the burnt version, a sign is associated to each pancake (number). When performing

a prefix reversal, the sign of the changing numbers changes too. After the reversal ρ(i),

[π(1), ..., π(i), π(i+ 1), ..., π(N)]

becomes

−π(i), ...,−π(1), π(i+ 1)..., π(N).
LIPADE-TR-3 3

In the literature, the permutations are often extended with two numbers, N + 1 after

π(N), and 0 before π(1), and the extended representation of permutation π is

[0, π(1), ..., π(N), N + 1].

A basic and central concept in pancake problems is the breakpoint. In the unburnt

pancake problem, a breakpoint is situated between i and i− 1 when |π(i)− π(i− 1)| 6=

1. In the burnt pancake problem, a breakpoint is situated between i and i − 1 when

π(i)−π(i− 1) 6= 1. Note that in the pancake problems, the possible breakpoint between

the top pancake and above is not taken into account.

In the following, #bp names the number of breakpoints. Since each breakpoint must

be removed to obtain the identity permutation, and since one reversal removes at most

one breakpoint, #bp is a lower bound of the length of optimal solutions [7]. In the

planning context, #bp is a simple and admissible heuristic [11]. In the pancake problem

literature, g(N) names the diameter of the graph associated to the problems of size N.

g(p) names the length of an optimal solution of problem p, and not the cost of a partial

plan in the A* meaning. g(−IN) is the length of an optimal solution of −IN which is a

well-known stack in the burnt pancake literature. Known stacks which are hard to solve

are [8], [5]:

−IN = [−1,−2, ...,−(N − 1),−N],

JN = [+1,−2, ...,−(N − 1),−N],

YN = [−1,−2, ...,−(N − 2),+(N-1),−N].

We define additional stacks to define the test sets TestSet(N) used in our work.

These stacks are generalizations of IN , −IN , JN and YN . We call them HN,M where M

is a non-negative integer with N bits. We define

HN,M = [sgn(1,M)× 1, ..., sgn(i,M)× i, ..., sgn(N,M)×N]

with

sgn(i,M) =

 +1 if the ith most significant bit of M is 1

−1 if the ith most significant bit of M is 0

To illustrate this definition, we give some examples with N = 6.

H6,0 = [−1,−2,−3,−4,−5,−6] = −I6,
LIPADE-TR-3 4

H6,1 = [−1,−2,−3,−4,−5,+6],

H6,2 = [−1,−2,−3,−4,+5,−6] = Y6,

H6,3 = [−1,−2,−3,−4,+5,+6],

H6,4 = [−1,−2,−3,+4,−5,−6],

H6,5 = [−1,−2,−3,+4,−5,+6],

H6,32 = H6,25 = [+1,−2,−3,−4,−5,−6] = J6,

H6,33 = H6,25+1 = [+1,−2,−3,−4,−5,+6],

H6,34 = H6,25+2 = [+1,−2,−3,−4,+5,−6],

H6,63 = H6,26−1 = I6.

3. Related work

First, this section presents the most important references of the SBR and SBPR prob-

lems. Secondly, it describes Cibulka’s heuristic function, useful for our work. Thirdly,

it presents Cohen and Blum’s algorithm. Finally, it sums up the known values on the

diameter g(N) of the burnt pancake problem for stacks of size N .

3.1. Background

The best overview of the genome rearrangement problem is [2]. [1] devised the first

polynomial-time algorithm for signed permutations. The unsigned permutation problem

remains NP-hard [12]. The unburnt pancake problem is NP-hard [3]. The first bounds

on the unburnt pancake problem diameter were found by [7]. The (15/14)N lower bound

was found by [13]. In 2009, a new upper bound was found on the diameter: (18/11)N

[14]. In 2010, in the planning context, the breakpoint heuristic #bp was explicitly used

in a depth-first-search [11].

Concerning the burnt pancake problem, [8] presented the first bounds on the diameter:

3N/2 is a lower bound and 2(N −1) a upper bound. Furthermore, they conjectured that

the solution length of stack −IN equals the diameter. A polynomial-time algorithm on

a specific sub-class of burnt pancake problems [4] was published in 2011. [5] showed that

7N/4 flips were necessary to sort stacks of burnt pancakes on average over the stacks of

size N . This work also disproved the conjecture by [8].
LIPADE-TR-3 5

3.2. Cibulka’s Heuristic Function

Let c be a stack of burnt pancakes, −c denotes the stack with the reverse sign for

every pancakes. [5] defines function v(c) with equation (1).

v(c) = a(c)− a(−c) + l(c)− l(−c) (1)

+ 1/3(o(c)− o(−c) + ll(c)− ll(−c)

− (b(c)− b(−c)))

v(c) reflects the quality of stack c. The higher v(c), the nearer c to the solution. We

have equation (2).

v(IN) = N + 2/3 (2)

a(c) is the number of adjacencies. An adjacency occurs between two neighbouring

pancakes when their size difference is 1, and when they are oriented correctly relatively

to each other (the burnt side of the smallest pancake faces the unburnt side of the largest

pancake). a(c) and #bp are linked by equation 3.

N = a(c) + #bp. (3)

b(c) is the number of deep blocks. A block is a maximal subset of adjacent pancakes.

A deep block does not contain the topmost pancake. a(−c) is the number of anti-

adjacencies. An anti-adjacency occurs between two neighbouring pancakes when their

size difference is 1, and when the burnt side of the largest pancake faces the unburnt side

of the smallest pancake. b(−c) is the number of deep clans. A clan is a maximal subset

of anti-adjacent pancakes. A deep clan does not contain the topmost pancake.

o(c) is 1 if pancake −1 is not in a block on top or if pancake 1 is in a block, 0 otherwise.

l(c) is 1 if N is lowest pancake, 0 otherwise.

ll(c) is 1 if l(c) is 1 and if N − 1 is the second lowest pancake.

o(−c) is 1 if pancake 1 is not in block on top or if pancake −1 is in a block, 0 otherwise.

l(−c) is 1 if −N is lowest pancake, 0 otherwise.

ll(−c) is 1 if l(−c) is 1 and if −(N − 1) is the second lowest pancake.

LIPADE-TR-3 6

We do not use b(c), b(−c), l(c), ll(c), l(−c), ll(−c), o(c) and o(−c) in our work. [5]

aims at obtaining a heuristic for the burnt pancake problem that is admissible, admis-

sibility being proven mathematically. c2 being a stack obtained by performing a flip on

stack c, Cibulka demonstrates that inequality (4) holds.

v(c)− v(c2) ≤ 4/3 (4)

Thus, he defines the admissible heuristic function hC with equation (5).

hC(c) =

⌈
3

4
(v(IN)− v(c))

⌉
(5)

However, hC has a low quality in the most frequent stacks c of the pancake problem:

the stacks with no adjacency and no anti-adjacency. For such stacks c, hC(c) = 3
4#bp <

#bp where #bp is admissible. hC strictly underestimates the cost to go in many stacks.

Furthermore, because hC(c) uses features such as b(c) or b(−c), hC(c) is slow to compute.

3.3. Cohen and Blum’s algorithm

[8] designed an algorithm to sort a stack of N burnt pancakes in at most 2N moves.

It distinguishes between Case 1 and Case 2. In Case 1, at least one pancake is rightside

up. Let p be the largest such pancake. If p = N , then it is possible to move p down to

the bottom position in two flips. Otherwise p < N and −(p + 1) is upside down. It is

possible to create an adjacency between p and p+1 in two moves. In Case 2, all pancakes

are upside down. Then, there are two sub-cases: (2a) and (2b). In case (2a), at least one

pancake −p is strictly below −(p + 1). Two moves create the adjacency between them.

In Case (2b), the stack is −IN . In such case, [8] presents an algorithm that sorts −IN
in at most 2N moves. Overall, any stack of burnt pancakes can be sorted in at most 2N

moves.

3.4. Known values of g(N)

Table 1 yields the known values of g(N) and g(−IN). [8] found the values of g(N)

for n ≤ 10 and the values of g(−IN) for N ≤ 18 . [15] found g(11) and g(12). Cibulka

found the values of g(N) for N ≤ 17 and the values of g(−IN) for N ≤ 20. Furthermore,

for any n such that N ≡ 3 (mod 4), Cibulka demonstrated equation 6 for N ≥ 15.

LIPADE-TR-3 7

Table 1: Known values of g(N) and g(−IN).

N g(N) g(−IN)

2 4 CB95 4 CB95

3 6 CB95 6 CB95

4 8 CB95 8 CB95

5 10 CB95 10 CB95

6 12 CB95 12 CB95

7 14 CB95 14 CB95

8 15 CB95 15 CB95

9 17 CB95 17 CB95

10 18 CB95 18 CB95

11 19 K2008 19 CB95

12 21 K2008 21 CB95

13 22 C2011 22 CB95

14 23 C2011 23 CB95

15 25 C2011 24 CB95

16 26 C2011 26 CB95

17 28 C2011 28 CB95

18 29 CB95

19 30 C2011

20 32 C2011

Moreover, Cibulka disproved Cohen and Blum’s conjecture by showing that g(15) = 25

and g(−I15) = 24.

g(−IN) = d3N + 3

2
e (6)

3.5. Two complementary algorithms for solving stacks

In the planning community, there are two basic and domain-independent algorithms

that we can use to solve burnt pancake stacks: IDA* [6] and Monte-Carlo Search (MCS)

[9]. When IDA* uses an admissible heuristic and completes, the solution found is optimal.

LIPADE-TR-3 8

At any time, IDA* yields a lower bound on the optimal length. However, N being the

size of a stack, for N higher than a threshold, IDA* becomes useless actually. MCS is a

simulation-based algorithm3.

MCS is launched at a given level L and performs a level L simulation, the levels being

nested. To perform a level L+1 simulation, at each point of the L+1 simulation, for any

legal action, MCS performs the action, and launches a level L simulation. MCS backs up

the result with the action. Then MCS chooses the action with the best result, and plays

it within the level L + 1 simulation. At any level, the best simulation played so far is

memorized. The level 0 simulations of MCS are domain-dependent simulations that may

contain more or less randomness. The higher the level of the simulation, the smarter the

simulation quality.

MCS is recent but it has proved good results in several domains such as general game

playing [17], expression discovery [18], morpion solitaire [19], weak Schur numbers [20],

cooperative path-finding [21], and recently on the unburnt pancake problem [10]. In the

following, IDA* is used with our heuristic function so as to compute values relevant to

the diameter of the burnt pancake graph. MCS is used to obtain experimental optimality

ratio.

4. Our work

Our contribution is twofold. The first contribution consists in new results (values

of g(−IN) for N up to 27, and the resulting lower bounds on g(N) for N up to 27), a

new heuristic function, admissible for N ≤ 15, enabling IDA* to find hard positions for

N ≤ 22. The second contribution consists in new experimental optimality ratio results

by using MCS and Cohen and Blum’s algorithm.

4.1. New results

In a first set of experiments, we use IDA* and the reference heuristic function #bp.

We use a desktop computer under Linux with one core Intel(R) Xeon(R) CPU X5690

running at 3.47GHz and few days of computations. We compute g(−IN) for N as high as

3MCS has a name that looks like MCTS (Monte-Carlo Tree Search), but MCS is different from MCTS

[16].

LIPADE-TR-3 9

possible. The second leftmost column of Table 2 gives the values of g(−IN) for N ≤ 27

obtained in this simple setting. Because #bp is admissible, these values are exact. As

another result, we have lower bounds of g(N) for N ≤ 27. These results are new, and

improve Cibulka’s results significantly. There are two explanations. First, while proven

admissible, Cibulka’s heuristic has a bad quality on all the random stacks with #bp = N

and a(−c) = 0 which are frequent, due to the 3
4 factor in equation 5. Secondly, Cibulka’s

heuristic uses many features whose computations slow down the search.

4.2. A new heuristic function

Following the work of Cibulka, we kept two features only: a(c) and a(−c). In addition,

we define a wrong adjacency between two neighbouring and size-adjacent pancakes in the

following case. The burnt sides of the two pancakes are stuck to each other, or the unburnt

sides of the two pancakes are stuck to each other. w(c) denotes the number of wrong

adjacencies in a stack c. We seek for an admissible heuristic fonction hB(c) following

equation (7)

hB(c) = #bp+ λa(−c) + µw(c) (7)

λ (respectively µ) reflects the weight of the overhead brought about by anti-adjacencies

(respectively wrong adjacencies) considered as breakpoints. #bp and a(−c) are known

state-of-the-art features. w(c) is somewhat new but derived from a(−c) and #bp. Con-

sidering that the lower bound of the diameter of the burnt pancake problem is 3
2n, we

expect to find positive values of λ and µ such that hB is admissible. We want to speed

up the running time at most as possible. The computations of the features are computed

incrementally in O(1).

For each N , we define TestSet(N), the test set of stacks of size N with their exact

values obtained with λ = 0. TestSet(N) contains positions such that −IN , JN , YN ,

HN ,M for specific values of M . The specific values of M are 0, 2, 4, 10, 20, 42, and

so on, corresponding to stacks ordered in the unburnt version, but alternating positive

pancakes and negative pancakes starting from the second pancake from the bottom.

The specific values of M also correspond to stacks ordered in the unburnt version, but

alternating positive pancakes and negative pancakes starting from from the top.

LIPADE-TR-3 10

For instance with N = 6, we give some of the most useful stacks.

H6,0 = [−1,−2,−3,−4,−5,−6] = −I6,

H6,2 = [−1,−2,−3,−4,+5,−6] = Y6,

H6,4 = [−1,−2,−3,+4,−5,−6],

H6,10 = [−1,−2,+3,−4,+5,−6],

H6,20 = [−1,+2,−3,+4,−5,−6],

H6,42 = [+1,−2,+3,−4,+5,−6],

H6,32 = [+1,−2,−3,−4,−5,−6] = J6,

H6,40 = [+1,−2,+3,−4,−5,−6].

The particularity of these stacks is to contain many anti-adjacencies and many wrong

adjacencies. Consequently, they were very useful to maximize λ and µ.

In a first set of experiments, we set µ = 0 and use TestSet(15). On these stacks,

we determined the maximal value of λ keeping hB admissible on these stacks. Our best

value was λ = 0.44. As shown by Table 2, λ = 0.44 enabled our program to find the exact

values of g(−IN) for N ≤ 27 again, and to uncover new estimates of g(−IN) for N ≤ 30.

These estimates are upper bounds only, since hB(λ = 0.44) is not proven admissible for

N = 28, 29, 30. The speed up ratio between λ = 0.44 and λ = 0 is more than 2. For

λ > 0.44, for some N , the values found were superior to the values found for λ = 0,

showing that hB is not admissible in such case.

In a second set of experiments, we determined the best values of µ given few values

of λ. We found out that µ = 0.18 was the best value for λ ≤ 0.33. µ = 0.04 was the best

value for for λ = 0.44.

A recent trend in optimal planning is to build heuristic functions based on Linear

Programming (LP) techniques [22]. Our technique looks like potential heuristics opti-

mization [23] in that we maximize a linear combination of weights associated to features

while respecting a set of inequalities corresponding to the admissibility of the heuristic

function on a specific set of positions. However, the domain of burnt pancakes is specific,

we have two weights and, at this point of our work, we did not really need LP to obtain

λ and µ.
LIPADE-TR-3 11

4.3. Seeking for hard positions

The classical way of computing the specific value of g(N) for a specific N lies on

seeking for hard stacks and on observation O1 [5].

4.3.1. Observation O1

Stack B of size N − 1 being given, 2(N − 1) stacks A of size N can be built starting

with B. To build one of them, add a pancake at the bottom of B, either +N or −N (2

possibilities). Then, perform the N-flip that moves the added pancake to the top, and

perform a flip to move the added pancake to any position (N − 1 possibilities).

By applying observation O1, stack A is at most at distance d(B) + 2 from IN , where

d(B) is the distance between B and IN . A search on stack A computes the actual distance

d(A) which can be d(B) + 2 or d(B) + 1.

4.3.2. The sets CM
N

Let us call CM
N the set of stacks of size N requiring M flips to be sorted [5]. If we

know C
g(N−1)
N−1 , the set of stacks at distance g(N − 1), then, by the mean of observation

O1, we may build a set of candidate stacks that can reach g(N − 1) + 2. We perform the

searches on this set. If at least one stack reaches g(N − 1) + 2, then g(N) = g(N − 1) + 2

and we are almost done. We may perform the searches on the remaining stacks of the

set of candidates, and obtain C
g(N)
N . Otherwise, we have g(N) = g(N − 1) + 1. In this

case, if we want to get C
g(N)
N , we have to build stacks and perform the searches starting

with C
g(N−1)−1
N−1 , the set of stacks at distance g(N − 1)− 1, which can take a long time,

but is possible. This process can be iterated.

Since the classical process to compute g(n) is heavy, we design a new light process

that seeks for hard positions. Rather than using observation O1, we define observation

O2.

4.3.3. Observation O2

Considering a stack s of size N − 1, reverse the burnt side of one pancake in s (there

are N − 1 possibilities) or do nothing, and add pancake +N , or −N , at the bottom of s.

This results in 2N stacks of size N .

LIPADE-TR-3 12

4.3.4. Sets BN

Our light process computes sets called BN . BN is the set of stacks of size N that are

maximal according to the length of the solutions, and that are found by our light process

below.

4.3.5. Light Process

Our light process starts with B2 = {−I2}. Then, iteratively, for i > 2, for each stack

s in Bi, it builds all the candidate stacks sc by using observation O2; it searches the

stack sc, and updates Bi+1 according to the result of the search.

Let dN be the distance between any b ∈ BN and IN .

4.3.6. Results

Table 3 gives the set BN of hard stacks. Since our heuristic is admissible for N ≤ 15,

we are sure that dN = g(N) for N ≤ 15. Above the linecut (N ≤ 17), g(N) is known

from the state of the art. We observe that dN = g(N) for N ≤ 17. Therefore, for N ≥ 18,

we only have dN ≥ g(N).

However, we highlight that, for N ≥ 18, BN contains the hardest stacks found by

our light process, whatever their true solution lengths. T is the global time elapsed to

complete the process until iteration N . T grows quickly. However, in a few days, the

process completes iteration 21. We interrupted the process during iteration 22 after 25

days. The size of BN remains small for N ≤ 22, and can be kept in the memory of

the computer. However, |BN | should grow quickly for N > 22. The disproof of Cohen

and Blum’s conjecture is observable by our process, since Y15 and J15 reach the maximal

value 25, but not −I15. For N ≤ 22, −IN is in BN , except for N = 15. The positions

−IN , JN , YN , HN ,M , re-generate themselves from one iteration to the next one.

4.4. Experimental Optimality Ratio

The complexity of the burnt pancake problem is still unknown. When solving a

problem is time exponential in the size of the problem, it is of interest to design time

polynomial and approximate algorithms assessed with R-approximations as low as pos-

sible. The R-approximation of a polynomial-time algorithm A is the greatest ratio

R(p) = LA(p)
Lopt(p)

over all problems p. It corresponds to a worst-case analysis. LA(p)

LIPADE-TR-3 13

is the length of a solution output of A on p, and Lopt(p) is the length of an optimal

solution on p [24]. For the unburnt pancake problem, R-approximation algorithms are

known. [25] describes a 2-approximation algorithm. Furthermore, this algorithm reaches

a 1.22 “experimental R-approximation”, which corresponds to an average-case analy-

sis. [10] describes a Monte-Carlo Search approach that reaches a 1.04 experimental

R-approximation. In the following we call Experimental Optimality Ratio (EOR) these

“experimental R-approximations”.

We call EOR(p) the experimental optimality ratio of an approximate algorithm on a

specific problem p. Since Lopt(p) is generally unknown for large stacks, Lopt(p) is replaced

by the best admissible heuristic value of the literature: #bp. We have EOR(p) = LA(p)
#bp .

We generate several stacks at random (we do not use the hard stacks in BN here). On

this set of stacks, we compute the mean value EOR and the standard deviation. The

standard deviation is roughly 0.05. The two-sigma rule says that the standard deviation

over 100 problems is 0.05×2/10 = 0.01. The values of EOR given below are 0.01 correct

with probability 0.95. On average, the time to solve one problem is at most one minute.

4.4.1. IDA*

IDA* is not a polynomial-time algorithm. However, we give the EOR value for IDA*

for a calibration purpose. The EOR values for IDA* are the references so as to compare

the subsequent EOR values obtained later on. Because #bp is a strictly sub-optimal

value on many stacks, we expect that EOR > 1 for IDA*. Table 4 shows the values of

EOR in N when using IDA* as a solver. We observe that EOR > 1.20.

4.4.2. MCS+Greedy

Greedy performs a depth-one lookahead minimizing the heuristic function #bp. It is

used as level 0 simulations in the MCS framework. Table 5 shows the values of EOR in

N . Lx is the average length of solutions at level x. Tx is the average time in seconds to

sort one stack at level x. At level 0, EOR approximately equals 2. At level 1, EOR is

greatly lowered but the maximal size of the stacks processed is decreased down to 64. At

level 2, EOR is slightly lowered and the maximal size of the stacks processed is decreased

down to 16.

LIPADE-TR-3 14

4.4.3. MCS+EfficientCohenBlum

A better simulator is EfficientCohenBlum Cohen and Blum’s algorithm CohenBlum

enhanced with efficient moves [3]. Cohen and Blum’s algorithm works by pair of moves.

A simple enhancement consists in adding a first pass performing efficient moves while

they exist. An efficient move is a move that creates an adjacency without destroying

another one. Table 6 shows the values of EOR in N . At level 0, the improvement is

slight only. At levels 1 and 2, EOR is significantly lowered. Levels 2 and 3 enable the

solver to find EOR = 1.3 for sizes up to 32. Level 1 processes stacks of size 128 with

EOR = 1.6.

5. Conclusion and Future Work

In this paper, we presented a work performed on the burnt pancake problem. We

have three sets of results. First, we gave the exact values of g(−IN) for N ≤ 27 (previous

values were known for N ≤ 20). Consequently, we obtained lower bounds on g(N) for

N ≤ 27. Secondly, we designed a heuristic function based on adjacencies, anti-adjacencies

and wrong adjacencies. This heuristic function is experimentally admissible for N ≤ 15.

Its admissibility is not proved otherwise. This heuristic function is fast to compute. We

designed a light process seeking for hard positions for N ≤ 22. With the light process

and our fast heuristic function, we found out hard stacks for N ≤ 22. Thirdly, we found

new experimental R-approximation values, or experimental optimality ratio, by using a

MCS approach associated with simulations such as Cohen and Blum’s algorithm. Level

0 simulations give EOR in the range 1.8, 2.0 for sizes up to 256. Level 1 simulations

give EOR in the range 1.4, 1.6 for sizes up to 128. Level 2 and level 3 simulations give

EOR in the range 1.3, 1.4 for sizes up to 16 or 32. These experimental optimality ratio

are complementary to the R-approximation values obtained previously on the unburnt

pancake problem [10]. It is worth noting here, that we do not improve Cohen and Blum’s

R-approximation (2.0) which corresponds to the theoretical worst-case analysis. Instead,

we provide a new experimental optimality ratio which corresponds to an experiental

average-case analysis. This difference is similar to the difference existing between the

Fischer and Ginzinger’s R-approximation (2.0) and their experimental R-approximation

(1.22) observed on average on unburnt pancakes.

LIPADE-TR-3 15

We may pursue our research in several directions. A first direction is to apply our

ideas on the light process computing the diameter to the unburnt pancake problem. A

second one is to see whether other features could be efficiently added to our heuristic

function on the burnt pancake problem while ensuring admissibility with LP techniques

[22] such as potential heuristics [23]. A third one is more general and would consist in

transfering part of our work from the pancake problem toward the genome rearrangement

problem, which is another challenging problem.

References

[1] S. Hannenhalli, P. Pevzner, Transforming cabbage into turnip: polynomial algorithm for sorting

signed permutations by reversals, J. ACM 46 (1) (1995) 1–27.

[2] B. Hayes, Sorting out the genome, American Scientist 95 (2007) 386–391.

[3] L. Bulteau, G. Fertin, I. Rusu, Pancake flipping is hard, in: MFCS, Vol. 7564 of LNCS, 2012, pp.

247–258.

[4] A. Labarre, J. Cibulka, Polynomial-time sortable stacks of burnt pancakes, TCS 412 (2011) 695–702.

[5] J. Cibulka, Average number of flips in pancake sorting, TCS 412 (2011) 822–834.

[6] R. Korf, Depth-first iterative-deepening: An optimal admissible tree search, Artificial Intelligence

27 (1985) 97–109.

[7] W. Gates, C. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math. 27 (1979) 47–57.

[8] D. Cohen, M. Blum, On the problem of sorting burnt pancakes, DAM (1995) 105–120.

[9] T. Cazenave, Nested Monte-Carlo Search, in: IJCAI, 2009, pp. 456–461.

[10] B. Bouzy, An experimental investigation on the pancake problem, in: IJCAI Computer Game

Workshop, 2015.

[11] M. Helmert, Landmark heuristics for the pancake problem, in: SoCS, 2010, pp. 109–110.

[12] A. Caprara, Sorting by reversals is difficult, ICCMB (1997) 75–83.

[13] M. Heydari, H. Sudborough, On the diameter of the pancake problem, Journal of Algorithms 25

(1997) 67–94.

[14] B. Chitturi, W. Fahle, Z. Meng, L. Morales, C. Shields, I. Sudborough, W. Voit, A (18/11)n upper

bound for sorting by reversals, TCS 410 (2009) 3372–3390.

[15] R. Korf, Minimizing disk i/o in two-bit breadth-first search, in: D. Fox, C. Gomes (Eds.), AAAI

2008, AAAI press, 2008, pp. 317–324.

[16] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,

S. Samothrakis, S. Colton, A Survey of Monte-Carlo Tree Search Methods, IEEE TCIAIG 4 (1)

(2012) 1–43.

[17] J. Méhat, T. Cazenave, Combining UCT and nested Monte-Carlo search for single-player General

Game Playing, IEEE Transactions on Computational Intelligence and AI in Games 2 (4) (2010)

271–277.

LIPADE-TR-3 16

[18] T. Cazenave, Nested Monte-Carlo expression discovery, in: ECAI, Lisbon, 2010, pp. 1057–1058.

[19] C. D. Rosin, Nested Rollout Policy Adaptation for Monte Carlo-Tree Search, in: IJCAI, 2011, pp.

649–654.

[20] S. Eliahou, C. Fonlupt, J. Fromentin, V. Marion-Poty, D. Robilliard, F. Teytaud, Investigating

Monte-Carlo methods on the weak Schur problem, in: M. Middendorf, C. Blum (Eds.), ECCO,

Vol. 7832 of LNCS, 2013, pp. 191–201.

[21] B. Bouzy, Monte-Carlo Fork Search for Cooperative Path-Finding, in: T. Cazenave, M. Winands,

H. Iida (Eds.), Workshop on Computer Games, no. 408 in CCIS, 2013, pp. 1–15.

[22] G. Röger, F. Pommerening, Linear Programming for Heuristics in Optimal Planning, in: AAAI

workshop on Planning, Search and Optimization, 2015, pp. 69–76.

[23] J. Seipp, F. Pommerening, M. Helmert, New optimization Functions for Potential Heuristics, in:

25th ICAPS, 2015, pp. 193–201.

[24] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, , M. Protasi, Complexity

and Approximation: Combinatorial Optimization Problems and their Approximability Properties,

Springer, 1999.

[25] J. Fischer, S. Ginzinger, A 2-approximation algorithm for sorting by prefix reversals, in: ESA, Vol.

3669 of LNCS, 2005, pp. 415–425.

LIPADE-TR-3 17

Table 2: Values of g(−IN) for N ≤ 30 with running times for λ = 0.44 and λ = 0.

N g(−IN) hB T (λ = 0.44) T (λ = 0)

2 4 2 0.001s 0.002s

3 6 4 0.001s 0.002s

4 8 5 0.002s 0.004s

5 10 7 0.002s 0.004s

6 12 8 0.012s 0.03s

7 14 10 0.15s 0.3s

8 15 11 0.2s 0.5s

9 17 12 2.5s 5s

10 18 14 2.5s 5s

11 19 15 1.5s 5s

12 21 17 14s 1m

13 22 18 10s 40s

14 23 20 4s 15s

15 24 21 17s 30s

16 26 23 1m15s 5m

17 28 24 5m 15m

18 29 25 7m 20m

19 30 27 11m 1h

20 32 28 30m 30m

21 33 30 42m 1h30m

22 35 31 45m 1h30m

23 36 33 6h 14h

24 38 34 6h 15h

25 39 36 9h 28h

26 41 37 10h 20h

27 42 38 1d 2d

28 ≤ 44 40 2d

29 ≤ 45 41 5d

30 ≤ 47 43 5d

LIPADE-TR-3 18

Table 3: Values of g(N), dN , |BN |, T, and BN .

N g(N) dN |BN | T BN

2 4 4 1 0 −I2
3 6 6 2 0 −I3 J3
4 8 8 2 0 −I4 J4
5 10 10 2 0 −I5 J5
6 12 12 1 0 −I6
7 14 14 1 0 −I7
8 15 15 1 0 −I8
9 17 17 1 30s −I9
10 18 18 1 1m −I10
11 19 19 3 2m −I11 Y11 J11
12 21 21 1 4m −I12
13 22 22 3 6m −I13 Y13 J13
14 23 23 4 30m −I14 Y14 H14,4 J14

15 25 25 2 1h Y15 J15

16 26 26 3 1h20 −I16 H16,4 J16

17 28 28 1 3h −I17
18 29 4 5h −I18 Y18 H18,4 J18

19 30 9 16h −I19 Y19 J19 H19,4

H19,8 H19,10

H19,218+2 H19,218+4

H19,218+8

20 32 3 4d −I20 H20,8 J20

21 33 10 8d −I21 H21,4 H21,16

H21,18 H21,20 J21

H21,220+2 H21,220+4

H21,220+16 Y21

22 35 3 >25d −I22 Y22 J22

LIPADE-TR-3 19

Table 4: IDA*: EOR variations in N . L is the average length of solutions. T is the average time in

seconds to sort one stack.

N L EOR T

8 9.7 1.29 0

10 12.1 1.28 0

12 14.6 1.27 0.03

14 17.0 1.26 0.19

16 19.3 1.24 2.0

18 21.9 1.23 2.6

20 23.4 1.21 5.3

Table 5: MCS+Greedy: EOR variations in N and Level l. Ll are the average lengths. Tl are the average

times in seconds.

N L0 R0 T0 L1 R1 T1 L2 R2 T2

8 13.8 1.83 0 10.5 1.39 0 10.1 1.34 0.01

16 30.5 1.96 0 21.4 1.37 0.01 20.0 1.28 0.58

32 64.1 2.04 0 44.1 1.40 0.14

64 135 2.11 0.01 92.9 1.46 3

128 263 2.05 0.02

256 519 2.03 0.04

512 1037 2.02 0.23

LIPADE-TR-3 20

Table 6: MCS+EfficientCohenBlum: EOR variations in N and Level l. Ll are the average lengths. Ti

are the average times in seconds.

N L0 R0 T0 L1 R1 T1

8 12.9 1.73 0 10.5 1.40 0

16 28.2 1.81 0 21.8 1.41 0

32 59.5 1.89 0 45.8 1.46 0.01

64 122 1.91 0 97.8 1.53 0.05

128 250 1.95 0 203 1.59 0.62

256 505 1.98 0.01

N L2 R2 T2 L3 R3 T3

8 10.0 1.33 0.01 10.0 1.33 0.02

16 20.3 1.31 0.03 19.9 1.28 2

32 40.7 1.29 1.2

LIPADE-TR-3 21

