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Abstract

This paper underlines the association of two computer go approaches,

a domain-dependent knowledge approach and Monte Carlo. First, the

strengthes and weaknesses of the two existing approaches are related.

Then, the association is described in two steps. A first step consists in

using domain-dependent knowledge within the random games enabling the

program to compute evaluations that are more significant than before. A

second step simply lies in pre-processing the Monte Carlo process with a

knowledge-based move generator in order to speed up the program and to

eliminate tactically bad moves. We set up experiments demonstrating the

relevance of this association, used by Indigo at the 8th computer olympiad

as well.

1 Introduction

Over the past years, we have improved our go program Indigo [6] by starting
from the previous year’s version, considering its main defects and trying to
supply remedies. As Indigo is largely based on domain-dependent knowledge, it
has become more and more difficult to improve. Thus, in 2002, we tried different
approaches to build Olga, a very little knowledge go program based on Monte
Carlo simulations. Interestingly, Olga contains very little go knowledge, and,
yet, can be situated on a par with Indigo containing a lot of go knowledge on 9x9
boards [10]. Consequently, it is worthwhile to assess the level of a program that
uses both domain-dependent knowledge and Monte Carlo approaches, which is
the aim of this paper.
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In this aim, section 2 describes the related work: Indigo, a domain-dependent
knowledge approach, and existing Monte Carlo approaches. Then, section 3 fo-
cuses on the description of the programs to be assessed. Section 4 highlights the
results which show that it is possible to successfully associate domain-dependent
knowledge and Monte Carlo approaches within a more efficient go program than
the early ones.

2 Related Work

In this section, we put the emphasis on the strong and weak points of Indigo,
our domain-dependent knowledge based program, and on already existing Monte
Carlo go programs.

2.1 A knowledge based approach

Indigo [6, 5] is a classical go program based on tree search [8] and on extensive
knowledge [9]. For instance, territories and influence are modelled by means
of the mathematical morphology [7]. As most domain-dependent knowledge go
programs, Indigo’s weaknesses lie in a weak global sense that results from the
breaking up of the whole problem into sub-problems. Furthermore, some holes
in the knowledge remain difficult to cover because of interactions between the
various elements of knowledge. Fortunately, relative to its level, Indigo has its
strengthes, such as fighting by using adequate rules to this end, and tactical
ability by using tree search.

2.2 Monte Carlo Go approaches

The existing work about Monte Carlo simulations applied to computer go is
[11, 14] and recently [10]. [11, 14], based on simulated annealing [15], should
be more appropriately named simulated annealing go. [10] is a recent study of
Monte Carlo approaches in its general meaning - using the computer random
function and averaging the results of episodes. The basic idea is: to evaluate a
position by playing a given number of completely random games to the end -
without filling the eyes - and then scoring them. The evaluation corresponds to
the mean of the scores of those random games. Choosing a move in a position
means playing each of the moves and maximize the evaluations of the positions
obtained at depth 1. [10] experimentally proves the superiority of progressive
pruning over simulated annealing. Progressive pruning is based on [2, 3], and
was used in [19]. Each move has a mean value m, a standard deviation σ, a left
expected outcome ml and a right expected outcome mr. For a move, ml = m

- σrd and mr = m + σrd. rd is called the ratio for difference. A move M1 is
said to be statistically inferior to another move M2 if M1.mr < M2.ml. (The
dot means the access to the slot of a data structure). Two moves M1 and M2

are statistically equal when M1.σ<σe and M2.σ<σe and no move is statistically
inferior to the other. σe is called standard deviation for equality. After a
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minimal number (Nm times the number of legal moves) of random games, a
move is pruned as soon as it is statistically inferior to another move. Therefore,
the number of candidate moves decreases while the process is running. The
process stops either when there is only one move left (this move is selected),
when the moves left are statistically equal, or when a maximal threshold of
iterations is reached (N2

m
times the number of legal moves). In these two cases,

the move with the highest expected outcome is chosen. Independently of the
use of progressive pruning, Monte Carlo based go programs such as Olga have
a good global sense but a weak tactical ability.

3 Our Work

Given that knowledge based go programs such as Indigo have a good tactical
ability, and that Monte Carlo go programs such as Olga have a good global
sense, it appeared logical to develop a go program that uses both knowledge
and Monte Carlo simulations to obtain the best of both worlds: a good tactical
ability and a good global sense. From the Monte Carlo viewpoint, starting from
Olga(pseudo = false, preprocess = false), we have built two programs. First,
we replaced the uniform probability based random move generator by a pseudo-
random move generator using little go knowledge, which yielded Olga(pseudo
= true, preprocess = false). Second, we speeded up and enhanced this program
by preprocessing it with a knowledge based move generator available in Indigo,
which brought about Olga(pseudo = true, preprocess = true).

3.1 Pseudo-random move generation

Olga(pseudo = true) uses pseudo-random game simulations. The principle un-
derlying move generation in Olga(pseudo = true) is almost the same as presented
in section 2.2. The difference lies in the way the moves are generated within the
random games. Instead of generating the move according a uniform probability,
Olga(pseudo = true) generates moves according a probability dependent on go
knowledge. To choose a move within a random game, Olga(pseudo = true) uses
move urgencies, and the probability to choose a move is then linear in the move
urgency. The problem is to correctly define the move urgencies. Olga(pseudo
= true) uses rules about string captures and 3x3 patterns to obtain the move
urgencies.

On the one hand, a string with one liberty only, results in a very great
urgency to the move that captures the string. In this case the urgency is linear
in the string size. On the other hand, all the very small patterns of Indigo, that
are included in a 3x3 window centered around a move, are used to build a small
database of 3x3 patterns. Each pattern advises the random move generator to
play the move situated in its center with an urgency accessed in a table. When
neither the edges of the board nor the symmetries and rotations are taken into
account, there are only 38 patterns of this kind. Taking the edges into account,
multiplies this number by 25 at most. Time constraints make it impossible to
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consider symmetries and rotations. Nevertheless, it is easy to set up a table of
move urgencies in the memory of the computer whose access is direct in the 3x3
bit set around the move.

The size of patterns is very small due to time constraints. With 3x3 patterns,
the simulation time is acceptable: twice as slow as the uniform probability based
simulation. For instance, on a 1.7 GHz computer, Olga with string and pattern
urgencies plays 3,000 random 9x9 games per second.

With such go knowledge, the pseudo-random games are more plausible games
than completely random games, which gives a better approximation of the posi-
tion evaluation. The remaining problem lies in the presence of bias while build-
ing the move urgencies. In this context, we reuse the Indigo pattern database,
which has been tuned for several years and whose urgencies are, if not optimized,
acceptable.

The standard deviation σ of the pseudo-random games is roughly the same
as the standard deviation of the simple random games: about 35 points on
9x9 boards, 50 points on 13x13 boards and about 70 points on 19x19 boards.
Consequently, the number of pseudo-random games necessary to obtain a given
precision with Olga(pseudo = true) remains the same as in Olga(pseudo = false).
On 9x9 boards, 1000 games enable our experiments to lower σ down to 1 point
and to obtain a 95% confidence interval of which the radius equals 2 points.

3.2 Preprocessing with knowledge

Since Olga(pseudo = true, preprocess = false) does not use any tree search, it
stays weak tactically. Furthermore, because Monte Carlo simulations are very
expensive to compute with a sufficient precision, this program spends one full
day to play a 19x19 game on a 1.7 Ghz computer. Therefore, to overcome these
two downsides in one move, we added Indigo’s move generator to Olga as a
preprocessor of simulations. This preprocessor selects the Ns best moves and
gives them to the Monte Carlo module that chooses the best move. Obviously,
the tactically bad moves are eliminated by the preprocessor and a small value of
Ns enables Olga(pseudo = true, preprocess = true) to complete a 19x19 game
in a reasonable time.

4 Experiments

This section provides the results of the experiments carried out until now in a
chronological way. Because our initial aim was to improve Indigo2002, we first
present the result of Olga(pseudo = true, preprocess = false) against Indigo
(subsection 4.1) and Olga(pseudo = true, preprocess = true) against Indigo
(subsection 4.2). Then, to highlight the positive effect of knowledge within ran-
dom games, we show the result of Olga(pseudo = true) against Olga(pseudo =
false) in subsection 4.3. In subsection 4.4, we assess our work with a confronta-
tion against a very differently designed program, GNU Go, the well-known go
playing program of the FSF [12]. Finally, in subsection 4.5, to give an idea of
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how a Monte Carlo program plays, we show a 9x9 game between Olga(pseudo
= true, preprocess = true) and its author.

One confrontation consists in a match of 100 games between 2 programs, each
program playing 50 games with Black. The result of such a confrontation is the
mean score and a winning percentage when the number of games performed is
sufficient. Given that the standard deviation of games played on 9x9 boards
(respectively 13x13 and 19x19 boards) is roughly 15 points (respectively 25 and
40), 100 games enable our experiments to lower σ down to 1.5 point (respectively
2.5 points and 4 points) and to obtain a 95% confidence interval. We have used
1.7 GHz computers, and we mention the response time of each program. The
variety of games is guaranteed by the different random seeds of each run of Olga,
Indigo and GNU Go.

4.1 Olga(pseudo = true, preprocess = false) vs Indigo

During the first stage of our tests, we set up games between Olga(pseudo = true,
preprocess = false) and Indigo2002 on 9x9, 13x13 and 19x19 boards. Table 1
shows the results on Olga’s side (+ means a win for Olga).

board size 9x9 13x13 19x19
mean +12 +24 +45
time 20’ 2h30’ 20h

games 20 20 1

Table 1: Results of Olga(pseudo = true, preprocess = false, rd = 1.0, σe = 0.4)
against Indigo2002 for the usual board sizes

On 9x9, while Olga(pseudo = false) matches Indigo [10], Olga(pseudo =
true) is about 12 points better than Indigo. On 13x13, while Olga(pseudo =
false) is 20 points worse than Indigo [10], Olga(pseudo = true) is 24 points
better. This board size is the appropriate one to underline the strength of
Olga(pseudo = true). Due to the length of the game on 19x19 boards, we set
up only one game in which Olga(pseudo = true) playing black wins with 45
points. This game highlights the very different styles of programs rather than
the quantitative result. Olga plays very well globally by circling large areas, and
killing groups whenever it is possible. Thanks to its tactical strength, Indigo
collects points, and takes advantage of Olga’s blind point in tactics. Of course,
due to the very low number of games performed, the results of table 1 are not
statistically significant.

4.2 Olga(pseudo = true, preprocess = true) vs Indigo

In this set of experiments, we assess Olga(pseudo = true, preprocess = true)
against Indigo 2002 in time and level with the three classical board sizes. Ta-
ble 2 provides the results of Olga(pseudo = true, preprocess = true) against
Indigo2002.
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board size 9x9 13x13 19x19
mean +18 +35 +44

% wins 76% 88% 75%
time 1’30” 10’ 1h30’

Table 2: Results of Olga(pseudo = true, preprocess = true) against Indigo2002
for the usual board sizes, Ns = 10, Nm = 50, rd = 1.0, σe = 0.4

Whatever the size of the board, the results of Olga are excellent against
Indigo2002. On 9x9 boards, the mean score is high (+18) while the standard
deviation is also high, resulting in a “weak” winning percentage (76% only).
On 13x13 boards, Olga obtains her best winning percentage. However, table 2
does not shed the light on important parameters for controlling both time and
level of the program. These parameters are Nm, rd, and Ns. In our view, Ns

is the most important parameter, and table 3 shows the results in Ns on 19x19
boards.

Ns 2 4 7 10 15 20
mean -7 +18 +25 +44 +56 +68

% wins 41% 59% 66% 75% 90% 91%
time 15’ 40’ 1h10’ 1h30’ 2h 2h30’

Table 3: Results of Olga(pseudo = true, preprocess = true, Nm = 50, rd = 1.0,
σe = 0.4) against Indigo2002 for Ns varying from 2 up to 20, with 19x19 boards.

Olga(pseudo = true, Ns = 1) corresponds to the urgent method [8] of In-
digo2002 selecting one move without verification. Its level is necessarily inferior
to the one of Indigo2002 that uses a calm method in addition to the urgent
method with verification [8]. Thus, its entry is not mentioned in the table.
Olga(pseudo = true, Ns = 2) selecting two moves with Indigo2002’s urgent
method while choosing the best one by running pseudo-random game simula-
tions, has a great similarity to Indigo2002’s urgent method. This explains the
almost zero mean when Ns = 2. Olga(Ns = 4) and Olga(Ns = 7) are interesting
as they play significantly better on average than Indigo2002 and their execu-
tion time is suitable on 1.7 Ghz computers. With more computing power, Ns

can be higher and Olga(Ns = 10, 15, 20), then, gives good results. Moreover,
other experiments carried out with other values for Nm, rd, and σe show that
Nm < 25 is not acceptable, and that rd > 1.0 is mandatory. σe has not much
importance; its value can be lowered to 0.2 to obtain slightly better results.
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4.3 Olga(pseudo = true, preprocess = true) vs Olga(pseudo
= false, preprocess = true)

By preprocessing, the time used by Monte Carlo programs becomes reasonable.
Thus, the experiment assessing the use of domain-dependent knowledge within
the random games can be carried out on 13x13 and 19x19 boards. Table 4 pro-
vides the results of Olga(pseudo = true, preprocess = true) against Olga(pseudo
= false, preprocess = true).

board size 9x9 13x13 19x19
mean +8 +40 +100

% wins 68% 93% 97%

Table 4: Results of Olga(pseudo = true) against Olga(pseudo = false) for the
usual board sizes, preprocess = true, Ns = 10, Nm = 50, rd = 1.0, σe = 0.4

These results are self-explanatory. They clearly prove that the program
using pseudo-random games is significantly better than the program using uni-
form probability based random games. The greater the size of the board, the
greater the difference between the two programs. On 19x19 boards, the differ-
ence reaches one hundred points in average, which is huge for go standards.

4.4 Olga(pseudo = true, preprocess = true) vs GNU Go-
3.2

This section shows the result of Olga(pseudo = true, preprocess = true) against
GNU Go [12]. We choose GNU Go-3.2 with its default level. Needless to say,
GNU Go remains superior to Olga(pseudo = true, preprocess = true): the minus
signs on the “mean” line of table 5 indicate the superiority of GNU Go over both
Indigo and Olga. But in order to highlight the improvement brought about by
the association of knowledge and statistics over knowledge only, table 5 provides
Indigo2002’s result on the left part, and Olga’s one on the right part. The result
is shown for each classical size.

Indigo2002 Olga(true, true)
board size 9x9 13x13 19x19 9x9 13x13 19x19
% wins 35% 13% 6% 37% 33% 19%
mean -9 -34 -83 -5 -15 -40
time 20” 1’ 2’ 12’ 1h 5h

Table 5: Results of Indigo2002 and Olga(pseudo = true, preprocess = true, Ns

= 10, Nm = 100, rd = 2.0, σe = 0.4) against GNU Go-3.2.

On 9x9 boards, the improvement is not striking: Olga performs four points
better than Indigo only. But, it is important to notice the improvement induced
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by the addition of knowledge within random games: Olga(pseudo = true, pre-
process = true) is only five points worse than GNU Go while Olga(pseudo =
false, preprocess = false) is 34 points worse than GNU Go-3.2 [10]. Furthermore,
the improvement on 13x13 and 19x19 boards is worth being underlined: the gap
between Indigo and GNU Go is reduced by a half, which is a very promising
result. The cost of this improvement lies in the response time: with Ns = 10,
Nm = 100, rd = 2.0, Olga spends 5 hours to play one 19x19 game, while Indigo
plays out a full 19x19 game in a couple of minutes.

4.5 Olga(pseudo = true, preprocess = true) vs its author

Figure 1 shows a game between Olga (pseudo = true, preprocess = true) playing
Black and its author playing White. White played calmly not to crush the
program. In this context, Olga often played good and safe moves. Black 19,
21, 23 were the first strange moves. They uncovered a feature of Monte Carlo
programs: threatening the opponent even if the sequence does not work. At
least, the opponent answered and the program kept the initiative. Black 31 was
the second mistake, always threatening something but finally loosing Black 27.
In the endgame, Black lost its upper left corner but played safely to keep its
group alive.

Figure 1: Olga(Black)-Bouzy(White). White wins by 33 points on the board.

5 Conclusion and perspectives

Starting from Indigo2002, a domain-dependent knowledge and tree search based
program, we set up a new go program, Olga(pseudo = true, preprocess = true)
that associates this domain-dependent knowledge with a Monte Carlo approach.
First, local knowledge is used efficiently to yield the non-uniform probability to
moves within pseudo-random games. Second, a lot of knowledge is used to filter
the moves provided to Monte Carlo simulations, and thereby, avoiding tactical
blunders.
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Table 6 summarizes the results of the confrontations performed between
Olga(pseudo = false, preprocess = true), Olga(pseudo = true, preprocess =
true), Indigo2002 and GNU Go-3.2 for each classical size, assuming that the
program of the column is the max player.

Indigo2002 Olga(true, true)
board size 9x9 13x13 19x19 9x9 13x13 19x19

Olga(false, true) -2 +3 +12 +8 +40 +100
Indigo2002 +18 +34 +44
GNUGo-3.2 -9 -34 -83 -5 -15 -40

Table 6: Summary of confrontations between Olga, Indigo and GNU Go for
each classical board size.

First, table 6 mentions that Olga(pseudo = false, preprocess = true) can
be situated on a par with Indigo2002. Then, it turns out that Olga(pseudo
= true, preprocess = true) is significantly stronger than Indigo2002 but still
weaker than GNUGo-3.2. On 19x19 boards and under reasonable time con-
straints (one hour and a half), Olga(pseudo = true, preprocess = true) ranks
about forty points better than Indigo2002, and one hundred points better than
Olga(pseudo = false, preprocess = true). For 2003, this constitutes a significant
improvement. In such a context, we may say that pseudo-random Monte Carlo
simulations provide the 2003 remedy to Indigo2002’s weaknesses. To attend
the 2003 computer olympiad in Graz [1], Indigo2003 was built by merging In-
digo2002 and Olga(pseudo = true, preprocess = true). Indigo2003 ranked 5th
upon 11 programs in the 19x19 competition [13] and 4th upon 10 programs in
the 9x9 competition [20], thus confirming our idea that associating knowledge
and Monte Carlo is appropriate to computer go.

Considering the ever-increasing power and memory of computers, merely
increasing the size of patterns for pseudo-random games to greater shapes will
surely be relevant in the near future. From the statistical angle, the main
perspective is to generate both the pattern database crucial to preprocessing and
the pattern database for pseudo-random games, both in an automatic manner
by using games available on the Internet as advised by [17]. For instance,
the assessment of how well the 3x3 patterns are at picking good moves could
be done with a bayesian approach by using professional games [4]. Another
possibility to improve the adequacy of move urgencies within random games is
reinforcement learning [18], or more specifically Q-learning [21]. If a remedy
can be found to speed up both Indigo evaluation function and move generator,
then another experiment worth considering would be to replace the full random
games by shallow sequences of moves generated by Indigo and then call the
Indigo conceptual evaluation function. Such an experiment has been performed
with success at Backgammon [19] with “truncated rollouts” using a parallel
approach. From the tactical angle, upgrading our depth-one approach with a
best-first tree search [16] is worthwhile to be integrated within the current work.
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Actually, we already integrated a depth-three global tree search within our 9x9
release that attended the 2003 computer olympiad. Finally, from the practical
angle, determining the best values of the relevant parameters (Ns, Nm, rd, size
of patterns) under time constraints cannot be overlooked, and will require more
experiments.
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