Hanabi: Playing Near-Optimally or Learning by Reinforcement?

Bruno Bouzy

LIPADE
Paris Descartes University

Talk at
Game Al Research Group
Queen Mary University of London

October 17, 2017

Outline

- The game of Hanabi, Previous work
- Playing near-optimally (Bouzy 2017)
 - The hat convention
 - Artificial players
 - Experiments and Results
- Learning by Reinforcement (ongoing research)
 - Shallow learning with « Deep » ideas
 - Experiments and Results
 - Hanabi Challenges
 - How to learn a convention?
- Conclusions and future work

Hanabi Game Set

Hanabi features

- Card game
- Cooperative game with N players
- Hidden information: the deck and my cards
- I see the cards of my partners
- Explicit information moves

Example

NP=3 players, NCPP=4 cards per player

Fireworks	0		1		3	1		2
Deck	22		Blue T	ok. 4		Red Tok.	3	score 7
Trash	1 1	2 3	1 4	2 1	4			
Player 1	1	2	3	1				
Information	Not red	red	Not red	red				
Player 2	4	5	2	1				
Information	Not w.	Not w.	white	?				
Player 3	2	3	2	5				
Information	2	?	2	Not 2				

My own cards are hidden

NP=3 players, NCPP=4 cards per player

3 kinds of move

Play a card

Discard a card

Inform a player with either a color or a height

I choose to play card number 2

NP=3 players, NCPP=4 cards per player

Oops, it was red 2 ==> penalty

NP=3 players, NCPP=4 cards per player

Player 2 to move

NP=3 players, NCPP=4 cards per player

P2 informs p3 with color = red

NP=3 players, NCPP=4 cards per player

P3 informs p1 with height = 1

NP=3 players, NCPP=4 cards per player

P1 chooses to play card 4

NP=3 players, NCPP=4 cards per player

Success!

NP=3 players, NCPP=4 cards per player

Player 2 chooses to discard card 2

NP=3 players, NCPP=4 cards per player

One blue token is added

NP=3 players, NCPP=4 cards per player

Ending conditions

- The number of red tokens is zero
- The score is 25
- Each player has played once since the deck is empty

Previous work

- (Osawa 2015): Partner models, NP=2, NCPP=5, <score> ~= 15
- (Baffier & al 2015) : Standard and open Hanabi : NP complete
- (Kosters & al 2016): Miscellan., NP=3, NCPP=5, <score> ~= 15
- (Franz 2016): MCTS, NP=4, NCPP=5, <score> ~= 17
- (Walton-Rivers & al 2016): Several approaches, <score> ~= 15
- (Piers & al 2016): Cooperative games with Partial Observability
- (Cox 2015): Hat principle, NP=5, NCPP=4, <score> = 24.5
- (Bouzy 2017): Depth-one search + Hat, NP in {2, 3, 4, 5} NCPP in {3, 4, 5}

Playing near-optimally

• The hat principle (Cox 2015)

Depth-one search

Generalize to other NP and NCPP values

The hat principle

- « Recommendation » or « hat » (NP=4)
 - « recommendation » in {play card 1, play card 2, play card 3, play card 4, discard card 1, discard card 2, discard card 3, discard card 4}
 - Public program P1 = elementary expertise of open Hanabi ; P1(hand of cards) → recommendation
 - Each recommendation corresponds to a value h, such that 0 <= h <8
- Information move performed by player P corresponds to a « code »
 - S(P) = the sum of hats that P sees = code.
 - Public program P2; P2(code) → information move:
 - Code=0 : inform 1st player on your left about the first color (red)
 - Code=1: inform 1st player on your left about the 2nd color (blue)
 - Etc.
 - Code=5: inform 1st player on your left about rank 1
 - Code=6: inform 1st player on your left about rank 2
 - Etc.
 - Code=(NP-1) x 10 1 : inform (NP-1)th player on your left about rank 5.
 - P performs P2(S(P)).
 - With the inverse of P2 and the information move performed by P, the players Q, different from P, deduce S(P).
 - With a subtraction, the players Q, different from P, deduce their own hat and their own recommendation.

The hat principle

- Number of information moves (NIM)
 - NIMP : Number of Information Moves per Partner
 - -NIMP = 10
 - 5 colors + 5 heights (many work)
 - -NIMP = 2
 - Color or height (Cox's work)
 - NIM = (NP-1) NIMP
- Importance of the rule set
 - Informing a player with an empty set : allowed or not
 - NIM >= H

Allowing all information moves or not?

- Wikipedia and many sources including our work
 - No forbidden information moves
 - -NIMP = 10
- Cox 2015
 - No corresponding card in the player's hand ==> forbidden information moves
 - Color = Green
 - Color = Yellow
 - Height = 4
 - Height = 5
 - -NIMP = 2
- Commercial ruleset
 - Not mentioned (!)

The hat principle

- « Information » version
 - Hat = value of a « specific » card of the hand
 - Each hand has a « specific » card to be informed
 - A public program P3 outputs the « specific » card of a hand
 - (Highest playing probability,
 - Left most non informed card)
- Ruleset such that
 - NIM >= 25
 - Condition : NP > 3
- Effect
 - A player is quickly informed with its cards' values.
 - As if the players could see their own cards

Artificial players

- Certainty player
 - Play or disgard totally informed cards only (2 infos : rank and color)
- Confidence player
 - Without proof of the contrary, assumes an informed card is playable (1 info)
- Seer player (Open Hanabi)
 - Sees its own card but not the deck
- Hat players
 - Recommendation player
 - Information player
- Depth-one tree search player
 - Use an above player as a policy in a depth-one Monte-Carlo search
 - Uses NCD plausible card distributions
 - (Kuhn 1955) polynomial time assignment problem algorithm

Experiments

- Team made up with NP copies of the same player
- Test set
 - NG games (each with one card distribution)
 - NG = 100 for tree search players
 - NG = 10,000 for knowledge-based players
- « Near-optimality » :
 - approaching the seer empirical score on a given test set.
 - approaching 25 on a given test set.
- Settings
 - 3 Ghz , 10 minutes / game at most
 - No memory issue
 - NCD = 1, 10, 100, 1k, 10k.

Results (knowledge based players)

Certainty (Cert), Confidence (Conf), Hat recommendation (Hrec) and Hat information (Hinf) For NP = 2, 3, 4, 5; NCPP = 3, 4, 5; NG = 10,000

NP		Cert			Conf			Hrec			Hinf	
	3	4	5	3	4	5	3	4	5	3	4	5
2	10.3	10.7	11.1	16.9	16.7	15.8	15.8	16.9	17.8	5.9	6.4	6.7
3	12.9	13.0	13.5	19.4	19.2	17.9	22.8	23.8	23.8	18.7	19.4	18.9
4	14.4	14.7	14.1	20.3	19.7	17.9	23.2	23.5	22.8	24.3	24.6	24.4
5	15.2	14.4	12.8	20.6	19.2	16.8	23.2	22.6	21.0	24.6	24.7	24.3

Hat information, NP=5 NCPP=4, histogram of scores, NG = 10,000

Score	19	20	21	22	23	24	25
%	0.01	0.05	0.17	1.19	3.62	13.66	81.30

Results (depth-one tree search players)

Tree search players using:

Confidence (Conf), Hat recommendation (Hrec), Hat information (Hinf), Seer For NP = 2, 3, 4, 5; NCPP = 3, 4, 5; NG = 100; NCD = 100, 1k, 10k

NP		Conf			Hrec			Hinf			Seer	
	3	4	5	3	4	5	3	4	5	3	4	5
2	19.2	19.4	19.0	16.40	17.38	18.53				23.10	24.46	24.91
3	20.7	21.1	20.4	23.96	24.56	24.70				24.62	24.97	25.00
4	21.5	21.0	19.7	24.34	24.60	24.45	24.72	24.96	24.91	24.91	25.00	24.99
5	22.0	20.4	18.0	24.26	24.30	22.68	24.85	24.92	24.76	24.96	24.98	24.96

Tree search + Hat information, NP=5 NCPP=4, Histogram of scores, NG = 100

Score	19	20	21	22	23	24	25
%	0	0	0	0	0	8	92

Learning by Reinforcement

- Deep Learning is the current trend
 - Facial recognition (2014, 2015)
 - Alfago (2016, 2017)
- Deep RL for Hanabi ?
- Let us start with shallow RL
 - (Sutton & Barto 1998)
- Approximate Q or V with a neural network.
 - QN approach

Relaxing the rules or not

- Always:
 - I can see the cards of my partners
 - I cannot see the deck
- Open Hanabi
 - I can see my cards (seer of previous part)
- Standard Hanabi
 - I cannot see my cards

Neural network for Function Approximation

- One neural network shared by each player
- Inputs
 - Open Hanabi (81 boolean values for NP=3 and NCPJ=3)
 - Standard Hanabi (133 boolean values for NP=3 and NCPJ=3)
- One hidden layer and NUPL units
 - (NUPL=10, 20, 40, 80, 160)
 - Two layers or three-layers were tried, but unsuccessfully
- Sigmoid for hidden units
- No sigmoid for the output
- Output used to approximate
 - V value
 - Q value

Inputs

Always

- 5 firework values, 25 dispensable values
- Deck size, current score,
- # red tokens, # remaining turns
- Open Hanabi
 - For each card in my hand,
 - Card value, dispensable, dead, playable
- Standard Hanabi
 - # blue tokens,
 - For each card in my hand,
 - Information about color, information about rank
 - For each partner,
 - For each card,
 - Card value, dispensable, dead, playable
 - Information about color, information about rank

Inputs

Open Hanabi

NP \	NCPP	3	4	5
any		81	89	97

Standard Hanabi

NP \	NCPP	3	4	5
2		106	121	136
3		133	157	181
4		160	193	226
5		187	229	271

Learning and testing

• Test:

- Fixed set of 100 card distributions (CD) (seeds from 1 up to 100)
- Average score obtained on this fixed set
- Performed every 10⁵ iterations
- TDL: policy = TDL + depth-one search with 100 simulations (slow)
- QL : policy = greedy on Q values (fast)

• Learn:

- Set of 10[^]7 card distributions
- Average score of the CD played so far
- 1 iteration == 1 CD == 1 game == 1 T
 - #iteration = 10^5, 10^6 or 10^7

Interpretation

- QL: Learning average score < Testing average score
- TDL: Learning average score << Testing average score

Q learning versus TD Learning

- Context : Function Approximation
- Goal: Learn Q or learn V
 - TD Gammon (Tesauro & Sejnowski 1989) DQN (Mnih 2015)
 - Theoretical studies: (Tsitsiklis & Van Roy 2000), (Maei & al 2010)
- Number of states < Number of action states
 - Choose TD for an rough convergence and Q for an accurate one.
- Control policy
 - QLearning: the policy is implicit: (epsilon) greedy on the action values
 - TDLearning: the policy is a depth-one search with NCD card distributions after each action state. (NCD=1, 10, 100): computationally heavy
- Q learning architecture
 - One network with |A| outputs. One output per action value.
 - · What is the target of unused actions?
 - All the Q values are computed in parallel. Learning is hard because done in parallel.
 - |A| networks with one output. One network per action.
 - This study

Which values, which target?

- Our definition of V values and Q values :
 - $-V_{our} = V_{usual} + current score$
 - Q_{our} = Q_{usual} + current score
 - Our study : value = expectation on the endgame score
 - Equivalent.
- Target = actual endgame score

Replay memory

- (Lin 1992) (Mnih & al 2013, 2015)
- Idea:
 - Shuffle the chronological order used at timeplay and learn on shuffled examples
 - The chronological order is bad at learning time
 - Two subsequent transitions (examples) share similarities
- After each action :
 - Store the transition into a replay memory (transition = state or action state + target)
- After each game :
 - 100 transitions are drawn at random in the replay memory
 - For each drawn transition perform one backprop step
- Replay memory size == 10k
 - (our « best » value versus 1k, 100k, 1M)

Stochastic Gradient Descent

- Many publications
 - (Bishop 1995), (Bottou 2015),
 - RL with function approximation : Non stationarity and Instability
- Tuning the learning step.
 - NU = constant value ?
 - $NU = Nu_0 / sqrt(T)$
 - · Experimentally proved by our study
 - Better than [constant NU] or than [NU = Nu 0 / T] or than [NU = Nu 0 / (log(1+T))]
 - Many techniques:
 - momentum
 - bold driver
 - ADAM (Kingma & Ba 2014), No more pesky learning rates (Schaul 2013), Lecun's recipe (1993)
 - conjugate gradients (heavy method)
 - This study:
 - Simple momentum with parameter = 0.125 works well for TD and normal Hanabi (NP=3, NCPP=3)
 - ADAM tested but the results were inferior to our best settings.
 - · Minibatches: no

Quantitative results

- Open Hanabi (seer learners)
 - NP players (NP=2, 3, 4, 5)
 - NCPP cards per players (NCPP=3, 4, 5)
- Standard Hanabi
 - Starting with NP=2 and NCPP=3
 - One more card ? (NP=2 and NCPP=4)
 - One more player ? (NP=3 and NCPP=3)
 - The current limit (N=4 and NCPP=3)

Results Open Hanabi (4, 5)

Results Open Hanabi (3, 3)

Results on Open Hanabi

- NP in {2, 3, 4, 5} and NCPP in {3, 4, 5}
- Neural network (average scores +- 0.1 in [19, 24])
- Simple knowl.-based player (av. scores +-0.01 in [20.4, 24.4])

NP \ NCPP	3	4	5
2	19.3	21.0	22.3
	20.49	22.91	24.12
3	21.1	22.1	23.4
	22.08	23.82	24.36
4	21.2	22.8	23.3
	22.75	23.85	24.03
5	21.6	22.9	23.1 *
	22.82	23.42	22.92

Results Standard Hanabi (2, 3)

Results Standard Hanabi (2, 4)

Results Standard Hanabi (3, 3)

Results Standard Hanabi (4, 3)

Results on Standard Hanabi

- NP in {2, 3, 4} and NCPP in {3, 4}
- Average scores obtained by our neural network
 - Average score (QL or TDL ?, NUPL, NU)
- The range [9, 13] corresponds to the certainty player scores

NP \ NCPP	3	4
2	Learn: 12.3 (QL, 80, 10) Test: 13.2 (QL, 80, 10)	Learn: 10.8 (QL, 160, 30) Test: 11.9 (QL, 160, 30)
3	Learn: 8.90 (QL, 40 3) Test: 12.6 (TDL, 80 0.3)	
4	Learn : 1.5 Test :	

Qualitative Analysis

- Open Hanabi
 - Quite easy: the average score is « good » (near 23 or 24)
 - Not perfect : inferior to the hat score.
- Standard Hanabi
 - Playing level similar to the certainty player level
 - Various stages of learning:
 - 1° Learn that a « playing move » is a good move (score += 1)
 - Average score up to 3:
 - 2° Learn the negative effect of red tokens and delay « playing moves » (!?).
 - Average score up to S (S=6, 7 up to 12 or 13)
 - 3° Learn some tactics
 - Average score greater than 15 or 20 : not observed in our study
 - 4° Learn a convention
 - Average score approaching 25 : out of the scope of our study

The challenge

- How to learn a given convention (with a teacher)?
 - Imitation of the confidence player?
 - Imitation of the hat player?
- How to uncover a convention (in self-play)?
 - the confidence convention
 - the hat convention
 - a novel convention

Learning a convention

- Why is it hard?
 - The convention defines the transition probability function from state-action to next state.
 - Within the MDP formalism, this function is given by the environment
 - Here, it has to be learnt ==> Go beyond MDP?
- TDL or QL?
 - TDL + explicit depth-one policy that could use the convention
 - 2 networks : value network + convention network
 - QL the convention should be learnt implicitly with the action values
 - 1 action value network
- Multi-agent RL problem
 - One network per player

Next: (Deep) learning?

- (Deep) Learning techniques to learn better
 - Rectifier Linear Unit (ReLU) rather than a sigmoid
 - ReLU: f(x) = log(1 + exp(x)). (Nair & Hinton 2010)
 - Residual learning
 - Connect the previous layer of the previous layer to the current layer (He & al 2017).
 - Batch Normalization
 - (loffe & Szegedy 2015)
 - Asynchronous Methods
 - (Minh & al 2016)
 - Double Q learning
 - (Van Hasselt 2010)
 - Prioritized Experience Replay
 - (Wang & al 2016)
 - Rainbow
 - (Hessel & al 2018)
- Deep Learning + Novel architecture
 - To learn a Hanabi convention
 - To be found :-)

Conclusions and future work

- Conclusions
 - Playing near-optimally with the hat convention and derived players
 - Scores between 23 and 25 are common for NP = 2, 3, 4, 5 and NCPP = 3, 4, 5.
 - Learning Hanabi in self-play : hard task !
 - Testing the shallow RL approach
 - Preliminary Results for NP=2 or 3 and NCPP=3 and 4
 - Current limit: NP=4
- Future work :
 - Deep RL approach:
 - Extend the current results to greater values of NP and NCPP
 - Learn a given convention
 - Deep RL + novel idea
 - Learn a novel convention in self-play
 - Surpass the hat derived players
 - Focus on incomplete information games
 - Solve Bridge and Poker!

Thank you for your attention!

Questions?

bruno.bouzy@parisdescartes.fr

