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Abstract

The game of Go is one of the games that still withstand classical Artificial Intelligence
approaches. Hence, it is a good testbed for new AI methods. Amongst them, Monte Carlo
led to promising results. This method consists of building an evaluation function by averaging
the outcome of several randomized games. This paper introduces a new strategy, which we
call Objective Monte Carlo, to improve this evaluation. Objective Monte Carlo is composed
of two parts. The first one is a move-selection strategy that adjusts the amount of exploration
and exploitation automatically. We show experimentally that it outperforms the two classical
strategies previously proposed for Monte Carlo Go: Simulated Annealing and Progressive
Pruning. The second part of our algorithm is a new backpropagation strategy. We show that
it gives better results than Minimax in this context. Finally we discuss the extension of this
method to other problems.

1 Introduction

Go is a 4000 years old game with simple rules. Nowadays, it is played by more than 40 million
people, mostly in Asia, and there are hundreds of Go professionals. In Japan, China, and
Korea, several TV channels and newspapers are dedicated to this game. Due to its simple
rules and its fascinating structure, it constitutes an ongoing challenge for AI researchers. Up
to 40 programs compete on various servers on the Internet, and during the Computer Games
Olympiad, Go programs form the second-largest group after Chess. Despite the simplicity
of the game, and the research effort, computer programs remain weaker than in other board
games [14]. The reasons for this are: (i) the complexity of the evaluation function, and (ii) the
size of the search space.

1.1 Search and Evaluation

The classical search paradigm for computational games is based on two tools: an evaluation
function, and the Minimax back-propagation rule. The aim of these tools is to perform as much
pruning as possible, e.g., as in @ — 3 search [15] and Proof-Number search [1]. Using these
techniques, strong programs have been made for games like Checkers, Draughts, Othello, and
Chess. In Go, all existing evaluation functions are highly biased. Hence, the classical concept
of evaluating at the leafs of a tree does not work as well as in other games. Therefore, whereas
research on the game of Chess has concentrated on the way of expanding the game tree, in the
game of Go the quality of the evaluation function has a more important role. Monte Carlo
evaluation functions are shown to lead to rather precise evaluations, and therefore are used in
many programs.! They consist of playing random games from a position, and inferring the
value of this position from these games. In this paper we propose and test a move-selection
and a backpropagation strategy which both improve the quality of Monte Carlo evaluations.

LINDIGO, the Go program by Bruno Bouzy, was ranked 3 out of 9 in the Computer Olympiad 2005 in Taiwan.
VIKING, OLEG, VEGOS, GOLO1S, CRAZYSTONE, G081, and MANGO are other examples of Monte Carlo Go programs.



1.2 Structure of the article

In Section 2, we present the structure of Monte Carlo Go architectures, and algorithms pre-
viously used to improve them. In Section 3, we introduce Objective Monte Carlo. In Section
4, we report on the experiments and their results. Section 5 contains the discussion. Finally,
Section 6 concludes and proposes ideas for future research.

2 Related work

In this section, we first present the canonical structure of Monte Carlo Go algorithms. Then
we underline research ideas that have been developed to improve them. Finally we describe
the main related algorithms that have previously been applied.

2.1 Monte Carlo Architectures

In computer games, one possible Evaluation Function (EF) is the Monte Carlo method. Given
a board position B, its aim is to compute a value V(B) for this position. Starting from the
position B, MC plays a certain number of simulated games. A simulated game is a succession
of moves (called simulated moves), played until the end of the game is reached.? The MC
evaluation V(B) is then deduced from the results of all the simulated games. In the simplest
version, simulated moves are random moves, and V(B) is the average of the outcomes of the
simulated games.®> This approach leads to a rather simple program. This program only uses
the rules of the game but is nevertheless stronger than human beginners.

2.2 Research on Monte Carlo Evaluation

The aim of research on MC evaluation is to improve the level of this method by different
techniques. We distinguish three kinds of enhancements:

1. Integration of domain-dependant knowledge (DDK) in simulated games. Examples of
DDK in the game of Go are patterns, tactical goals, or local heuristics [13, 8, 10]. To
improve the quality of the simulated games, random simulated games can be replaced by
pseudo-random games in which moves are chosen partially at random and partially using
DDK. A typical implementation gives DDK-weights to each move [2]. In the simulated
games, the probability of playing a move is the weight of this move divided by the sum
of the weights of all possible moves. In earlier research, DDK-weights have been set
manually. Lately research has concentrated on learning these weights automatically [6].

Similar techniques are used in Poker [9], Scrabble [16], Bridge [17], etc. This method of
enhancement will not be discussed any further in this article, which will focus on the two
other methods.

2. One can use the results of previous simulations to choose the move played in subsequent
games. The basic idea consists of selecting the move that has shown to lead to the
best results more often. This idea was first developed for the game of Go by Briigmann
[7]. He used Simulated Annealing (SA) [11] to build a move ordering. Due to lack of
computational power at the time, he made an approximation called “All-move-as-first
Heuristic”, which attributed a value to each move independently to the order in which it
was played. This idea was taken over by Bruno Bouzy, who applied Progressive Pruning
(PP). He showed in [3] that the All-move-as-first Heuristic was not useful anymore with
the increase of computational power. In [4], he used PP in a depth-N context with N
stages of evaluation and N — 1 stages of selection. On the contrary, the algorithm that
we propose does not make any distinction between a stage of selection and a stage of
evaluation, but a smooth transition from evaluation to selection. Classical ways to use
this kind of information are discussed further in this section. Our algorithm is described
in detail in subsections 2.3.

2Tt is possible to develop different approaches. For instance, SLUGGO does not play until the end, but only 16
simulated moves. Then it calls the EF of the open-source program GNUGO. This EF is quite slow. Furthermore,
the simulated moves are played using GNUGO, which slows down the whole process. In fact, SLUGGO only acts as a
meta program. For these reasons, SLUGGO needs a cluster of PCs to run.

3Some programmers use the average of the final scores, others use the winning percentage. It seems that a lot of
factors impact this choice. In our program, the average of the final scores leads to a better program. Hence, all the
experiments made here use this criterium.



3. We show in this article that it is also possible to improve the backpropagation function.
This issue will be discussed in Section 3.

2.3 Move-selection Strategies

The idea behind these strategies is to increase the ability of the Monte Carlo evaluation to
look ahead by exploring the more promising moves first. Before describing the strategies, a
statistical background is required.

Each game ¢ that is played has a result R;. Let R be the random variable which takes the
values R;. The R; values are bounded, so R has an average value p and a standard deviation
o. In the case of 9 x 9 Go, R; € [—81,81] and o is usually lower than 40.

wThe Central Limit theorem states that the standard deviation of the random variable m,, =

Zi:l Ri

n

approaches % when n approaches co. Furthermore, the probability distribution of

my approaches the normal distribution N (u, W) Thus, a confidence interval for m., can be

deduced. Let ms be the value of the average that we would expect after an infinite number of
stochastic games. There is 66% of confidence that m o is within the interval [mn— %, mn—l—%],
95% of confidence that mo is within the interval [m, — 2 - %, mn + 2 - =], etc. Progressive

Pruning and Objective Monte Carlo are based on the results provided by this theorem.

2.3.1 Progressive Pruning (PP)

Progressive Pruning (PP) is a strategy used in the Go program of Bruno Bouzy, INDIGO [5]. It
first associates a confidence interval to each move. The lower bound of this interval is V — %,
and its upper bound is V + %, where V' is the current evaluation of this move, n is the
number of games simulated from this move, o is the standard deviation on the value of one
simulated game, and A is a parameter. In the beginning, every possible move is played the
same number of times. For each move m, when the upper bound of the confidence interval
of move m is below the lower bound of the best sibling move, m is pruned. The size of the
confidence interval is in proportion to <=, so when n approaches co, every move is pruned,
exept the best move. When A is small, the algorithm is fast, because it prunes quickly several
moves. However, it might also prune the best move. When A is large, the probability that it

prunes the best move decreases strongly, but the algorithm becomes slower.

2.3.2 Simulated Annealing (SA)

This strategy, derived from physics [11], has been used for the first time in the field of Computer
Go by Briigmann [7]. Its main conception is the following. In each step, a random action is
carried out. This action changes a certain energy function E. Let AFE be this change. If
AFE < 0 the action is kept, otherwise it is kept only with the probability e#, where T is
the current temperature. The strategy starts with a high temperature, which is then lowered.
In the context of computer Go, each action is playing one move. If the energy function is the
current evaluation of the move, then SA works as follows:

e A random move is made.

e If it is considered as the current best move, it is kept, and the simulated games continues.

—AFE —AE
e Otherwise there is a probability e 77— to keep it, and a probability of 1 —e ™7 to undo
it. That means that the probability to keep the move is high if its current evaluation is
near the evaluation of the best move.

The best annealing schedule has to be found experimentally.

3 Objective Monte Carlo

Objective Monte Carlo (OMC) is composed of two parts: a move-selection strategy, and a
backpropagation strategy. In this section, we describe in detail these two new strategies. They
will be tested independently in the next section.



3.1 DMove-selection Strategy of OMC

The idea behind the move-selection stage of OMC is to exploit as much as possible the infor-
mation provided by the Central Limit Theorem. We first give the pseudo code (see Algorithm
1), and then explain its main conception.

Data: Previous simulated move
Result: Next simulated move

Oy; < value_of the_current_best_child
foreach child move m € M do

Vin < current_value_of_move_m
Om «— standard-deviation_of _V,,

Un(Oyy)  Brfe(2Ym)

end

foreach child move m € M do
UM(Obj)

EieM Ui(Ov;)

P, —

end
Choose the next simulated move randomly according to the probability P, for m € M.

Algorithm 1: Move-selection Strategy of Objective Monte Carlo

In this algorithm Er fc stands for the complementary error function, i.e.,

Erfe(z)=1- % /:O e du

For each possible score S, the Central Limit Theorem provides an approximation of the
probability that the MC evaluation is S. Let D,,(S) be the density function that gives the
probability of a move m to have the average value S. D,,(S) has the normal distribution
N(Vp, %), where V,,, is the current evaluation of the move m, and o is the standard deviation
of V.

Let Op; be an objective score that the player aims to achieve. Using the distribution
D (S) = N(Vin, %), we can compute the probability of the move m to be superior to Oy;.
Let us call this probability U (Os;). We have:

25, Dn(@)

2=0y;

T D)

r=—00

Um(Osj) =

In Objective Monte Carlo, Uy, (Op;) is considered as the urgency of a move, its importance.
Thus the probability to chose the move is calculated according to these values, as shown in
Algorithm 1. As can be seen, we approximate Uy, (Op;) by the Erfc function. This function
would be too long to compute in real time, hence the Er fc values are stored in a table.

3.2 Backpropagation strategy of OMC

In this section we discuss how to build a backpropagation function better than Minimax for
the MC context. This backpropagation strategy gives the value of move m according to the
values and standard deviations of its children (see Algorithm 2). In a MC environment, when
few simulations have been made, all the values calculated for the children are nearly random.
Thus, the Minimax values measured for all children is the max of random numbers. Thus, it
gives an overestimated value of the position. To avoid this error, the value returned by the
backpropagation strategy should be close to the average value of the children in the beginning
of the experiments. When the number of simulations made tend to infinity, on the contrary
the value measured are perfectly acurate. So the context is exactly a Minimax context. Thus,
when more simulations are made, the value returned should tend to the Minimax value.
In the beginning, all the urgencies U, are nearly equal. So V,, can be approximated by:

ZpGIW Vo - Np
ZPGIW Np

Therefore in the begining, the value of the move m is the average value of its children.

Vi =




Data: Values of the children of m
Result: Value of m
foreach child move ¢ of m € M do
| Compute the value of U.(Obj) according to Algorithm 1.
end
N, «— Number_of_games_played_with_move_c
> UeVeNe
Vm — ce M

E U.-N.
ceM
return V,,

Algorithm 2: Backpropagation Strategy of Objective Monte Carlo

Moreover, when the number of moves tends to infinity, Up,(Oy;) tends to 3 if p is the best
move, and to 0 else. * Thus this backpropagation tends to a Minimax backpropagation when
the number of games played tends to infinity.

As a conclusion, this backpropagation strategy makes a soft transition from the average
value to the Minimax value. This formula can only be applied in the case of Objective Monte

Carlo, where it is possible to compute the probabilities U..

4 Experiments

The aim of the experiments is to evaluate the strategies discussed in the previous section. In
the first experiment we evaluate the impact of the move-selection strategy, and in the second
experiment the backpropagation strategy. We have randomly selected one hundred positions
from games of human players. The level of the selected players is about the same as the level of
computer programs. This level was chosen to use positions as close as possible to the positions
which the program will actually encounter.

4.1 Experimental setup

For each position, we first calculate an accurate evaluation of this position at depth one. To
that prospect, we develop a tree at depth one, and then from each leaf launch a classical
Monte Carlo evaluation. This classical program will be called MC-Minimax. The number of
stochastic games played is 200, 000 per leaf node. The standard deviation of the score for a
game of Go is below 40, so, according to the Central Limit theorem, the standard deviation on
the MC-Minimax’s value is less than 0.1 point. As it is an accurate evaluation of the position,
in this paper we call this value the “real value” of the position.

Then, all the strategies are launched on all positions. For each pair of a position and
a strategy, we consider the evaluation that the strategy gives minus the “real value” of the
position. Finally, for each strategy we average over all positions. Hence, the value 0 represents
a perfect evaluation of all positions, and positive values represent the average errors.

With time settings used in tournaments, we find that the maximal number of simulated
games that can be performed for one evaluation with a 3GHz processor is less than 20, 000.
Therefore this value is used as the maximum number of simulated games.

4.2 Results: Move-Selection Strategies

In this subsection, move-selection Strategies are evaluated at depth one. For all these strategies,
the value returned is the Minimax value of the child nodes. The results are reported in Figure
1.

Several parameters had to be tuned. For SA it was important to select an adequate anneal-
ing schedule. If the annealing is too fast, the strategy does not converge to the real value of
the position. If it is too slow then it converges to an accurate limit but very slowly. We tested
16 different annealing schedules and reported the best one (balancing speed and accuracy of
convergence). For PP, a size for the interval of confidence has to be chosen. We used the one
which is used in Bruno Bouzy’s program, INDIGO, because it has been carefully tuned. If this
confidence interval is too small, it can happen that good moves are pruned, and the strategy
does not converge to 0. If the confidence interval is too big, the convergence will be slower.

4This can be deduced from Algorithm 1.
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Figure 1: Convergence of Simulated Annealing, Progressive Pruning and Objective Monte Carlo

The OMC move-selection strategy converges faster than the other strategies. With the
parameters used, PP converges slower but to an accurate limit. SA (resp. PP) could converge
faster with a faster annealing schedule (respectively a smaller confidence interval). However
then they would converge to a worse limit, because in some situations the best move would be
pruned. OMC, on the contrary, never prunes any move.

4.3 Results: Backpropagation Strategies

We compare OMC backpropagation with Minimax backpropagation. The results are shown in
Figure 2. The first thing to note is that OMC backpropagation improves considerably on the
results when few simulations have been made. Furthermore, OMC Backpropagation is more
accurate than Minimax backpropagation whatever the number of simulated games performed.

5 Discussion

In this section, we first point out the caracteristics of Monte Carlo methods compared to
classical methods. Then we focus on the specificity of our algorithm. Finally we discuss how
to apply our strategy to other problems.

Monte Carlo methods have the drawback to be slow. Indeed, the number of simulated
games to be performed is important. Thus, Monte Carlo programs are only able of performing
shallow tree searches [4]. However, they are known to be particulary robust [3], so their lack
of ability to look ahead is balanced by their ability to avoid global blunders. In this context,
increasing the speed of convergence and building a new suitable tree search constitute two
milestones.

To that perspect, OMC brings several improvements. Mostly it converges faster than usual
strategies, and does not require any parameter to be tuned. In addition it presents two other
advantages. First, this strategy can be applied in every node of the game tree. As it needs to
store information about the values of the child nodes, the number of nodes in which it can be
applied is proportional to the available memory. In our computer, we could apply it on 500,000
nodes, which corresponds to an average depth of three. This strategy is more efficient when
it is applied near the root node since the gain is related to the number of simulated games
performed. We have shown the significant addition of our strategy at depth one. Our next
research question will be to assess it at depth N for N > 2.
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Figure 2: Convergence of OMC with Minimax backpropagation and with OMC backpropagation.
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Another advantage of the OMC strategy is that it can adapt its style of play depending
on who is winning. This can be done by adjusting Oy; slightly. If our program’s EF evaluates
that the program is winning, then it is not important to evaluate how much it is ahead. The
crucial point is to avoid mistakes. The opponent must make a very good move to come back.
Thus, the Monte Carlo strategy should explore the “dangerous” moves more often. This can
be achieved by increasing the objective Op;. Thus, changing Oy; relative to the best successor
node can make the program play in a more secure way, or in a more competitive way. This
introduces a bias in the evaluation. However, this kind of bias can be useful, as the program
would control it. For instance, if the program is winning, it is better to have an overestimated
evaluation of the moves of the opponent than an unbiased evaluation, because it induces a
more secure style of play. Another research issue will be to find an algorithm that adjusts this
bias automatically.

The framework we developed in this article can be applied to different kinds of adversarial
problems, since it only uses simulations, and statistics from these simulations. However, when
it is possible to build an accurate evaluation function, as in most of board games, classical
methods still perform better than Monte Carlo ones. We believe that Real Time Strategy
(RTS) games are in some cases a good candidate for Monte Carlo methods, since it can be
hard to build an accurate evaluation function. An application of Monte Carlo methods in RTS
can be found in [12].

6 Conclusion and future research

In this paper we introduced the Objective Monte Carlo move-selection strategy, which out-
performs the classical strategies, without any need to tune any parameter like an annealing
schedule or a confidence interval. Indeed, the only parameter of this strategy, Ou;, is adjusted
automatically. Then we proposed a backpropagation strategy better than Minimax for the
OMC context. This algorithm has been implemented in our Go program, MANGO, and its
level will be assessed in future computer Go tournaments.

The use of this selection strategy and the backpropagation strategy leads to a tree search
that does not require any evaluation function. Hence, this can be applied to any game where it
is difficult to create an evaluation function without parameter tuning. Assessing the ability of
Objective Monte Carlo to look ahead is our first topic for future research. Our next research
topic is to apply this strategy to other games than Go. Another research issue is to adjust
automatically the value of the objective to take into account the fact that the program is



winning or losing.
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