Playing Amazons Endgames

Julien Kloetzer!, Hiroyuki lidal, and Bruno Bouzy?

ABSTRACT

The game of the Amazons is a fairly young member of the clagsratory-games. Since there
is very few human play, it is difficult to estimate the level @irrent programs. However, it is
believed that humans could play much stronger than todaygrgms, given enough training and
incentives. With the more general goal of improving the pigylevel of Amazons programs in
mind, we focused here on the playing of endgames situat@nscomparative study of two solvers,
DFPN and WPNS, and three game-playing algorithms, Minimatk Wipha/Beta, Monte-Carlo
Tree-Search and Temperature Discovery Search, showswattieough their computing process
is quite expensive, traditional PNS-based solvers areshtsd for the task of finding moves in a
subgame, while no specific improvement is needed to cldggrae-playing engines to play well
combinations of subgames. Even the new Amazons standardofeMCarlo Tree-Search, despite
showing often weaknesses in precise tasks like solvingjleaimazons endgames pretty well.

1. INTRODUCTION

The game of the Amazons is a young territory-based game withnae tree siZecomprised between those
of Chess and Shogi (Japanese Chess). Like for Shogi, sestemal programs already exist but cannot yet
consistently beat strong human players.

Like the game of Go in the category of territory games, the @aifithe Amazons has witnessed the arrival of
Monte-Carlo Tree-Search (MCTS) in the field of game programgmand new strong programs have already
emerged (Kloetzer, lida, and Bouzy, 2007; Lorentz, 200&inhy thanks to the huge quantity of work that was
done to improve MCTS for the game of Go. But these studiesidfteus on making a strong game-program able
to play well during a whole game; few worked on improving sapecific parts of the game like the endgame.

For the purpose of building a strong Amazons program, ptawiell in the opening and in the middle game are
not sufficient. Playing optimally in the endgame is also viemportant if one is to consider beating top human
players. However, among techniques varying from preciaecheengines such as DFPN to sample-based such as
MCTS, itis not clear which is optimal to tackle the problentiud endgame in the game of the Amazons. MCTS
has been shown effective for solving Go problems (Zhang ar@h(C2007) but this method is also nhowadays the
standard for the game itself.

In this paper, we will study traditional techniques, DFPNa@idi, 2002) and minimax with Alpha/Beta (Knuth and
Moore, 1975) as well as newer ones such as MCTS (Coulom, Zli&5slotet al., 2008) with UCT (Kocsis and
Szepesvari, 2006), WPNS (Uedeal., 2008), and Temperature Discovery Search (TDSjil{&4, Enzenberger,
and Schaeffer, 2004), with the goal of finding the one leatbirie best playing of both single subgame situations
and combinations of subgames. The main goal still being tid bustrong game-playing engine for tournament
conditions by adding to it a powerful endgame-playing eagime focus here on realistic endgames situations,
not specifically balanced for one player, and playing in tgditime. We shall also see if the new Amazons
standard of MCTS (Kloetzest al., 2007; Lorentz, 2008) can keep up even with this difficulktas

We will introduce in Section 2 basics about Amazons subgaandshow to play them well or solve them. Sec-

1Research Unit for Computers and Games, JAIST, j.kloetza@igist.ac.jp

2LIPADE - UFR de matématiques et d'informatique, UniversiReré Descartes, bruno.bouzy@parisdescartes.fr

3Although no clear estimation has been made, the game tree cdtypéxhe game of the Amazons can be estimated to around
10165 (Avetisyan and Lorentz, 2003)

2 ICGA Journal Submitted

tion 3 will present our experiments to tackle the task of pigyvell in a single subgame, while the experiments
of Section 4 will deal with the task of playing well in a comation of subgames. The conclusion follows in
Section 5.

2. AMAZONSSUBGAMES

2.1 Thegame of the Amazons

The game of the Amazons, also called Amazons, is a two-plgrministic game with perfect information.
It is usually played on a0 x 10 board, each player controlling 4 Amazons, moving like QeearChess (any
number of squares in any direction). In turn, players moweafrtheir Amazons, then "shoot an arrow” from the
landing square of the Amazon, in any direction, any numbaigofires away (see Figure 1 for a move example).
From this point onward, the square on which the arrow lantisked, which prevents any further move or shot
on or through that square. The first player unable to movesld®egame, at which point it is usually agreed that
the score of his opponent is the number of moves he can stiérafier the pass.

Figurel: Left: An Amazons middle game position; the last move was(&®azon move) + 3 (shot); Right: An
Amazons endgame position

Some strategical aspects of the game include reducing thditnof the opponent’s Amazons while improving
its own and creating territories (the position on the righFigure 1 has two territories on the left, one for each
player). To this extent, Amazons is a territory game, like game of Go. A second aspect on which the game is
similar with Go is its high complexity: the game is shorteraffimum 92 plies, usually 60-70), but its branching
factor is very high: there are more than 2000 different mdoethe first player. But, unlike the game of Go, some
strong game-programs already exist, mostly because isisrda design an evaluation function (Hashimettal .,
2001; Lieberum, 2005).

The game of the Amazons usually reaches a point where thel [maplit into distinct regions, each one con-
taining Amazons which can no longer interact with other Aorezin other regions: we will call these regions
subgames. For example, the position on the right of Figurasifbur subgames: two one-player subgames on
the left side, one subgame on the bottom right, and the lastrothe center and around. To play well in such a
position, it is necessary both to be able to play optimabygét the best score) in each subgame and to be able to
choose the best subgame to move into. Since those have reciide whatsoever with each other, it is possible
to apply combinatorial game theory (Conway, 1976) to knoe/\thlue of the main game and which subgame
should be played first.

2.2 Solving subgames

Solving an Amazons subgame falls into one of two categodepending if the subgame contains one or more
Amazons for only one player or for both. With only one playke goal is to fill the territory of the subgame with
the maximum possible number of moves. The difficulty thereappin the case of defective territories, in which
the configuration of the Amazon(s) and the arrows does notvdte player to fill every square of it. Defective
territories have been investigated in detail ifilMr and Tegos (2002). Now, if both players have Amazons in
the subgame, and if this subgame is considered in isolat@mn bther parts of the game, the goal is to get the
maximum moves out of it compared to the number of moves tlediponent will get. Quite often, the situation
ends with two or more one-player subgames, and the playhrthétbiggest territory will then win.

The goal of two-player subgames being multi-valued andwottalued, traditional and/or search methods such
as PNS cannot be used as-is. Instead, we must modify thedhsgacess as described in Allis, van der Meulen,
and van den Herik (1994): given a result to prove (e.g. whiteswy 5 points), we tag leaf nodes as true if their
value is equal or superior to this result, and false otherwiBhe search for the best result is then an iterative
process: we try first to prove the minimum possible resulAfimazons, a loss for the first player by a number of
points equal to the number of empty squares in the subgahes),jncrease it until we can disprove the result to
try. The value of the subgame is then the latest result tieedearch was able to prove. This obviously requires us
to be able to order and enumerate the different possiblétsesthich is fortunately the case for all score based
games similar to the game of the Amazons.

Specifically for the game of the Amazons, several improvamean be made to speed up the search. This
consists mostly in tagging true or false internal nodes efgbarch tree, either because the result is already
proved or because it will be impossible to prove it. Consitgra position where we want to prove that a player
P can win byN points, we propose the following rules:

o After player P passes, the node can be tagged as false.
o If player P has been able to play moves after a pass of his opponent, the node can be taggectas tr

o If player P is to move while his opponent did not yet pass and there aigtlgtiess thanN empty - or
reachable - squares on the board, the node can be taggedeas fal

2.3 Playing Amazons endgames

Playing well in Amazons endgames supposes to play well fotasks: the first one, as presented above, is to play
well into a single subgame, be it one- or two-player. For thgk, it is possible either to use a traditional solver
(adapted with the procedure presented in Section 2.2) likeffNumber Search (PNS) (Alliet al., 1994) or
some of its variants, or to use a more traditional Amazongenge it a traditional Alpha/Beta engine (Lieberum,
2005) or a more recent MCTS engine (Kloeteeal., 2007; Lorentz, 2008).

Next to playing well in one subgame, there is the problem oatwiove to select if we play in a position
composed of several subgames. Two methods can be usedheefest one is to use traditional game-engines
like presented before to handle the task of choosing thé sigihgame while at the same time choosing a move.
The second one is to choose a subgame first and then use amdrteetielect a move inside the chosen subgame.
For example, the Hotstrat heuristic consists in playing thie subgame which has the highest temperature in
the sense of combinatorial game theory. Simply put, a subgarhotter when it is more urgent to play in it
compared to other subgames. Precise computation of theetatope of each subgame is unpractical, but it
is possible to use an algorithm such as Temperature Disc@&earch (TDS) (Mller et al., 2004) to get an
estimation of the temperatures we need, then perform alarad thus deeper - search inside the subgame with
the highest temperature to find the best move in it. Sincedbdapgether we will often mix the heuristic with the
implementation in the next sections, thus calling TDS thalomation of Hotstrat, TDS and a local search.

3. PLAYING RIGHT IN ONE SUBGAME

The following sections will describe our experiments tcktathe problem of playing well into a single subgame.

4 ICGA Journal Submitted

3.1 Experiment settings

Amazons is still a young game for which no extensive knowdedgtabase or book exists. More specifically,
there exists no database of problems suited to our taskhEquurpose of this experiment, we created a database
of positions extracted from game-records of self-play of program Q\MpPYA. Reading one game-record, a
position was extracted as soon as it corresponded to thezioritpreviously defined (such as: "One Amazon
against two”).

Following this procedure, we created a database of aroufd fealistic positions. These positions are of size
(number of empty squares) 2 to 50, and each of them gave bi&ttptoblems, with each side going first. Each
problem was solved using a simple PNS solver given unlintited. We had, however, to reject around half of
the problems either because they were in insufficient nuntbegpresent their size or mostly because we were
unable to solve them in reasonable time. This left us withrexmately 1300 remaining problems (not to be
confused with the original 1300 positions) of size 2 to 21.e Tstribution of those problems can be seen in
Figure 2.

250

200

2 3 4 a5 -1 7 g g 10 1 12 13 14 13 16 17 15 148 20 21

Figure 2: Problems count by size

15

L]

10

Problems count
(]

5

L]}

For this experiment, we compared 2 traditional solvers agare-playing engines. The first two are a traditional
DFPN solver (Nagai, 2002) and a depth-first version of a WPN\Mes@Uedaet al., 2008), a recent work on PNS
showing promising results. Both are using the Amazons fipeéaiprovements presented in Section 2.2. The
other two are a traditional Alpha/Beta game-playing endirséng Iterative Deepening, a Transposition Table,
move ordering mostly based on the moves evaluations, ameafdrpruning such as described in Avetisyan
and Lorentz (2003)), and an MCTS engine based on our programpP&a (which main features are described
in Kloetzeret al. (2007)). Both use the same evaluation function based omgdistance as an approximation
of the territory such as described in Lieberum (2005).

3.2 Assessing the different methodsinvolved

All four algorithms were evaluated on the database of problpresented in Section 3.1. Each of the algorithms
was given the same quantity of time: 5, 10 or 20 seconds dépgad the setup, to find a move for each problem.

Each of the algorithms was assessed the same way: for a giwblem, we first get a move out of each of them
(the best move chosen by a game-playing engine, or the mowngrthe best result obtained in the iterative
process for the solvers). Then, if that move is not found indatabase, we evaluate the position resulting from
playing it with a more powerful solver - a traditional PNSs®i given unlimited time - and compare it to the
value of the original problem. The value can only be equalwliich case one of the best moves was chosen - or
less - in which case we can set the difference between bathses the error made by the algorithm assessed.

Using the procedure presented in Section 2.2 to solve aguroble get two informations: the best move selected
by the solver and the last result that the solver was abledeepin its iterative process. This is, in a way, the
evaluation of the problem by the solver. This evaluationtlm@apxact or just a minimum. We could assess both our

solvers - DFPN and WPNS - using this evaluation; however, vealdd against it and chose to evaluate the same
way solvers and game-playing engines as presented aboeefir§treason is to keep the comparison clear by
comparing similar informations, and the second is becewere tare situations in which a solver can easily prove
that a move can win by a certain score but not prove that thigerisoptimal for the best score (see Figure 3 for
an example). In this case, assessing a solver by its retesraddation would be unfair to it. Since our first goal
is to play well in the endgame, it made sense to only considentove returned by a solver to assessit.

Figure 3: Proving that this move wins in this position is less diffidihlan to prove that it indeed leads to a score
of 5 points

3.3 Reaults

Table 1. Percentage of problems correctly answered for each #hgorand (average error) for those wrongly
answered

5seconds | 10 seconds| 20 seconds

DFPN 92.09 (3.49)| 93.65 (3.26)| 95.12 (2.97)
WPNS | 95.92 (2.39)| 97.18 (2.34)| 98.28 (2.37)
Alpha/Beta| 97.31 (1.25)| 97.64 (1.27)| 97.81 (1.25)
MCTS 94.74 (1.66)| 94.87 (1.66)| 95.41 (1.64)

Table 1 gives the percentage of problems correctly answsredch algorithm, given different quantities of time.
Unsurprisingly, most of the problems being of reasonalale,shey are easily tackled by all of the algorithms.

Compared to the standard which is Alpha/Beta search, tHerpginces of MCTS are somehow disappointing:
it makes more errors and those are usually more importaeting of the score difference to the optimal value.
It seems that MCTS scales slightly better, but 20 seconda foove is already close to what a program will get
in the endgame in tournament conditions.

However, considering that the iterative procedure usedlieesa multi-valued problem is quite time-consuming,

the performances of both PNS-based solver are very gooditioraal Proof-Number Search (here represented
by DFPN) shows some weaknesses but shines with the impraoismigen by WPNS. In practice, we observed

that most of the iterations take little if not no time at aldathat both solvers usually use most of their time on
the most difficult iteration. Also, the approximation madegdtaying the move given by the last iteration solved

seems to function pretty well as long as the solver gets dntinge. Otherwise, it may make some pretty bad
mistakes, as shown by the average error (in brackets in TAbknally, the improvements to the solving process
presented in Section 2.2 were necessary: the performamt¢bese solvers dropped by more than 10% if for

instance the last of the three was missing.

Now, looking at the more detailed results of Figure 4, we dan aee that the performances of the PNS-based
solvers tend to slowly decrease after a certain size (1@hilg still being better up to around size 15. On the
other hand, the performances of the game-playing engixen,ieweaker for even smaller problems and always
irregular, tend to stay stable whatever the size and arertfett size 16 and onward. Also, the simple fact that
we had to reject around half of our problems of size 20 and rhemause we were not able to solve them in
reasonable time (problems not included in the presenttegsukentioned in Section 3.1) confirms the lack of
performances of PNS based algorithms to handle bigger sidxgms.

There are unfortunately few problems of size 18 or more irdatiabase, so the results for these sizes are far from
being statistically representatives. The fact that albfgms of size 20 are perfectly solved by every algorithm

6 ICGA Journal Submitted

100¢: B e

E g i v
E g m by e S A
&y “«w 4
80 o DFPN g—1—a_4 0
- \WPNS - \
Y Minimax
60 & Monte-Carlo
40 =

2 3 456 7 8 9 10111213 14 15 16 17 18 19 20 21
Figure 4: Percentage of problems correctly answered (20 seconé$ tim

for example is a fortuitous consequence from the simpletfedtour 13 problems of size 20 were even easier to
solve than some of the smaller ones. However, the decregmaformances of DFPN and WPNS for problems
or size 12 and more is quite clear, so we will for now extrajmfar bigger sizes.

Finally, with slightly less good performances overall féragorithms, the same conclusions can be drawn for
time settings of 5 and 10 seconds. For this reason, we chgsegent only the results for 20 seconds.

These results suggest that the inclusion of a solver couétvibielcome improvement in any Amazons program to
correctly play in the endgame once the play reaches diffscodill positions. In this case, some knowledge could
perhaps be added from the game-playing engines themslkkeeshat is done in DFPN+ in Nagai (2002).

4. PLAYING THE BIG PICTURE

Since playing the real Amazons game involves playing a coailiin of subgames in the endgame, we also
experimented with those. The settings and results of sysbrarents are presented in the next sections.

4.1 Experiment settings

To create a set of positions to use for this experiment, wd asmbinations of positions taken from the database
presented in Section 3.1. For that, we randomly associatggttier positions of any size to fit into a classical
10 x 10 Amazons board, including those of large size not mentioringtie results of Section 3 because we
were unable to solve them in limited time and possible orggal subgames. We created this way 300 Amazons
endgames positions, split into sets of a hundred each ¢imgsisspectively of 2, 3 and 4 subgames. The number
of Amazons in each positions is not fixed and does not go ovandzdns for each player to respect the rules of
the game.

We used three game-playing engines in this experiment: pha#Beta engine, an MCTS engine (both pre-
sented in Section 3.1), and a minimax game-playing engisedan TDS and the Hotstrat strategy presented
in Berlekamp, Conway, and Guy (1982). For the latter, Alpaa is used after the computation of the tempera-
tures to select a move into the hottest subgame.

We compared directly the performances of each algorithm akimg them play against each other. Each pair of
engines played in total 4 games for each position of our emdgaset: each endgame was played with both sides
playing first, each engine playing first one time. A time limvds set to 10 seconds per move for each match.

4.2 Results

The results of this experiment in terms of numbers of gamashyahe first player are given in Table 2 for each
of the programs AB (Alpha/Beta), MC (Monte-Carlo Tree-Stdwand TDS. It should be noted that the positions
created for this experiment are not specifically fair and oliogive the same fighting chances to both players. For
this reason, we also included AB-AB matches to have a refergalue to compare the other results to.

Table 2: Percentage of problems won for the first player of each patetd

1st player| 2nd player| 2 subgames 3 subgames 4 subgames All problems
AB AB 41% 40% 51% 44%
AB MC 40.5% 37.5% 45% 41%
MC AB 42.5% 42% 51.5% 45%
MC TDS 44% 42.5% 56% 47.5%
TDS MC 40% 36% 45.5% 41.5%
AB TDS 42.5% 41.5% 52% 45.5%
TDS AB 39.5% 38% 48.5% 42%

From these results, we can easily infer that MCTS perforightty better than Alpha/Beta, and that both perform
better than TDS.

Unexpectedly, TDS could not get good performances agaothtdither playing engines while it is specifically
designed for this task. We associate these results to tleus®d in the pre-computations necessary for TDS to
work correctly. The results presented iniNér et al. (2004) were much more in favor of TDS, but the test-bed
was different: the problems used then were much more balaara perhaps more difficult to handle with simple
Alpha/Beta search, while at the same time allowing to TDSoibesibility to shine.

On the other hand, the Alpha/Beta and the MCTS based engaes ®© have comparable performances on
most of the problems, with a slight advantage to the MCTSrengidvantage which appears bigger with more
subgames. This result can be explained by the usual betferpances of MCTS in more general situations and
its better ability to "catch the big picture”, and that evéit lacks the precision of Alpha/Beta or other solvers
such as DFPN for playing the subgames themselves right.

Since most of the positions of the test-bed are unfair for @inthe players (as can be seen by the AB/AB

comparison), we cannot base our results on comparing oalpghcentages of victory of each engine: we also
have to compare the results of each of them on each singléepmoli-or that, given a single problem and two

engines, we compared the score obtained by both enginesadth of them playing first against the other and
noted which got the best score. A summary of these resuligés ¢n Table 3.

This comparison tends to validate both the performancesepted above for all number of subgames and, when
looking at the average difference in score between eacmentiie ability of Alpha/Beta based engines (both
traditional minimax search and TDS) to be more precise iit Hgarch, leading to overall better average scores.

Table 3: For each pair A-B of engines: with A and B alternatively prayfirst, number of problems with A
getting a better score than B / A and B getting the same scorgettihg a better score than A. On the second
line: average score difference for each of these problems.

Pair 2 subgames| 3 subgames| 4 subgames| All problems

AB-MC | 51/108/41| 44/103/53| 68/56/76 | 163/267/170
3,82/-/2,02| 257/-/1,83| 2,68/-/2,79| 3,01/-/2,31

MC-TDS | 46/107/47| 60/107/33| 106/48/46| 212/262/126
2,76/-/4,13| 2,83/-/2,73| 3,21/-/2,8 3/-/3,28

AB-TDS | 49/114/37| 66/105/29| 109/54/37 | 224/273/103
2,86/-/2,14| 255/-/1,79| 2,94/-/1,95| 2,81/-/1,97

8 ICGA Journal Submitted

Analyzing these results through other angles, we also dised a relation with the size of the problems for the
AB-MC comparison: Alpha/Beta performs better than MCTS agbr problems. For problems of size up to
25, MCTS performs better than Alpha/Beta on 60 problemsuged$ problems with Alpha/Beta getting better
results (and 158 drawn problems), while for problems of 8xand more, these results go to 65 for MCTS versus
76 for Alpha/Beta (and 198 drawn problems). While lots of thebems are still draws, this contrasts with the
results observed before showing that MCTS performs bettemvthe number of subgames is larger. Still, this
is not contradictory, since it suggests that Alpha/Betdgoers better against MCTS with 2 long subgames than
with 4 shorter ones, and vice-versa for MCTS.

5. CONCLUSION

With the main overall goal of improving the playing level offazons programs, we have focused here on the
task of playing well endgames situations. Since this probkerelated to combinatorial game theory, we have
compared in this study the performances of several algosthandling two tasks: playing well single subgames
or combinations of subgames. In both aspects, Alpha/Betelsevith an evaluation function appears as a good
standard to play correctly in Amazons endgames and doesedtspecific improvements to play combinations
of subgames such as TDS. Nevertheless, it also appearsNBab&sed solvers could be a welcome inclusion in
any Amazons program to play perfectly in smaller subgameseSprogress can also be made to improve these
solvers, as shown by the very good results of WPNS in this stEthally, even if it lacks the precision of the
former engines, the new MCTS engines seem better suitedyocpimbinations of subgames, a task for which
the order of play is important.

On the future of this topic, we hope to improve the precisibroar MCTS engine so that it could surpass
Alpha/Beta in all ways, being able to play as good in a singiégame while at the same time having better
performances in playing right a whole game consisting oésg\subgames. On possibility could be to modify
MCTS to handle the task of choosing a subgame, leaving to & precise engine such as PNS the task to find
the best move in the area in a short amount of time. Also, ingjld database of endgame positions could be a
welcome inclusion for all of the tested algorithms to shottee search and improve their precision.

ACKNOWLEDGEMENTS

The authors would like to thanks the four anonymous refef@eall the comments and criticism they provided
to improve the quality of this article.

6. REFERENCES
Allis, L., Meulen, M. van der, and Herik, H. van den (1994)o&number searchArtificial Intelligence Vol. 66,
No. 1, pp. 91-124.

Avetisyan, H. and Lorentz, R. (2003). Selective Search iMarazons ProgramLecture Notes in Computer
Sciencepp. 123-141.

Berlekamp, E., Conway, J., and Guy, R. (198@)nning ways London: Academic Press.

Chaslot, G., Winands, M., Herik, H., Uiterwijk, J., and BguB. (2008). Progressive Strategies for Monte-Carlo
Tree-SearchNew Mathematics and natural Computati®pl. 4, No. 3, pp. 343-357.

Conway, J. (1976)On Numbers And Gamegcademic Press.

Coulom, R. (2007). Efficient Selectivity and Backup Operaio Monte-Carlo Tree Search.ecture Notes in
Computer Scienga/ol. 4630, pp. 72-83.

Hashimoto, T., Kajihara, Y., Sasaki, N., lida, H., and Yaoshia, J. (2001). An evaluation function for amazons.
Advances in Computer Gamé®l. 9, pp. 191-202.

Kloetzer, J., lida, H., and Bouzy, B. (2007). The Monte-Gakpproach in AmazonsComputer Games Work-
shop, Amsterdam, The Netherlangp. 113-124.

Knuth, D. and Moore, R. (1975). An analysis of alpha-betanpra. Artificial Intelligence Vol. 6, pp. 293-326.

Kocsis, L. and Szepesvari, C. (2006). Bandit Based Montde@®danning.Lecture Notes in Computer Science
\ol. 4212, p. 282.

Lieberum, J. (2005). An evaluation function for the gamerofaons.Theoretical Computer Scienceol. 349,
No. 2, pp. 230-244.

Lorentz, R. (2008). Amazons discover Monte-Cammputers and Games, Beijing, China, September/October
2008 pp. 13-24.

Mdller, M., Enzenberger, M., and Schaeffer, J. (2004). Teatpee discovery searchNineteenth National
Conference on Attificial Intelligence (AAAI 2004pp. 658—663.

Miller, M. and Tegos, T. (2002). Experiments in computer amazMore Games of No Changcpp. 243—-260.

Nagai, A. (2002) Df-pn Algorithm for Searching AND/OR Trees and Its Appliicats Ph.D. thesis, Department
of Information Science, University of Tokyo.

Ueda, T., Hashimoto, T., Hashimoto, J., and lida, H. (200&ak Proof-Number Searc.omputers and Games,
Beijing, China, September/October 2008. 157-168.

Zhang, P. and Chen, K. S. (2007). Monte-Carlo Go Tactic $edPcoceedings of the 10th Joint Conference on
Information Sciences (JCIS 20Qpp. 662—-670.

