
An Interaction-Based Model for Situated Agents

Bruno Bouzy
Jeune Equipe InfoCom - UFR de Mathématiques et d'Informatique

Université René Descartes (Paris 5)
45, rue des Saints-Pères 75270 Paris cedex 06 FRANCE

tel: 33 (0)1 44 55 35 58 - fax: 33 (0)1 44 55 35 35
e-mail: bouzy@math-info.univ-paris5.fr

Abstract

This paper enriches the current studies on interaction with a

domain where agents have original properties about the

interaction. The agents interact with the external world and

the agent-world interactions enable the model to recognise

the approximate state of the agents. They interact between

each other and the agent-agent interactions refine their

state. This model has been implemented with success in

Indigo, a Go playing program.

1. Introduction

Recent researches in Artificial Intelli gence use principled

characterizations of interactions between agents and their

environment to guide the analysis of living agents and the

design of artificial ones [1]. In order to highlight the

interaction principle, this paper compares the result of a

multiagent system in which the agents interact with the

environment only, with a system where the agents interact

with the environment and also between each other. This

model is applied to a complex domain where the agents are

situated : the game of Go. The model is implemented and

used in the Go playing program Indigo.

2. Ontology of a position

An agent is a connected set of intersections of the same

colour. The basic property of an agent is to be situated on a

set of intersections. The intersections that belong to the

morphological closure [2] of an agent, without belonging to

the agent nor to the adverse agents, constitute the inside of

the agent. The intersections that belong to the dilate set of an

agent, without belonging to the agent nor to its inside nor to

the adverse agents, make up the outside of the agent. An

agent may be alive when its inside is suff iciently big. In this

case, an agent is spatially autonomous because its state does

not depend on its outside. An agent may also be weak when

its inside and its outside are both suff iciently small . In order

to determine the state of a weak agent, the sole use of the

inside and the outside of the agent is not enough and the use

of interactions becomes necessary.

3. The interactions

There are two kinds of inter-agent interactions : the

friendly interaction and the adverse interaction. Two

neighbouring agents that may connect themselves in one

move, have a friendly interaction. An agent has a friendly

state that reflects the number of its friendly interactions. We

define the 3-uple T(agent) = f(I , E, A) for each agent where

I is its inside, E its outside and A its friendly state. The

domain’s theory gives a partial order that allows a two by

two comparison between adverse agents. An adverse

interaction between two agents reflects the result of this

comparison. The number of friendly or adverse interactions

is not limited. Each agent has an adverse state that

represents the states of the adverse interactions. When a

weak agent has adverse interactions that are all negative, its

adverse state is also negative and the agent is said to be

dead. When an agent dies, the adverse agents group

themselves with it and make up a unique new agent. The

adverse agents are like predators that are eating the prey

agent. The set of intersections on which the new agent is

situated is the union of the intersections on which the

adverse agents are situated. While agents are eating dead

ones, the situation and the set of the agents change and the

properties of agent are recomputed. When no change is

detected, the building of the description stops.

4. Results and discussion

Indigo is a Go playing program that uses, among other

tools, the interaction-based model that is presented here. A

conceptual description of the whole program can be found in

[3]. An eight page description can be found in [4]. Indigo's

manpower is about three man-years. It contains 35 000 lines

of C++. It is ranked on the Computer Go Ladder [5].

During a game, for each position, Indigo builds the

agents, their interactions and their states in order to build the

evaluation function. This evaluation function is complex. It

leads to a high computational cost. Therefore, it is not used

by a tree search and the move decision process in Indigo is

simple : Indigo chooses the move that is attached to the

biggest agent whose state is not alive. If there is no such

agent (in calm positions), Indigo plays the move that fill s the

biggest empty space. This move decision process is of

course simple. Its main weakness is missing big moves on

calm positions (because it may focus on small i nstable

agents that do not have strategical importance).

When a move is made, the position may completely

change at the agent level because an agent that was present

before the move may have several outcomes after the move :

modified, cut, connected or kill ed... Therefore the overhead

of maintaining the agents is very high. This is 95% of the

computational activity of Indigo. (Other 5% are devoted to

the move decision process).

The performance of Indigo actually depends on many

other factors not discussed here and of course this is

extremely diff icult to substantiate our claim about

interaction with the sole Indigo's level. Inside the distributed

AI community, this work shows once again the relevance of

the interaction concept. It is an ill ustration of interaction and

agency with several - about 50 - situated agents interacting

in a relatively complex domain. Our contribution is a

classification of the properties and relationships of the

situated agents : the inside, the outside, the friendly

interactions, the adverse interactions and the stability. We

believe that these properties are suff iciently general and can

be implemented in most of the multiagent systems in the

future.

References

[1] Agre P.E., Computational research on interaction and agency,

Artificial Intelligence 72 (1), pp. 1-52, 1995.

[2] Serra J., Image Analysis and Mathematical Morphology,

Academic Press, 1982.

[3] B. Bouzy, Modélisation cognitive du joueur de Go, Ph.D. of

Paris 6 University, France, 1995.

[4] B. Bouzy, The Indigo Program, Proceedings of the Second

Game Programming Workshop in Japan, pp. 191-200, Hakone,

1995.

[5] Petersen E., The Computer Go Ladder,

http://cgl.ucsf.edu/go/ladder.html

