An Interaction-Based Model for Situated Agents

BrunoBouzy
Jeune Equipe InfoCom - UFR de Mathématiques et d'Informatique
Université René Descartes (Paris 5)
45, rue des Saints-Peres 75270Paris cedex 06 FRANCE
tel: 33(0)1 44 55 35 58 fax: 33(0)1 44 55 35 35
e-mall: bowzy @math-info.unv-pariss.fr

Abstract
This paper enriches the current studies on interaction with a
domain where agents have original properties about the
interaction. The agents interact with the external world and
the agent-world interactions enable the model to recognise
the approximate state of the agents. They interact between
each other and the agent-agent interactions refine their
state. This model has been implemented with success in

Indigo, a Go playing program.

1. Introduction

Recent researches in Artificial Intelli gence use principled
charaderizaions of interadions between agents and their
environment to gude the analysis of living agents and the
design d artificial ones [1]. In order to highlight the
interadion principle, this paper compares the result of a
multiagent system in which the agents interad with the
environment only, with a system where the agents interad
with the environment and also between ead other. This
model is applied to a complex domain where the ayents are
Situated : the game of Go. The model is implemented and
used in the Go playing program Indigo.

2. Ontology of a position

An agent is a connected set of intersedions of the same
colour. The basic property of an agent is to be situated on a
set of intersedions. The intersedions that belong to the
morphdogicd closure [2] of an agent, without belongng to
the gent nor to the alverse agents, constitute the inside of
the ayent. The intersedions that belongto the dil ate set of an
agent, withou belongng to the agent nor to its inside nor to
the alverse ajents, make up the outside of the ayent. An
agent may be alive when itsinside is sufficiently big. In this
case, an agent is spatialy autonamous becaise its state does
not depend onits outside. An agent may also be weak when
itsinside and its outside ae both sufficiently small. In order
to determine the state of a weak agent, the sole use of the
inside and the outside of the agent is nat enoughand the use

of interactions becomes necessary.

3. Theinteractions

There ae two kinds of inter-agent interadions : the
friendly interadion and the adverse interadion. Two
neighbouing agents that may conred themselves in one
move, have afriendly interadion. An agent has a friendly
state that refleds the number of its friendly interadions. We
define the 3-uple T(agent) = f(I, E, A) for ead agent where



| is its inside, E its outside and A its friendy state. The
domain’s theory gives a partial order that alows a two by
two comparison between adverse agents. An adverse
interaction between two agents refleds the result of this
comparison. The number of friendy or adverse interadions
is not limited. Each agent has an adverse state that
represents the states of the alverse interadions. When a
wedk agent has adverse interadions that are al negative, its
adverse state is also negative and the gent is said to be
dead. When an agent dies, the averse ajents group
themselves with it and make up a unique new agent. The
adverse gyents are like predators that are eding the prey
agent. The set of intersedions on which the new agent is
Stuated is the union d the intersedions on which the
adverse gyents are situated. While ayents are eding dea
ones, the situation and the set of the agents change and the
properties of agent are recomputed. When no change is
detedted, the building d the description stops.

4. Results and discussion

Indigo is a Go playing program that uses, among other
toadls, the interadion-based model that is presented here. A
conceptua description d the whole program can be foundin
[3]. An eight page description can be foundin [4]. Indigo's
manpower is abou threeman-yeas. It contains 35000 lines
of C++. It isranked onthe Computer Go Ladder [5].

During a game, for ead pasition, Indigo builds the
agents, their interadions and their states in order to build the
evaluation function. This evaluation function is complex. It
leads to a high computational cost. Therefore, it is not used
by a tree seach and the move dedsion processin Indigo is
simple: Indigo chooses the move that is attached to the
biggest agent whose state is not alive. If there is no such
agent (in cdm paositions), Indigo plays the move that fill s the
biggest empty space This move dedsion process is of

course smple. Its main wegnessis mising kg moves on

cdm positions (because it may focus on small instable
agents that do not have strategicad importance).

When a move is made, the position may completely
change at the ayent level becaise an agent that was present
before the move may have several outcomes after the move :
modified, cut, conreded or kill ed... Therefore the overhead
of maintaining the ayents is very high. This is 95% of the
computational adivity of Indigo. (Other 5% are devoted to
the move dedsion process.

The performance of Indigo adually depends on many
other fadors not discuseed here and d course this is
extremely difficult to substantiate our clam abou
interadion with the sole Indigo's level. Inside the distributed
Al community, this work shows once again the relevance of
the interadion concept. It isanill ustration o interacion and
agency with severa - abou 50 - situated agents interading
in a relatively complex domain. Our contribution is a
clasdficaion d the properties and relationships of the
situated agents: the inside, the outside, the friendly
interactions, the adverse interactions and the stability. We
believe that these properties are sufficiently general and can
be implemented in most of the multiagent systems in the

future.

References

[1] Agre P.E., Computational research oninteradion and agency,
Artificial Intelligence 72 (1), pp. 1-52, 1995

[2] Serra J, Image Analysis and Mathematical Morphology,
Academic Press 1982

[3] B. Bouzy, Modélisation cognitive du joueur de Go, Ph.D. of
Paris 6 University, France 1995

[4] B. Bouzy, The Indigo Program, Proceedings of the Second
Game Programming Workshop in Japan, pp. 191-200, Hakone,
1995

[5] Petersen E., The
http://cgl.ucsf.edu/go/ladder.html

Computer Go Ladder,



