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Part 1:

Decision theoretic framework for causal inference

• Examples

• Target of inference and assumptions

• Formal frameworks: potential responses vs. decision theory
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Examples

Many studies are carried out to inform e.g. public health interventions,

doctors’ decisions, give advice etc.

– add folic acid to flour to prevent nural tube defects?

– banning smoking in pubs to lower lung cancer risk?

– advice on breast feeding: how long is best and under what conditons?

– HIV patients: start HAART when CD4-counts below what threshold?

– hormone replacement therapy (HRT) beneficial or not?

Want these to be well informed so that decisions not wrong /

interventions not useless ⇒ distinguish association and causation!
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Target of Inference & Assumptions

Some issues when using data to inform decisions:

Target of inference: what possible decisions do we want to compare

for what population?

Assumptions: under what assumptions linking the data to the

decision problem at hand do our methods give valid conclusions

(identifiability)? and can we justify these assumptions?

⇒ need to be clear and explicit about both, target and assumptions.
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Formal Frameworks

... should allow to distinguish association and causation.

Association: observing X predicts / is informative for Y .

Events occur more often together than expected under independence.

Usual conditional probability notation: p(Y = y|X = x), i.e. probability

of Y = y given we happen to know that X = x has occurred.

Causation: intervening in X predicts / is informative for Y .

We can ‘make’ event Y = y more likely by manipulating X.

Need some special notation for this; conditional probability not enough!
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Potential Responses (PRs)

(Rubin, 1974; many others)

Consider binary treatment Xi ∈ {0, 1}, individual i

Y i
0 = response if Xi = 0

Y i
1 = response if Xi = 1 for same subject (at the same time)

⇒ {Y i
0 , Y

i
1} can never be observed together ⇒ potential responses.

Once a decision has been made, say Xi = 1, then Y i
1 can be observed

and Y i
0 is counterfactual.

Note: PRs only well defined if manipulation of X well defined.

5



Target(s) of inference

Individual effects: any contrast of Y i
1 and Y i

0 , e.g. individual causal

effect (ICE)

ICEi = Y i
1 − Y i

0 (or ratio or...).

Note: inference about ICE depends on assumptions about joint

distribution of (Y0, Y1).

Alternatively: any contrast of the distributions p(Y1) and p(Y0), e.g.

average causal effect (ACE)

ACE = E(Y1)− E(Y0).

Note: does not depend on joint distribution of (Y0, Y1).
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Assumptions

An example for a standard assumption that allows to identify p(Yx)

is the one of random treatment assignment or no unmeasured

confounding: let C be observed pre–treatment covariates and

X⊥⊥Yx | C x = 1, 0.

E.g. in RCT X is randomised and hence independent of ‘pre-treatment’.

Then p(Y |X = x,C = c) = p(Yx|X = x,C = c) = p(Yx|C = c)

and hence e.g.

ACE =
∑

c

{E(Y |X = 1, C = c)− E(Y |X = 0, C = c)}p(C = c)

Using also consistency: Y = YX
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Decision Theoretic Approach

(Pearl, 1993; Dawid, 2002)

Indicator: index distributions by regime indicator σX

σX =

{
x ∈ X , set X to x by specified intervention

∅, let X arise ‘naturally’,

where p(X;σX = x) = I(X = x)

and p(X;σX = ∅) ‘observational’ distribution of X.

• If p(Y ;σX = x) depends on x, we consider X causal for Y .

• If p(Y |X = x;σX = ∅) depends on x, then there is an association

which could also be due to confounding, reverse causation etc.
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Target(s) of inference

In general: contrast intervention distribution p(Y ;σX = x) for different

values of x, e.g. average causal effect (ACE)

ACE = E(Y ;σX = 1)− E(Y ;σX = 0).

Cannot formulate individual causal parameters!

Could instead consider conditional effects in sub-population s, e.g.

ACEs = E(Y |S = s;σX = 1)− E(Y |S = s;σX = 0).

More generally, let k(·) be loss function

⇒ want to evaluate E(k(Y );σX = x) for different x.
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Assumptions

Analogous to ‘no unmeasured confounders’ is assumption of sufficient

covariates C: (Dawid, 2002)

C⊥⊥σX and Y⊥⊥σX|(X,C).

Then can identify intervention distribution

p(Y ;σX = x) =
∑

X,C

p(Y |X,C;σX = x)I(X = x)p(C;σX = x)

=
∑

C

p(Y |X,C;σX = ∅)p(C;σX = ∅).
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Outlook (Part 1)

More complex targets:

– effect of treatment on the treated

– complier causal effect (only with potential responses)

– conditional strategies: decision is made depending on additional

observations ⇒ optimal decision

– direct and indirect effects.

Assumptions: most methods of causal inference make some version of

‘no unmeasured confounders’ assumption.

Exception: instrumental variables (but other assumptions needed).

Methods: instead of adjusting for covariates, can use propensity scores

or inverse probability weighting.

All make same assumptions! Different wrt. robustness and efficiency.
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Part 2:

Graphical models and influence diagrams

• Graphical models

• Influence diagrams

• Representing assumptions

• An example
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Graphical Models

Here: directed acyclic graphs (DAGs), where

vertices = variables and

no edge = some (conditional) independence.

C

BA

A⊥⊥B|C
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Graphical Models

Here: directed acyclic graphs (DAGs), where

vertices = variables and

no edge = some (conditional) independence.

C

BA

C

BA

A⊥⊥B|C also A⊥⊥B|C
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Graphical Models

Here: directed acyclic graphs (DAGs), where

vertices = variables and

no edge = some (conditional) independence.

C

BA

C

BA

C

BA

A⊥⊥B|C also A⊥⊥B|C but A⊥⊥/ B|C, A⊥⊥B
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Graphical Models

Factorisation of joint density

p(x) =
∏

i

p(xi|xpa(i))

C

BA

p(a|c)p(b|c)p(c)
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Graphical Models

Factorisation of joint density

p(x) =
∏

i

p(xi|xpa(i))

C

BA

C

BA

p(a|c)p(b|c)p(c) p(a|c)p(b)p(c|b)
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Graphical Models

Factorisation of joint density

p(x) =
∏

i

p(xi|xpa(i))

C

BA

C

BA

C

BA

p(a|c)p(b|c)p(c) p(a|c)p(b)p(c|b) p(a)p(b)p(c|a, b)
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Graphical Models

In general:

Xi⊥⊥Xnd(i) | Xpa(i)

C

BA

C

BA

C

BA

A⊥⊥B|C also A⊥⊥B|C A⊥⊥B
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Influence Diagrams

(Dawid 2002, 2003)

Include decision node / intervention indicator σX

Example:

while the following just means p(x, y) = p(x)p(y|x) (no restriction)

YX
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Influence Diagrams

(Dawid 2002, 2003)

Include decision node / intervention indicator σX

Example:

while the following just means p(x, y) = p(x)p(y|x) (no restriction)

YX

The following implies: Y⊥⊥σX|X or p(x, y;σX) = p(y|x)p(x;σX)

YXXσ
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Influence Diagrams

(Dawid 2002, 2003)

Example ctd.:

while the following just means p(x, y) = p(y)p(x|y) (no restriction)

YX

The following implies: Y⊥⊥σX or p(x, y;σX) = p(y)p(x|y;σX)

YXXσ
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Influence Diagrams

(Dawid 2002, 2003)

Example ctd.:

While there is no difference between the models

YX YX

... we can express different assumptions about interventions e.g. by

YXXσ YXXσ

Note: indicator σX not random ⇒ in ‘box’ and always conditioned on.
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Representing Assumptions

Use influence diagrams to represent assumptions about interventions.

E.g. assumption of sufficient covariates

C⊥⊥σX and Y⊥⊥σX|(X,C).

uniquely represented by influence diagram

YXXσ

C
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Where Do the Graphs Come From?

Combination of

• subject matter background knowledge (biology, physics...), and e.g.

study design, type of intervention considered;

• testable implications: certain conditional independencies can be tested

from data.
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Example

Study on effect of hormone replacement therapy (HRT) on temporal

cerebral ischemia (TCI) (Pedersen et al., 1997; Didelez et al., 2008)

HRTAge

THist

SmoOcc

TCI

HRT�
Here: ‘Age’ & ‘Smoking’ sufficient covariates for effect of HRT on TCI.
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Outlook (Part 2)

Graphical models / influence diagrams

– are used to facilitate reasoning

– remember: justify absence of further nodes &edges

– help to formulate background knowledge

– provide graphical rules to check for identifiability

– suggest what variables to adjust for (if at all), and how.

Other applications, for example:

– effect of treatment on the treated

– instrumental variables (Mendelian randomisation)

– data situtations with potential for selection bias

– dynamic models, time series / event histories

– and of course Part 3...
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Part 3:

Sequential decisions and direct effects

• (Optimal) sequential decisions

• G–computation

• Simple & extended stability

• Direct causal effects
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Sequential Decisions

Examples:

(1) Stroke patients receive regular anticoagulant treatment:

— has to be continually monitored and dosage adjusted

— depending on blood test results and other health indicators

(2) HIV patients:

— have to decide at what point in time to start HAART

— depending on latest CD4 count

Target:

want to find optimal treatment strategy from (observational?) data.
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Sequential Decisions

Question:

what assumptions do we need to be able to make inferences about

• decisions that may depend on the patient’s history — conditional

interventions / strategies?

• and are these more restrictive when we want to find an optimal

strategy?

When assumptions are plausible, how do we evaluate effect of a

(optimal) strategy?
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Some Notation

A1, . . . , AN “action” variables → can be ‘manipulated’

L1, . . . , LN covariates → (available) background information

Y = LN+1 response variable

all measured over time, Li before Ai

A
<i = (A1, . . . , Ai−1) past up to before i; A≤i, A>i etc. similarly
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Strategies

Strategy s = (s1, . . . , sN) set of functions assigning an action

ai = si(a
<i, l≤i) to each history (a<i, l≤i)

(Could be stochastic, then dependence on a
<i relevant.)

Also called: conditional / dynamic / adaptive strategies.

Indicator

σ =

{
∅, observational regime

s, s ∈ S = set of strategies

Denote p(·; s) = p(·;σ = s) distributions under strategy s.
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NB: Why Näıve Regression Does Not Work

Näıvely: fit regression model p(y|a, l), e.g. Cox regression?

Example: Possible scenario under null hypothesis of no causal effect:

U

A1 L2
A2 Y

σσσσ

But: Y⊥⊥/ A1|(A2, L2) — conditioning on collider L2 will induce

association between Y and A1! Regression not consistent at the null.

However, need to condition on L2 as possible confounder for A2.
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Evaluation of Strategies

Let k(·) be a loss function. Want to evaluate E(k(Y ); s).

Define

f(a≤j, l≤i) := E{k(Y )|a≤j, l≤i; s} i = 1, . . . , N ; j = i− 1, i.

Then obtain f(∅) = E(k(Y ); s) from f(a≤N , l≤N) iteratively by:

f(a<i, l≤i) =
∑

ai

p(ai|a
<i, l≤i; s)× f(a≤i, l≤i)

f(a<i, l<i) =
∑

li

p(li|a
<i, l<i; s)× f(a<i, l≤i).

Note: well–known as extensive form analysis.

Also known as G–computation (Robins, 1986)
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Then obtain f(∅) = E(k(Y ); s) from f(a≤N , l≤N) iteratively by:

f(a<i, l≤i) =
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ai

p(ai|a
<i, l≤i; s)

︸ ︷︷ ︸

known by s

×f(a≤i, l≤i)

f(a<i, l<i) =
∑

li

p(li|a
<i, l<i; s)× f(a<i, l≤i).
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Evaluation of Strategies

Let k(·) be a loss function. Want to evaluate E(k(Y ); s).

Define

f(a≤j, l≤i) := E{k(Y )|a≤j, l≤i; s} i = 1, . . . , N ; j = i− 1, i.

Then obtain f(∅) = E(k(Y ); s) from f(a≤N , l≤N) iteratively by:

f(a<i, l≤i) =
∑

ai

p(ai|a
<i, l≤i; s)

︸ ︷︷ ︸

known by s

×f(a≤i, l≤i)

f(a<i, l<i) =
∑

li

p(li|a
<i, l<i; s)

︸ ︷︷ ︸

not (?) known

×f(a<i, l≤i).
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Simple Stability
(Dawid & Didelez, 2010)

Sufficient for identifiability of any type of strategy is

p(li|a
<i, l<i; s) = p(li|a

<i, l<i; ∅) for all i = 1, . . . , N + 1

or (via intervention indicator)

Li⊥⊥σ|(A<i,L<i) for all i = 1, . . . , N + 1

Or graphically:

YL
1 L

2
A

1
A

2
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Extended Stability

Might not be able to assess simple stability without taking unobserved

variables into account.

⇒ extend covariates L to include unobserved / hidden variables U =

(U1, . . . , UN) and check if simple stability can be deduced.

Example 1: particular underlying structure (note: L1 = ∅)

U

A1 L2 A2 Y

σσσσ

Simple stability violated as Y ⊥⊥/ σ | (A1, A2, L2).
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Examples

Example 2: different underlying structure

U

A1 L2 A2 Y

σσσσ

Simple stability satisfied.
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Examples

Example 3: another different underlying structure

A1 L2 A2 Y

U1 U2

σσσσ

Simple stability violated: L2⊥⊥/ σ | A1 and Y⊥⊥/ σ | (A1, A2, L2)
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Relax Simple Stability?

Specific conditional strategies can be identified under weaker conditions

than simple stability. (Pearl & Robins, 1995; Dawid & Didelez, 2010)

However, in order to identify an optimal strategy, cannot apply these

weaker conditions. (Dawid & Didelez, 2008)

Heuristically: optimal strategy has to be allowed to depend on all

previous observed information.

Note: necessary and sufficient conditions have been given (in a

more restrictive causal framework) for conditional strategies, but not

generalised to optimal ones. (Tian, 2008)
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Direct Causal Effects

(Greenland & Robins, 1999; Pearl, 2001)

Examples: Want direct effect of X on Y not mediated by Z

• direct effect of treatment not mediated by mental attitude (no placebo

effect);

• direct effect of oral contraception on thrombosis risk not mediated by

prevention of pregnancy;

• direct effect of gender on salary not mediated by qualification.

⇒ need to ‘block’ effect through Z by fixing it ⇒ compare interventions

in X while intervening in Z to keep it ‘constant’.
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Controlled Direct Causal Effects

Direct effects can be formalised in different ways.

Most popular: fix Z at z.

Controlled Direct effect of X (binary, say) at σZ = z, e.g.

CDEz = E(Y ;σX = 1, σZ = z)−E(Y ;σX = 0, σZ = z).

Interpretation:

‘force’ Z = z for everyone and compare different settings of X.

Note: as before, regression p(y|x, z) not suitable!
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General Direct Causal Effects

Standardised Direct Effect: (Geneletti, 2006)

More generally, let Z arise from the same distribution D under different

interventions in X

SDED = E(Y ;σX = 1, σZ = D)− E(Y ;σX = 0, σZ = D)

“Natural” Direct Effect — with POs: E(Y1,Z0 − Y0)

If DW
0 = p(z|W ;σX = 0, σZ = ∅) then

NDE = E(Y ;σX = 1, σZ = DW
0 )− E(Y ;σX = 0, σZ = DW

0 )

Note: only for NDE (and specific W ): total=direct+indirect effect!
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Sequential Decisions and Direct Effects

(Didelez et al., 2006)

Direct effects essentially the same as sequential decision problem:

Choose A1 = X and A2 = Z ⇒ same conditions for identifiability and

same methods of evaluation.

Can apply conditions that are weaker than simple stability as intervention

to fix Z does not depend on previous observations.

Note: for NDE need to obtain DW
0 ⇒ additional conditions required.

Also, NDE not well defined in some situations where CDE or SDE are.
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Example: Double Blind Study

Y

Z

X

Treatment Outcome

Mental attitude

Side effect
U

NDE not well defined / not identified:

Side effect will depend on actual treatment and hence mental attitude

will not be generated from same distribution for treated and untreated!

Cannot speak of direct effect unless ‘side effect’ can also be controlled.
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Outlook (Part 3)

In principle, can use G–formula, estimating all p(li|a
<i, l<i; ∅) from

observational data ⇒ sensitive to misspecification / ‘null–paradox’.

Also: curse of high dimensions & dynamic programming becomes

infeasible.

1st Alternative: inverse probability of treatment weighting (IPTW).

Requires models / estimation of p(ai|a
<i, l≤i; ∅).

Recently: advances in using IPTW for finding ‘optimal’ dynamic

treatments. (Orellana, Rotnitzky, Robins, 2011)

2nd Alternative: G–estimation ⇒ so far only motivated within PR

framework and specific survival models. (Robins, 1992)

Models / methods for finding optimal treatment strategy still need more

testing in practice. (Rosthoj et al., 2006)
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Summary

Decision theoretic framework brings clarity to

– causal questions

– underlying assumptions

and will alert users to “cross–world” assumptions
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