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Organization of the talk

1. An epistemological theory of causality in epidemiology;
1.1 Levels
1.2 Systems and physical laws

2. A theory of influence between components of a stochastic
process;

3. Examples: Good modeling and the WHI study.



An epistemological theory of causality in
epidemiology

I We shall use the concept of cause with an extended
meaning: not deterministic and plurality of causes

I We shall not use the counterfactual point of view
I We shall discuss the concept of intervention: intervention

plays a central role but does not enter in the definition of
causality

I will begin with the story of the volcano.



Eruption of Vesuvius



Death of the inhabitants of Pompeii



The story of the volcano

Causal link
In 79 AC there was an eruption of Vesuvius and shortly after, it
happened that all the inhabitants of Pompeii died. Most people
would agree that there is a causal link between the two events.

Although no intervention is possible

I It is impossible to prevent the eruption of a volcano
I Even if an intervention was possible it has not been

implemented in Pompeii in 79



The story of the volcano

Causal links through physical laws.

I Vulcanology tells us that an eruption can produce a great
quantity of ashes, lava and a heat wave

I We know from biology that living beings cannot survive at
a temperature higher than 200◦ C.



The story of the volcano

Counterfactual point of view

I "There was no eruption of Vesuvius in 79 AC" is
counterfactual

I Under this counterfactual assumption the inhabitants of
Pompeii do not die in 79

I Thus there is a causal link between eruption in 79 and
death of the inhabitants in 79

For me the counterfactual point of view, although stimulating for
the imagination, does not add anything to the physical law point
of view.



The riddle of the rooster

Post-hoc fallacy and the scientific approach

I Rooster crow is repeatedly followed by sun rise.
I Does the rooster crow cause the sun to rise ?
I Causal effect can be dismissed on general scientific

ground.



The stochastic system approach to causality

Systems and physical laws

I Physical laws applied to a system give the correct law of
the components of the system.

I If the evolution of a component k between t and t + ∆t
depends on the state of component j at time t then
component j has a direct effect on component k :

Xj −→X Xk

I If the evolution of a component k after t depends on the
state of component j at time t then component j has a
direct or indirect effect on component k .

Xj →→X Xk



Problems and questions

I What is a physical law ?
I What is a system ? What is a good system ?
I Does physical laws apply to biology, epidemiology,

sociology ?
I How does this point of view helps for distinguishing causal

links from spurious associations ?
I What can we do when we don’t know the physical laws?
I What can we do when we don’t know what is the good

system ?
I Or neither physical laws not the good system ?
I How can we formalize influence between components ?
I How can we compute the effects ?



Levels

Systems and physical laws are defined for a given level. Levels
are specified in essentially two dimensions:

I Complexity: quarks, atoms, molecules, cells, organisms,
societies

I scale: space-time size, number of entities





Physical laws and Systems

Physical laws
Rules that when applied to good ("‘perfect"’) systems allow to
compute the law of the observed events.
Intuition: the events are "produced" according to these laws.

Example:
Movement of the Earth conditioned on the position of the Sun,
Mars and Venus. We must know both the physical laws
(Newton laws) and the system to which to apply them.

Distinguishing features: Wide applicability and
reductionism

I Newton’s laws can be applied to planets in the solar
system and in other stellar systems, to satellites of planets;
the law of mass attraction can be applied to atoms...See
Pearl (2000), 1.3.2 about "stability".

I Basic laws and laws at upper levels: laws at upper levels
ca be explained by laws at lower level (Boltzman).



Levels, Physical laws and Systems

I Some laws are relevant at different levels: gravitation law
(however negligible at particle level, main force at the level
of celestial bodies)

I Generally different laws apply to different levels.
I Reductionism: Laws at one level can be grounded on laws

of lower level.
Example: law of ideal gases which can be explained by the
(stochastic) kinetic laws of the molecules (Boltzman).

I Principle of emergence: Laws at one level are not mere
application of the laws at a lower level.

I Generally at each level there is one or several particular
sciences; a science can operate at different levels but
there is often a privileged level.



Levels of epidemiology

Epidemiology is mainly in between:
I individual level: risk factors of diseases
I population (human beings) level: impact of a disease

(prevalence, incidence), infectious diseases
At the margin of epidemiology and system biology one is
interested in two levels:

I population of cells: interaction between virus and immune
system

I individual level: occurrence of diseases in relation to
number of CD4+ T cells



The scientific approach and epidemiology

Causal effects in epidemiology

I antiretroviral treatment decreases the risk of AIDS;
I smoking increases the risk of lung cancer;
I excessive calory intake leads to obesity;
I obesity is a risk factor of ischemic heart disease.

Causal effects rely on laws at lower level

I the antiretroviral may prevent new virions to be constructed
after transcription of the integrated ADN of the virus; this in
turn can be explained by biochemistry properties of the
drug.

I ...



Example of a simple system

Learning effects when the system is known

I Process of interest: D (a disease).
I We know which entities or states have a direct effect on D.
I Suppose that we find two entities G and F . Can we learn

the physical law quantitatively, that is learn the effect of F
on D by observation ?

I "‘yes"’: In any system containing both F and G the
observed effect will be the causal effect.

I We learn by observing what happens to different systems,
that is the subjects included in the sample of the study.



Example of a simple system

Figure: Causal parents of D



The problem of epidemiology
Both system and laws unknown

I Which factors modify the risk of a disease ? Learning the
system;

I What is the dynamics of this development ? Learning the
laws.

How to learn ?
I Advantage: we can have many replica of systems

(subjects)
I Drawback: we have generally few longitudinal data. The

situation is improving. Typically case-control studies do not
have longitudinal observations, but cohorts have.

I Most models are inadequate in that they do not grasp the
dynamics of the system. Dynamical models: Cox model,
and multivariate: multistate models or joint models.
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A theory of influence between components
of a stochastic process



Direct influence

Doob-Meyer decomposition
Let Ft = F0 ∨ Xt ; F0 contains the initial value and possibly
other information. We shall consider the class of special
semi-martingales, that is the class of processes which admit a
unique Doob-Meyer decomposition in the (Ft ) filtration, under
probability P:

X t = Λt + Mt , t ≥ 0, (1)

where Mt is a martingale and Λt is a previsible process with
bounded variation.
We have defined a class D′ including in particular counting
processes and diffusion processes.
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Weak conditional local independence (WCLI)

Xk is WCLI of Xj in X on [0, τ ] if and only if

Λk is (F−jt )-previsible on [0, τ ],

where F−jt = F0 ∨ X−jt and X−jt = ∨l 6=jX−lt .

Equivalently we can say in that case that Xk has the same
Doob-Meyer decomposition in (Ft ) and in (F−jt ).

We will note in that case Xj −→/ X Xk .



The differential equation representation

Doob-Meyer decomposition; Λt is differentiable

dX t = λtdt + dMt , (2)

with Λt =
∫ t

0 λudu.

Example:
dX1t = a dt + dW1t ; dX2t = X1tdt + dW2t

we have X1 −→X X2 and X2 −→/ X X1.
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Joint model of HIV, immune system and
disease

The HIV-immune system model

dTt = [λ− γTtVt − µT Tt ]dt
dT ∗t = [γTtVt − µT∗T ∗t ]dt
dVt = [(1− ηIA

t )πT ∗t − µV Vt ]dt

The disease-immune system model

dDt = I{Dt−=0}α0 exp(β1Tt + β2Z )dt + dMt ,

Guedj, Commenges, Thiébaut, Biometrics, 2011.



Figure: Graph for HIV: A: anti-protease; T: uninfected CD4; T*:
infected CD4; D: clinical events.



Intervention systems

Figure: Observation system

Figure: Intervention system



Marginal causal effect
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Figure: Imperfect intervention system

Marginal causal effect: the effect of F on D in this (imperfect)
intervention system: the way the law of D changes as one
changes the value f taken by F .



Marginal causal effect

Effect can be specified by: P(Dt = 1|F = f ) = S(t |f ).
Generally, for G a time-constant process taking values 0 or 1 for
all t :

S(t |f ) = P(G = 1|F = f )S(t |f ,G = 1)+P(G = 0|F = f )S(t |f ,G = 0)

In the intervention system P(G = 1|F = f ) = P(G = 1).
Thus:

SI(t |f ) = P(G = 1)S(t |f ,G = 1) + P(G = 0)S(t |f ,G = 0)



Computation of the marginal causal effect
from an observational system

From observation of a large number of replica of the good
"observation system", we learn S(t |f ,G = 1 and S(t |f ,G = 0),
and also the marginal distribution of G. Thus we can compute

SI(t |f ) = P(G = 1)S(t |f ,G = 1) + P(G = 0)S(t |f ,G = 0)



Imperfect observation system
Rather than using the perfect system:

Figure: Perfect observation system

we use the imperfect system:

Figure: Imperfect observation system



Observed effect in imperfect observation systems

We learn:

SO(t |f ) = P(G = 1|F = f )S(t |f ,G = 1)+P(G = 0|F = f )S(t |f ,G = 0),

This is different from SI(t |f ) when G has an influence on F .



Limitations of observation systems

Confounders
We are never sure that we have a perfect system; thus
confounding is always possible.

Limitations of the marginal causal effect

I Emphasis on marginal causal effects: the so called
back-door criterion for instance (Pearl, 2000: 3.3.1) gives
conditions under which it can be computed.

I Dynamics better described in terms of causal effects
including all the causal parents.
S(t |f ,G) is more precise that S(t |f )
For instance a treatment may be more efficient (or have
less adverse effects) in subjects having a specific
genotype or risk factor.

I Example of Statins: Give statins to every body to decrease
CHD risk ?



Limitations of intervention systems

I Excessive confidence in the fact that the intervention trial
will yield the marginal causal effect

I leads to a lack of modeling
I highly selected
I short term studies
I small number (often 2) of modalities



The example of the Women’s Health Initiative (WHI)

Conflict between observation and intervention in the WHI
I Observational research on postmenopausal hormone

therapy: 40− 50% reduction in coronary heart disease
incidence

I Clinical trial of the WHI estrogen plus progestin found an
elevated incidence.

Comparison between results from the WHI trial and
observational study

I WHI observational study: 53,054 women 33% of whom
were estrogen-plus-progestin users at baseline

I Trial:16,608 postmenopausal women aged 50-79 years,

Prentice et al. (2005), American J. Epidemiol.



Reconciliating observation and intervention
in the WHI

Adjusting

Adjustment Trial: HR Observation: HR
Crude incidence ratio 1.18 0.50

Age-adjusted 1.21 0.71
Adjusted on risk factors 1.27 0.87

Crossing hazards

Time Trial HR 95% CI Observation HR 95% CI
<2 80 1.68 1.15, 2.45 5 1.12 0.46, 2.74

2-5 80 1.25 0.87, 1.79 27 1.05 0.70, 1.58
>5 28 0.66 0.36, 1.21 126 0.83 0.67, 1.01



Good modeling and common sense

Good modeling

I Good modeling aims at identifying all the main factor which
are causal parents of a process of interest

I Good modeling aims at estimating the effect of the main
factors. For this, it is necessary to have a flexible model
and to take into account the way observations have been
collected: sampling scheme, incomplete observations.

Bradford-Hill criteria
Even if we can go beyond thanks to sophisticated statistics, the
Bradford-Hill criteria remain relevant for practical epidemiology.



Bradford Hill Criteria

1. Strength of association (odds ratio)
2. Consistency
3. Specificity
4. Temporal relationship (temporality) - not heuristic; factually

necessary for cause to precede consequence
5. Biological gradient (dose-response relationship)
6. Plausibility (biological plausibility)
7. Coherence
8. Experiment (reversibility)
9. Analogy (consideration of alternate explanations)

Austin Bradford Hill (1965), "The Environment and Disease:
Association or Causation?," Proceedings of the Royal Society
of Medicine.



The Dynamic models approach to causality
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