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Abstract. We study the following model: Y = X + ε. We assume that we have at our

disposal i.i.d. observations Y1, . . . , Yn and ε−1, . . . , ε−M . The (Xj)1≤j≤n are i.i.d. with

density f , independent of the (εj)1≤j≤n, i.i.d. with density fε. The aim of the paper is to

estimate f without knowing fε. We first define an estimator, for which we provide bounds

for the integrated L2-risk. We consider ordinary smooth and supersmooth noise ε with

regard to ordinary smooth and supersmooth densities f . Then we present an adaptive

estimator of the density of f . This estimator is obtained by penalization of a projection

contrast, and yields to model selection. Lastly, we present simulation experiments to

illustrate the good performances of our estimator and study from the empirical point of

view the importance of theoretical constraints.
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1. Introduction

Let us consider the following model:

(1) Yj = Xj + εj j = 1, . . . , n

where (Xj)1≤j≤n and (εj)1≤j≤n are independent sequences of i.i.d. variables. We denote
by f the density of Xj and by fε the density of εj . The aim is to estimate f when only
Y1, . . . , Yn are observed. In the classical convolution model, fε is assumed to be known, and
this is often considered as an important drawback of this simple model. Indeed, in most
practical applications, the distribution of the errors cannot be perfectly known. Sometimes,
this problem can be circumvented by repeated observations of the same variable of interest,
each time with an independent error. This is the model of panel data, see for example Li
and Vuong (1998), Delaigle et al. (2008), or Neumann (2007) and references therein.
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However, there are also many application fields where it is not possible to do repeated
measurements of the same variable. In that case, information about the error distribution
can be drawn from an additional experiment: a training set is used by experimenters to
estimate the noise distribution. Think of ε as a measurement error due to the measuring
device; then preliminary calibration measures can be obtained in the absence of any signal
X (this is often called the instrument line shape of the measuring device). Mathematically,
this means that the knowledge of fε can be replaced by observations ε−1, . . . , ε−M , a noise
sample with distribution fε, independent of (Y1, . . . , Yn). It has the advantage that only one
measuring device is needed, instead of two or more for repeated measurement strategies.
Note that the availability of two distinct samples makes the problem identifiable.

Actually, this is a natural method used by practitioners or theoreticians. See for example
Kerkyacharian et al. (2010) who study spherical deconvolution and replace the characteris-
tic function of the noise by its empirical version, since the noise is unknown in the context
of astrophysics. One of the most typical domains where a preliminary estimation of the
measurement error is done is spectrometry, or spectro-fluorimetry, but let us detail an
example in microscopy. Odiachi and Prieve (2004) study the effect of additive noise in To-
tal Internal Reflection Microscopy (TIRM) experiments. This is an optical technique for
monitoring Brownian fluctuations in separation between a single microscopic sphere and a
flat plate in aqueous medium. It is used to detect extremely weak interactions that cannot
be measured by mechanical techniques. The elevation of the sphere can be detected by
measuring the light scattered by the sphere when illuminated by an evanescent wave. The
data of scattering intensity Is are corrupted by a background noise Ib so that only a noisy
signal Ib + Is is observed. Thus a deconvolution is needed to retrieve the distribution of
actual scattering intensity, which is the variable of interest. The authors explain that the
histogram of the noise is obtained from the measurements when there is no sphere in the
observation window (whereas the noisy data are the observed intensities with the sphere
in the window).

In the present paper , we study Model (1), completed with a noise sample ε−1, . . . , ε−M

with distribution fε, independent of (Y1, . . . , Yn). On the one hand, there exists a huge
literature concerning the estimation of f when fε is known: see Carroll and Hall (1988),
Devroye (1989), Fan (1991), Liu and Taylor (1989), Masry (1991), Stefanski and Carroll
(1990), Zhang (1990), Hesse (1999), Cator (2001), Delaigle and Gijbels (2004) for mainly
kernel methods, Koo (1999) for a spline method, Pensky and Vidakovic (1999) and Fan and
Koo (2002) for wavelet strategies, Fan (1991), Butucea (2004) and Butucea and Tsybakov
(2007) for studies of optimality in the minimax sense of the rates, Comte et al. (2006) for
adaptive projection strategies. See also the specific studies of Efromovich (1997) (particular
strategy in supersmooth case) and Meister (2004) (on the effect of noise misspecification).
On the other hand, a few authors have studied the exact problem which is considered
in this paper, but only for particular type of smoothness for fε or f or other type of
risks. We provide a general study of the mean integrated squared error (MISE) which
substantially generalizes existing results. Then, as the estimators depend on a bandwidth-
type parameter, we propose a model selection strategy: we consider − from both theoretical
and practical point of view − the difficult problem of automatic selection of this quantity. In
other words, we explain how to select a relevant estimator in the collection. The study of a
completely data-driven procedure in this context is new and contains true interesting ideas:
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here, the penalty is not only data driven, but the collection of models is also randomly
selected on the basis of the observations.

Let us describe what has been done on the subject. In the deconvolution context, four
cases must be considered, depending on the smoothness of f and fε: roughly speaking, the
functions are called ordinary smooth when the rate of decay of their Fourier Transform
near infinity is polynomial, and super smooth if it is exponential. The first work of the
subject is to be found in Diggle and Hall (1993), who study the case of ordinary smooth
noise density and distribution function f , under M ≥ n, and present interesting heuristics.
Next, our work is related to the paper of Neumann (1997), since our estimator is similar
to his and we borrow a useful Lemma from his study. Neumann (1997) also considers the
case of both ordinary smooth noise and distribution function. He does not perform any
bandwidth selection, but he proves the minimax optimality of the bound he obtains in the
case he considers, and we shall refer to this lower bound. Lastly, Johannes (2009) recently
studied the density deconvolution with unknown (but observed) noise and is interested
in the relation between M and n. His estimator and his approach are very interesting
and rather different from ours, his estimator depends on two bandwidth-type parameters,
which, if relevantly chosen, lead to rates that are the same as in our work. But the data-
driven selection of these bandwidths is not done.

It is worth mentioning that the problem of adaptation which is studied here is of non
linear type and thus difficult to solve, in spite of the apparent simplicity of the estimator
of the Fourier Transform of fε. See the study of similar questions in the context of inverse
problem with error in the operator in Hoffmann and Reiss (2008) or Cavalier and Raimondo
(2007).

Here is the plan of the present paper. In Section 2, we give the notations and define the
estimator, first directly, and then as a projection-type estimator. We study in Section 3
the integrated mean square risk (MISE) of one estimator, which allows us to build general
tables for the rates. Then, we study the link between M and n if one wants to preserve
the rate found in the case where f∗

ε is known. Such a complete panorama is new in this
setting. Next, we define and study in Section 4 a model selection estimator by proposing
a penalization device. A general integrated risk bound for the resulting estimator is given.
The estimator is studied through simulation experiments in Section 5, and its performances
are compared with Neumann (1997)’s and Johannes (2009)’s ones. The influence of the
size M of the noise sample is studied as well as the importance of some other theoretical
constraints on the size of the collection of models. We can check there that the estimator
is easy to implement and works very well. Most proofs are gathered in Section 6.

2. Estimation procedure

2.1. Notations. For two real numbers a and b, we denote a ∨ b = max(a, b) and a ∧ b =
min(a, b). For z a complex number, z̄ denotes its conjugate and |z| its modulus. For
functions s, t : R 7→ R belonging to L

1 ∩ L
2(R), we denote by ‖t‖ the L

2 norm of t, that

is ‖t‖2 =
∫

R
|t(x)|2dx, and by 〈s, t〉 the scalar product: 〈s, t〉 =

∫
R

s(x)t(x)dx. The Fourier
transform t∗ of t is defined by

t∗(u) =

∫
e−ixut(x)dx.
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Note that, if t∗ also belongs to L
1 ∩ L

2(R), then the function t is the inverse Fourier
transform of t∗ and can be written t(x) = 1/(2π)

∫
eixut∗(u)du. Finally, the convolution

product is defined by (t ∗ s)(x) =
∫

t(x − y)s(y)dy.

2.2. Basic definition of the adaptive estimator. It easily follows from Model (1)
and independence assumptions that, if fY denotes the common density of the Yj’s, then
fY = f ∗ fε and thus f∗

Y = f∗f∗
ε . Note that this basic equality can be obtained for a noise

with discrete distribution, and the whole method can be generalized to that case.
Therefore, under the classical assumption:

(A1) ∀x ∈ R, f∗
ε (x) 6= 0,

the equality f∗ = f∗
Y /f∗

ε yields an estimator of f∗ by considering the following estimate of
f∗

Y :

f̂∗
Y (u) =

1

n

n∑

j=1

e−iuYj .

Indeed, if f∗
ε is known, we can use the following estimate of f∗: f̂∗

Y /f∗
ε . Then, we should

use inverse Fourier transform to get an estimate of f . As 1/f∗
ε is in general not in-

tegrable (think of a Gaussian density for instance), this inverse Fourier transform does
not exist, and a cutoff is used. The final estimator for known fε can thus be written:
(2π)−1

∫
|u|≤πm eiuxf̂∗

Y (u)/f∗
ε (u)du. This estimator is classical in the sense that it corre-

sponds both to a kernel estimator built with the sinc kernel (see Butucea (2004)) or to a
projection type estimator as in Comte et al. (2006), as will be showed below.

Now, f∗
ε is unknown and we have to estimate it. Therefore, we use the preliminary noise

sample and we define the natural estimator of f∗
ε

f̂∗
ε (x) =

1

M

M∑

j=1

e−ixε−j .

Next, we introduce as in Neumann (1997) the truncated estimator:

(2)
1

f̃∗
ε (x)

=
1{|f̂∗

ε (x)|≥M−1/2}

f̂∗
ε (x)

=





1

f̂∗
ε (x)

if |f̂∗
ε (x)| ≥ M−1/2

0 otherwise.

Then we can consider

(3) f̂m(x) =
1

2π

∫ πm

−πm
eixu f̂∗

Y (u)

f̃∗
ε (u)

du.

Note that this estimator is such that (f̂m)∗ = (f̂∗
Y /f̃∗

ε )1[−πm,πm].
Lastly, we need a strategy to select the parameter m. Indeed, m plays a bandwidth-type

role, and has to be relevantly selected to lead to an adequate bias variance compromise.
Let

fm(x) =
1

2π

∫ πm

−πm
f∗(u)eiuxdu.
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Then we have f∗
m(u) = f∗(u)1[−πm,πm](u), and

‖f − f̂m‖2 =
1

2π
‖f∗ − f̂∗

m‖2 =
1

2π
(‖f∗ − f∗

m‖2 + ‖f∗
m − f̂∗

m‖2)

=
1

2π
(‖f∗‖2 − ‖f∗

m‖2 + ‖f∗
m − f̂∗

m‖2)

= ‖f‖2 − ‖fm‖2 + ‖fm − f̂m‖2.(4)

The bias term is ‖f‖2−‖fm‖2 and can thus be estimated by −‖f̂m‖2, because the constant

‖f‖2 plays no role in the compromise. The variance term has the order of E(‖fm − f̂m‖2).
Therefore, the estimation procedure is completed as follows. We choose the best estimator
among the collection (f̂m)m∈Mn where Mn ⊂ {1, . . . , n} is the set of all considered indices
by setting:

(5) m̂ = arg min
m∈Mn

{−‖f̂m‖2 + pen(m)}

where pen is a penalty term to be specified later, which has the variance order.

2.3. Equivalent definition of the adaptive estimator. The following view of the es-
timator (5) is useful in the proofs and for practical implementation.

2.3.1. Projection spaces. Let us consider the function

ϕ(x) = sin(πx)/(πx)

and, for m in N
∗, j in Z, ϕm,j(x) =

√
mϕ(mx − j). As ϕ∗(x) = 1[−π,π](x), we have,

as a key property of the functions ϕm,j , that ϕ∗
m,j(x) = e−ixj/m

1[−πm,πm](x)/
√

m. It is

proven that {ϕm,j}j∈Z is an orthonormal basis of the space of integrable functions having
a Fourier transform with compact support included into [−πm, πm]. Note that m can be
chosen in other sets than N

∗, and thinner grids may be useful in practice.
In the sequel, we use the following notation:

Sm = Span{ϕm,j}j∈Z.

We know (see Comte et al. (2006)) that the orthogonal projection of a function g in
(L1 ∩ L

2)(R) on Sm, denoted by gm, is such that g∗m = g∗1[−πm,πm]. With Fourier inverse
formula, we get:

(6) gm(x) =
1

2π

∫ πm

−πm
eixug∗(u)du.

2.3.2. Adaptive estimation of f . Let us define the following contrast

(7) γn(t) =
1

n

n∑

j=1

[‖t‖2 − 2ṽt(Yj)] with ṽ∗t (u) =
t∗(u)

f̃∗
ε (−u)

.

Clearly, ṽt is an approximation of

(8) v∗t (u) =
t∗(u)

f∗
ε (−u)

.

It is easy to see that, for t ∈ Sm, γn(t) = ‖t‖2 − 2〈t, f̂m〉 so that

(9) f̂m = arg min
t∈Sm

γn(t).
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But the definition using (7) has the advantage to be written without specifying m.

Moreover, this gives another formula for f̂m:

(10) f̂m =
∑

l∈Z

âm,lϕm,l with âm,l =
1

n

n∑

j=1

ṽϕm,l
(Yj).

Actually, we use the strategy given by (10) in practice, because it allows us to use fast algo-

rithms as Inverse Fast Fourier Transform (IFFT). Thus, we use in fact f̂m =
∑

|l|≤Kn
âmlϕm,l

because we can estimate only a finite number of coefficients. If Kn is large enough, it does
not change the rate of convergence since the additional terms can be made negligible. For
the sake of simplicity, we let the sum over Z. For an example of detailed study of theoretical
truncation see Comte et al. (2006).

Finally, as obviously γn(f̂m) = −‖f̂m‖2, (5) is equivalent to select the model which
minimizes the following penalized criterion:

(11) m̂ = arg min
m∈Mn

{γn(f̂m) + pen(m)}

where pen is the same penalty term as in (5) and will be specified later. Our aim is to

study f̂m̂ as final estimator of the density.

3. Bound on the L2 risk

3.1. Notations. Let us recall first the following key lemma, proved in Neumann (1997)
for p = 1:

Lemma 1. Let p ≥ 1 be an integer and

R(x) =

(
1

f̃∗
ε (x)

− 1

f∗
ε (x)

)
.

Then there exists a positive constant Cp such that

E|[R(x)|2p] ≤ Cp

(
1

|f∗
ε (x)|2p

∧ M−p

|f∗
ε (x)|4p

)
.

The extension from p = 1 to any integer p is straightforward and therefore the proof is
omitted.
We introduce the notations

(12) ∆(m) =
1

2π

∫ πm

−πm
|f∗

ε (u)|−2du and ∆f (m) =
1

2π

∫ πm

−πm

|f∗(u)|2
|f∗

ε (u)|2 du.

As we shall see, these quantities are involved in the bounds on the variance of our estima-
tors.

3.2. Bound on the MISE. Let us study the integrated mean square risk. By (4), we
have

(13) ‖f − f̂m‖2 = ‖f − fm‖2 + ‖fm − f̂m‖2.
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Moreover, writing f̂m −fm according to (6) and (3) and applying the Parseval formula, we
obtain

‖fm − f̂m‖2 =
1

2π

∫ πm

−πm

∣∣∣∣∣
f̂∗

Y (u)

f̃∗
ε (u)

− f∗
Y (u)

f∗
ε (u)

∣∣∣∣∣

2

du.

It follows that

(14) ‖fm − f̂m‖2 ≤ 1

π

∫ πm

−πm
|f̂∗

Y (u)|2|R(u)|2du +
1

π

∫ πm

−πm

|f̂∗
Y (u) − f∗

Y (u)|2
|f∗

ε (u)|2 du.

The last term of the right-hand-side of (14) is the usual term that is found when f∗
ε is

known, and the first one is specific to the present framework. Using this decomposition,
we can prove the following result:

Proposition 1. Consider model (1) under (A1), then f̂m defined by (9) satisfies:

(15) E(‖f̂m − f‖2) ≤ ‖fm − f‖2 + 4C1
∆(m)

n
+ (4C1 + 2)

∆f (m)

M
where C1 is the numerical constant defined in Lemma 1.

The first two terms in the right-hand-side of (15) are the usual terms when f∗
ε is known

(see Comte et al. (2006)) and correspond to the bias and the variance term. The last term
∆f (m)/M is due to the estimation of f∗

ε .

Remark. As |f∗| ≤ 1, we have ∆f (m) ≤ ∆(m). It follows that for any M ≥ n, then

E‖f̂m−f‖2 ≤ ‖fm−f‖2+C∆(m)/n and we recover the usual risk bound for deconvolution
estimation when f∗

ε is known. Therefore, in all cases, the condition M ≥ n ensures that
the rate of the estimator is the same as when f∗

ε was known.

3.3. Discussion about the resulting rates. Assumption (A1) is generally strengthened
by a parametric description of the rate of decrease of f∗

ε written as follows:

(A2) There exist s ≥ 0, b > 0, γ ∈ R (γ > 0 if s = 0) and k0, k1 > 0 such that

k0(x
2 + 1)−γ/2 exp(−b|x|s) ≤ |f∗

ε (x)| ≤ k1(x
2 + 1)−γ/2 exp(−b|x|s)

Moreover, the desnity f to estimate generally belongs to the following type of smoothness
spaces:

Aδ,r,a(l) = {f density on R and

∫
|f∗(x)|2(x2 + 1)δ exp(2a|x|r)dx ≤ l}(16)

with r ≥ 0, a > 0, δ ∈ R and δ > 1/2 if r = 0, l > 0.

When r > 0, the function f is called supersmooth, and ordinary smooth otherwise. In
the same way, the noise distribution is called ordinary smooth if s = 0 and supersmooth
otherwise. The spaces of ordinary smooth functions correspond to classic Sobolev classes,
while supersmooth functions are infinitely differentiable. It includes for example normal
(r = 2) and Cauchy (r = 1) densities. We take the convention (a, r) = (0, 0) if a = 0 or
r = 0 and (b, s) = (0, 0) if b = 0 or s = 0.

In this section, we assume that f∗
ε satisfies Assumption (A2), with parameters γ, b, s

and that the unknown function f belongs to a smoothness class Aδ,r,a(l) given by (16). It
is then possible to evaluate orders for the different terms involved in the bound (15).
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Since f∗
m = f∗

1[−πm,πm], the bias term can be bounded in the following way

‖f − fm‖2 =
1

2π

∫

([−πm,πm])c

|f∗(u)|2du ≤ l

2π
((πm)2 + 1)−δe−2a(πm)r

The other terms are evaluated in the following lemma proved in Section 6. We use the
notation g1(m) . g2(m) if there exists a constant 0 < C < +∞ such that ∀m, g1(m) ≤
Cg2(m), and the notation g1(m) � g2(m) if g1(m) . g2(m) and g2(m) . g1(m).

Lemma 2. If f∗
ε satisfies Assumption (A2) then

(1) ∆(m) � (πm)2γ+1−se2b(πm)s
,

(2) ∆f (m) . (πm)(1+2γ−s)∧2(γ−δ)+e2b(πm)s
1{s>r} + (πm)2(γ−δ)+e2(b−a)(πm)s

1{r=s,b≥a}
+1{r>s}∪{r=s,b<a}.

Now distinguishing the different cases, we can state the following propositions.

Proposition 2. Assume that (A2) holds and that f ∈ Aδ,r,a(l) given by (16). If s = 0
(ordinary smooth noise) or s > 0 (supersmooth noise), and for r = 0 (ordinary smooth
function f), then

E‖f̂m − f‖2 ≤ C0m
−2δ + C

m2γ+1−se2b(πm)s

n
+ C ′m

(1+2γ−s)∧2(γ−δ)+e2b(πm)s

M
,

where C0, C and C ′ are constants which do not depend on M nor n.

Case s = 0. It is known from Fan (1991), that the optimal minimax rate when f∗
ε is known

is n
−2δ

2γ+2δ+1 . It is preserved with unknown f∗
ε as soon as M ≥ n

2(γ∨δ)
2γ+2δ+1 . This bound is

tighter than M ≥ n.

Now, choose m0 = Int[n
1

2γ+2δ+1 ∧M
1

2(γ∨δ) ] where Int[.] denotes the integer part. We obtain

E‖f̂m0 − f‖2 = O
(
n
− 2δ

2γ+2δ+1 + M−(1∧(δ/γ))
)

.

This is the lower bound proved by Neumann (1997), and thus the rate of our estimator is
the optimal rate.

Case s > 0. For known f∗
ε , Fan (1991) proves that the optimal rate is of order (log n)−

2δ
s .

It is preserved here with unknown f∗
ε as soon as M ≥ n(log n)−

s+[2(δ∧γ)+1−s]+
s .

Choose m0 = Int[(1/π)

(
1
2b log[n(log n)−

2δ+2γ+1
s ∧ M(log M)−

2δ+s+(1+2γ−s)∧2(γ−δ)+
s ]

)1/s

].

This yields

E‖f̂m0 − f‖2 = O
(
(log n)

−2δ
s + (log M)

−2δ
s

)
.

Proposition 3. Assume that (A2) holds and that f ∈ Aδ,r,a(l) given by (16). If s = 0
(ordinary smooth noise) and r > 0 (supersmooth function f), then

E‖f̂m − f‖2 ≤ C0m
−2δe−2a(πm)r

+ C
m2γ+1

n
+

C ′

M
,

where C0, C and C ′ are constants which do not depend on M nor n.
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The optimal rate in this case is studied by Butucea (2004) when f∗
ε is known and is

of order (log n)
2γ+1

r /n. It is preserved even when f∗
ε is estimated, if the sample size for

estimating it, M , is such that M ≥ n(log n)−
2γ+1

r .

Let us choose now m0 = Int[(1/π)
(

1
2a log[n(log n)

r−2δ−2γ−1
r ∧ M(log M)

−2δ
r ]
)1/r

]. We

get

E‖f̂m0 − f‖2 = O

(
(log n)

2γ+1
r

n
+

1

M

)
.

These three cases are summarized in Table 1.

s = 0 s > 0

r = 0 n− 2δ
2δ+2γ+1 + M−[1∧( δ

γ
)] (log n)−

2δ
s + (log M)

−2δ
s

r > 0
(log n)

2γ+1
r

n
+

1

M
see the discussion below.

Table 1. Rates of convergence for the MISE.

The last case, when both functions are supersmooth, is much more tedious, in particular
if one wants to evaluate the rates. In the case of known error distribution, these are implic-
itly given in Butucea and Tsybakov (2007), who also study optimality; explicit formulae
are available in Lacour (2006), see Theorem 3.1 therein.

Proposition 4. Assume that (A2) holds and that f ∈ Aδ,r,a(l) given by (16). If s > 0
(supersmooth noise) and r > 0 (supersmooth function f), then

E‖f̂m − f‖2 ≤ C0m
−2δe−2a(πm)r

+ C
m2γ+1−se2b(πm)s

n
+ C ′∆f (m)

M
,

where C0, C and C ′ are constants which do not depend on M nor n.

The three following cases can be deduced from Theorem 3.1 in Lacour (2006).

Case r = s. We define ξ = [2bδ − a(2γ + 1− s)]/[(a + b)s] and ω = [2(b− a)δ− 2a(γ − δ)+]/[bs]
if b ≥ a, ω = 0 if b < a. We obtain that

(17) E‖f̂m0 − f‖2 = O
(
n− a

a+b (log n)−ξ + M− a
a∨b (log M)−ω

)
,

for πm0 = Int[
( log(n)−(α/s) log log(n)

2a+2b

)1/s∧
( log(M)−(β/s) log log(M)

2(a∨b)

)1/s
] where α = 2δ+

2γ + 1 − s and β = 2δ + 2(γ − δ)+1b≥a.
Case r < s. We define k = d(s/r − 1)−1e − 1, where d.e is the ceiling function (i.e. dxe is the

smallest integer larger than or equal to x). There exist coefficients bi recursively
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defined (see Lacour (2006)) and a choice m0 such that

E‖f̂m0 − f‖2 = O
(
(log n)−2δ/s exp[

k∑

i=0

bi(log n)(i+1)r/s−i]

+(log M)−2δ/s exp[
k∑

i=0

bi(log M)(i+1)r/s−i]
)

(18)

Case r > s. We define k = d(r/s− 1)−1e− 1. There exist coefficients di recursively defined and
a choice m0 such that

(19) E‖f̂m0 − f‖2 = O
((log n)(1+2γ−s)/r

n
exp[−

k∑

i=0

di(log n)(i+1)s/r−i] +
1

M

)

3.4. Lower bounds for the additional problem of estimating fε. As mentioned
above, Neumann (1997) only studied one particular case from the lower bound point of
view. But his proof (for the additional problem of estimating fε) can be checked to be suit-
able in other cases. The following proposition establishes the optimality of our estimator
in the case where f is smoother than fε and r ≤ 1.

Proposition 5. Let

Fγ,b,s = {fε density such that there exist k0, k1 > 0 such that

∀x ∈ R k0 ≤ |f∗
ε (x)|(x2 + 1)γ/2 exp(b|x|s) ≤ k1}

If r = s = 0 and γ < δ − 1/2, or if 0 ≤ s < r ≤ 1 then

inf
f̂

sup
f∈Aδ,a,r(l),fε∈Fγ,b,s

E‖f̂ − f‖2
2 ≥ CM−1

where the infimum is taken over all estimators f̂ of f based on the observations Y1, . . . , Yn.

Proof of Proposition 5. The proof of the lower bound (for the additional problem
of estimating fε) given by Neumann (1997) can be used here. Thus, if r = s = 0 and
γ < δ− 1/2, we obtain a lower bound CM−1 which proves the optimality of our estimator
in this case.

In addition, this result can be generalized to a supersmooth noise distribution if s ≤ 1.
Indeed, such densities verify the property (3.1) used by Neumann (1997). In the same
way, an extension to supersmooth functions f can be done provided that r ≤ 1. Thus, if
0 ≤ s < r ≤ 1, the rate of convergence M−1 of our estimator is optimal for the integrated
risk. �

4. Model selection

The above study shows that the choice of m is both crucial and difficult. Thus, we
provide a data driven strategy to perform automatically this choice. We assume that we
are able to manage with M larger than n: this means that we need a careful calibration
step, but this step is done once for all. More precisely, we assume in the following that
there exists ε > 0 such that M ≥ n1+ε. This preliminary ε-sample will enable us to provide
a density estimator for any new n-sample of the Yi’s.
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Consequently, our aim is to preserve here the rate corresponding to the case of an n-
sample of observations Yi when f∗

ε is known. We consider the estimator f̂m̂ defined by (11)
where we have to define the penalty pen(.).

4.1. A theoretical estimator. We will work under Assumption (A2) and, concerning
the collection of models Mn = {1, 2, . . . ,mn}, we define mn by

mn = arg max{m ∈ {1, . . . , n}, 1 ≤ ∆(m)/n ≤ 2}.
If it exists, we simply take mn such that ∆(mn) = 2n.

We can prove the preliminary result given in Theorem 1.

Theorem 1. Assume that assumption (A2) is fulfilled, take M ≥ n1+ε for ε > 0 and

consider the estimator f̂m̂ defined by (9) and (11) with

(20) pen(m) = K0

(
log(∆(m))

log(m + 1)

)2 ∆(m)

n
,

where K0 is a numerical constant.
Then there exists C > 0 such that

(21) E‖f̂m̂ − f‖2 ≤ 4 inf
m∈Mn

{‖fm − f‖2 + pen(m)} +
C

n

where fm is the orthogonal projection of f on Sm.

This result requires several comments.

(1) First, let us examine the penalty and its order, which contains two terms: a main
part ∆(m)/n and an auxiliary one, (log(∆(m))/ log(m + 1))2. The variance has
order ∆(m)/n. If the errors are ordinary smooth, the term (log(∆(m))/ log(m+1))2

is a constant and the penalty has exactly the order of the variance (see the results
in Lemma 2). In the super-smooth case, this term adds a multiplicative factor
m2s/ log2(m + 1).

(2) The result of Theorem 1 is an oracle inequality which states that the estimator f̂m̂

makes the compromise between the squared bias term ‖f − fm‖2 and the penalty.
If the penalty has exactly the order of the variance ∆(m)/m, then the optimal
rate is reached. This occurs at least − but not only − in the ordinary smooth
case. Otherwise, a loss may occur. The discussion below shows that, even if the
penalty is larger than the variance, the rate can be preserved. Moreover, it follows
from results in Butucea and Tsybakov (2007) that a loss may be unavoidable in
the adaptive procedure; in that case, the rate is called adaptive optimal.

(3) We can note that the penalty (20) generalizes the one obtained in Comte et al.
(2006) with known f∗

ε . In Comte et al. (2006), fε is known and fulfills (A2) and
the oracle inequality is obtained for the estimator with a penalty proportional to

(22) mω ∆(m)

n
, with ω =





0 if 0 ≤ s ≤ 1/3
3s−1

2 if 1/3 < s ≤ 1
s if s > 1.

Clearly, the penalty (20) has the same order for s = 0, i.e. in the ordinary smooth
case. Otherwise, for s > 0, the proposal (20) overestimates the order of (22) for
known fε. The reason for this sacrifice is the fact that, as we are in a context of
unknown fε, the term we propose is easier to estimate than the terms in (22).
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(4) Let us now discuss the loss which may occur in the rate for s > 0. In the case
r = 0, s > 0, the rate of convergence of the estimate is not affected, because it is
clear from Table 1 that the rate does not depend on the powers in the variance
term (i.e. it does not depend on γ): the bias term is the one which governs the
rate in this case, and a small loss in the variance does not change the rate. In the
case r > 0, s > 0, if moreover r < s, it follows from (18) that the optimal rate
is also preserved, for the same reason (the bias term mainly determines the rate).
If r ≥ s, it follows from (17) and (19) that the loss in the rate concerns only the
logarithmic terms, which are negligible w.r.t. the rate. Therefore, if a loss in the
rate occurs, as price of the adaptive property of the procedure, we know that it is
negligible with respect to the rate of convergence of the estimator.

Let us emphasize again here that the interest of the penalty (20) is that the terms
required in the supersmooth case are added without requiring the information: are the
errors ordinary smooth or supersmooth, and what is the value of s?

4.2. An effective model selection estimator. The previous estimator is unrealistic for
two reasons:

− The penalty can not be computed because ∆(m) also depends on f∗
ε .

− The choice of mn depends on ∆(m)

For the first problem, we define

(23) p̃en(m) = K1

(
log(∆̂(m))

log(m + 1)

)2
∆̂(m)

n
, ∆̂(m) =

∫ πm

−πm
|f̃∗

ε (x)|−2dx.

For the last one, we take

m̂n = arg max
{
m ∈ {1, . . . , n}, 1/4 ≤ ∆̂(m)/n ≤ 1/2

}
.

It is useful to note here that, in theory as in practice, the m’s need not be integers, and
can be chosen in a discrete set with thinner or larger step than 1.

Then the following theorem shows that we have completely solved our problem with a
data-driven procedure.

Theorem 2. Assume that assumption (A2) is fulfilled and M ≥ n1+ε for ε > 0. Consider

the estimator f̃ = f̂ ˆ̂m defined by (9) and

(24) ˆ̂m = arg min
m∈{1,...,m̂n}

{γn(f̂m) + p̃en(m)}

with p̃en(m) defined by (23), K1 being a pure numerical constant (K1 = 128 would work).
Then, for n large enough, we have

(25) E‖f̃ − f‖2 ≤ C1 inf
m∈Mn

{‖fm − f‖2 + pen(m)} +
C2

n
,

where C1 is a pure numerical constant, and C2 is a constant depending on f and fε.

It appears that the right-hand-side of Inequality (25) is the same as in Inequality (21)
and the comments about (21) following Theorem 1 are therefore valid: the estimator makes
an automatic bias-penalty compromise, which leads either to the optimal rate, or to the
optimal rate up to a negligible loss. But the left-hand-side term of Inequality (25) involves
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the new estimator f̂ ˆ̂m which is now completely data driven, up to the "universal" value of
K1 which is proposed in the next section.

It is worth mentioning that, if we know that the noise is ordinary smooth, then we must
take p̃en(m) = ∆̂(m)/n, and the adaptive procedure automatically reaches the optimal
rate.

5. Simulations

5.1. Practical estimation procedure. Let us describe the estimation procedure as it is

implemented. As noticed in (10), for each m, the estimator f̂m of f can be written

f̂m =
∑

|l|≤Kn

âm,lϕm,l with âm,l =
1

n

n∑

j=1

ṽϕm,l
(Yj).

To compute the coefficients âm,l, we use the Inverse Fast Fourier Transform. Indeed,

using ϕ∗
m,l(u) = e−ilu/m

1[−πm,πm]/
√

m,

âm,l =
1

2π

∫ πm

−πm

1√
m

e−ilu/m f̂∗
Y (−u)

f̃∗
ε (−u)

du =

√
m

2
(−1)l

∫ 2

0
eilπx f̂∗

Y

f̃∗
ε

(πm(x − 1))dx

Then, for l = 0, ..., N−1, denoting hm(x) = (f̂∗
Y /f̃∗

ε )(πm(x−1)), âm,l can be approximated
by

√
m(−1)l

1

N

N−1∑

k=0

eilπ 2k
N hm(

2k

N
) =

√
m(−1)l(IFFT(H))l

where H is the vector (hm(0), hm(2/N), . . . , hm(2(N − 1)/N). For l < 0, it is sufficient to

replace hm(x) by hm(−x) = hm(x), i.e. H by H. Following Comte et al. (2006), we choose
Kn = N − 1 = 28 − 1: indeed, a larger Kn does not significantly improve the results.

Thus, to compute f̃ , we use the following steps:

• For each m and for each l, compute âm,l using function f̂∗
Y /f̃∗

ε and IFFT as de-
scribed above.

• For each m compute ∆̂(m) and γn(f̂m) + p̃en(m) = −∑l |âm,l|2 + p̃en(m).
• Compute m̂n.
• Select the ˆ̂m which minimizes γn(f̂m) + p̃en(m).

• Compute f̃ =
∑

|l|≤Kn
â ˆ̂m,lϕ ˆ̂m,l.

Clearly, the use of FFT makes the procedure fast. As in Comte et al. (2007), we consider
that m can be fractional. More precisely, we take here

Mn =

{
m =

k

4π
, k ∈ N

∗, k ≤ k̂n

}

where k̂n = arg max
{
k ∈ {1, . . . , n}, ∆̂(k/(4π)) ≤ n/2

}
. The penalty is chosen according

to Theorem 2. More precisely we take

p̃en(m) = 2

(
log(∆̂(m))

log(4πm + 1)

)2
∆̂(m)

n
.
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It is worth mentioning that, empirically, the procedure is rather robust with respect to the
choice of the constant before the penalty and the maximal model m̂n(= k̂n/(4π)). It seems
due to the truncation of the error density described in (2).

5.2. Comparison with existing results. Let us first compare our estimator to the one
of Neumann (1997). He denotes by f0(x) = e−|x|/2 and he considers two examples :
- example 1: f = f0 ∗ f0 ∗ f0 ∗ f0 and fε = f0 ∗ f0

- example 2: f = f0 ∗ f0 and fε = f0 ∗ f0 ∗ f0 ∗ f0

We set, as in Neumann (1997), n = 200 and M = 10 and the L2 risk is computed with 100

random samples. We also compute the estimator with known noise, replacing f̃ε by fε in
the procedure. In this case, we choose Mn = {m = k/(4π), k ∈ N

∗, k ≤ n1/4}. Moreover,
we take here pen(m) = 4∆(m)/n = (2/nπ)

∫ πm
−πm(1+x2)2ddx with d = 2 in example 1 and

d = 4 in example 2. The integrated L2 risks for 100 replications are given in Table 2 and
show our improvement of the results of Neumann (1997).

ex 1 ex 2
fε known 0.00257 0.01904

fε unknown 0.00828 0.06592

ex 1 ex 2
fε known 0.00243 0.01791

fε unknown 0.00612 0.03427

Table 2. MISE for the estimators of Neumann (1997) (left) and for the
penalized estimator (right).

In these examples, the signal and the noise are ordinary smooth (r = s = 0): this induces

the rates of convergence n− 15
24 + M−1 and n− 7

24 + M− 7
16 for examples 1 and 2 respectively.

An example of estimation for supersmooth functions is given in Johannes (2009). In his
example 5.1, he considers a standard Gaussian noise and X ∼ N (5, 9). For a known noise,

we use the penalty pen(m) = (πm)3
∫ 1
0 exp{(πmx)2}dx/(2n) and the collection of models

Mn = {m = k/(4π), k ∈ N
∗, k ≤ √

n}. As Johannes (2009) presents only boxplots and for
the sake of comparison, we give the third quartile for the L2 risk in Table 3. In this case

r = 2, δ = 1/2 and s = 2, γ = 0 and the rate of convergence is n− 9
10 (log n)−1/2 + M−1.

The improvement brought by our method is striking.

n = 100 n = 250 n = 500
fε known 2.0 0.9 0.6
M = 100 2.0 1.0 0.7
M = 250 1.9 1.0 0.6
M = 500 1.9 0.9 0.6

n = 100 n = 250 n = 500
fε known 0.71 0.23 0.12
M = 100 0.24 0.11 0.07
M = 250 0.21 0.12 0.07
M = 500 0.21 0.12 0.07

Table 3. Third quartile of the MISE ×100 for the estimators of Johannes
(2009) (left) and for the penalized estimator (right).

5.3. Other examples and influence of M . Now we compute estimators for different
signal densities and different noises. Following Comte et al. (2006) we study the following
densities on the interval I:
(i) Laplace distribution: f(x) = e−

√
2|x|/

√
2, I = [−5, 5] (regularities δ = 2, r = 0),
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(ii) Mixed Gamma distribution: X = W/
√

5.48 with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1),
I = [−1.5, 26] (regularities δ = 5, r = 0),

(iii) Cauchy distribution: f(x) = (π(1 + x2))−1, I = [−10, 10] (regularities δ = 0, r = 1),
(iv) Standard Gaussian distribution, I = [−4, 4] (regularities δ = 1/2, r = 2).

n = 100 n = 250 n = 500
H

H
H

H
HH

f
fε Lap. Gauss. Lap. Gauss. Lap. Gauss.

Laplace fε known 2.426 3.052 1.196 1.792 0.835 1.180
M = b√nc 2.772 2.826 1.539 1.651 1.059 1.232
M = n2 2.500 2.667 1.311 1.423 0.815 0.942

Mixed fε known 1.019 0.907 0.637 0.520 0.312 0.313
Gamma M = b√nc 1.155 1.088 0.609 0.652 0.366 0.380

M = n2 1.167 1.145 0.607 0.594 0.382 0.360
Cauchy fε known 1.144 0.945 0.486 0.436 0.341 0.255

M = b√nc 1.138 1.072 0.533 0.475 0.323 0.302
M = n2 1.044 1.030 0.438 0.443 0.275 0.273

Gaussian fε known 0.858 0.466 0.676 0.301 0.483 0.220
M = b√nc 0.921 0.914 0.630 0.537 0.407 0.405
M = n2 0.715 0.593 0.529 0.476 0.383 0.259

Table 4. MISE E(‖f − f̃‖2) × 100 averaged over 100 samples

We consider two different noises with same variance 1/10:

Laplace noise: In this case, the density of εi is given by

fε(x) =
λ

2
e−λ|x|; f∗

ε (x) =
λ2

λ2 + x2
; λ = 2

√
5.

The smoothness parameters are γ = 2 and b = s = 0. In the case when fε is
known, we use pen(m) = 4(πm + (2/(3λ2))(πm)3 + (1/(5λ4))(πm)5)/n.

Gaussian noise: In this case, the density of εi is given by

fε(x) =
1

λ
√

2π
e−

x2

2λ2 ; f∗
ε (x) = e−

λ2x2

2 ; λ =
1√
10

.

So γ = 0, b = λ2/2 and s = 2. In the case when fε is known, we use pen(m) =

0.5(πm)3
∫ 1
0 e(λπmx)2dx/n.

For a known noise, we take here Mn = {m = k/(4π), k ∈ N
∗, k ≤ kn} where

kn = arg max {k ∈ {1, . . . , n},∆(k/(4π)) ≤ n} .

The results are given in Table 4 and are very comparable to those of Comte et al. (2006).
We notice that the estimation of the characteristic function of the noise does not spoil
so much the procedure. It even happens that the estimation with unknown noise works
better, which is likely due to the truncation (2). We can also observe that, as expected, the
risk decreases when M increases. The cases where the risk is larger for M = n2 correspond
to a stabilization of the decrease and are due to the variance of the results.
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Figure 1 illustrates these results for two cases: a mixed Gamma density estimated
through Laplace noise and a Laplace density estimated through Gaussian noise. The
curves for M = 5 show that our method is still very satisfactory for small values of M .

−2 0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15

0.2

 

 
known noise
M=5
M=50

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
known noise
M=5
M=50

Figure 1. True function f (bold line) and estimators for n = 500. Left:
mixed Gamma density with Laplace noise. Right : Laplace density with
Gaussian noise

6. Proofs

For two sequences un,M,m and vn,M,m, we denote un,M,m . vn,M,m if there exists a
positive constant C such that un,M,m ≤ Cvn,M,m for all n, M , m.

6.1. Proof of Proposition 1. We start from (14) and take the expectation:

E(‖fm − f̂m‖2) ≤ 2

π

∫ πm

−πm
E(|f̂∗

Y (u) − f∗
Y (u)|2|R(u)|2)du

+
2

π

∫ πm

−πm
|f∗

Y (u)|2E(|R(u)|2)du +
1

π

∫ πm

−πm

n−1

|f∗
ε (u)|2 du.

Applying Lemma 1 yields:

E(‖fm − f̂m‖2) ≤ 2

π

∫ πm

−πm
E(|f̂∗

Y (u) − f∗
Y (u)|2)E(|R(u)|2)du

+
2

π

∫ πm

−πm
|f∗(u)|2|f∗

ε (u)|2E(|R(u)|2)du + 2
∆(m)

n

≤ 2C1

π

∫ πm

−πm
n−1|f∗

ε (u)|−2du

+
2C1

π

∫ πm

−πm
|f∗(u)|2|f∗

ε (u)|2 M−1

|f∗
ε (u)|4 du + 2

∆(m)

n

≤ 2C1

πM

∫ πm

−πm

|f∗(u)|2
|f∗

ε (u)|2 du + (4C1 + 2)
∆(m)

n
(26)

By gathering (13) and (26), we obtain the result. �
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6.2. Proof of Lemma 2. The proof of the first result is omitted. It is obtained by
distinguishing the cases s > 2γ+1 and s ≤ 2γ+1 and with standard evaluations of integrals.
For the second point, we first remark that ∆f (m) ≤ ∆(m). Next, using Assumption (A2),

∆f (m) ≤ k−2
0

2π

∫ πm

−πm
(x2 + 1)γe2b|x|s |f∗(x)|2dx

≤ k−2
0

2π
l sup
x∈[−πm,πm]

((x2 + 1)γ−δe2(b|x|s−a|x|r))

Then, if s > r,

∆f (m) ≤ k−2
0

2π
l((πm)2 + 1)(γ−δ)+e2b(πm)s

If r = s and b ≥ a,

∆f (m) ≤ k−2
0

2π
l((πm)2 + 1)(γ−δ)+e2(b−a)(πm)s

If r > s or r = s and a > b, ∆f (m) is bounded by a constant. �

6.3. Proof of Theorem 1. We observe that for all t, t′

γn(t) − γn(t′) = ‖t − f‖2 − ‖t′ − f‖2 − 2νn(t − t′)

where

νn(t) = n−1
∑

j

{
ṽt(Yj) −

∫
t(x)f(x)dx

}
.

Let us fix m ∈ Mn and recall that fm is the orthogonal projection of f on Sm. Since
γn(f̃) + pen(m̂) ≤ γn(fm) + pen(m), we have

‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + 2νn(f̂m̂ − fm) + pen(m) − pen(m̂)

≤ ‖fm − f‖2 + 2‖f̂m̂ − fm‖ sup
t∈B(m,m̂)

νn(t) + pen(m) − pen(m̂)

where, for all m,m′, B(m,m′) = {t ∈ Sm + Sm′ , ‖t‖ = 1}. Then, using inequality
2xy ≤ x2/4 + 4y2,

(27) ‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 +
1

4
‖f̂m̂ − fm‖2 + 4 sup

t∈B(m,m̂)
ν2

n(t) + pen(m) − pen(m̂).

But ‖f̂m̂ − fm‖2 ≤ 2‖f̂m̂ − f‖2 + 2‖f − fm‖2 so that, introducing a function p(., .)

‖f̂m̂ − f‖2 ≤ 3‖fm − f‖2 + 8[ sup
t∈B(m,m̂)

ν2
n(t) − p(m, m̂)] + 8p(m, m̂) + 2pen(m) − 2pen(m̂).

If p is such that for all m,m′,

(28) 4p(m,m′) ≤ pen(m) + pen(m′)

then

(29) E‖f̂m̂ − f‖2 ≤ 3‖fm − f‖2 + 8E[ sup
t∈B(m,m̂)

ν2
n(t) − p(m, m̂)] + 4pen(m).
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Using E(vt(Yj)|Xj) = t(Xj) (recall that vt is defined in (8)), we split νn(t) into two terms:
νn(t) = νn,1(t) + Sn(t) with

(30)





νn,1(t) =
1

n

n∑

j=1

{vt(Yj) − E[vt(Yj)]}

Sn(t) =
1

n

n∑

j=1

(ṽt − vt)(Yj), ,

For Sn we need additional decompositions. We write

Sn(t) =
1

n

n∑

j=1

(ṽt − vt)(Yj) =
1

2π

∫
(
1

n

n∑

j=1

eiuYj)t∗(u)R(−u)du

=
1

2π

∫
f̂∗

Y (u)t∗(−u)R(u)du

=
1

2π

∫
(f̂∗

Y (u) − f∗
Y (u))t∗(−u)R(u)du +

1

2π

∫
f∗

Y (u)t∗(−u)R(u)du

Now, let E(x) = {|f̂∗
ε (x)| ≥ 1/

√
M} and write

R(x) =
1E(x)

f̂∗
ε (x)

− 1

f∗
ε (x)

= 1E(x)

(
1

f̂∗
ε (x)

− 1

f∗
ε (x)

)
− 1E(x)c

f∗
ε (x)

=
(f∗

ε (x) − f̂∗
ε (x))

f∗
ε (x)

1E(x)

f̂∗
ε (x)

−
1E(x)c

f∗
ε (x)

=
(f∗

ε (x) − f̂∗
ε (x))

f∗
ε (x)

R(x) +
(f∗

ε (x) − f̂∗
ε (x))

(f∗
ε (x))2

− 1E(x)c

f∗
ε (x)

.

Thus we have

Sn(t) = Rn,1(t) + Rn,2(t) − Rn,3(t) − Rn,4(t)

where 



Rn,1(t) =
1

2π

∫
(f̂∗

Y (u) − f∗
Y (u))t∗(−u)R(u)du,

Rn,2(t) =
1

2π

∫
f∗(u)t∗(−u)(f∗

ε (u) − f̂∗
ε (u)))R(u)du,

Rn,3(t) =
1

2π

∫
f∗(u)t∗(−u)

f̂∗
ε (u) − f∗

ε (u)

f∗
ε (u)

du,

Rn,4(t) =
1

2π

∫
f∗(u)t∗(−u)1E(x)cdu.

Now, let us define for all m and m′ the function

(31) p0(m,m′) = 2(log(∆(m�)/ log(m� + 1))2∆(m�)/n

where ∆(m) is defined in (12) and m� = max(m,m′).
For νn,1, we use the following proposition, mainly proved in Comte et al. (2006):
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Proposition 6. Under assumptions of Theorem 1, there exists a positive constant C such
that

(32) E0 := E

([
sup

t∈B(m,m̂)
ν2

n,1(t) − p0(m, m̂)

]

+

)
≤ C

n
.

Note that Theorem 1 in Comte et al. (2006) is proved with a smaller penalty, but it
is easy to see that, under (A2), the above proposal would a fortiori work. Therefore, we
omit the proof of Proposition 6.

For the other terms, which, for three of them, do not behave as usual residual terms, we
prove:

Proposition 7. Under assumptions of Theorem 1, there exist positive constants C1, . . . , C4,
such that for i = 1, 2, 3,

(33) Ei := E

(
sup

t∈B(m,m̂)
|Rn,i(t)|2 − p0(m,m′)

)
≤ Ci

n
,

where p0(m,m′) is given by (31) and

(34) E4 := E

(
sup

t∈B(m,m̂)
|Rn,4(t)|2

)
≤ C4

n
.

It follows from Proposition 6 and Proposition 7 and from

(νn,1(t) +

4∑

i=1

Rn,i(t))
2 ≤ 5(ν2

n,1(t) +

4∑

i=1

R2
n,i(t)),

that there exists a constant C such that

E[ sup
t∈B(m,m̂)

ν2
n(t) − p(m, m̂)]+ ≤ C

n
.(35)

for p(m,m′) = 20p0(m,m′). Moreover, (28) holds if

20 × 4 × 2

(
log(∆(m�))
log(m� + 1)

)2 ∆(m�)
n

≤ pen(m) + pen(m′)

for all m,m′ in Mn (recall that m� = max(m,m′)). This is ensured by the choice

pen(m) = K0

(
log(∆(m))

log(m + 1)

)2

∆(m)/n,

with K0 = 160 here. This is the choice of pen(.) given in Theorem 1.
Now, gathering (32), (33), (34) for i = 2, . . . , 4 and (35) yields that, ∀m ∈ Mn,

E‖f̂m̂ − f‖2 ≤ 3‖fm − f‖2 + 4pen(m) +
C

n
.

This ends the proof of Theorem 1. �
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6.4. Proof of Proposition 7. We shall use in the sequel the following Lemma:

Lemma 3. Under Assumption (A2), for all m ∈ Mn and all p ≥ 1/2, we have
∫ πm

−πm
|f∗

ε (x)|−4pdx . ∆(m)2p(log(n))(2p−1)1s>1 .

Proof of Lemma 3. Using assumption (A2),
∫ πm

−πm
|f∗

ε |−4p ≤ k−4p
0

∫ πm

−πm
(x2 + 1)2γp exp(4pb|x|s)dx . (πm)4γp+(1−s)e4pb(πm)s

so that, using Lemma 2
∫ πm

−πm
|f∗

ε |−4p . [(πm)2γ+(1−s)e2b(πm)s
]2pm1−s−2p+2sp

. ∆(m)2pm−(2p−1)(1−s).(36)

Then m−(2p−1)(1−s) ≤ 1 if s ≤ 1 and if s > 1, as m ∈ Mn, we have ms−1 . log(n), which
explains the result. �

In the sequel, we denote by m∗ the maximum max(m, m̂).

6.4.1. Study of Rn,1(t). We define Ω(x) the set Ω(x) = Ω1(x) ∩ Ω2(x) where

Ω1(x) = {|f̂∗
Y (x) − f∗

Y (x)| ≤ 4n−1/2
√

log(n)}
and

Ω2(x) = {|R(x)| ≤ (M−1/2/|f∗
ε (x)|2)(nε/2/ log(n))}.

For t in Sm + Sm̂ = Sm∗ , we can bound the term |Rn,1(t)|2 in the following way

|Rn,1(t)|2 ≤ 1

4π2

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|2
∫

|t∗|2

But, on B(m, m̂),
∫
|t∗|2 = 2π‖t‖2 ≤ 2π so that

sup
t∈B(m,m̂)

|Rn,1(t)|2 ≤ 1

2π

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ω +
1

2π

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ωc

On the one hand

(37)

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ω ≤ 16
log(n)

n

nε

M log2(n)

∫ πm∗

−πm∗

|f∗
ε |−4 .

∆(m∗)
n

by using the definition of Ω, Lemma 3 and M ≥ n1+ε. On the other hand

E(

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ωc) ≤
∫ πmn

−πmn

E
1/2(|f̂∗

Y − f∗
Y |4)E1/2(|R|4)P1/2(Ωc)

.

∫ πmn

−πmn

n−1M−1|f∗
ε (x)|−4

P
1/2(Ω(x)c)dx

.
∆(mn)2 log(n)

Mn
‖P1/2(Ωc)‖∞

with Lemma 3. Now, using Bernstein inequality, it is easy to see that for all x,

P(Ω1(x)c) ≤ 2

n2
.
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On the other hand, using the Markov inequality, for any p ≥ 1,

P(Ω2(x)c) ≤ E
(
|R(x)|2pMp|f∗

ε (x)|4p
) (log n)2p

npε
.

(log n)2p

npε

by using Lemma 1. Now taking p = Int[2/ε] + 1 yields P(Ω2(x)c) ≤ Cε/n
2. As a conse-

quence

(38) E(

∫ πm∗

−πm∗

|f̂∗
Y − f∗

Y |2|R|21Ωc) . cε/n.

Gathering (37) and (38) gives (33) for i = 1. �

6.4.2. Study of Rn,2(t). The following result obviously holds E[|f∗
ε − f̂∗

ε |p] . M−p/2. More-
over let

Ξ(x) = {|f∗
ε (x) − f̂∗

ε (x)| ≤ 4M−1/2
√

log(n)} ∩ Ω2(x).

As previously, we have P(Ξ(x)c) ≤ c′ε/n
2.

We can bound the term |Rn,2(t)|2 in the following way

sup
t∈B(m,m̂)

|Rn,2(t)|2 ≤ 1

2π

∫ πm∗

−πm∗

|f∗|2|f∗
ε − f̂∗

ε |2|R|21Ξ +
1

2π

∫ πm∗

−πm∗

|f∗|2|f∗
ε − f̂∗

ε |2|R|21Ξc

On the one hand∫ πm∗

−πm∗

|f∗|2|f∗
ε − f̂∗

ε |2|R|21Ξ ≤ 64

∫ πm∗

−πm∗

|f∗|2 log(n)nε

log2(n)M2|f∗
ε |4

.
nε[∆(m∗)]2

M2
.

∆(m∗)
M

≤ p(m, m̂)

where we used the definition of Ξ(x) and Lemma 3 again with p = 1.
On the other hand

E(

∫ πm∗

−πm∗

|f∗|2|f∗
ε − f̂∗

ε |2|R|21Ξc) ≤
∫ πmn

−πmn

|f∗|2E
1/4(|f∗

ε − f̂∗
ε |8)E1/4(|R|8)P1/2(Ξc)

.

∫ πmn

−πmn

M−2|f∗(x)|2|f∗
ε (x)|−4

P
1/2(Ξ(x)c)dx

. [∆(mn)]2 log(n)M−2‖P1/2(Ξc)‖∞ . c/n.

6.4.3. Study of Rn,3(t). We can write

Rn,3(t) =
1

M

M∑

k=1

[Ft(ε−k) − E(Ft(ε−k))]

with

Ft(u) =
1

2π

∫
f∗(x)

f∗
ε (x)

t∗(−x)e−ixudx.

Moreover,

E

[
sup

t∈B(m,m̂)
|Rn,3(t)|2 − p(m, m̂)

]

+

≤
∑

m′∈Mn

E

[
sup

t∈B(m,m′)
|Rn,3(t)|2 − p(m,m′)

]

+

which replaces the supremum on a random unit ball (m̂ is random) by suprema on deter-
ministic unit balls. Then we use the following Lemma
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Lemma 4. Let T1, . . . , TM be independent random variables and νM (r) = (1/M)
∑M

j=1[r(Tj)−
E(r(Tj)], for r belonging to a countable class R of measurable functions. Then, for ε > 0,

(39) E[sup
r∈R

|νM (r)|2 − (1 + 2ε)H2]+ ≤ C

(
v

M
e−K1ε MH2

v +
B2

M2C2(ε)
e−K2C(ε)

√
εMH

B

)

with K1 = 1/6, K2 = 1/(21
√

2), C(ε) =
√

1 + ε− 1 and C a universal constant and where

sup
r∈R

‖r‖∞ ≤ B, E

(
sup
r∈R

|νM (r)|
)

≤ H, sup
r∈R

1

M

M∑

j=1

Var(r(Tj) ≤ v.

Inequality (39) is a straightforward consequence of the Talagrand (1996) inequality given
Birgé and Massart (1997). Moreover, standard density arguments allow to apply it to the
unit ball B(m,m′).
We can determine B,H and v is our problem, and we get B =

√
∆(m�), H2 =

√
p0(m,m′)/n

(which is an over-estimation) and v = C min(∆(m�), ‖fε‖
√

∆2(m�)) with ∆2(m) =
∫
|f∗

ε |−4.
We do not give the details since the study is the same as for Proposition 6, which is proved
in Comte et al. (2006). �

6.4.4. Study of Rn,4(t). It is easy to see that

sup
t∈B(m,m̂)

|Rn,4(t)|2 ≤ 1

2π

∫ πm∗

−πm∗

|f∗(u)|21Ec(u)du,

and thus

E

(
sup

t∈B(m,m̂)
|Rn,4(t)|2

)
≤ 1

2π

∫ πmn

−πmn

|f∗(u)|2P(Ec(u))du.

Now, P(Ec(x)) = P(|f̂∗
ε (x)| < 1/

√
M). We use that, as ∆(mn) ≤ 2n, it holds that for

x ∈ [−πmn, πmn], |f∗
ε (x)|−2 ≤ ∆(mn) ≤ 2n ≤ 2M1/(1+ε). Thus |f∗

ε (x)| ≥ 2/
√

M , and
proceeding as in Neumann (1997), we apply Bernstein Inequality and we get

P(|f̂∗
ε (x)| < M−1/2) ≤ P(|f̂∗

ε (x) − f∗
ε (x)| > |f∗

ε (x)| − M−1/2)

≤ P(|f̂∗
ε (x) − f∗

ε (x)| > M−1/2)

≤ κ exp(−κM |f∗
ε (x)|2) = O(M−p|f∗

ε (x)|−2p),(40)

for all p ≥ 1. Then,

E

(
sup

t∈B(m,m̂)
|Rn,4(t)|2

)
.

∫ πmn

−πmn

|f∗(u)|2M−p|f∗
ε (u)|−2pdu

.
∆(mn)p log(n)p−1/2

Mp
. n−pε log(n)p−1/2 . n−1,

for p ≥ Int[1/ε] + 1. This gives the result for Rn,4. �

6.5. Proof of Theorem 2.
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6.5.1. Proof of Theorem 2. Let us define mopt(n) as the solution of the bias-variance com-
promise, that is the index m such that

mopt(n) = inf
m∈{1,...,mn}

(‖f − fm‖2 + pen(m)).

It follows that pen(mopt(n)) has the order of a rate of convergence; therefore, it tends to 0
when n goes to infinity, and so does ∆(mopt(n))/n. We assume that n is large enough so
that ∆(mopt(n))/n is less than 1/8.

Next, we use the following sets:

Ω = {mopt(n) ≤ m̂n ≤ mn},
and

Λ = {∀m ∈ Mn,
1

2π

∫ πm

−πm
|R|2 ≤ ∆(m)

4
}.

Let

∆̂(m) =
1

2π

∫ πm

−πm
dx/|f̃ε(x)|2.

Since ∆(m) ≤ 2
2π

∫ πm
−πm |R|2 + 2∆̂(m), we can write on Λ, ∆(m) ≤ ∆(m)/2 + 2∆̂(m) and

then

∆(m)1Λ ≤ 4∆̂(m)1Λ.

Analogously, ∆̂(m) ≤ 2
2π

∫ πm
−πm |R|2 + 2∆(m), and we can write on Λ, ∆̂(m) ≤ ∆(m)/2 +

2∆(m) and then

∆̂(m)1Λ ≤ (5/2)∆(m)1Λ.

Note that this implies, since log((5/2)x) ≤ 2 log(x),∀x ≥ 2.5,

(41) p̃en(m)1Λ ≤ 10
K1

K0
pen(m)1Λ.

Reasoning as in the proof of Theorem 1, if p is such that for all m,m′,

4p(m,m′)1Λ∩Ω ≤ p̃en(m)1Λ∩Ω + p̃en(m′)1Λ∩Ω

then

‖f̃ − f‖2
1Λ∩Ω ≤ 3‖fmopt(n) − f‖2 + 8[ sup

t∈B(mopt(n), ˆ̂m)

ν2
n(t) − p(mopt(n), ˆ̂m)]1Λ∩Ω

+4p̃en(mopt(n))1Λ∩Ω.

It follows from the proof of Theorem 1 that

8E[ sup
t∈B(mopt(n), ˆ̂m)

ν2
n(t) − p(mopt(n), ˆ̂m)]+ ≤ C/n

with p(m,m′) = 2(log(∆(m�))/ log(m� + 1))2∆(m�)/n and m� = m ∨ m′.
Thus, choosing p̃en(m) = 128((log(∆̂(m))/ log(m + 1))2∆̂(m)/n, on Λ ∩ Ω,

4p(m,m′) = 8(log(∆(m�))/ log(m� + 1))2∆(m�)/n

≤ 8(log(∆(m))/ log(m + 1))2∆(m)/n + 8(log(∆(m′))/ log(m′ + 1))2∆(m′)/n

≤ 128(log(∆̂(m))/ log(m + 1))2∆̂(m)/n + 128(log(∆̂(m′))/ log(m′ + 1))2∆̂(m′)/n

≤ p̃en(m) + p̃en(m′),
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where we use that log(4∆̂(m)) ≤ 2 log(∆̂(m)) which holds as m ≥ mopt(n) and n large
enough. Then, using (41) and the definition of mopt(n),

E(‖f̃ − f‖2
1Λ∩Ω) ≤ 3‖fmopt(n) − f‖2 + 4E(p̃en(mopt(n))1Λ∩Ω) +

C

n

≤ 3‖fmopt(n) − f‖2 + 40
K0

K1
pen(mopt(n)) +

C

n

≤ (3 ∨ 40
K0

K1
) inf

m∈{1,...,mn}
(‖fm − f‖2 + pen(m)) +

C

n
.(42)

We prove below that

(43) E(‖f̃ − f‖2
1Λc∩Ω) ≤ C

n
and

(44) E(‖f̃ − f‖2
1Ωc) ≤ C

n
.

Gathering the results in (42), (43) and (44) gives the result of Theorem 2. �

6.5.2. Proof of (43) and (44). Proof of (43). First we compute, using formula (3) ,

‖f̃‖2 =
1

2π

∫
|f̂∗

ˆ̂m
|2 =

1

2π

∫ π ˆ̂m

−π ˆ̂m

|f̂∗
Y |2

|f̃∗
ε |2

≤ 1

2π

∫ π ˆ̂m

−π ˆ̂m
|f̃∗

ε |−2

But |f̃∗
ε (x)|−2 = |f̂∗

ε (x)|−2
1{|f̂∗

ε (x)|≥M−1/2} ≤ M . Then

(45) ‖f̃‖2 ≤ M ˆ̂m ≤ Mn ≤ n2+ε ≤ n3

and thus E(‖f̃ − f‖2
1Λc∩Ω) . n3P (Λc ∩ Ω). Now, using Markov and Jensen inequalities,

∀p ≥ 1

P(Λc ∩ Ω) ≤
∑

m∈Mn

P(
1

2π

∫ πm

−πm
|R|2 >

∆(m)

4
) ≤

∑

m∈Mn

(
4

∆(m)

)p

E

[(
1

2π

∫ πm

−πm
|R|2

)p]

≤
(

4

2π

)p ∑

m∈Mn

∆(m)−p
E

[
(2πm)p−1

∫ πm

−πm
|R|2p

]

≤ 4p

2π

∑

m∈Mn

∆(m)−pmp−1

∫ πm

−πm
E|R|2p

Since E|R|2p . M−p|f∗
ε |−4p (Lemma 1),

P(Λc ∩ Ω) .
4p

2π
M−p

∑

m∈Mn

∆(m)−pmp−1

∫ πm

−πm
|f∗

ε |−4p

Now, using the proof of Lemma 3, we have∫ πm

−πm
|f∗

ε |−4p . ∆(m)2pm−(2p−1)(1−s)

Hence

P(Λc ∩ Ω) . M−p
∑

m∈Mn

∆(m)pmp−1−(2p−1)(1−s) . M−p∆(mn)p
∑

m∈Mn

mp−1−(2p−1)(1−s).
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If s = 0, p − 1 − (2p − 1)(1 − s) = −p and
∑

m∈Mn
m−p = O(1) if p > 1; if s > 0, as mn

has logarithmic order and
∑

m∈Mn
mp−1−(2p−1)(1−s) has also logarithmic order. Therefore

P(Λc ∩ Ω) . n−pε
∑

m∈Mn

mp−1−(2p−1)(1−s) ≤ c/n4

for p ≥ Int[4/ε] + 1.

Finally E(‖f̃ − f‖2
1Λc∩Ω) . n3P (Λc ∩ Ω) . c/n and this ends the proof of (43). �

Proof of (44). As (45) is still valid, we have to prove that P(Ωc) ≤ c/n4. For the study of
Ω, we write

P(Ωc) ≤ P(m̂n < mopt(n)) + P(mn < m̂n).

We study separately the two terms. It follows from the definition of m̂n and mn, that,
if mn < m̂n, then ∆̂(m̂n) ≥ ∆̂(mn). Moreover ∆̂(m̂n)/n < 1/2 and ∆(mn)/n ≥ 1.

Therefore, if mn < m̂n, then 1/2 > ∆̂(m̂n)/n ≥ ∆̂(mn)/n while ∆(mn)/n > 1; therefore

the distance between ∆(mn)/n and ∆̂(mn)/n is more than 1/2. This yields

P(mn < m̂n) ≤ P(∆(mn)/n − ∆̂(mn)/n ≥ 1/2) ≤ P(|∆(mn) − ∆̂(mn)|/n ≥ 1/2).

Similarly, if m̂n < mopt(n), then ∆̂(mn) ≤ ∆̂(mopt(n)), so that 1/4 ≤ ∆̂(mn)/n ≤
∆̂(mopt(n))/n while ∆(mopt(n))/n ≤ 1/8; therefore the distance between ∆(mopt(n))/n

and ∆̂(mopt(n))/n is larger than 1/8. Thus

P(m̂n < mopt(n)) ≤ P(|∆̂(mopt(n)) − ∆(mopt(n))|/n ≥ 1/8).

As we prove below that

(46) P(|∆(mn) − ∆̂(mn)|/n ≥ 1/2) ≤ C

n4
,

and

(47) P(|∆̂(mopt(n)) − ∆(mopt(n))|/n ≥ 1/8) ≤ C ′

n4

we obtain (44). �

6.5.3. Proof of (46) and (47). Proof of (46). With Markov Inequality,

P(|∆(mn) − ∆̂(mn)|/n ≥ 1/2) ≤ 2p

np
E[|∆(mn) − ∆̂(mn)|p]

≤ 2p(2πmn)p−1

np
E

(∫ πmn

−πmn

∣∣∣∣
1

|f∗
ε (x)|2 − 1

|f̃∗
ε (x)|2

∣∣∣∣
p

dx

)

≤ T1 + T2

where

T1 =
Cpm

p−1
n

np

∫ πmn

−πmn

E(1|f̂∗
ε |<1/

√
M )

|f∗
ε (x)|2p

dx

and

T2 =
Cpm

p−1
n

np
E

(∫ πmn

−πmn

∣∣∣∣∣
|f∗

ε (x)|2 − |f̂∗
ε (x)|2

|f∗
ε (x)|2|f̃∗

ε (x)|2

∣∣∣∣∣

p

dx

)
.
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It follows from (40) that

T1 . mp−1
n n−pM−p

∫ πmn

−πmn

dx

|f∗
ε (x)|4p

. log(n)apn−pε,

where ap = 0 in the ordinary smooth case. Therefore, choosing p > Int[4/ε] + 1 implies
T1 . C/n4.

The study of T2 relies on the Lemma

Lemma 5. ∀r ≥ 1, E(||f̂∗
ε (x)|2 − |f∗

ε (x)|2|r) ≤ Cr(M
−r + |f∗

ε (x)|rM−r/2).

Proof of Lemma 5. The result follows from the equality |f̂∗
ε (x)|2 − |f∗

ε (x)|2 = |f̂∗
ε (x) −

f∗
ε (x)|2 + 2Re(f̄∗

ε (x)(f̂∗
ε (x) − f∗

ε (x)), and ∀r ≥ 1, with Rosenthal Inequality, E(|f̂∗
ε (x) −

f∗
ε (x)|r) ≤ C ′

rM
−r/2. �

Lemma 5 implies, as 1/|f̃∗
ε |2 ≤ 2|R|2(x) + 2/|f∗

ε |2,

T2 ≤ Cpm
p−1
n

np

∫ πmn

−πmn

1

|f∗
ε (x)|2p

E
1/2(

1

|f̃∗
ε (x)|4p

)E1/2(
∣∣∣|f∗

ε (x)|2 − |f̃∗
ε (x)|2

∣∣∣
2p

)dx

≤
C ′

pm
p−1
n

np

∫ πmn

−πmn

M−p + |f∗
ε (x)|pM−p/2

|f∗
ε (x)|2p

(
M−p

|f∗
ε (x)|4p

+
1

|f∗
ε (x)|2p

)dx

≤ C ′
pm

p−1
n

np

∫ πmn

−πmn

(
M−2p

|f∗
ε (x)|6p

+
M−p

|f∗
ε (x)|4p

+
M−3p/2

|f∗
ε (x)|5p

+
M−p/2

|f∗
ε (x)|3p

)
dx.

As ∆(mn) ≤ 2n, ∀q ≥ 1/4,
∫ πmn

−πmn

dx

|f∗
ε (x)|q dx . (πmn)(1−q/2)(1−s)∆(mn)q/2 . (πmn)(1−q/2)(1−s)nq/2,

we find

T2 ≤ Cpm
p−1
n

np

(
M−2p(πmn)(1−3p)(1−s)n3p + M−p(πmn)(1−2p)(1−s)n2p

+M−3p/2(πmn)(1−s)(1−5p/2)n5p/2 + M−p/2(πmn)(1−3p/2)(1−s)n3p/2
)

≤ Cpm
p−1
n ((πmn)(1−3p)(1−s)n−2pε + (πmn)(1−2p)(1−s)n−pε

+(πmn)(1−s)(1−5p/2)n−3pε/2 + np/2(πmn)(1−3p/2)(1−s)n−pε/2)

= O(mp−1−(1−s)(3p/2−1)
n n−pε/2)

where p − 1 − (1 − s)(3p/2 − 1) = −p/2 ≤ 0 if s = 0, and if s > 0, the power does not
matter as mn has logarithmic order. It follows that T2 = O(n−4) for p/2 > [4/ε] + 1.

The proof of (47) follows the same line and, with now ∆(mopt(n))/n ≤ 1/8 and mopt(n)
much smaller than mn. This leads clearly to the same result. �.
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