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Abstract

In the present paper we consider the problem of Laplace deconvolution with noisy discrete

observations. The study is motivated by Dynamic Contrast Enhanced imaging using a bolus

of contrast agent, a procedure which allows considerable improvement in evaluating the quality

of a vascular network and its permeability and is widely used in medical assessment of brain

flows or cancerous tumors. Although the study is motivated by medical imaging application,

we obtain a solution of a general problem of Laplace deconvolution based on noisy data which

appears in many different contexts. We propose a new method for Laplace deconvolution which

is based on expansions of the convolution kernel, the unknown function and the observed signal

over Laguerre functions basis. The expansion results in a small system of linear equations

with the matrix of the system being triangular and Toeplitz. The number m of the terms

in the expansion of the estimator is controlled via complexity penalty. The advantage of this

methodology is that it leads to very fast computations, does not require exact knowledge of

the kernel and produces no boundary effects due to extension at zero and cut-off at T . The

technique leads to an estimator with the risk within a logarithmic factor of m of the oracle risk

under no assumptions on the model and within a constant factor of the oracle risk under mild

assumptions. The methodology is illustrated by a finite sample simulation study which includes

an example of the kernel obtained in the real life DCE experiments. Simulations confirm that

the proposed technique is fast, efficient, accurate, usable from a practical point of view and

competitive.
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Figure 1: DCE-CT experiment and contrast agent circulation. The patient body is

materialized by the mixed arrow.
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1 Introduction

Cancers and vascular diseases present major public health concerns. Considerable improvement

in assessing the quality of a vascular network and its permeability have been achieved through

Dynamic Contrast Enhanced (DCE) imaging using a bolus of contrast agent at high frequency such

as Dynamic Contrast Enhanced Computer Tomography (DCE-CT), Dynamic Contrast Enhanced

Magnetic Resonance Imaging (DCE-MRI) and Dynamic Contrast Enhanced Ultra Sound (DCE-

US). Such techniques are widely used in medical assessment of brain flows or cancerous tumors (see,

e.g., Cao et al., 2010; Goh et al., 2005; Goh and Padhani, 2007; Cuenod et al., 2006; Cuenod et

al., 2011; Miles, 2003; Padhani and Harvey, 2005 and Bisdas et al., 2007). This imaging procedure

has great potential for cancer detection and characterization, as well as for monitoring in vivo the

effects of treatments. It is also used, for example, after a stroke for prognostic purposes or for

occular blood flow evaluation.

As an example, below we consider a DCE-CT experiment that follows the diffusion of a bolus of

a contrast agent injected into a vein. At the microscopic level, for a given voxel of interest having

unit volume, the number of arriving particles at time t is given by βAIF(t), where the Arterial

Input Function (AIF) measures concentration within a unit volume voxel inside the aorta and β is
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a proportion of the AIF which enters the tissue voxel. Denote the number of particles in the voxel

at time t by Y (t) and the random lapse of time during which a particle sojourns in the voxel by S.

Assuming sojourn times for different particles to be i.i.d. with c.d.f. F , one obtains the following

equation for the average number of contrast agent particles at the moment t

EY (t) =
∫ t

0
βAIF(t− τ) dτ︸ ︷︷ ︸

arrived before time t

−
∫ t

0
βAIF(t− τ)P (S ≤ τ) dτ︸ ︷︷ ︸

left before time t

=
∫ t

0
βAIF(t− τ)(1− F (τ))dτ,

where the expectation is taken under the unknown distribution of the sojourn times. In reality,

one does not know EY (t) and has discrete noisy observations

Y (ti) = EY (ti) + σεi.

Medical doctors are interested in a reproducible quantification of the blood flow inside the tissue

which is characterized by f(t) = β(1−F (t)) since this quantity is independent of the concentration

of particles of contrast agent within a unit volume voxel inside the aorta described by AIF(t).

The sequential imaging acquisition is illustrated by Figure 1. The contrast agent arrives with the

oxygenated blood through the aorta (red arrow) where its concentration, AIF, within unit volume

voxel is first measured when it passes through the CT cross section (red box). Subsequently, the

contrast agent enters the arterial system, and it is assumed that its concentration does not change

during this phase. The exchange within the tissue of both oxygen and contrast agent occurs after

the arterial phase and the concentration of contrast agent during this exchange is measured in all

tissue voxels (grey voxel in the zoom) inside the CT cross section. Later the contrast agent returns

to the venous system with the de-oxygenated blood (blue arrow).

To complete description of this experiment, one has to take into account that there is a delay

δ between the measurement of the contrast agent concentration inside the aorta (first cross of the

CT section) and its arrival inside the tissue. This leads to the following complete model:

Y (ti) =
∫ ti−δ

0
βAIF(ti − τ)(1− F (τ))dτ + σεi, i = 1, ..., n. (1.1)

The value of delay δ can be measured with a small error using the decay between the jumps after

the injection of the contrast agent inside the aorta and the tissue. Unfortunately, evaluation of

the proportion β is a much harder task which is realized with a larger error. In the spirit of

complete model (1.1) for DCE-CT experiments, one can consider a more general model of Laplace

convolution equation based on noisy observations which presents a necessary theoretical step before

obtaining medical answers provided by model (1.1).

Indeed, for a known value of δ, equation (1.1) reduces to a noisy version of a Laplace convolution

equation

y(ti) =
∫ ti

0
g(ti − τ)f(τ)dτ + σεi, i = 1, . . . , n, (1.2)
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where function g is considered to be known, f is a function of interest, measurements y(ti) are

taken at points 0 ≤ t1 ≤ ... ≤ tn ≤ T < ∞ and εi are i.i.d. N(0, 1). The corresponding noiseless

version of this equation can be written as

q(t) =
∫ t

0
g(t− τ)f(τ)dτ, t ≥ 0. (1.3)

Formally, by setting g(t) = f(t) ≡ 0 for t < 0, equation (1.3) can be viewed as a particular case

of the Fredholm convolution equation

q(t) =
∫ b

a
g(t− τ)f(τ)dτ, (1.4)

where a = −∞ and b =∞ for Fourier convolution on a real line and −∞ < a < b <∞ for circular

convolution. Discrete stochastic version of equation (1.4)

y(ti) =
∫ b

a
g(ti − τ)f(τ)dτ + σεi, i = 1, ..., n, (1.5)

known also as Fourier deconvolution problem, has been extensively studied in the last thirty years

(see, for example, Carroll and Hall, 1988; Comte, Rozenholc and Taupin, 2007; Delaigle, Hall and

Meister, 2008; Diggle and Hall, 1993; Fan, 1991; Fan and Koo, 2002; Johnstone et al., 2004; Pensky

and Vidakovic, 1999; Stefanski and Carroll, 1990, among others). However, such an approach to

solving (1.3) and (1.2) is very misleading.

Indeed, since one does not have data outside the interval [0, T ] and since function f(t) may

not vanish fast enough as t→∞, one cannot apply Fourier transform on the whole real line since

Fourier transform is defined for only integrable or square integrable functions. Application of the

discrete Fourier transform (DFT) on the finite interval [0, T ] is useless since the kernel g is not

periodic. Consequently, convolution in equation (1.3) is not circular and, hence, it is not converted

into a product by DFT.

The issue of having measurements only on the part t ≤ T of half line (0,∞) does not affect

the Laplace deconvolution since it exhibits causality property: the values of q(t) for 0 ≤ t ≤ T

depend on values of f(t) for 0 ≤ t ≤ T only and vice versa.

The mathematical theory of (noiseless) convolution type Volterra equations is well developed

(see, e.g., Gripenberg et al. 1990) and the exact solution of (1.3) can be obtained through Laplace

transform. However, direct application of Laplace transform for discrete measurements faces serious

conceptual and numerical problems. The inverse Laplace transform is usually found by application

of tables of inverse Laplace transforms, partial fraction decomposition or series expansion (see, e.g.,

Polyanin and Manzhirov, 1998), neither of which is applicable in the case of the discrete noisy

version of Laplace deconvolution. Only few applied mathematicians and researchers in natural

sciences took an effort to solve the problem using discrete measurements in the left hand side of (1.4).

Since the problem arises in medical imaging, few scientists put an effort to solve equation (1.1) using
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singular value decomposition (SVD) with the subsequent application of Tikhonov regularization

(see, e.g., Axel (1980), Ostergaard et al. (1996) and an extensive review in Fieselmann et al.

(2011)). In fact, SVD has been widely used in the context of DCE imaging since mid-nineties. The

technique, however, is very computationally unstable, especially, in the presence of recirculation of

contrast agent. For this reason, SVD has been mostly used in the simplified framework of brain

imaging due to the presence of white barrier which prevents circulation of contrast agent outside

blood vessels. Ameloot and Hendrickx (1983) applied Laplace deconvolution for the analysis of

fluorescence curves and used a parametric presentation of the solution f as a sum of exponential

functions with parameters evaluated by minimizing discrepancy with the right-hand side. In a

somewhat similar manner, Maleknejad et al. (2007) proposed to expand the unknown solution over

a wavelet basis and find the coefficients via the least squares algorithm. Lien et al. (2008), following

Weeks (1966), studied numerical inversion of the Laplace transform using Laguerre functions.

Finally, Lamm (1996) and Cinzori and Lamm (2000) used discretization of the equation (1.3)

and applied various versions of the Tikhonov regularization technique. However, in all of the above

papers, the noise in the measurements was either ignored or treated as deterministic. The presence

of random noise in (1.2) makes the problem even more challenging.

For the reasons listed above, estimation of f from discrete noisy observations y in (1.2) requires

extensive investigation. Unlike Fourier deconvolution that has been intensively studied in statistical

literature (see references above), Laplace deconvolution received very little attention within

statistical framework. To the best of our knowledge, the only paper which tackles the problem

is Dey, Martin and Ruymgaart (1998) which considers a noisy version of Laplace deconvolution

with a very specific kernel of the form g(t) = be−at. The authors use the fact that, in this case,

the solution of the equation (1.3) satisfies a particular linear differential equation and, hence, can

be recovered using q(t) and its derivative q′(t). For this particular kind of kernel, the authors

derived convergence rates for the quadratic risk of the proposed estimators, as n increases, under

the assumption that the s-th derivative of f is continuous on (0,∞). However, in Dey, Martin and

Ruymgaart (1998) it is assumed that data are available on the whole positive half-line (i.e. T =∞)

and that s is known (i.e., the estimator is not adaptive).

Recently, Abramovich et al. (2012) studied the problem of Laplace deconvolution based on

discrete noisy data. The idea of the method is to reduce the problem to estimation of the unknown

regression function, its derivatives and, possibly, some linear functionals of these derivatives. The

estimation is carried out using kernel method with the Lepskii technique for the choice of the

bandwidth (although it is mentioned in the paper that other methodologies for the choice of

bandwidth can also be applied). The method has an advantage of reducing a new statistical problem

to a well studied one. However, the shortcoming of the technique is that it requires meticulous

boundary correction and is strongly dependent on the knowledge of the kernel g. Indeed, small

change in the kernel may produce significant changes in the expression for the estimator.
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In the present paper we suggest a method which is designed to overcome limitations of the

previously developed techniques. The new methodology is based on expansions of the kernel,

unknown function f and the right-hand side in equation (1.2) over the Laguerre functions basis.

The expansion results in a small system of linear equations with the matrix of the system being

triangular and Toeplitz. The number of the terms in the expansion of the estimator is controlled via

complexity penalty. The advantage of this methodology is that it leads to very fast computations

and produces no boundary effects due to extension at zero and cut-off at T . The technique does

not require exact knowledge of the kernel since it is represented by its Laguerre coefficients only

and leads to an estimator with the risk within a logarithmic factor of m of the oracle risk under no

assumptions on the model and within a constant factor of the oracle risk under mild assumptions.

Another merit of the new methodology includes the fact that, since the unknown functions are

represented by a small number of Laguerre coefficients, it is easy to cluster or classify them for

various groups of patients. Simulation study shows that the method is very accurate and stable

and easily outperforms SVD and kernel-based technique of Abramovich, Pensky, and Rozenholc

(2012).

The rest of the paper is organized as follows. In Section 2 we derive the system of equations

resulting from expansion of the functions over the Laguerre basis, study the effect of discrete,

possible irregularly spaced data and introduce selection of model size via penalization. Corollary 1

indeed confirms that the risk of the penalized estimator lies within a logarithmic factor of m of

the minimal risk. In Section 3 we obtain asymptotic upper bounds for the risk and prove the risk

lies within a constant factor of an oracle risk. The proof of this fact rests on nontrivial facts of

the theory of Toeplitz matrices. Section 4 provides a finite sample simulation studies. Finally,

Section 5 discusses results obtained in the paper. Section 6 contains proofs of the results in the

earlier sections.

2 Laplace deconvolution via expansion over Laguerre functions

basis

2.1 Relations between coefficients of the Laguerre expansion

One of the possible solution of the problem (1.2) is to use Galerkin method with the basis

represented by a system of Laguerre functions. Laguerre functions are defined as

φk(t) =
√

2ae−atLk(2at), k = 0, 1, . . . , (2.1)

where Lk(t) are Laguerre polynomials (see, e.g., Gradshtein and Ryzhik (1980))

Lk(t) =
k∑
j=0

(−1)j
(
k

j

)
tj

j!
, t ≥ 0.
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It is known that functions φk(·), k = 0, 1, . . ., form an orthonormal basis of the L2(0,∞) space and,

therefore, functions f(·), g(·), q(·) and y(·) can be expanded over this basis with coefficients f (k),

g(k), q(k) and y(k), k = 0, . . . ,∞, respectively. By plugging these expansions into formula (1.3), we

obtain the following equation

∞∑
k=0

q(k)φk(t) =
∞∑
k=0

∞∑
j=0

f (k)g(j)

∫ t

0
φk(x)φj(t− x)dx. (2.2)

It turns out that coefficients of interest f (k), k = 0, 1, . . . , can be represented as a solution of

an infinite triangular system of linear equations. Indeed, it is easy to check that (see, e.g., 7.411.4

in Gradshtein and Ryzhik (1980))∫ t

0
φk(x)φj(t− x)dx = 2ae−at

∫ t

0
Lk(2at)Lj(2a(t− x))dx = (2a)−1/2 [φk+j(t)− φk+j+1(t)].

Hence, equation (2.2) can be re-written as

∞∑
k=0

q(k)φk(t) =
∞∑
k=0

φk(t)[(2a)−1/2 f (k)g(0) +
k−1∑
l=0

(2a)−1/2 (g(k−1) − g(k−l−1))f (l)].

Equating coefficients for each basis function, we obtain an infinite triangular system of linear

equations. In order to use this system for estimating f , we define

fm(x) =
m−1∑
k=0

f (k)φk(x), (2.3)

approximation of f based on the first m Laguerre functions. The following Lemma states how the

coefficients in (2.3) can be recovered.

Lemma 1. Let fm, gm and qm be m-dimensional vectors with elements f (k), g(k) and q(k),

k = 0, 1, . . . ,m − 1, respectively. Then, for any m, one has qm = Gmfm where Gm is the lower

triangular Toeplitz matrix with elements

G(i,j) =


(2a)−1/2 g(0), if i = j,

(2a)−1/2 (g(i−j) − g(i−j−1)), if j < i,

0, if j > i.

(2.4)

Hence, f(x) can be estimated by

f̂m(x) =
m−1∑
k=0

f̂ (k)φk(x) (2.5)

where f̂m = G−1
m q̂m and q̂m is an unbiased estimator of the unknown vector of coefficients qm.
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2.2 Recovering Laguerre coefficients from discrete noisy data

Unfortunately, unlike some other linear ill-posed problems, data does not come in the form of

unbiased estimators of the unknown coefficients q(k), k = 0, 1, . . . ,m− 1. Below, we examine how

the length of the observation interval T and spacing of observations ti in equation (1.2) affect the

system of equations in Lemma 1.

Let P : [0, T ]→ [0, T ] be a function generating observations in (1.2) such that P is a continuously

differentiable strictly increasing function

P (0) = 0, P (T ) = T, P (ti) = iT/n, i = 1, . . . , n. (2.6)

Under conditions (2.6), P is a one-to-one function and, therefore, has an inverse P−1.

Choose M large enough that the bias in representation (2.3) of f by fM is very small and form

an (n ×M) matrix ΦM with elements Φ(i,k) = φk(ti), i = 1, . . . , n, k = 0, . . . ,M − 1. Let zM be

the M -dimensional vector with elements z(j) = 〈y, φj〉, j = 0, . . . ,M − 1. Then, it follows that

y(ti) =
M−1∑
l=0

z(l)φl(ti) = (ΦMzM )(i), i = 1, . . . , n.

If y and h are n-dimensional vectors with components y(ti) and q(ti), i = 1, . . . , n, respectively,

then the vectors qM and zM of the true and the estimated Laguerre coefficients of q(x) can be

represented, respectively, as

qM = (ΦT
MΦM )−1ΦT

Mh, zM = (ΦT
MΦM )−1ΦT

My. (2.7)

Let us examine matrix ΦT
MΦM . Note that, for any k and l,

(ΦT
MΦM )(k,l) =

n∑
i=1

φk(P−1(iT/n))φl(P−1(iT/n)) ≈ nT−1

∫ T

0
φk(P−1(x))φl(P−1(x))dx

= nT−1

∫ T

0
φk(t)φl(t)p(t)dt

where p(t) = P ′(t). It follows from the above that matrix ΦT
MΦM should be normalized by a factor

n−1T . Indeed, if points ti are equispaced on the interval (0, T ], then, for n and T large enough,

(ΦT
MΦM ) ≈ nT−1 IM where IM is the M -dimensional identity matrix. Hence, in what follows, we

are going to operate with matrix AM = Tn−1(ΦT
MΦM ) and its inverse

ΩM = (AM )−1 = nT−1(ΦT
MΦM )−1. (2.8)

Let ε be the vector with components ε(ti), i = 1, . . . , n, and ξM =
√
n/T (ΦT

MΦM )−1ΦT
Mε.

Then, the vector fM of the true Laguerre coefficients of the unknown function f satisfies the

following equation

zM = GMfM + σ
√
T/n ξM , ξM ∼ N(0,ΩM ). (2.9)

If points ti are equispaced on the interval (0, T ] and both n and T are large, then, in (2.9), ΩM ≈ IM .
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2.3 Model selection and oracle risk

Equation (2.9) implies that one can estimate unknown vector fM by f̂M = G−1
M zM . However,

since the value of M is large, the variance of this estimator,

E‖f̂M −G−1
M qM‖

2 =
σ2T

n
Tr(G−1

M ΩMG
−T
M ),

where A−T = (AT )−1 = (A−1)T for any matrix A, will be too large while the bias in the

representation (2.3) of f by fM will be very small. Hence, in order to balance the bias and

the variance components of the error, one needs to choose the best possible number m of Laguerre

functions in the representation (2.3) of f , i.e., choose the model size.

In order to achieve a required balance between the bias and the variance components of the

error, consider a collection of integer indices Mn = {1, . . . ,M} where M < n may depend on n

and, for m ∈Mn, the associated subspaces Sm ⊆ RM defined by

t ∈ Sm if t = (t(0), t(1), . . . , t(m−1), 0, 0, . . . , 0)T .

Let us denote by ~zm, ~qm, ~fm, ~ξm and ~̂fm the M -dimensional vectors where the first m elements

coincide with the elements of m-dimensional vectors zm, qm, fm, ξm and f̂m respectively, and the

last (M −m) elements are identical zeros. For each m ∈Mn, evaluate

f̂m = (Gm)−1zm = G−1
M ~zm

and denote

Qm = G−1
m ΩmG

−T
m . (2.10)

For the estimator f̂m of f given by (2.5) with the vector of coefficients ~̂fm, the bias-variance

decomposition of the mean squared error is of the form

E‖f̂m − f‖2 = ‖fm − f‖2 + σ2Tn−1 Tr(Qm), (2.11)

where the bias term ‖fm−f‖2 =
∑∞

j=m(f (j))2 is decreasing and the variance term σ2Tn−1 Tr(Qm)

is growing with m. The smallest possible risk, the so-called oracle risk, is obtained by minimizing

the right-hand side of expression (2.11) with respect to m:

Roracle = min
m

E‖f̂m − f‖2 = min
m

[
‖fm − f‖2 + σ2Tn−1n Tr(Qm)

]
. (2.12)

Hence, the objective is to choose a value of m which delivers an estimator of the unknown function

f(x) with the risk as close to the oracle risk (2.12) as possible. Since the bias in the right-hand

side of expression (2.11) is unknown, in order to attain this goal, one can use a penalized version

of estimator (2.5) as it is described in the next section.
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2.4 Selection of model size via penalization

For any vector t ∈ RM , we define contrast as

γ2
n(t) = ‖t‖2 − 2〈t,G−1

M zM 〉 (2.13)

and note that for t ∈ Sm one has, thanks to the nul coordinates of t and the lower triangular form

of GM and Gm,

〈t,G−1
M zM 〉 = 〈t,G−1

M ~zm〉 = 〈t, ~̂fm〉.

Let ‖A‖2 =
√

Tr(ATA) and ‖A‖ =
√
λmax(ATA) be, respectively, the Frobenius and the spectral

norm of a matrix A, where λmax(U) is the largest eigenvalue of U . Denote

v2
m = ‖

√
Qm‖22 = Tr(Qm), ρ2

m = ‖
√
Qm‖2 = λmax(Qm) (2.14)

where
√
Qm is a lower triangular matrix such that (

√
Qm)T

√
Qm = Qm. Assume that ρ2

m grows

at most polynomially in m, i.e. there exist positive constants α and Cρ such that

ρ2
m ≤ Cρmα. (2.15)

Choose any constant B > 0 and introduce a penalty

pen(m) = 4σ2Tn−1
[
(1 +B)v2

m + (1 +B−1)(2α+ 2)ρ2
m logm

]
. (2.16)

For each m = 1, . . . ,M , construct estimator f̂m(x) of f(x) of the form (2.5) with coefficients

f̂m = (Gm)−1zm, the augmented version ~̂fm satisfies

~̂fm = arg min
t∈Sm

γ2
n(t).

Now, choose m = m̂ where

m̂ = arg min
{
m ∈Mn : γ2

n(~̂fm) + pen(m)
}
. (2.17)

The following statement holds.

Theorem 1. Let condition (2.15) hold for some positive constants α and Cρ. Then, for any B > 0,

one has

R(f̂m̂) := E(‖f̂m̂ − f‖2) ≤ min
m∈Mn

[
3‖fm − f‖2 + 4pen(m) + 16C2

ρσ
2(1 +B−1)

T

mn

]
. (2.18)

The proof of this and later statements are given in Section 6.

Note that the upper bound in Theorem 1 is non-asymptotic and holds for any values of T and

n and any distribution of points ti, i = 1, . . . , n.

10



In order to evaluate relative precision of the estimator f̂m̂ constructed above, we shall compare

its risk with the oracle risk (2.12). Since ρ2
m ≤ v2

m for any value of m, it follows from Theorem 1

that, for any value of m, the risk of the estimator f̂m̂ lies within a logarithmic factor of the oracle

risk, i.e., the estimator is optimal within a logarithmic factor of m. In particular, the following

corollary holds.

Corollary 1. Under conditions of Theorem 1,

R(f̂m̂) ≤ 16[(1 +B) + (1 +B−1)(2α+ 2) logm0]Roracle + 16C2
ρσ

2(1 +B−1)Tm−1
0 n−1, (2.19)

where m0 = m0(n, T ) is the value of m delivering the minimum in the right-hand side of (2.18).

3 Asymptotic upper bounds for the risk and optimality of the

estimator

3.1 Assumptions

Corollary 1 is valid for any function g and any distribution of sampling points, hence, it is true in

the “worst case scenario”. In majority of practical situations, however, v2
m increases much faster

with m than ρ2
m and the risk of the estimator f̂m̂ can exceed the oracle risk only by a finite

factor independent of m0 and n. In particular, in what follows, we shall show that, under certain

conditions, for n large enough and T = Tn, the ratio between R(f̂m̂) and Roracle is bounded by a

constant independent of n.

For this purpose, assume that function g(x), its Laplace transform G(s) and matrix Ωm defined

in (2.8) satisfy the following conditions

(A1) There exists an integer r ≥ 1 such that

djg(t)
dtj

∣∣∣∣
t=0

=

{
0, if j = 0, ..., r − 2,

Br 6= 0, if j = r − 1.
(3.1)

(A2) g ∈ L1[0,∞) is r times differentiable with g(r) ∈ L1[0,∞).

(A3) Laplace transform G(s) of g has no zeros with nonnegative real parts except for zeros of the

form s =∞+ ib.

(A4) There exists n0 such that for n > n0, eigenvalues of matrix Ωm are uniformly bounded, i.e.

0 < λ1 ≤ λmin(Ωm) ≤ λmax(Ωm) ≤ λ2 <∞ (3.2)

for some absolute constants λ1 and λ2.
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3.2 Introduction to theory of banded Toeplitz matrices

The proof of asymptotic optimality of the estimator f̂m̂ relies heavily on the theory of banded

Toeplitz matrices developed in Böttcher and Grudsky (2000, 2005). In this subsection, we review

some of the facts about Toeplitz matrices which we shall use later.

Consider a sequence of numbers {bk}∞k=−∞ such that
∑∞

k=−∞ |bk| < ∞. An infinite Toeplitz

matrix T = T (b) is the matrix with elements Ti,j = bi−j , i, j = 0, 1, . . ..

Let C = {z ∈ C : |z| = 1} be the complex unit circle. With each Toeplitz matrix T (b) we can

associate its symbol

b(z) =
∞∑

k=−∞
bkz

k, z ∈ C. (3.3)

Since, B(θ) = b(eiθ) =
∞∑

k=−∞
bke

ikθ, numbers bk are Fourier coefficients of function B(θ) = b(eiθ).

There is a very strong link between properties of a Toeplitz matrix T (b) and function b(z). In

particular, if b(z) 6= 0 for z ∈ C and wind(b) = Jb, then b(z) allows Wiener-Hopf factorization

b(z) = b−(z) b+(z) zJb where b+ and b− have the following forms

b−(z) =
∞∑
k=0

b−−kz
−k, b+(z) =

∞∑
k=0

b+k z
k

(see Theorem 1.8 of Böttcher and Grudsky (2005)).

If T (b) is a lower triangular Toeplitz matrix, then b(z) ≡ b+(z) with b+k = bk. In this case,

the product of two Toeplitz matrices can be obtained by simply multiplying their symbols and the

inverse of a Toeplitz matrix can be obtained by taking the reciprocal of function b+(z):

T (b+d+) = T (b+)T (d+), T−1(b+) = T (1/b+). (3.4)

Let Tm(b) = Tm(b+) ∈ Rm×m be a banded lower triangular Toeplitz matrix corresponding to

the Laurent polynomial b(z) =
m−1∑
k=0

bkz
k.

In practice, one usually use only finite, banded, Toeplitz matrices with elements Ti,j , i, j =

0, 1, . . . ,m− 1. In this case, only a finite number of coefficients bk do not vanish and function b(z)

in (3.3) reduces to a Laurent polynomial b(z) =
K∑

k=−J
bkz

k, z ∈ C, where J and K are nonnegative

integers, b−J 6= 0 and bK 6= 0. If b(z) 6= 0 for z ∈ C, then b(z) can be represented in a form

b(z) = z−JbK

J0∏
j=1

(z − µj)
K0∏
k=1

(z − νk) with |µj | < 1, |νk| > 1. (3.5)

In this case, the winding number of b(z) is wind(b) = J0 − J .

Let Tm(b) = Tm(b+) ∈ Rm×m be a banded lower triangular Toeplitz matrix corresponding

to the Laurent polynomial b(z) =
m−1∑
k=0

bkz
k. If b has no zeros on the complex unit circle C and

12



wind(b) = 0, then, due to Theorem 3.7 of Böttcher and Grudsky (2005), T (b) is invertible and

lim
m→∞

sup ‖T−1
m (b)‖ <∞. Moreover, by Corollary 3.8,

lim
m→∞

‖T−1
m (b)‖ = ‖T−1(b)‖ (3.6)

3.3 Relation between ρ2
m and v2

m

In order to apply the theory surveyed above, we first need to examine function b(z) associated

with the infinite lower triangular Toeplitz matrix G defined by (2.4) and the Laurent polynomial

associated with its banded version Gm. It turns out that b(z) can be expressed via the Laplace

transform G(s) of the kernel g(t). In particular, the following statement holds.

Lemma 2. Consider a sequence {bk}∞k=0 with elements b0 = g(0) and bk = g(k)−g(k−1), k = 1, 2, . . .

where g(k) are Laguerre coefficients of the kernel g in (1.2). Then, bk, k ≥ 0, are Fourier coefficients

of the function

b(eiθ) = G

(
a(1 + eiθ)
(1− eiθ)

)
=
∞∑
k=0

bke
iθk, (3.7)

where G(s) is the Laplace transform of the kernel g(x).

For any function w(z) with an argument on a unit circle C denote

‖w‖circ = max
|z|=1

w(z).

The following lemma shows that indeed ρ2
m logm = o(v2

m) as m→∞.

Lemma 3. Let b(z) be given by (3.7), i.e., b(z) = G(a(1 + z)/(1− z)), ‖z‖ = 1. Denote

w(z) = (1− z)−rb(z), w−1(z) = (1− z)rb−1(z), ‖z‖ = 1. (3.8)

Then, under assumptions (A1)–(A4), w(z) and w−1(z) have no zero on the complex unit circle

and, for m large enough, one has

Cr
2λ1

(‖w‖circ)−1 m2r+1 ≤ v2
m ≤ 2Crλ2 ‖w−1‖circ m2r+1, (3.9)

mρ2
m ≤ C(r, w) v2

m, (3.10)

where ρ2
m and v2

m are defined in (2.14), λ1 and λ2 are given by (3.2) and C(r, w) is an absolute

constant which depends only on w and r:

C(r, w) = 24r+1 [(r − 1)!]2
(
‖w‖circ ‖w−1‖circ

)2
λ2/λ1.
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3.4 Asymptotic optimality of the estimators

Note that Lemma 3 implies that, in (2.16), ρ2
m logm = o(v2

m) as m→∞, so that the second term

in (2.16) is of smaller asymptotic order than the first term. Consequently, as n → ∞, T/n → 0,

the right-hand side of (2.18) is of the same asymptotic order as the oracle risk (2.12), so that,

combination of Theorem 1 and Lemma 3 leads to the following statement.

Theorem 2. Let condition (2.15) hold for some positive constants α and Cρ. Then, under

assumptions (A1)–(A4), for an estimator f̂m̂ of f with penalty given by equation (2.16) with B > 0,

as n→∞,
R(f̂m̂)
Roracle

≤ 16(1 +B)(1 + o(1)), (3.11)

provided T/n→ 0 as n→∞.

Proof Let m0 = arg minm[‖fm − f‖2 + σ2Tn−1 v2
m]. Then, due to bounds (3.9) on v2

m, one

has m0 →∞ and m2r+1
0 T
n → 0 as T/n→ 0. Hence, it follows from Lemma 3 that ρ2

m logm = o(v2
m)

as m→∞ which, in combination with Theorem 1, completes the proof.

Remark 1. The theory above is valid for T being finite as well as for T = Tn → ∞ as long as

Tn/n → 0 as n → ∞. Indeed, the natural consequence of T being finite is that the bias term

‖f − fm‖2 might be relatively large due to mis-representation of f for t > T . However, since both

the risk of the estimator R(f̂m̂) and the oracle risk Roracle are equally affected, Theorem 2 remains

valid whether T = Tn grows with n or not.

Remark 2. The right hand side of formula (3.11) is strictly increasing in B, so, the smaller B is,

the closer the risk to the optimal oracle risk as n→∞. Note, however, that choosing asymptotically

small value for B (e.g, B = 1/n) can make the second term in the penalty (2.16) dominant, so that

(3.11) will become invalid.

4 Simulation study

In order to evaluate finite sample performance of the methodology presented above, we carried out

a simulation study. We chose three versions of the kernel g, normalized to have their maximum

equal to 1:

• g1(t) which coincides with the fit of an arterial input function (AIF) for real data obtained

in the REMISCAN (2012) study. The real-life observations of an AIF corresponding to

kernel g1 coming from one patient in the REMISCAN study [29] and fitted estimator of g1
using an expansion over the system of the Laguerre functions with M = 18 are presented

in Figure 2. One can see clearly two behavioral patterns : initial high frequency behavior
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caused by injection of the contrast agent as a bolus and subsequent slow decrease with regular

fluctuations due to the recirculation of the contrast agent inside the blood system.
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Figure 2: Observations of an arterial input function (AIF) corresponding to kernel g coming from

one patient in the REMISCAN study [29] and fitted estimator of g using an expansion over the

system of the Laguerre functions with M = 17.

• g2(t) = t2e−0.1t which aims to reproduce a long injection of contrast agent;

• g3(t) = t7(100 + t)−1 exp
(
−0.9t3/4

)
which describes an injection with a recirculation of the

contrast agent inside the blood network.

Simulations were carried out for five different test functions f :

• f1(x) = exp(−0.1x),

• f2(x) = exp(−0.6x),

• f3(x) = 0.5 exp(−0.1x) + 0.5 exp(−0.6x),

• f4(x) = 1− IG(2; 0.5) where IG(2; 0.5) is the cdf of the gamma distribution with the shape

parameter 2 and the scale parameter 0.5,

• f5(x) = (x+ 1)−1/3.

The value of a in formula (2.1) was chosen so that to provide the best possible fit for the kernel g

when the number of terms in the expansion of g is maximum, i.e. m = M .

The functions f and g are shown in Figure 3.
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Figure 3: Test functions : (left) the kernel functions g - (right) the estimated functions f

We illustrate performance of our methodology using kernel g1 and test functions f1, ..., f4.

Figure 4 shows the observations and the true convolution for a medium signal-to-noise ratio 8. The

associated estimators are presented in Figure 5. Here SNR is defined as

SNR =
√

Var(f)
/

(σ2 Var(g))

where, for any function ϕ, we define Var(ϕ) as

Var(ϕ) =
∫ T

0
ϕ2(x)dx−

[∫ T

0
ϕ(x)dx

]2

.

The idea of defining of SNR in this manner is to remove the effect of convolution with g. This

corresponds to SNR of Abramovich and Silverman (1998).

For simulations with g1(t) we chose β = 1 in (1.1). We should mention that the value of β is

usually unknown in real-life situations. However, since in equation (1.1), f(t) = β(1−F (t)) where

F (t) is a cdf, one knows that f(0) = β and, therefore, can estimate β as β̂ = f̂(0).

We executed simulations with T = 100, M = 11, two values of sample sizes, n = 100 and

n = 200, and three signal-to-noise ratios (SNR), namely, SNR = 5, 8 and 15. The value 5

corresponds to real-life conditions, smaller values 8 and 15 correspond to noise level attained after

the first denoising step as described in Rozenholc and Reiß (2012).

For a given trajectory, the empirical risk was evaluated as

r̂(f̂) = n−1
n∑
i=1

[
f̂(ti)− f(ti)

]2
(4.1)
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Figure 4: Observations and true convolutions of kernel g1 with (unknown) functions f1, . . . , f4

Table 1: The values of empirical risk increased by a factor of 100: 100× R̂(f̂). Empirical risks are

computed for 400 samples for g1, g2 and g3 and five functions of interest f1, . . . , f5.

100× R̂(f̂) n = 100 n = 200

SNR f1 f2 f3 f4 f5 f1 f2 f3 f4 f5

5

g1 0.33 0.43 0.065 0.25 5.1 0.30 0.22 0.052 0.22 4.2

g2 0.27 0.37 0.063 0.25 5.1 0.22 0.15 0.051 0.16 4.0

g3 0.16 0.57 0.085 0.37 6.1 0.14 0.44 0.061 0.36 5.5

8

g1 0.31 0.20 0.061 0.18 4.0 0.23 0.12 0.051 0.070 3.9

g2 0.23 0.18 0.062 0.11 4.0 0.06 0.14 0.050 0.031 3.6

g3 0.15 0.57 0.079 0.37 5.3 0.13 0.41 0.059 0.357 4.8

15

g1 0.162 0.15 0.066 0.075 4.0 0.025 0.085 0.050 0.032 2.6

g2 0.022 0.17 0.061 0.037 3.4 0.012 0.115 0.050 0.027 2.8

g3 0.142 0.43 0.077 0.322 4.9 0.132 0.182 0.058 0.154 4.6

and the average empirical risk, denoted R̂(f̂), is obtained by averaging the values of r̂(f̂) over 400

simulation runs. We used B = 1/2 in penalty (2.16) and reduced the constant 4 in the penalty

to 1.5 since this constant is an upper bound due to a triangular inequality. The value of α in

(2.16) is chosen using condition (2.15) as follows. Since 2 log ρm ≤ logCρ + α logm, α is selected

by regressing 2 log ρm onto logm for m = 0, . . . , 6.
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Figure 5: Estimators (thick plain line) and (unknown) functions (thick dotted line) f1, . . . , f4.

Other fine dashed lines represent the estimates for m = 0, . . . , 5. The selected value of m is given

by m̂.

Results of simulations are presented in Table 1. Table 1 verifies that indeed the methodology

proposed in the paper works exceptionally well for functions fi, i = 1, . . . , 4, and is still quite precise

for test function f5 for which Fourier transform does not even exist. The table demonstrates the

effect of choosing parameter a: for function f3 and n = 100, the average empirical risk does not

decline when SNR grows. This is due to the bias problem arising from the fact that f3 is the sum

of two exponentials and we fit only one value of a.

We also carried out a limited comparison of the method suggested above with the technique

presented in Abramovich, Pensky and Rozenholc (2012). The comparison is performed using just

one simple example where f(x) = 0.2 exp(−0.5x)+0.8 exp(−2x) and g(t) = t2(t+1)e−t (see Figure

6). In this example, the value of r in (3.1) is r = 3 and we used n = 200, σ = 0.025 and T = 15.

It is easy to see from Figure 7 that the Laguerre functions based estimator outperforms the kernel

estimator of Abramovich, Pensky and Rozenholc (2012) and also it does not exhibit boundary

effects.

Finally, we compared our method to Singular Value Decomposition (SVD) techniques as

described in the context of DCE imaging in Ostergaard et al. (1996) and Fieselmann et al. (2011).

We tried various regularization methods including thresholding and Tikhonov regularization with

rectangular or trapezoid rules for approximation of the convolution integral and played with the
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functions : (left) q = f ∗g and observations; (right) estimates f : Penalized Laguerre deconvolution

(thick plain line) - adaptive kernel estimation (thick dashed line) - true function f (dotted line).

constant of regularization in order to find manually the best possible tuning in each case. In Figure

8 we display one of the best reconstructions which we managed to achieve with the SVD approach.

One can clearly see how this technique fail to adequately recover unknown function f : first, it

introduces a shift, second, it produces estimators which fails to be a decreasing functions (recall

that the function of interest in DCE imaging experiments is f(t) = β(1−F (t)) where F (t) is a cdf

and we use β = 1 in our simulations). One reason for these shortcoming is that SVD estimates are

smooth and degenerate at 0. As it is noted in the papers on DCE imaging (see, e.g., Fieselmann et

al. (2011)), for convolution kernels corresponding to recirculation of the contrast agent (which is a

common real-life scenario), SVD fails completely and needs some extra tuning in order to obtain

quite poor results similar to those presented in Figure 8.
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Figure 8: Comparison between deconvolution using SVD method with Tikhonov regularization and

penalized Laguerre functions. SNR=8, n = 200, f = f1, (upper-left) the kernel g(t) = t3 exp(−t/3);

(bottom-left) observations; (right) estimates f̂ : Penalized Laguerre deconvolution (thick plain line)

- SVD for various regularization constants (fine line) and true function f (dotted line).

5 Discussion

In the present paper, we study a noisy version of a Laplace convolution equation. Equations of this

type frequently occur in various kinds of DCE imaging experiments. We propose an estimation

technique for the solutions of such equation based on expansion of the unknown solution, the kernel

and the measured right-hand side over a system of the Laguerre functions. The number of the terms

in the expansion of the estimator is controlled via complexity penalty. The technique leads to an

estimator with the risk within a logarithmic factor of m of the oracle risk under no assumptions on

the model and within a constant factor of the oracle risk under mild assumptions.

The major advantage of the methodology presented above is that it is usable from a practical

point of view. Indeed, the expansion results in a small system of linear equations with the matrix

of the system being triangular and Toeplitz. The exact knowledge of the kernel is not required:

the AIF curve can be fitted using data from DCE-CT experiments as it is shown in Figure 2. This

distinguishes the present technique with the method of Abramovich, Pensky and Rozenholc (2012)

(referenced later as APR) which strongly depends on the knowledge of the kernel in general and

the value of r in (3.1), in particular. After that, the method can be applied to any voxel of interest,

either at the voxel level or using ROI (region of interest) manually drawn by a doctor or obtained

using any clustering technique.

The method is computationally very easy and fast (requires solution of a small triangular system

of linear equations) and produces no boundary effects due to extension at zero and cut-off at T .

Moreover, application of the technique to discrete data does not require re-fitting the model for
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each model size separately. On the contrary, the vector of the Laguerre coefficients of the observed

function is fitted only once, for the largest model size, and then is truncated for models of smaller

sizes. The complexity of representation of g adjusts to the complexity of representation of f and

the noise level. Moreover, if g can be represented by a finite expansion over Laguerre functions

with k terms, the matrix of the system is k-diagonal.

The method performs very well in simulations. It is much more precise than the APR technique

as Figure 7 confirms. In fact, the absence of exhaustive comparisons between the two methods is

due to the fact that it is very tricky to produce estimators by the APR method, especially, in the

case of g1 which represents real life AIF. Similarly, as our study and Figure 8 show, the method is

much more accurate than the SVD-based techniques.

There are few more advantages which are associated with the use of Laguerre functions basis.

Since one important goal of future analysis of DCE-CT data is classification of the tissues and

clustering of curves f(t) = β(1−F (t)) which characterize their blood flow properties, representation

of the curves via Laguerre basis allows to replace the problem of classification of curves by

classification of relatively low-dimensional vectors. In addition, due to the absence of boundary

effects, the method allows to estimate classical medical parameters of interest β which describes

the perfusion of blood flow, and also If =
∫
f(s) ds which characterizes the vascular mean transit

time. These parameters can be estimated by β̂ = 1/f̂(0) and Îf =
∫
f̂(s) ds, respectively.

The complexity of representation of g is controlled by the choice of parameter a. Parameter

a is a non-asymptotic constant which does not affect the convergence rates. In practice, one can

choose a in order to minimize ‖g− ĝM‖ where ĝM is a fitted version of g using the first M Laguerre

functions. Then, the same value of a can be used in representation of the solution f . Our choice of a

provides a reasonable trade-off between the bias and the variance for majority of kernels considered

above, including a real life AIF kernel coming from the REMISCAN (2007) study. However, our

limited experimentation with choices of a shows that there is room for improvement: undeniably,

fine tuning parameter a can improve estimation precision, especially, in the case when kernel g has

a strong exponential decay. However, this issue is a matter of future investigation.
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6 Proofs

6.1 Proof of Theorem 1

Let m,m′ ∈Mn, t ∈ Sm′ and s ∈ Sm. Denote m∗ = max(m,m′) = m∨m′, ~ηm = σ
√
T/n ~ξm and

observe that

γn(t)− γn(s) = ‖t− ~f‖2 − ‖s− ~f‖2 − 2〈t− s,G−1
M ~ηm∗〉, (6.1)

where ~f = ~fM is the vector of the true M first coefficients of function f . Note that, due to

orthonormality of the Laguerre system, for any m,

‖f̂m − f‖2 = ‖~̂fm − ~f‖2 +
∞∑
j=M

(
f (j)

)2
and ‖fm − f‖2 = ‖~fm − ~f‖2 +

∞∑
j=M

(
f (j)

)2
. (6.2)

Now, the definition of m̂ yields that for any m ∈Mn one has

γn(~̂f m̂) + pen(m̂) ≤ γn(~fm) + pen(m),

which with (6.1), implies

‖~̂fm − ~f‖2 ≤ ‖~fm − ~f‖2 + pen(m) + ∆m,m̂.

Here ∆m,m̂ = 2〈~̂f m̂ − ~fm,G
−1
M ~ηm?〉 − pen(m̂), where m? = m ∨ m̂. Therefore, using (6.2), we

obtain that, for any m ∈Mn,

‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + pen(m) + ∆m,m̂ (6.3)

Note that, due to 2xy ≤ (x2/4) + 4y2 for all x > 0, y > 0,

∆m,m̂ ≤ 2‖~̂f m̂ − ~fm‖ sup
t∈Sm?

‖t‖=1

〈t,G−1
M ~ηm?〉 − pen(m̂)

≤ 1
4
‖~̂f m̂ − ~fm‖2 + 4 sup

t∈Sm?

‖t‖=1

〈t,G−1
M ~ηm?〉2 − pen(m̂)

Now, denote

τ(m,m′) =
σ2T

n

[
(1 +B)v2

m∗ + 2(1 +B−1)(α+ 1) log(m∗)ρ2
m∗
]
, (6.4)

where m∗ = m ∨m′. Since, for any m, ‖~̂f m̂ − ~fm‖2 ≤ 2‖f̂m̂ − f‖2 + 2‖fm − f‖2, then

∆m,m̂ ≤ 1
2
‖f̂m̂ − f‖2 +

1
2
‖fm − f‖2 + 4

[
sup

t∈Sm∨m̂

〈t,G−1
M ~ηm?〉2 − τ(m, m̂)

]
+

(6.5)

+ 4τ(m, m̂)− pen(m̂).
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Using the fact that 4τ(m, m̂) ≤ pen(m) + pen(m̂), combining (6.3), (6.4) and (6.5), derive

‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + pen(m) +
1
2
‖f̂m̂ − f‖2 +

1
2
‖fm − f‖2

+ 4

[
sup

t∈Sm∨m̂

〈t,G−1
M ~ηm?〉2 − τ(m, m̂)

]
+

.

Finally, subtracting ‖f̂m̂ − f‖2/2 from both sides of the last equation and multiplying both sides

by 2, obtain

‖f̂m̂ − f‖2 ≤ 3‖fm − f‖2 + 4pen(m) (6.6)

+ 8

[
sup

t∈Sm∨m̂

〈t,G−1
M ~ηm?〉2 − τ(m, m̂)

]
+

.

Hence, validity of Theorem 1 rests on the following lemma which will be proved later.

Lemma 4. Let condition (2.15) hold for some positive constants α and Cρ. Then, for any m and

any B > 0, one has

E

[
sup

t∈Sm∨m̂,‖t‖=1

〈t,G−1
M ~ηm?〉2 − τ(m, m̂)

]
+

≤
2C2

ρσ
2T

mn

(
1 +

1
B

)
.

Proof of Lemma 4 is given in Section 6.3.

6.2 Proofs of Lemmas 2 and 3

Proof of Lemma 2. To prove this statement, we shall follow the theory of Wiener-Hopf integral

equations described in Gohberg and Feldman (1974). Denote Fourier transform of a function p(x)

by p̂(ω) =
∫ ∞
−∞

eiωxp(x)dx and observe that

φ̂k(ω) = (−1)k
√

2a
(a+ iω)k

(a− iω)k+1
.

Therefore, elements of the infinite Toeplitz matrix G in (2.4) are generated by the sequence bj ,

j ≥ 0, where

bj = (2a)−1/2(g(j) − g(j−1)) =
1

2π

∫ ∞
−∞

ĝ(ω)[φ̂j(ω)− φ̂j−1(ω)]dω

=
a

π

∫ ∞
−∞

ĝ(ω)
(
iω − a
iω + a

)j dω

a2 + ω2
, j = 0, 1, . . . . (6.7)

Note that |(iω−a)/(iω+a)| = 1, so that we can use the following substitution in the integral (6.7):

iω − a
iω + a

= e−iθ =⇒ ω =
a(eiθ + 1)
i(eiθ − 1)

=
a sin θ

cos θ − 1
, 0 ≤ θ ≤ 2π.
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Simple calculations show that

bj =
1

2π

∫ 2π

0
ĝ

(
a(eiθ + 1)
i(+eiθ − 1)

)
e−iθjdθ,

so that bj , j ∈ Z, are Fourier coefficients of the function

B(θ) = b(eiθ) = ĝ

(
a(eiθ + 1)
i(eiθ − 1)

)
.

Now, let us show that bj = 0 for j < 0. Indeed, if j = −k, k > 0, then

bj =
a

π

∫ ∞
−∞

ĝ(ω)
(
iω + a

iω − a

)k dω

a2 + ω2
=
a

π

∫ ∞
−∞

ĝ(ω)
(
i(−ω)− a
i(−ω) + a

)k dω

a2 + ω2

=
1

2π

∫ ∞
−∞

ĝ(ω)[φ̂j(−ω)− φ̂j−1(−ω)]dω =
∫ ∞
−∞

g(x) [φk(−x)− φk−1(−x)] dx = 0

since g(x) = 0 if x < 0 and φk(−x) = 0 if x > 0. Hence, function B(θ) = b(eiθ) has only coefficients

bj , j ≥ 0, in its Fourier series. Now, to complete the proof, one just needs to note that G(s) = ĝ(is)

for any s such that Laplace transform G(s) of g exists.

Proof of Lemma 3. Let us first find upper and lower bounds on ‖G−1
m ‖22 = Tr(G−Tm G−1

m ) and

‖G−1
m ‖2 = λmax(G−Tm G−1

m ). For this purpose, examine the function

b(z) = ĝ

(
a(z + 1)
i(z − 1)

)
= G

(
a(z + 1)

1− z

)
, |z| = 1.

Denote y = a(z + 1)/(1− z), so that z = (y − a)/(y + a) and G(y) = b((y − a)/(y + a)).

Let us show that, under Assumptions (A1)-(A4), b(z) has a zero of order r at z = 1 and all

other zeros of b(z) lie outside the unit circle.

For this purpose, assume that y = α + iβ is a zero of G, i.e. G(α + iβ) = 0. Simple calculus

yields ∣∣∣∣y − ay + a

∣∣∣∣2 = 1− 4αa
(α+ a)2 + β2

,

so that |z| = |(y − a)/(y + a)| ≤ 1 iff α ≥ 0. But, by Assumption (A3), G(y) has no zeros with

nonnegative real parts, so that α < 0 and |z| = |(y − a)/(y + a)| > 1. Therefore, all zeros of b(z),

which correspond to finite zeros of G, lie outside the complex unit circle C.
Assumptions (A1), (A2) and properties of Laplace transform imply that G(s) = s−r(Br+Gr(s))

where Gr(s) is the Laplace transform of g(r)(t). Hence,

lim
Re s→∞

sjG(s) =

{
0, if j = 0, ..., r − 1,

Br 6= 0, if j = r,

so that y = ∞ + iβ is zero of order r of G(y). Since lim
Re y→∞

(y − a)/(y + a) = 1, b(z) has zero of

order r at z = 1.
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Then, b(z) can be written as b(z) = (1− z)rw(z) where w(z) is defined by formula (3.8) and all

zeros of w(z) lie outside the complex unit circle. Therefore, w(z) can be written as

w(z) = Cw

N∏
j=1

(z − ζj), 0 ≤ N ≤ ∞, |ζj | > 1, (6.8)

where Cw is an absolute constant. Since b(z) does not contain any negative powers of z in its

representation, J0 = 0 and J = 0 in (3.5) and, consequently, wind(w) = 0. Also, by (3.4) and (3.8),

one has T−1(b) = T (b−1) where b−1(z) = w−1(z)(1− z)−r.
Now, recall that ‖G−1

m ‖22 = ‖Tm(b−1)‖22 and for ‖G−1
m ‖2 = ‖Tm(b−1)‖2. Using relation between

Frobenius and spectral norms ‖A1A2‖2 ≤ ‖A1‖2‖A2‖ for any matrices A1 and A2 (see, e.g.,

Böttcher and Grudsky (2000), page 116), obtain

‖Tm(b−1)‖2 ≤ ‖Tm((1− z)−r)‖2‖Tm(w−1)‖, ‖Tm(b−1)‖ ≤ ‖Tm((1− z)−r)‖‖Tm(w−1)‖,(6.9)

‖Tm((1− z)−r)‖2 ≤ ‖Tm(b−1)‖2‖Tm(w)‖, ‖Tm((1− z)−r)‖ ≤ ‖Tm(b−1)‖‖Tm(w)‖. (6.10)

Note that (see Böttcher and Grudsky (2005), page 13)

lim
m→∞

‖Tm(w−1)‖ = ‖w−1‖circ, lim
m→∞

‖Tm(w)‖ = ‖w‖circ,

Also, due to representation (6.8), both w and w−1 are bounded, and, therefore, 0 < ‖w−1‖circ <∞
and 0 < ‖w‖circ <∞. Denote

νf (m) = ‖Tm((1− z)−r)‖2, νs(m) = ‖Tm((1− z)−r)‖. (6.11)

Then, it follows from (3.6), (6.9) and (6.10) that, for m large enough,

0.5 (‖w‖circ)−2 ν2
f (m) ≤ ‖Tm(b−1)‖22 ≤ 2‖w−1‖2circ ν2

f (m), (6.12)

0.5 (‖w‖circ)−2 ν2
s (m) ≤ ‖Tm(b−1)‖2 ≤ 2‖w−1‖2circ ν2

s (m). (6.13)

In order to finish the proof, we need to evaluate ν2
f (m) and ν2

s (m) and also to derive a relation

between v2
m, ρ2

m, ‖Tm(b−1)‖22 and ‖Tm(b−1)‖2. The first task is accomplished by the following

lemma.

Lemma 5. Let νf (m) and νs(m) be defined in (6.11). Then,

2−(4r−1)[(r − 1)!]−2m2r+1 ≤ ν2
f (m) ≤ 0.5m2r+1, (6.14)

(r!)−2m2r ≤ ν2
s (m) ≤ m2r. (6.15)

Proof of Lemma 5 is given in Section 6.3.

Now, to complete the proof, recall that matrix Ωm given by (2.8) is symmetric positive definite,

so that there exist an orthogonal matrix Um and a diagonal matrix Dm, with eigenvalues of Ω
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as its diagonal elements, such that Ωm = UT
mDmUm and Ω−1

m = UT
mD

−1
m Um. Hence, by (2.10),

(2.14) and Assumption (A4)

‖Tm(b−1)‖22 = Tr(G−1
m G

−T
m ) = Tr(G−1

m U
T
mDmD

−1
m UmG

−T
m )

≤ ‖D−1
m ‖‖

√
DmUmG

−1
m ‖22 ≤ λ−1

1 Tr(G−Tm ΩmGm) = λ−1
1 v2

m,

v2
m = ‖

√
DmUmG

−1
m ‖22 ≤ λ2‖G−1

m ‖22 = λ2‖Tm(b−1)‖22,

ρ2
m = ‖

√
DmUmG

−1
m ‖2 ≤ λ2‖G−1

m ‖2 = λ2‖Tm(b−1)‖2,

so that

ρ2
m ≤ λ2‖Tm(b−1)‖2, λ1‖Tm(b−1)‖22 ≤ v2

m ≤ λ2‖Tm(b−1)‖22. (6.16)

Combination of (6.12) – (6.16) and Lemma 5 complete the proof.

6.3 Proofs of supplementary Lemmas

Proof of Lemma 4.

The proof of Lemma 4 has two steps. The first one is the application of a χ2-type deviation

inequality stated in Laurent and Massart (2000), and improved by Gendre (see Lemma 3.10 of

Gendre (2009)). The second step consists of integrating this deviation inequality.

The χ2-inequality is formulated as follows. Let A be a p × p matrix A ∈ Mp(R) and ζ be a

standard Gaussian vector. Denote v2
A = Tr(AT A) and ρ2(A) = λmax(AT A). Then, for any

x > 0,

P
(
‖Aζ‖2 ≥ v2

A + 2
√
v2
Aρ

2(A)x+ ρ2(A)x
)
≤ e−x. (6.17)

Now, recall that for t ∈ Sm + Sm′ = Sm∗ where m∗ = m ∨m′, one has

〈t,G−1
M ~ηm∗〉

L=
σ2T

n
〈tm∗ ,

√
Qm∗ζm∗〉

where tm∗ is the m∗-dimensional vector formed by the first m∗ coordinates of t and ζm∗ is a

standard m∗-dimensional Gaussian vector. Moreover,

sup
t∈Sm+Sm′ ,‖t‖=1

〈t,G−1
M ~ηm∗〉2 = ‖

√
Qm∗ζm∗‖2.

Thus, it follows from (6.17) that

P
(

n

Tσ2
‖
√
Qm∗ζm∗‖2 ≥ v2

m∗ + 2
√
ρ2
m∗v

2
m∗x+ ρ2

m∗x

)
≤ e−x. (6.18)

For any B > 0, one has 2
√
ρ2
m∗v

2
m∗x ≤ Bv2

m∗ +B−1ρ2
m∗x so that

P
( n

Tσ2
‖
√
Qm∗ζm∗‖2 ≥ (1 +B)v2

m∗ + (1 +B−1)ρ2
m∗x

)
≤ e−x.
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Therefore, using definition (6.4) of τ(m,m′), obtain

E

(
sup

t∈Sm+Sm′ ,‖t‖=1

〈t,G−1
M ~ηm∗〉2 − τ(m,m′)

)
+

= E
(
‖
√
Qm∗ζm∗‖2 − τ(m,m′)

)
+

≤
∫ +∞

0
P
(
‖
√
Qm∗ζm∗‖2 −

σ2T

n

[
(1 +B)v2

m∗ + 2(1 +B−1)(α+ 1) log(m∗)ρ2
m∗
]
≥ ξ
)
dξ.

Changing variables

2σ2T

n
(α+ 1)(1 +B−1) log(m∗)ρ2

m∗ + ξ =
σ2T

n
(1 +B−1)ρ2

m∗x

and application of (6.18) yield

E

(
sup

t∈Sm+Sm′ ,‖t‖=1

〈t,G−1
M ~ηm∗〉2 − τ(m,m′)

)
+

≤ (1 +B−1)
ρ2
m∗σ

2T

n

∫ +∞

2(α+1) log(m∗)
e−xdx

= (1 +B−1)
ρ2
m∗σ

2T

n
(m∗)−2(α+1)

≤ Cρ(1 +B−1)
σ2T

n
(m∗)−2.

Recall that m? = m ∨ m̂ and obtain

E

[
sup

t∈Sm∨m̂

〈t,G−1
M ~ηm?〉2 − τ(m, m̂)

]
+

≤
∑

m′∈Mn

E

(
sup

t∈Sm+Sm′ ,‖t‖=1

〈t,G−1
M ~ηm∨m′〉2 − τ(m,m′)

)
+

and ∑
m′∈Mn

E

(
sup

t∈Sm+Sm′ ,‖t‖=1

〈t,G−1
M ~ηm∗〉2 − τ(m,m′)

)
+

≤ Cρ(1 +B−1)
σ2T

n

∑
m′∈Mn

(m ∨m′)−2

≤ Cρ(1 +B−1)
σ2T

n

(
m∑

m′=1

m−2 +
∑
m′>m

(m′)−2

)

≤ Cρ(1 +B−1)
σ2T

n

(
m−1 +

∫ +∞

m

dx

x2

)
= 2Cρ(1 +B−1)

σ2T

nm
,

which concludes the proof. 2

Proof of Lemma 5. Note that, by formula 1.110 of Gradshtein and Ryzhik (1980),

(1− z)−r =
∞∑
j=0

(
r + j − 1

j

)
zj ,

so that, by definition of Frobenius norm,

‖Tm((1− z)−r)‖22 = m2 + (m− 1)2
(
r

1

)2

+ (m− 2)2
(
r + 1

2

)2

+ . . .+
(
r +m− 2
m− 1

)2

=
m−1∑
j=0

(
r + j − 1

j

)2

(m− j)2,

‖Tm((1− z)−r)‖2 = max
|z|=1

∣∣∣∣∣∣
m−1∑
j=0

(
r + j − 1

j

)
zj

∣∣∣∣∣∣ =
m−1∑
j=0

(
r + j − 1
r − 1

)
.
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If r = 1, then

m−1∑
j=0

(
r + j − 1

j

)2

(m− j)2 =
m−1∑
j=0

(m− j)2 =
m(m+ 1)(2m+ 1)

6
.

If r ≥ 2, then

jr−1

(r − 1)!
≤
(
r + j − 1

j

)
=

(r − 1 + 1) . . . (r − 1 + j)
(r − 1)!

≤ (j + 1)r−1,

so that, for m ≥ 4,

ν2
f (m) = ‖Tm((1− z)−r)‖22 ≤ 0.5m2r+1,

ν2
f (m) ≥

3m/4∑
j=m/4

j2r−2

[(r − 1)!]2
(m− j)2 ≥ m2r+12−(4r−1)

[(r − 1)!]2
,

which proves validity of (6.14). To show that (6.15) holds, observe that, by formula 0.151.1 of

Gradshtein and Ryzhik (1980),

m−1∑
j=0

(
r + j − 1
r − 1

)
=
(
r +m− 1

r

)
,
mr

r!
<

(
r +m− 1

r

)
< mr.
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