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Abstract: The paper ”Nonparametric Laguerre estimation in the multi-
plicative censoring model”, Electronic Journal of Statistics, 2016, 10, 3114-
3152, contains a wrong statement. We localize the place of the error and
give a correct proof.

1. Introduction

Observations are either i.i.d. nonnegative data X1, . . . , Xn, with unknown den-
sity f , or drawn from the model Yi = XiUi, i = 1, . . . , n where the Ui’s are
i.i.d. with β(1, k) density, k ≥ 1. The sequences (Xi), (Ui), are independent.

The paper studies projection estimators of f using Laguerre basis and proves
upper bounds for the integrated L2-risk. These upper bounds allow to compute
rates on Sobolev-Laguerre balls. Corresponding lower bounds are stated in the
case of direct observations and indirect observations with uniform noise.

In Comte and Genon-Catalot (2017), we prove that the upper bounds can be
improved, thanks to more precise properties of the Laguerre functions (Askey
and Wainger (1965)). They yield better rates on Sobolev-Laguerre balls. In the
case of direct observations, these rates turn out to be the classical ones, even
though the regularity spaces are not the standard ones. Consequently, the lower
bounds proved in the paper (Theorem 3.1 and 3.2) do not hold true.

Section 2 presents the improved upper bounds. For what concerns the lower
bounds, we point out the error of the published proof, and give a correct one in
Section 3.
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2. Improved upper bounds

Consider X1, . . . , Xn i.i.d. nonnegative random variables with unknown density
f belonging to L2(R+). For each m ≥ 0, a projection estimator of f is defined

by f̂Xm =
∑m−1
j=0 âjϕj , where âXj = 1

n

∑n
i=1 ϕj(Xi)j = 0, . . . ,m− 1, and (ϕj)j≥0

is the Laguerre basis defined in Section 2.1 of [2]. The following risk bound is
proved in [3].

Proposition 2.1. If E(1/
√
X1) < +∞, we have, for m large enough,

E(‖f̂Xm − f‖2) ≤ ‖f − fm‖2 + C

√
m

n
, (2.1)

for C a constant depending on E(1/
√
X1), but not on m, where ‖.‖ is the L2-

norm on L2(R+).

Compared with Proposition 2.4 p.3120 of Belomestny et al. (2016) with k = 0
which is the case of direct observations, the variance term here is upper bounded
by
√
m/n instead of m/n. On the other hand, we did not assume E(1/

√
X1) <

+∞. Note that the function proposals of Theorem 3.1 in Belomestny et al. (2016)
satisfy this additional moment assumption.

Now, for f ∈W s(D), the Sobolev Laguerre ball being defined by

W s(D) = {h : (0,+∞)→ R, h ∈ L2((0,+∞)), |h|2s :=
∑
k≥0

ksa2k(h) ≤ D}, (2.2)

we have ‖f − fm‖2 =
∑
j≥m a

2
j (f) ≤ Dm−s. Therefore, choosing mopt =

[n1/(s+1/2)] in the r.h.s. of (2.1) implies

E(‖f̂Xmopt
− f‖2) . n−s/(s+1/2) = n−2s/(2s+1).

This upper bound is thus better than the one obtained in Corollary 3.1 p.3122
for k = 0. This is why the lower bound stated in Theorem 3.1 p.3123 is not cor-
rect. Note that the new rates can not be improved as they reach the standard
rates on classical Sobolev spaces.

Assume now that the observations are Yi = XiUi with Ui i.i.d. with (Xi)1≤i≤n
and (Ui)1≤i≤n independent. We restrict ourselves to U1 ∼ U([0, 1]). We recall

that in this case the projection estimator is defined by f̂m(x) =
∑m
j=1 âjϕj(x),

with âj = 1
n

∑n
i=1[Yiϕ

′
j(Yi) + ϕj(Yi)]. Then the following risk bound holds (see

[3]).

Proposition 2.2. Assume that E(X1) < +∞ and E(1/
√
X1) < +∞. For m

large enough, we have

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 + c
m3/2

n
, (2.3)

where c is a constant which depends on E(X1) and E(1/
√
X1), but not on m.
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The rate obtained in Proposition 2.4 p.3120 for the variance term in the case
for k = 1, which is the case of Ui following a uniform distribution, was m3/n,
without moment assumptions. Here, the variance term is proved to be of order
m3/2/n.

Now, for f ∈ W s(D) defined by (2.2), choosing mopt = [n1/(s+3/2)] in the
r.h.s. of (2.3) implies

E(‖f̂mopt − f‖2) . n−s/(s+3/2) = n−2s/(2s+3).

This implies that the lower bound stated in Theorem 3.2 p.3124 is not correct.

3. Lower bounds

3.1. What is wrong?

We made a wrong use of Theorem 2.6 p.100 in Tsybakov (2009). This theorem
requires (Condition (ii)), that

1

M

M∑
j=1

χ2(Pθ(j) , Pθ(0)) ≤ αM, 0 < α <
1

2
,

where Pθ(j) , j = 0, 1, . . . ,M are the law of (X1, . . . , Xn) when the Xi’s are i.i.d.
with density fθ(j) . This means that Pθ(j) = f⊗n

θ(j) . Observe that (see p.86 of
Tsybakov (2009)):

χ2(f⊗n
θ(j) , f

⊗n
θ(0)) =

(
1 + χ2(fθ(j) , fθ(0))

)n − 1.

For xn ≥ 0, we have (1 + xn)n − 1 = exp(n log(1 + xn))− 1 ≤ enxn − 1. If xn .
log(M)/n, then enxn − 1 .M . Thus if we prove that χ2(fθ(j) , fθ(0)) . log(M),
condition (ii) holds and we can apply Theorem 2.6 of Tsybakov (2009).

On the other hand, if xn . loga(M)/n, with a > 1, enxn has order elog
a(M) �

M , and condition (ii) is not satisfied. In other words, Lemma 6.5 p.3137 and
Lemma 6.12 p.3146 do not hold true, as only the univariate χ2 is studied and
bounded by loga(M) with a > 1. The extrapolation we did to the n-sample is
not correct.

3.2. Corrected lower bounds

Thanks to constructive discussions with Cristina Butucea1 and Céline Duval2,
we found the error and a new proof corresponding to the correct lower bound.

We treat the case k = 0 (direct observations of Xi). The case of indirect
observations can be dealt analogously.

1CREST, ENSAE, Université Paris-Saclay, Saclay, FRANCE
2MAP5 UMR CNRS 8145, Université Paris Descartes, Sorbonne Paris Cité, FRANCE
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Theorem 3.1. Assume that s is an integer, s ≥ 1 and that a n sample
(X1, . . . , Xn) is observed. Then for any estimator f̂n of f based of X1, . . . , Xn,
and for n large enough,

sup
f∈W s(D)

Ef
[
‖f̂n − f‖2

]
% n−2s/(2s+1).

4. Proofs of Theorem 3.1

Let f0(x) be defined by

f0(x) =
1

2
1[0,1](x) + P (x)1]1,2](x)

where P is a polynomial such that P (x) ≥ 0,
∫ 2

1
P (x)dx = 1/2, P (1) = 1/2,

P (2) = 0 and P (k)(1) = P (k)(2) = 0 for k = 1, . . . , s+ 1.
Next we consider the functions, for K ∈ N,

fθ(x) = f0(x) + δK−γ
K−1∑
k=0

θk+1ψ(xK − k)

for some δ > 0, θ = (θ1, . . . , θK) ∈ {0, 1}K , γ > 0 to be chosen and ψ is bounded,

has support [0, 1], admits bounded derivatives up to order s and
∫ 1

0
ψ(x)dx = 0.

The moment condition of Proposition 2.1 holds for these densities.

Lemma 4.1. Let s integer, s ≥ 1. Then f0 and fθ are densities belonging to
W s(D) provided that γ ≥ s and δ well chosen.

Proof of Lemma 4.1. First f0 is a density, and
∫
R+ fθ(x)dx =

∫
R+ f0(x)dx = 1

by construction.
We now prove that fθ is nonnegative. For any x ∈ [0, 1], then there exists k0

such that x ∈ [k0/K, (k0 + 1)/K] and we have

fθ(x) =
1

2
+ δK−γθk0+1ψ(xK − k0) ≥ 1

2
− δ‖ψ‖∞K−γ .

Thus fθ(x) ≥ 0 as soon as γ > 0 and δ < 1/(2‖ψ‖∞).
Now we prove that f0 and fθ belong to W s(D). The computation of norms

in Sobolev-Laguerre spaces are detailed in paragraph 7.2 of Belomestny et
al. (2016). For f0, we recall that

‖f0‖2s =

∫ +∞

0

xs/2 s∑
j=0

(
s

j

)
f
(j)
0 (x)

2

dx ≤ 2s
s∑
j=0

(
s

j

)∫ 2

0

(
xs/2f

(j)
0 (x)

)2
dx.

for j = 0, . . . , s and there exists a constant B(s) such that ‖f0‖2s ≤ B(s). It
follows Lemma 7.5 of Belomestny et al. that |f0|2s ≤ B̃(s), for a constant B̃(s).
We take D/4 ≥ B̃(s).
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‖fθ − f0‖2s = δ2K−2γ
∫ +∞

0

xs/2 s∑
j=0

(
s

j

)K−1∑
k=0

θk+1K
jψ(j)(xK − k)

2

dx

≤ δ2K−2γ2s
s∑
j=0

(
s

j

)∫ +∞

0

(
xs/2

K−1∑
k=0

θk+1K
jψ(j)(xK − k)

)2

dx.

We now use that ψ(j)(xK − k), ψ(j)(xK − `) have disjoint supports and are
bounded (say by c). We get

‖fθ − f0‖2s ≤ δ22sK−2γc2
s∑
j=0

(
s

j

)K−1∑
k=0

K2j

∫ (k+1)/K

k/K

xsdx

≤ δ222sK−2γc′
s∑
j=0

K−1∑
k=0

K2j−1 ≤ C(s)δ2K−2γ+2s.

Thus, for δ small enough, |fθ − f0|2s ≤ D/4 as γ ≥ s. 2
Next we have:

Lemma 4.2. For any θ,θ′ ∈ {0, 1}K ,∫ ∞
0

(fθ(x)− fθ′(x))
2
dx ≥ δ2‖ψ‖2(2K)−2γ−1ρ(θ,θ′), (4.1)

where ρ(θ,θ′) =
∑K
k=1 1θk 6=θ′k is the so-called Hamming distance.

Proof of Lemma 4.2.

‖fθ − fθ′‖2 = δ2
∫ +∞

0

(
K−1∑
k=0

(θk+1 − θ′k+1)K−γψ(xK − k)

)2

dx

= δ2
K∑
k=1

(θk − θ′k)2K−2γ−1‖ψ‖2 = δ2‖ψ‖2K−2γ−1ρ(θ,θ′). 2

We recall the Varshamov-Gilbert bound (see Lemma 2.9 p. 104 in [4]).

Lemma 4.3. Fix some even integer K > 0. There exists a subset {θ(0), . . . ,θ(M)}
of {0, 1}K and a constant A1 > 0, such that θ(0) = (0, . . . , 0), ρ(θ(j), θ(l)) ≥
A1K, for all 0 ≤ j < l ≤M. Moreover it holds that, for some constant A2 > 0,

M ≥ 2A2K . (4.2)

Therefore
‖fθ(j) − fθ(l)‖2 ≥ Cδ2K−2γ .

Then we have the following Lemma.
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Lemma 4.4. For j ∈ {1, . . . ,M}, χ2 (fθ(j) , fθ(0)) . δ2 log(M)K−2γ−1, where
M comes from the Varshamov-Gilbert Lemma.

Proof of Lemma 4.4. We have f0 = fθ(0) , and

χ2(fθ, f0) =

∫ 1

0

(fθ(x)− f0(x))
2

f0(x)
dx

. δ2
K−1∑
k=0

θ2k+1K
−2γ

∫ 1

0

ψ2(xK − k)dx . δ2K−2γ‖ψ‖2.

Thus
χ2(fθ(j) , fθ(0)) . δ2 log(M)K−2γ−1. 2

So if δ2 is a well chosen constant, γ = s and K = n1/(2γ+1) = n1/(2s+1) we get

1

M

M∑
j=1

χ2
(
(fθ(j))⊗n, (fθ(0))⊗n

)
≤ αM,

for 0 < α < 1/8, and

‖fθ(j) − fθ(l)‖2 ≥ Cδ2K−2γ ∝ n−2s/(2s+1).

Applying Theorem 2.6 of Tsybakov (2009) gives the result of Theorem 3.1. 2
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