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Abstract: In this paper, we consider the observation of n i.i.d. mixed Pois-
son processes with random intensity having an unknown density f on R+.
For fixed observation time T , we propose a nonparametric adaptive strat-
egy to estimate f . We use an appropriate Laguerre basis to build adaptive
projection estimators. Non-asymptotic upper bounds of the L

2-integrated
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1. Introduction

Nonparametric estimation of the intensity of a Poisson process has been the
subject of numerous contributions (see e.g. Kutoyants (1998) [16], chapter 6,
and more recently, Reynaud (2003) [23], Reynaud and Rivoirard (2010) [24]). In
here, we consider the case of a random intensity. More precisely, let (Nj(t), j =
1, . . . , n) be n independent Poisson processes with unit intensity and n i.i.d. pos-
itive random variables (Cj , j = 1, . . . , n). Assume that the processes (Nj(t), j =
1, . . . , n) and the sequence (Cj , j = 1, . . . , n) are independent. Under these as-
sumptions, the random time changed processes (Xj(t) = Nj(Cjt), t ≥ 0) are
i.i.d. and such that the conditional distribution of Xj given Cj = c is the dis-
tribution of a time-homogeneous Poisson process with intensity c. The process
Xj is known as a mixed Poisson process (see e.g. Grandell (1997) [11], Mikosch
(2009) [20]). Such processes are of common use in non-life insurance mathemat-
ics as well as in numerous other areas of applications (see Fabio et al. [9] and
references therein). The value Xj(t) represents for a subject j the number of
occurrence of an event during the time interval [0, t] (e.g. the claim number in
insurance mathematics). The randomness of the intensity Cj takes into account
the heterogeneity among subjects which is more realistic. For instance, the dis-
tribution of Cj may be a mixture of distributions. The mixed Poisson process
belongs to the more general class of mixed-effects models where parameters are
assumed to be unobserved random variables.

In this paper, we assume that the random variables Cj have an unknown
density f on (0,+∞) and our concern is the nonparametric estimation of f
from the observation of a n-sample (Xj(T ), j = 1, . . . , n) for a given value T .
We investigate this subject for large n and both for fixed T and large T with
two different methods, which are complementary.

In Section 2, we consider the case T = 1. The distribution of Xj(1) = Nj(Cj)
is given by:

P(Nj(Cj) = ℓ) := αℓ(f) =
1

ℓ!

∫ +∞

0

e−ccℓf(c)dc, ℓ ≥ 0, (1)

which can be estimated by:

α̂ℓ =
1

n

n∑

j=1

1(Nj(Cj)=ℓ), ℓ ≥ 0. (2)

The problem of estimating f from the discrete observations (Nj(Cj), j = 1, . . . , n)
is thus an inverse problem, the problem of estimating a mixing density in a
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Poisson mixture. Several authors have considered this topic whether by kernel
or projection methods, see Simar (1976) [27], Karr (1984) [14], Zhang (1995)
[29], Loh and Zhang (1996, 1997) [17, 18], Hengartner (1997) [13], Roueff and
Rydén (2005) [25] and Rebafka and Roueff (2010) [22]. These authors are mainly
interested in estimating f on a compact subset of (0,+∞). We discuss with more
details the links between the present results and the previous references in sub-
section 2.3.

In this paper, we assume that

(H) f ∈ L
2((0,+∞))

and propose a solution without any constraint on the support of the unknown
function. We study the L

2((0,+∞))-risk and prove upper and lower bounds on
an adequate function space. Our approach is a penalized projection method (see
Massart (2007) [19]) which provides a concrete adaptive estimator of f easily
implementable. It is based on the following idea. By relations (1), αℓ(f) is the
L
2 scalar product of f and the function c→ e−ccℓ/ℓ!. Choosing an orthonormal

basis (ϕk) of L
2((0,+∞)), (1) can be written as:

αℓ(f) =
∑

k≥0

θk(f)Ω
(ℓ)
k

where θk(f),Ω
(ℓ)
k are respectively the k-th component of f and e−ccℓ/ℓ! on the

basis. The problem is to choose a basis such that the mapping (θk(f), k ≥ 0) →
(αℓ(f), ℓ ≥ 0) can be simply and explicitly inverted. Then, by plugging the
estimators α̂ℓ in the inverse mapping, we get estimators of the coefficients θk(f)
and deduce estimators of f . An appropriate choice of (ϕk) is thus a key tool:
we consider the Laguerre basis defined by

ϕk(t) =
√
2Lk(2t)e

−t, k ≥ 0, t ≥ 0, (3)

where (Lk(t)) are the Laguerre polynomials given by (5). Indeed, with this

choice, we obtain that Ω
(ℓ)
k = 0 for all k > ℓ. Thus the matrix Ωℓ = (Ω

(i)
k )0≤i,k≤ℓ

is lower triangular and explicitly invertible (see Propositions 2.1 and 2.2). There-
fore, the inverse problem has a solution: the linear mapping on R

ℓ+1

~αℓ = (αk(f), k = 0, . . . , ℓ)′ → ~θℓ = (θk(f), k = 0, . . . , ℓ)′ = Ω−1
ℓ ~αℓ. (4)

Moreover, a crucial consistency property holds: the first ℓ− 1 coordinates of ~αℓ

and ~θℓ are equal to those of ~αℓ−1 and ~θℓ−1. Note that, in Comte et al. (2013)
[8], a different type of inverse problem involving convolution of functions of
L
2((0,+∞)) in a regression setting, has been solved also using a Laguerre basis.

So, we define a collection of estimators of f by f̂ℓ =
∑ℓ

k=0 θ̂kϕk, where

(θ̂k) are defined using (2) and (4). We study their L2-risk (Proposition 2.3). For
this, we introduce appropriate regularity subspaces of L2((0,+∞)), the Sobolev-
Laguerre spaces with index s > 0. These spaces are presented in an abstract way
in Shen (2000) [26] and Bongioanni and Torrea (2009) [7]. We provide a concrete
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description of these spaces and give the rate of decay of the coefficients of a
function f developed in a Laguerre basis when f belongs to a Sobolev-Laguerre
space with index s (see Section 7, Propositions 7.1, 7.2, 7.3). This allows to
evaluate the order of the bias term ‖f−fℓ‖2 where ‖.‖ denotes the L2((0,+∞))-
norm. Using these regularity spaces, we discuss the possible rates of convergence
of the L

2-risk of f̂ℓ. Functions belonging to a Sobolev-Laguerre ball with index
s yield rates of order O((log n)−s). This rate is optimal, as we prove a lower-

bound result. Afterwards, we propose a data-driven choice ℓ̂ of the dimension
ℓ and prove that the resulting estimator automatically minimizes the L

2-risk
without requiring knowledge about the functional space of f (Theorem 2.2).

Section 3 is devoted to the estimation of f for large T . Our method relies
on the property that for each j, Ĉj,T = Nj(CjT )/T is a consistent estimator of
the random variable Cj as T tends to infinity. Then, we use the i.i.d. sample

(Ĉj,T )1≤j≤n to build estimators of f . We propose projection estimators on the
Laguerre basis (3) using other estimators of the coefficients θk(f) together with
an adaptive choice of the space dimension (Proposition 3.1, Theorem 3.1). The
criterion for the model selection is non standard: it involves a penalization which
is the sum of two terms, one depending on n, ℓ and the other on T, ℓ.

Section 4 gives numerical simulation results and some concluding remarks
are stated in Section 5. Proofs are gathered in Section 6. In Section 7, regularity
spaces associated with Laguerre bases are studied and a useful inequality is
recalled in Section 8.

2. Estimation of the mixing density for T = 1

2.1. Projection estimator

The Laguerre polynomials given by

Lk(t) =

k∑

j=0

(−1)j
(
k

j

)
tj

j!
, k ≥ 0 (5)

are orthonormal polynomials with respect to the weight function w(t) = e−t on

(0,+∞), i.e., for all k, k′,
∫ +∞
0

Lk(t)Lk′(t)e−tdt = δk
′

k where δk
′

k is the Kro-
necker symbol and the sequence (Lk) is an orthonormal basis of the space
L
2((0,+∞), w). Consequently, the sequence of functions (ϕk)k∈N constitutes

an orthonormal basis of L2((0,+∞)). By (H), f admits a development on the
basis (3)

f =
∑

k≥0

θk(f) ϕk, where θk(f) =

∫ +∞

0

f(c)ϕk(c)dc. (6)

Developing the function c→ cℓe−c/ℓ! on the same basis, we get

1

ℓ!
cℓe−c =

∑

k≥0

Ω
(ℓ)
k ϕk(c) where Ω

(ℓ)
k =

1

ℓ!

∫ +∞

0

cℓ
√
2Lk(2c)e

−2cdc. (7)
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As (
√
2Lk(2c), k ≥ 0) are orthogonal polynomials w.r.t. the weight function

w(2c) = e−2c, Ω
(ℓ)
k = 0 for k > ℓ (see Section 7 for more details). Thus,

1

ℓ!
cℓe−c =

ℓ∑

k=0

Ω
(ℓ)
k ϕk(c) and αℓ(f) =

ℓ∑

k=0

θk(f)Ω
(ℓ)
k

The coefficients Ω
(ℓ)
k are given in the following proposition.

Proposition 2.1. The coefficients Ω
(ℓ)
k defined by (7) are equal to

Ω
(ℓ)
k =

(−1)k√
2 2ℓ

(
ℓ

k

)
1(k≤ℓ). (8)

Define the vectors ~θℓ = (θk(f), k = 0, . . . , ℓ)′ ~αℓ = (αk(f), k = 0, . . . , ℓ)′

and the triangular matrix Ωℓ := (Ω
(i)
k )0≤i,k≤ℓ where the diagonal terms are

Ω
(i)
i = (−1)i/(

√
2 2i). The matrix Ωℓ is therefore invertible and its inverse is

explicitly computed in the following proposition.

Proposition 2.2. The following equality holds:

Ω−1
ℓ =

√
2

(
(−1)k

(
j

k

)
2k1(k≤j)

)

0≤j,k≤ℓ

.

Therefore ~θℓ = Ω−1
ℓ ~αℓ. Note that since both Ωℓ and Ω−1

ℓ are lower triangular,

we have the consistency property: the first ℓ − 1 coordinates of ~αℓ and ~θℓ are
equal to those of ~αℓ−1 and ~θℓ−1.

Now we have to define estimators of (θk(f)). For this, consider the empirical
estimators (2) of αk := αk(f) and set

~̂αℓ =
t(α̂0, α̂1, . . . , α̂ℓ) (9)

The vector ~θℓ = (θk(f), k = 0, . . . , ℓ)′ of components of f is estimated by
~̂
θℓ =

Ω−1
ℓ
~̂αℓ. By the triangular form of Ωℓ, ~̂αℓ and

~̂
θℓ have their first ℓ−1 coordinates

equal to those of ~̂αℓ−1 and
~̂
θℓ−1.

Denote by fℓ =
∑ℓ

k=0 θk(f)ϕk the orthogonal projection of f on Sℓ =
span(ϕ0, ϕ1, . . . , ϕℓ).

We define the following collection of estimators of f by

f̂ℓ =
ℓ∑

k=0

θ̂kϕk,
~̂
θℓ = Ω−1

ℓ
~̂αℓ, ℓ ≥ 0. (10)

Recall that ‖.‖ denotes the L
2-norm of L2((0,+∞)). The following risk decom-

position holds.
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Proposition 2.3. The estimator f̂ℓ of f defined by (2)-(8)-(9)-(10) satisfies

E(‖f̂ℓ − f‖2) ≤ ‖f − fℓ‖2 +
16

15

24ℓ

n
.

Proposition 2.3 states a squared-bias/variance decomposition, and we need
now to specify the bias order on adequate functional spaces, in order to evaluate
optimal rates. Note that we can replace f̂ℓ by (f̂ℓ)+ in practice and in Proposition

2.3, since E(‖(f̂ℓ)+ − f‖2) ≤ E(‖f̂ℓ − f‖2).

2.2. Rates and rate optimality

As it is always the case in nonparametric estimation1, we must link the bias term
‖f − fℓ‖2 with regularity properties of function f . In our context, these should
be expressed in relation with the rate of decay of the coefficients (θk(f))k≥0. The
Laguerre-Sobolev spaces described in Section 7 provide an adequate solution.

For s ≥ 0, let

W s
2 ((0,+∞),K) =

{
h : (0,+∞) → R, h ∈ L

2((0,+∞)),
∑

k≥0

ksθ2k(h)≤K<+∞
}

(11)

where θk(h) =
∫ +∞
0

h(u)ϕk(u)du. In particular, for s integer, if h : (0,+∞) → R

belongs to L2((0,+∞)),

∑

k≥0

ks(θk(h))
2 < +∞. (12)

is equivalent to the property that h admits derivatives up to order s − 1, with
h(s−1) absolutely continuous and for m = 0, . . . , s− 1, the functions

x(m+1)/2(hex)(m+1)e−x = x(m+1)/2
m+1∑

j=0

(
m+ 1

j

)
h(j)

belong to L
2((0,+∞)) (see in Section 7, Proposition 7.3). Moreover, for m =

0, 1, . . . , s− 1,

‖x(m+1)/2(hex)(m+1)e−x‖2 =
∑

k≥m+1

k(k − 1) . . . (k −m)θ2k(h).

For any h ∈ W s
2 ((0,+∞),K), we have ‖h−hℓ‖2 =

∑∞
k=ℓ+1 θ

2
k(h) ≤ K/ℓs where

hℓ is the orthogonal projection of h on Sℓ.

1Kernel methods use Hölder spaces for pointwise estimation, Nikol’ski classes for global
estimation; projection methods use, on Fourier basis, Sobolev spaces, on wavelet bases, Besov
spaces.
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Proposition 2.4. Let for 0 < ǫ < 1,

ℓǫ =
(1− ǫ) log(n)

4 log(2)
and ℓ⋆ =

[
1

4 log(2)
(log(n)− s log log(n))

]
∨ 1.

We have

sup
f∈W s

2 ((0,+∞),K)

E

[
‖f̂ℓǫ − f‖2

]
≤ K

(
4 log(2)

1− ǫ

)s

(log(n))−s +
16

15

1

nǫ
,

and

sup
f∈W s

2 ((0,+∞),K)

E

[
‖f̂ℓ⋆ − f‖2

]
≤
(
K(4 log(2))s +

16

15

)
(log(n))−s(1 + o(1)).

Note that ℓǫ does not depend on s and is thus adaptive. With ℓ⋆, the bias
and variance terms have the same order (log(n))−s, which is better. In addition,
the constant is improved. Nevertheless, this choice depends on s.

We now prove that, for densities lying in Laguerre-Sobolev ballsW s
2 ((0,+∞),

K), the rate (log n)−s is optimal.2

Theorem 2.1. Assume that s is a positive integer and let K ≥ 1. There exists
a constant c > 0 such that

liminf
n→+∞

(log(n))s inf
f̂n

sup
f∈W s((0,+∞),K)

Ef

[
‖f̂n − f‖2

]
≥ c

where inf f̂n denotes the infimum over all estimators of f based on (Nj(Cj))1≤j≤n.

2.3. Related works

In Simar (1976) [27], it is proved that the cumulative distribution function F (x)
of Cj can be consistently estimated using (α̂ℓ). The method is theoretical and
concrete implementation is not easy. Noting that α0(f) is simply the Laplace
transform of f , Karr (1984) [14] studies the properties of α̂0 to estimate α0(f)
in the more general context of mixed point Poisson processes.

For comparison purposes, we detail some of the results of Zhang (1995)
[29], Hengartner (1995) [13], Loh and Zhang (1996, 1997) [17, 18], Roueff and
Rydén (2005) [25] and Rebafka and Roueff (2010) [22] in the case of Poisson
mixtures. In the case where f has compact support [0, θ⋆], Zhang (1995) [29]
gives a kernel estimator of f(a) and studies pointwise quadratic risk on Hölder
classes with index r (i.e. functions f admitting ⌊r⌋ derivatives such that f (⌊r⌋)3 is
r−⌊r⌋-Hölder). The estimator has a MSE of order [log(n)/ log log(n)]−2r which
does not correspond to his lower bound which is [log(n)]−2r. In the case of non

2Note that analogous rates occur in the context of deconvolution for ordinary smooth
function and super-smooth noise (severely ill-posed problem). Nevertheless, the logarithmic
rate is proved to be optimal, see Fan (1991) [10], Pensky and Vidakovic (1999) [21].

3Where ⌊r⌋ is the largest integer previous r.



Adaptive Laguerre density estimation for mixed Poisson models 1119

compact support for f , the kernel estimator MSE has order (log(n))−r/2, with
no associated lower bound. Loh and Zhang (1996) [17] generalize the results of
Zhang (1995) [29] by studying a weighted-Lp-risk.

Hengartner (1997) [13] considers the case where f has a compact support.
He builds projection estimators using orthogonal polynomials on the support.
The upper bound of MISE has order [log(n)/ log log(n)]−2r on the same class
as above and on Sobolev classes with index r. On the latter classes, he proves a
lower bound of order [log(n)/ log log(n)]−2r.

Loh and Zhang (1997) [18], in the case of non compact support for f , use
Laguerre polynomials and build projection estimators. Thus, the function is
estimated by a polynomial; they study a weighted L

2-risk. The upper bound is
O([log(m)]−m/2) on the class of functions such that

∑
j≥m jmτ2j (f) < M where

τj(f) is the coefficient of f on the development with respect to the Laguerre
polynomials. Their lower bound is O([log(n)]−m), which does not correspond to
the upper bound.

Roueff and Rydén (2005) [25] develop a general approach which extends and
simplifies the results of the above papers. For instance, it allows them to prove
asymptotic minimax efficiency over certain smoothness classes. However, in their
section 8.2. entitled “Power series mixing distributions with non compact sup-
port”, they write: Concerning lower bounds on the MISE, Loh and Zhang (1997)
[18] give such a one in their Theorem 4 over particular classes related to ours,
but their assumptions do not apply in the case considered here because they cor-
respond to a weight function w = 1R+ with infinite L1 norm. Hence, it is still
to be found if the logarithmic rate of the projection estimator is optimal in this
case. Rebafka and Roueff (2010) [25] extend the previous work to more general
mixture models, but still in a compact support context.

Let us now clarify our contribution. First, we use a L
2((0,+∞))-basis and a

usual MISE, which is more fitted to the problem. Second, we clarify the func-
tional spaces associated to the context of Laguerre bases on (0,+∞) and pro-
vide explicit links between regularity and coefficients of a development on these
spaces. We fill the gap mentioned by Roueff and Rydén (2005) [25]: indeed,
we prove upper and lower bounds which match globally and without weights.
Here, the proof of our lower bound is inspired of Loh and Zhang’s constructions.
Therefore, our results synthesize and improves all these previous works.

In all cases, the number of coefficients in the projection estimators does not
depend on the regularity space. In this sense, the above methods are adaptive.
However, we show below that the function under estimation can have stronger
regularity properties than considered in lower bounds. In that case, we will
see that the rate can be improved (polynomial instead of logarithmic). This
justifies the proposal of an adaptive procedure, see Theorem 2.2 hereafter, which
is moreover non asymptotic.

2.4. Model selection

Model selection is justified as the bias may have much smaller order. For in-
stance, it can be null if f admits a finite development in the Laguerre basis.
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Exponential distributions also provide examples of smaller bias. Indeed, con-
sider f an exponential density E(θ). Then

θk(f) =

∫ +∞

0

ϕk(c)θe
−θcdc =

√
2θ

k∑

j=0

(−1)j
(
k

j

)
2j

j!

∫ +∞

0

cje−(θ+1)cdc

=
√
2

θ

θ + 1

(
θ − 1

θ + 1

)k

.

As a consequence

‖f − fℓ‖2 =
∞∑

k=ℓ+1

θ2k(f) =
θ

2

(
θ − 1

θ + 1

)2(ℓ+1)

.

Choosing

ℓ = ℓopt = λ log(n) with λ =
1

2(log(2) + log(|(θ + 1)/(θ − 1)|)

yields the rate

O(n−1/(1+µ)) with µ =
2 log(2)

log(|(θ + 1)/(θ − 1)|) .

The rate depends on θ and can be O(n−β) for any β < 1. For instance if θ = 5/3
the rate is O(n−1/2), for θ = 1/2, the rate is O(n−0.44) (see Section 4) and it
tends to O(n−1) (the parametric rate) when θ tends to 1, which is coherent with
the fact that the bias is null for θ = 1.

This kind of result can be generalized to the case of a distribution f defined
as a mixture of exponential distributions and to Gamma distributions Γ(p, θ),
with p an integer. More precisely, if fp is the density Γ(p, θ),

θk(fp) =

√
2

Γ(p)

(
θ

θ + 1

)p

Sp,k

(
2

θ + 1

)
, with Sp,k(x) =

dp−1

dxp−1

[
xp−1(1− x)k

]
.

This term can be computed explicitly and we get the bound, for p ≥ 2, and
C0(p, θ) a constant depending on p and θ only,

|θk(fp)| ≤ C0(p, θ)k
p−1

∣∣∣∣
θ − 1

θ + 1

∣∣∣∣
k

.

Thus for ℓ ≥ p− 1,

∑

k≥ℓ

[θk(fp)]
2 ≤ C(p, θ)ℓ2(p−1)

(
θ − 1

θ + 1

)2ℓ

, with 0 < C(p, θ) < +∞.

Note that the bias is null for θ = 1 and ℓ > p− 1, which is expected since fp ∈
Sp−1. Moreover, the bias order depends on θ, which can be seen in simulations.
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Now we have to define an automatic selection rule of the adequate dimen-
sion ℓ. We make the selection among the following set:

Mn =

{
ℓ ∈ {0, 1, . . . , Ln}, Ln =

[
log(n)

log(2)

]
+ 1

}

where [x] denotes the integer part of the real number x. For κ a numerical
constant, we define

ℓ̂ = arg min
ℓ∈Mn

{
−‖f̂ℓ‖2 + pen(ℓ)

}
, with pen(ℓ) = κ

ℓ24ℓ

n
. (13)

We can prove the following result

Theorem 2.2. Consider the estimator f̂ℓ̂ defined by (10) and (13). For any
κ ≥ 8, we have

E(‖f̂ℓ̂ − f‖2) ≤ inf
ℓ∈Mn

(
3‖fℓ − f‖2 + 4pen(ℓ)

)
+
C

n
.

The infimum in the right-hand-side of the inequality above shows that the
estimator is indeed adaptive. Note that the penalty is, up to a constant, equal
to the variance multiplied by ℓ. This implies a possible negligible loss in the rate
of the adaptive estimator w.r.t. the expected optimal rate.

It is well-known that the calibration of the constant κ is a difficulty of pe-
nalized methods. We obtain from Theorem 2.2 that for κ ≥ 8, the adaptive risk
bound holds. However, this value is not optimal. For instance, in simple models,
a minimal value for κ may be computed. For Gaussian regression or white noise
models, Birgé and Massart (2007) [6] prove that the method works for κ = 1+η,
η > 0, and explodes for κ = 1−η. Obtaining the minimal value in our context is
not obvious. This is why we proceed by preliminary simulations (see Section 4)
to calibrate the value κ in the penalty, as most authors do. Note that another
guidance, the slope heuristics, has been developed in Baudry et al. (2012) [2],
with an associated software (“capushe”).

Remark. Let us now assume that the observation is (Nj(CjT ), j = 1, . . . , n).
The previous method applies directly to estimate the density fT of CjT i.e.
fT (t) = (1/T )f(t/T ). We can deduce the results for f(c) = TfT (Tc). The

function f is developed on the basis (ϕ
(T )
k :=

√
Tϕk(T.), k ≥ 0) and the following

relation holds θ
(T )
k (f) =

√
Tθk(fT ) =< f, ϕ

(T )
k >. Denote by f

(T )
ℓ the orthogonal

projection of f on the space S
(T )
ℓ spanned by (ϕ

(T )
k , k ≤ ℓ). To estimate f(c) =

TfT (Tc), we set for all ℓ,

f̂
(T )
ℓ (c) := T f̂T,ℓ(Tc)

where f̂T,ℓ is the estimator built for fT using (Nj(CjT ), j = 1, . . . , n). The

estimator f̂
(T )
ℓ of f satisfies

E(‖f̂ (T )
ℓ − f‖2) ≤ ‖f − f

(T )
ℓ ‖2 + T

16

15

24ℓ

n
.
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Moreover, with ℓ̂ defined in (13), there exists κ > 0 such that

E(‖f̂ (T )

ℓ̂
− f‖2) ≤ inf

ℓ∈Mn

(
3‖f (T )

ℓ − f‖2 + 4Tpen(ℓ)
)
+
CT

n
.

The variance term in the L
2-risk is multiplied by a factor T .

3. Estimation for large T

Let us set

Ĉj,T :=
1

T
Nj(CjT ).

Conditionally to Cj = c, we know that Ĉj,T converges almost surely to c as T
tends to infinity, i.e.

P

[
Ĉj,T →a.s. Cj |Cj = c

]
= P

[
Nj(cT )

T
→a.s. c

]
= 1.

Consequently,

P

[
Ĉj,T →a.s. Cj

]
= 1,

i.e. Ĉj,T converges almost surely to Cj .

We now use the i.i.d. sample (Ĉj,T )1≤j≤n to build projection estimators of f ,
where the coefficients θk(f) are now estimated as follows.

f̃
(T )
ℓ =

ℓ∑

k=0

θ̃kϕk, θ̃k =
1

n

n∑

j=1

ϕk(Ĉj,T ). (14)

Note that Sℓ has the norm-connection property:

∀t ∈ Sℓ, ‖t‖∞ := sup
x∈R+

|t(x)| ≤
√
2(ℓ+ 1)‖t‖, (15)

as can be seen from Lemma 6.1. We obtain the following risk bound.

Proposition 3.1. Recall that fℓ is the orthogonal projection of f on Sℓ =
span(ϕ0, . . . , ϕℓ). Then

E(‖f̃ (T )
ℓ − f‖2) ≤ ‖f − fℓ‖2 + 2

ℓ+ 1

n
+

8(ℓ+ 1)5

T 2
s2, s2 := 3E(C2

1 ) +
E(C1)

T
.

The bound contains the usual decomposition into a squared-bias term
‖f − fℓ‖2 and a variance term. The latter term is the sum of two components:
the first one 2(ℓ+1)/n is classical and no more exponential in ℓ, the second one

is due to the approximation of the Cj ’s by the Ĉj,T ’s and gets small when T
increases. To define a penalization procedure, we must estimate s2. Let

ŝ2 =
1

n

n∑

j=1

[
3(Ĉj,T )

2 − 2
Ĉj,T

T

]
. (16)
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As 3(Ĉj,T )
2 − 2Ĉj,T /T = Ĉj,T (3Nj(CjT ) − 2)/T ≥ 0, ŝ2 ≥ 0. Elementary

computations using conditioning on Cj show that E(ŝ2) = s2. Now, set

Mn,T =
{
0, 1, . . . , n ∧ T 2/5

}

and

ℓ̃ = arg min
ℓ∈Mn,T

{
−‖f̃ (T )

ℓ ‖2 + p̃en(ℓ)
}

with p̃en(ℓ) = κ̃1
(ℓ+ 1)

n
+κ̃2

(ℓ+ 1)5

T 2
ŝ2.

(17)
The following holds.

Theorem 3.1. Assume that E(C8
1 ) < +∞. Let f̃

(T )

ℓ̃
the estimator defined by

(14) and (17). Then there exist numerical constants κ̃1, κ̃2 such that

E(‖f̃ (T )

ℓ̃
− f‖2) ≤ C inf

ℓ∈Mn,T

(
‖f − fℓ‖2 + 2κ̃1

ℓ+ 1

n
+

8κ̃2(ℓ+ 1)5s2
T 2

)
+
C′

n

where C is a numerical constant and C′ a positive constant.

Thus, the estimator f̃
(T )

ℓ̃
is adaptive and its risk automatically reaches the

order of the bias-variance compromise.

4. Numerical simulations

In this paragraph, we illustrate on simulated data the two adaptive projection
methods using the Laguerre basis: method 1 corresponds to Section 2 when
T = 1, method 2 corresponds to section 3 for large T .

We consider different distributions for the Cj ’s:

1. a Gamma Γ(p, θ) for p = 3, θ = 1,
2. a mixed Gamma density 0.3Γ(3, 0.25) + 0.7Γ(10, 0.6).
3. an exponential E(θ), with θ = 1/2, fθ(x) = θe−θx1x>0,
4. a Pareto density f(p,θ)(x) = p(1+pθx)−1−1/p1x>0, with p = 5 and θ = 1/2,

5. a Weibull density f(p,θ)(x) = θp−θxθ−1e−(x/p)θ1x>0 for p = 3 and θ = 2.

Note that, as θ = 1, the density (1) has only three nonzero coefficients θ0, θ1, θ2
in its exact development in the Laguerre basis. For density (3), we know that the
rate of the L2 risk depends on the value of θ (n−0.44 for θ = 1/2, see Section 2). In
Figures 1–5, we illustrate the first method for T = 1 and n = 10000, n = 100000
and the second for sample sizes n = 1000 and T = 10, and n = 4000, T = 40, for
the five densities defined above. We plot 25 consecutive estimates on the same
picture together with the unknown density to recover, to show variability bands
and illustrate the stability of the procedures.

• Comments on method 1. The method is easy to implement. As it is standard
for penalized methods, the theoretical constant is too large and in practice, is
calibrated by preliminary simulations, see the discussion after Theorem 2.2. We
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Fig 1. Estimation of the Gamma(3,1) density with method 1 (top left n = 10000 and top
right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10 and bottom right
n = 4000, T = 40): true -thick (blue) line and 25 estimated (dashed (red) lines). Most of the

time ℓ̂ = 2 for both methods.

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig 2. Estimation of the mixed Gamma density with method 1 (top left n = 10000 and top
right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10 and bottom right
n = 4000, T = 40): true -thick (blue) line and 25 estimated (dashed (red) lines). The selected
ℓ is 3 except for the bottom right plot where it is 4.

have selected the constant κ = 0.001 in the penalty. This prevents from possible
explosion of the variance, which has exponential order. The adaptive estimator
performs reasonably well for large values of n (n ≥ 10000) but is very sensitive
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Fig 3. Estimation of the Exponential density with projection method 1 (top left n = 10000
and top right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10 and
bottom right n = 4000, T = 40): true -thick (blue) line and 25 estimated (dashed (red) lines).

Most of the time ℓ̂ = 2.
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Fig 4. Estimation of the Pareto density with projection method 1 (top left n = 10000 and top
right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10 and bottom right
n = 4000, T = 40): true -thick (blue) line and 25 estimated (dashed (red) lines). Most of the

time ℓ̂ = 2 for the top pictures and 0 for the bottom ones.

to the parameter values for distributions Gamma or exponential, as expected.
The mixture density and the Pareto and Weibull densities, which do not admit
finite developments in the basis, are correctly estimated. Increasing n improves
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Fig 5. Estimation of the Weibull density with method 1 (top left n = 10000 and top right
n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10 and bottom right
n = 4000, T = 40): true -thick (blue) line and 25 estimated (dashed (red) lines). The selected
ℓ’s are 2, 3 or 4.

significantly the estimation. We choose to select ℓ in {0, 1, . . . , 2⌊log(n)⌋ − 1}.
On the examples, the algorithm selects values of ℓ̂ belonging to {0, 1, . . . , 4}.

• Comments on method 2. The method is also easy to implement. We have
selected the constants κ̃1 = 1.5, κ̃2 = 10−5. The very small value of κ̃2 simply
kills the effect of the second term in the penalty in order to allow not too large
values of T . This second method gives better results than the first method,
as soon as T ≥ 10 (even T ≥ 5 provides good estimators). The number of
observations need not be very large. We kept the same set of possible values for
ℓ in the selection algorithm; here again, the selected values ℓ̃ are in {0, 1, . . . , 4}.

5. Concluding remarks

In this paper, we study the nonparametric density estimation of a positive ran-
dom variable C from the observation of (Nj(CjT ), j = 1, . . . , n), where (Nj)
are i.i.d. Poisson processes with unit intensity, (Cj) are i.i.d. random variables
distributed as C, and (Nj) and (Cj) are independent. Under the assumption
that the unknown density f of the unobserved variables (Cj) is in L

2((0,+∞))
and for a fixed value T , we express the nonparametric problem as an inverse
problem, which can be solved by using a Laguerre basis of L2((0,+∞)). Ex-
plicit estimators of the coefficients of f on the basis are proposed and used to
define a collection of projection estimators. The space dimension is then selected
by a data driven criterion. For functions belonging to Sobolev-Laguerre spaces
described in Section 2, f is estimated at a rate O((log(n))−s). So, an interest-



Adaptive Laguerre density estimation for mixed Poisson models 1127

ing question is to know whether there exist other functions than those of these
spaces estimated at the same rate. This problem amounts to finding maximal
functional classes for which a given rate of convergence of the estimators can be
achieved.

For large T , estimators Ĉj,T of the Cj ’s are used to build adaptive projection
estimators in the Laguerre basis. In this approach, a moment condition on Cj

is required.
The numerical simulation results show that the Laguerre basis is indeed ap-

propriate, to obtain estimators with no boundary effects at 0.
Possible developments of this work are the following. As in Fabio et al. (2012)

[9], we may enrich the data by considering several observation times. Another
relevant extension is to study mixed compound Poisson processes, or more gen-
eral mixed Lévy processes as in Belomestny and Schoenmakers (2015 a, b) [3, 4].

6. Proofs

6.1. Proof of Proposition 2.1

Using (5), we have

Ω
(ℓ)
k =

1

ℓ!

k∑

j=0

(−1)j
(
k

j

)∫ +∞

0

√
2
(2c)j

j!
cℓe−2cdc =

1

ℓ!

1√
2 2ℓ

k∑

j=0

(−1)j
(
k

j

)
(ℓ + j)!

j!
.

Finally,

Ω
(ℓ)
k =

1√
22ℓ

k∑

j=0

(−1)j
(
k

j

)
(ℓ + j)(ℓ+ j − 1) . . . (ℓ+ 1)

j!
(18)

where we know that Ω
(ℓ)
k = 0 for k > ℓ. Therefore ℓ → 2ℓΩ

(ℓ)
k is a polynomial

of degree k which is equal to 0 for ℓ = 0, 1, . . . , k − 1. Hence, we have 2ℓΩ
(ℓ)
k ∝

ℓ(ℓ − 1)(ℓ − 2) . . . (ℓ − k + 1). The proportionality coefficient is equal to the
coefficient of ℓk is (−1)k/(

√
2 k!). Hence the result.

6.2. Proof of proposition 2.2

Denote by Rℓ[X ] the space of polynomials with real coefficients and degree less
than or equal to ℓ. The transpose of the matrix

√
2Ωℓ represents the linear

application of Rℓ[X ], P (X) 7→ P
(
1−X
2

)
, in the canonical basis (1, X, . . . , Xℓ).

The inverse linear mapping is Q(X) 7→ Q (1− 2X). Hence the result.

6.3. Proof of Proposition 2.3

We define by |.| the usual Euclidean norm in R
ℓ+1.

We have

E(‖f̂ℓ − f‖2) = ‖f − fℓ‖2 + E(‖f̂ℓ − fℓ‖2)
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= ‖f − fℓ‖2 + E

(
ℓ∑

k=0

(θ̂k − θk)
2

)

= ‖f − fℓ‖2 + E(|Ω−1
ℓ (~̂αℓ − ~αℓ)|2).

Next, we write the variance term as follows:

E(|Ω−1
ℓ (α̂ℓ − αℓ)|2) = E

(
t(~̂αℓ − ~αℓ)

tΩ−1
ℓ Ω−1

ℓ (~̂αℓ − ~αℓ)
)
. (19)

Now, note that, if M = (mi,j)0≤i,j≤ℓ is a (ℓ+ 1)× (ℓ + 1) matrix,

E( t(~̂αℓ − ~αℓ)M(~̂αℓ − ~αℓ)) =
∑

0≤i,j≤ℓ

cov(α̂i, α̂j)mi,j

where cov(α̂i, α̂j) = (αiδ
j
i − αiαj)/n and δji is the Kronecker symbol. Thus, for

M symmetric and nonnegative,

E( t(~̂αℓ − ~αℓ)M(~̂αℓ − ~αℓ)) ≤ Tr(MDα)/n

where Dα = diag(α0, . . . , αℓ). Here, we get

E(‖f̂ℓ − f‖2) ≤ ‖f − fℓ‖2 +
1

n
Tr( tΩ−1

ℓ Ω−1
ℓ Dα). (20)

Since 0 ≤ αk ≤ 1 and [ tΩ−1
ℓ Ω−1

ℓ ]k,k ≥ 0 for all k, we have

E(‖f̂ℓ − f‖2) ≤ ‖f − fℓ‖2 +
1

n
Tr( tΩ−1

ℓ Ω−1
ℓ ).

Note that Tr( tΩ−1
ℓ Ω−1

ℓ ) is known as the squared Frobenius norm of the matrix
Ω−1

ℓ . It follows from Proposition 2.2 that

Tr( tΩ−1
ℓ Ω−1

ℓ ) = 2

ℓ∑

k=0

k∑

j=0

((
k

j

))2

22j ≤ 2

ℓ∑

k=0

22k
k∑

j=0

((
k

j

))2

. (21)

Noting that
k∑

j=0

((
k

j

))2

=

(
2k

k

)
≤ 22k−1,

we get

Tr( tΩ−1
ℓ Ω−1

ℓ ) ≤
ℓ∑

k=0

24k =
24(ℓ+1) − 1

24 − 1
≤ 16

15
24ℓ. (22)

As a consequence, we obtain the risk decomposition announced in Proposi-
tion 2.3.
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6.4. Proof of Proposition 2.4

For f ∈ W s
2 (0,+∞),K), the risk bound in Proposition 2.3 writes

E(‖f̂ℓ − f‖2) ≤ K

ℓs
+

16

15

24ℓ

n
.

The variance term has exponential order 24ℓ with respect to ℓ. Thus, we can not
make the classical bias variance compromise. First we can choose ℓ such that
the bias term dominates: this is obtained by choosing ℓ = ℓǫ. Second, a more
precise tuning of both terms is obtained with ℓ = ℓ⋆. In both cases, the rate is
of order O([log(n)]−s).

6.5. Proof of Theorem 2.1

From Tsybakov (2009) [28] Chapter 2, we have to define two functions f0n, f1n
such that

1. f0n and f1n are densities,
2. For some K > 0, f0n and f1n belong to W s

2 ((0,+∞),K),
3. For j = 0, 1, let Pjn = (αx(fjn), x ∈ N), then

V (P1n, P0n) =
+∞∑

x=0

|αx(f1n)− αx(f0n)| = O(1/n).

4. ‖f0n − f1n‖2 ≥ C(log(n))−s.

For the construction of the fjn, j = 0, 1, we follow Loh and Zhang (1996,
1997) [17, 18]. Let f0(c) = e−c, 0 < c0 < c1 < b < c2 < c3, and

fu,v(c) = 1[c0,c1[(c)ℓ1,u,v(c) + 1[c1,c2[(c)γu,v(c) + 1[c2,c3[(c)ℓ2,u,v(c),

where γu,v(c) = (vu/Γ(u))cu−1e−vc is the gamma density with parameter (u, v),
ℓi,u,v, i = 1, 2 are polynomials of degree 2s+ 1 such that fu,v is of class Cs. We
set

un = δ0 logn := u, vn = un/b := v.

Set χi(c) = 1[ci,ci+1[(c), i = 0, 1, 2. Then, for ε > 0, we set

f0n(c) = f0(c) + 3(ε/u1/4) (c2/u)
s/2 (fu,v(c)− wonf0(c)) .

We choose w0n such that
∫
f0n = 1. As

∫
f0 = 1, we find

w0n =

∫ c3

c0

fu,v(c)dc.

Now, we define

f1n(c) = f0n(c) + (ε/u1/4) (c2/u)
s/2

(
cos

(
u
c− b

c2

)
− w1n/w0n

)
fu,v(c).
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Then, w1n is chosen such that
∫
f1n = 1 which yields:

w1n =

∫ c3

c0

cos

(
u
c− b

c2

)
fu,v(c)dc.

Finally, δ0 is chosen by

δ0 = max

{
c2/(c3 − c2)

log (c3/c2)
,

2

log (1 + b2/c22)
,

1

c1/b− 1− log (c1/b)
,

1

c2/b− 1− log (c2/b)

}
(23)

• Step 1: w0n = 1 + o(1), fjn ≥ 0, j = 0, 1.

Proof. We first study f0n. By construction,

ℓ
(j)
1,u,v(c0) = ℓ

(j)
2,u,v(c3) = 0, ℓ

(j)
1,u,v(c1) = γ(j)u,v(c1), ℓ

(j)
2,u,v(c2) = γ(j)u,v(c2),

j = 0, . . . , s.

On the space of polynomials of degree 2s+ 1 on [c0, c1],

‖Q‖0 =
s∑

j=0

|Q(j)(c0)|+ |Q(j)(c1)|

is a norm and all norms are equivalent. Therefore, there exists C such that

‖ℓ1,u,vχ0‖∞ ≤ C‖ℓ1,u,vχ0‖0 = C

s∑

j=0

|γ(j)u,v(c1)|, ‖ℓ2,u,vχ2‖∞ ≤ C

s∑

j=0

|γ(j)u,v(c2)|.

By Lemma 3 of Loh and Zhang (1996) [17], |γ(j)u,v(c1)| + |γ(j)u,v(c2)| =
O(n−1uj+(1/2)), and ‖γu,v(1−1[c1,c2])‖p = O(1)n−1u(p−1)/(2p), 1 ≤ p ≤ ∞. Thus,

s∑

j=0

|γ(j)u,v(c1)| = O(n−1us+(1/2)), ‖γu,v(1− 1[c1,c2])‖∞ = O(1)n−1u1/2.

We deduce

w0n =

∫ c1

c0

ℓ1,u,v +

∫ c2

c1

γu,v +

∫ c3

c2

ℓ2,u,v = 1 +O(u1/2/n) + (us+(1/2)/n)O(1)

= 1 + o(1).

We have

f0n(χ0 + χ2) = f0(χ0 + χ2)(1− 3(ε/u1/4) (c2/u)
s/2

w0n)

+ 3(ε/u1/4) (c2/u)
s/2

(ℓ1,u,vχ0 + ℓ2,u,vχ2)
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and ‖ℓ1,u,vχ0 + ℓ2,u,vχ2‖∞ = (us+(1/2)/n)O(1). Therefore, provided that ε is
small enough, the first term of f0n(χ0 +χ2) is lower bounded as c0 > 0 and the
second term is O(u(s/2)+(1/4)/n) = o(1). Thus, we can choose ε small enough
to have f0n((χ0 + χ2) ≥ 0. Then, f0nχ1 > 0 and f0n1[c0,c3]c > 0. Therefore,
f0n ≥ 0. We have

|w1n| ≤
∫ c2

c1

γu,v + (us+(1/2)/n)O(1) = w0n + o(1).

We check that f1n ≥ 0 in the same way as for f0n.

• Step 2. For j = 0, 1, fjn ∈ W s
2 ((0,+∞),K) for all K ≥ 1.

Proof. This part is specific to our context as we do not have the same function
spaces as Loh and Zhang (1996, 1997) [17, 18]. Step 2 is equivalent to proving
that

‖|fjn‖|2s := ‖cs/2 (fjn(c)ec)(s) e−c‖2 =
∑

k≥s

k(k − 1) . . . (k − s+ 1)θ2k(fjn) ≤ K.

Note that, for a function f ,

cs/2 (f(c)ec)
(s)
e−c = cs/2

s∑

j=0

(
s

j

)
f (j)(c).

We apply Lemmas 3 and 4 of Loh and Zhang (1996) [17]. We have, for j =
0, . . . , s,

‖l(j)1,u,vχ0‖2 = O(n−1us+1/2), ‖l(j)2,u,vχ2‖2 = O(n−1us+1/2).

Moreover, for j = 0, . . . , s, u−1/4‖γ(j)u,v‖2 = O(uj/2). Consequently,

εu−1/4(c2/u)
s/2‖cs/2

s∑

j=0

(
s

j

)
f (j)
u,v(c)‖2 ≤ Cεu−1/4(c2/u)

s/2c
s/2
3

s∑

j=0

(
s

j

)
uj/2u1/4

= Cεc
s/2
3 (1 + u1/2)s(c2/u)

s/2 = εO(1).

Recall that

f0n(c) = f0(c)(1 − 3(ε/u1/4) (c2/u)
s/2

w0n) + 3(ε/u1/4) (c2/u)
s/2

fu,v(c)

where the coefficient of f0(c) is 1 + o(1). Therefore

‖|f0n‖|s ≤ ‖|f0‖|s(1 + εo(1)) + εO(1).

We have θ0(f0) =
√
2/2, θk(f0) = 0, k ≥ 1. Therefore, ‖|f0‖|2s = 1/2 and

‖|f0n‖|2s = (1/2)(1+εO(1)). The same holds for f1n. We can choose any K ≥ 1.
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• Step 3. w1n/w0n = O(1/n) and

V (P1n, P0n) =

+∞∑

x=0

|αx(f1n)− αx(f0n)| = o(1/n).

Proof. The proof is identical to Step 2 of Theorem 3 in Loh and Zhang (1996)
[17], p. 574–575 (α′ = s). The choice of δ0 by formula (23) is used in particular
here and comes from Zhang (1995) [29].

• Step 4. There exists C > 0 such that

‖f1n − f0n‖2 ≥ C(logn)−s.

Proof. This part is also specific to our study: we only use two functions instead
of three and our bound is global and not local. We have

(f1n − f0n)
2
=

ε2cs2
u1/2+s

(
cos2

(
u
c− b

c2

)
− 2w1n/w0n cos

(
u
c− b

c2

)

+ (w1n/w0n)
2

)
f2
u,v,

where w1n/w0n = O(1/n) and | cos | ≤ 1. Therefore, it is enough to bound from
below: ∫

f2
u,v(c) cos

2

(
u
c− b

c2

)
dc.

And as
‖ℓ1,u,vχ0 + ℓ2,u,vχ2‖2 = (us+(1/2)/n)O(1),

we only look at

∫
χ1(c)γ

2
u,v(c) cos

2

(
u
c− b

c2

)
dc =

1

2

∫
χ1(c)γ

2
u,v(c)

(
1 + cos

(
2u
c− b

c2

))
dc

:= T1 + T2

First T1 = O(
√
u) because, by Lemma 3 of Loh and Zhang (1996, p. 573) [17],

‖γu,v‖2 ∼ 1

2
√
πb

√
u, ‖γu,v(1− χ1)‖2 =

u1/2

n2
O(1).

Next, we write

T2 =
1

2

∫ +∞

0

γ2u,v(c) cos

(
2u
c− b

c2

)
dc

− 1

2

∫ +∞

0

(1 − χ1(c))γ
2
u,v(c) cos

(
2u
c− b

c2

)
dc

:= T ′
2 + T ′′

2
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and as above T ′′
2 = u1/2/n2O(1). Moreover

T ′
2 =

1

2

v2u

Γ2(u)

Γ(2u− 1)

(2v)2u−1
Re

(∫ ∞

0

γ2u−1,2v(c)e
2iu c−b

c2 dc

)

Now, notice that

v2u

Γ2(u)

Γ(2u− 1)

(2v)2u−1
= ‖γu,v‖2 = O(

√
u).

Moreover

J :=

∫ ∞

0

γ2u−1,2v(c)e
2iu c−b

c2 dc = e
i 2ub

c2

(
2v

2v − 2iu
c2

)2u−1

= e
i 2ub

c2

(
1

1− ib/c2

)2u−1

,

so that

|J | =
(

1

1 + b2

c22

)u− 1
2

=

(
1 +

b2

c22

)1/2

n
−δ0 log(1+ b2

c2
2

)
= O(1/n2)

by the choice of δ0. Therefore T
′
2 = O(

√
u/n2). Consequently

T1 + T2 =
1

2
√
πb

√
u

(
1 +O

(
1

n2

))
.

It follows that

‖f1n − f0n‖2 =
ε2cs2
u1/2+s

1

2
√
πb

√
u(1 +O(1/n)) =

ε2cs2

2
√
πb

1

us
(1 +O(1/n)).

This concludes step 3 as u = δ0 log(n).

6.6. Proof of Theorem 2.2

For simplicity, we set Ln = L. We define Sℓ = {t = t(t0, t1, . . . , tℓ, 0, . . . , 0) ∈
R

L+1}, which can also be associated with the function t =
∑ℓ

k=0 tkϕk in Sℓ and
|t| = ‖t‖.

Now define, for t in any of the Sℓ’s with ℓ ≤ L,

γn(t) = |t|2 − 2〈t,Ω−1
L
~̂αL〉.

For t ∈ Sℓ, note that γn(t) = |t(ℓ)|2−2〈t(ℓ),Ω−1
ℓ
~̂αℓ〉, where t(ℓ) = t(t0, t1, . . . , tℓ).

Moreover, the vector f̂ℓ =
t(θ̂0, . . . , θ̂ℓ, 0, . . . , 0) is such that f̂ℓ = argmint∈Sℓ

γn(t)
and satisfies

γn(̂fℓ) = −‖f̂ℓ‖2 = −|̂fℓ|2 = −|Ω−1
ℓ
~̂αℓ|2.

For s ∈ Sℓ′ and t ∈ Sℓ, the following decomposition holds:

γn(t) − γn(s) = ‖t− f‖2 − ‖s− f‖2 − 2〈t− s,Ω−1
L (~̂αL − ~αL)〉
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where ‖t − f‖2 =
∑L

k=0(tk − θk)
2 +

∑∞
k=L+1 θ

2
k, for all k, θk = 〈f, ϕk〉 and

tℓ+1, . . . , tL are null when t ∈ Sℓ.
The integer ℓ̂ is given by

ℓ̂ = arg min
ℓ∈Mn

(γn(̂fℓ) + pen(ℓ)), where f̂ℓ =
t(θ̂0, . . . , θ̂ℓ, 0, . . . , 0) ∈ R

L+1.

By definition of ℓ̂, γn(̂fℓ̂) + pen(ℓ̂) ≤ γn(fℓ) + pen(ℓ) which implies

‖f̂ℓ̂ − f‖2 ≤ ‖fℓ − f‖2 + pen(ℓ) + 2〈̂fℓ̂ − fℓ,Ω
−1
L (~̂αL − ~αL)〉 − pen(ℓ̂).

Now we have

2〈̂fℓ̂ − fℓ,Ω
−1
L (~̂αL − ~αL)〉 ≤

1

4
|̂fℓ̂ − fℓ|2 + 4 sup

t∈S
ℓ̂∨ℓ

,|t|=1

〈t,Ω−1
L (~̂αL − ~αL)〉2

and |̂fℓ̂ − fℓ|2 ≤ 2‖f̂ℓ̂ − f‖2 + 2‖fℓ − f‖2. Thus we get

E(‖f̂ℓ̂ − f‖2) ≤ 3‖fℓ − f‖2 + 2pen(ℓ) + E(8p(ℓ, ℓ̂)− 2pen(ℓ̂))

+ 8E

(
sup

t∈S
ℓ̂∨ℓ

,|t|=1

〈t,Ω−1
L (~̂αL − ~αL)〉2 − p(ℓ, ℓ̂)

)
. (24)

The following Proposition gives the appropriate choice for p(ℓ, ℓ′).

Proposition 6.1. Let p(ℓ, ℓ′) = 2ℓ∗24ℓ∗/n with ℓ∗ = ℓ ∨ ℓ′. Then, we have

E

(
sup

t∈S
ℓ̂∨ℓ

,|t|=1

〈t,Ω−1
L (~̂αL − ~αL)〉2 − p(ℓ, ℓ̂)

)

+

≤ C′

n

The result of Proposition 6.1 inserted in Inequality (24), shows that for κ ≥ 8,

we obtain 4p(ℓ, ℓ̂) ≤ pen(ℓ̂) + pen(ℓ) and

E(‖f̂ℓ̂ − f‖2) ≤ 3‖fℓ − f‖2 + 4pen(ℓ) +
8C′

n

which is the result of Proposition 2.2.

Proof of Proposition 6.1. We apply the Talagrand Inequality recalled in Lemma
8.1 of Section 8. First note that

E

(
sup

t∈S
ℓ̂∨ℓ

,|t|=1

〈t,Ω−1
L (~̂αL − ~αL)〉2 − p(ℓ, ℓ̂)

)

+

≤
∑

ℓ′∈Mn

E

(
sup

t∈Sℓ∗ ,|t|=1

〈t,Ω−1
L (~̂αL − ~αL)〉2 − p(ℓ, ℓ′)

)

+

.

Let us define ‖M‖2 = Tr( tMM) and ρ2(M) the largest eigenvalue of tMM .
We consider the centered empirical process given by

νn(t) =
1

n

n∑

i=1

〈t,Ω−1
L (~βi,L − ~αL)〉 =

1

n

n∑

i=1

(ψt(~βi,L)− Eψt(~βi,L))
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where t~βi,L = (1Ni(Ci∆)=0, . . . , 1Ni(Ci∆)=L) are L+ 1-dimensional i.i.d. vectors

and ψt(~x) = 〈t,Ω−1
L ~x〉. If t is in Sℓ, νn(t) = 〈t,Ω−1

ℓ (~̂αℓ − ~αℓ)〉. Recall that ℓ∗ =
ℓ∨ ℓ′ and define the unit ball for the maximization by Bℓ∗ = {t ∈ Sℓ∗ , |t| = 1}.

To apply Lemma 8.1, we specify ǫ, H2, M and v2.
Clearly

E

(
sup

t∈Bℓ∗

ν2n(t)

)
≤ E(|Ω−1

ℓ∗ (~̂αℓ∗ − ~αℓ∗)|2) ≤
16

15

24ℓ
∗

n
:= H2.

This bound was obtained in the computation of (20) (see (19), (21), (22)).

Next since ~βi,L has only one nonzero coordinate, equal to 1, we have to bound
ψt(~x) = 〈t,Ω−1

L ~x〉 for ~x = ej vector of the canonical basis of RL+1, with j ≤ ℓ∗

and t ∈ Bℓ∗ . For such vectors ~x,

|ψt(~x)| ≤ ρ(Ω−1
ℓ∗ ) ≤ ‖Ω−1

ℓ∗ ‖ ≤
√
16/15 22ℓ

∗
:=M.

Lastly

sup
t∈Bℓ∗

Var(ψt(~βi,L)) ≤ ρ2(Ω−1
ℓ∗ )E(‖~βi,L‖2) ≤ ρ2(Ω−1

ℓ∗ ) ≤ ‖Ω−1
ℓ∗ ‖2 ≤ 15

16
24ℓ

∗
:= v2

as E(‖~βi,L‖2) = E(
∑L

k=0 1
2
Ni(Ci)=k) = P(Ni(Ci) ∈ {0, 1, . . . , L}) ≤ 1.

We have nH/M =
√
n and nH2/v2 = 1. We take ǫ2 = δℓ∗ and for δ to be

chosen afterwards, we get

E

(
sup

t∈Sℓ∗ ,|t|=1

〈t,Ω−1
L (~̂αL − ~αL)〉2 − 2(1 + 2δℓ∗)H2

)

+

≤ C1

n

(
24ℓ

∗
e−C2δℓ

∗
+ e−C3δℓ

∗√n+4ℓ∗ log(2)
)
≤ C1

n

(
24ℓ

∗
e−C2δℓ

∗
+ e−C3δℓ

∗√n/2
)
,

where C1, C2, C3 are numerical constants, provided that δ ≥ 8 log(2)/C3. Then
choosing δ ≥ max(log(2)/C2 + 1, 8 log(2)/C3) and ℓ

∗ ≥ 1 gives the result.

6.7. Proof of Proposition 3.1

Lemma 6.1. ∀x ≥ 0, |ϕk(x)| ≤
√
2, |ϕ′

k(x)| ≤
√
2(2k + 1) ≤ 2

√
2(k + 1) and

|ϕ′′
k(x)| ≤ 2

√
2(k+1)2. As a consequence,

∑ℓ
k=0 ϕ

2
k(x) ≤ 2(ℓ+1),

∑ℓ
k=0[ϕ

′
k(x)]

2 ≤
8(ℓ+ 1)3,

∑ℓ
k=0[ϕ

′′
k(x)]

2 ≤ 8(ℓ+ 1)5.

Proof of Lemma 6.1. The proof uses the Laguerre polynomials Lα
k , see Sec-

tion 7, and relies on the relations [Lα
k (x)]

′ = −Lα+1
k−1 (x) and the bound (34). Re-

call that ϕk(x) =
√
2Lk(2x)e

−x =
√
2L0

k(2x)e
−x. Bound (34) implies straight-

forwardly that |ϕk(x)| ≤
√
2, ∀x ≥ 0. The second bound is obtained by writing

that ϕ′
k(x) =

√
2(2L′

k(2x)−Lk(2x))e
−xand |L′

k(x)| = | −L1
k−1(x)| ≤ kex/2 and

the third one by computing ϕ′′
k(x) =

√
2(4L′′

k(2x) − 4L′
k(x) + Lk(2x))e

x/2 and
|L′′

k(x)| = | − [L1
k−1(x)]

′| = |L2
k−2(x)| ≤ k(k − 1)ex/2/2.
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First, by Pythagoras, ‖f̃ (T )
ℓ −f‖2 = ‖f̃ (T )

ℓ −E(f̃
(T )
ℓ )+E(f̃

(T )
ℓ )−fℓ‖2+‖fℓ−f‖2

and next,

E(‖f̃ (T )
ℓ − f‖2) = E(‖f̃ (T )

ℓ − E(f̃
(T )
ℓ )‖2) + ‖E(f̃ (T )

ℓ )− fℓ‖2 + ‖fℓ − f‖2. (25)

We have

E(‖f̃ (T )
ℓ − E(f̃

(T )
ℓ )‖2) = E




ℓ∑

j=0

(θ̃j − E(θ̃j))
2


 =

1

n

ℓ∑

j=0

Var
(
ϕj(Ĉ1,T )

)

which yields with Lemma 6.1,

E(‖f̃ (T )
ℓ − E(f̃

(T )
ℓ )‖2) ≤ 1

n
E

(
ℓ∑

j=0

ϕ2
j (Ĉ1,T )

)
≤ 2(ℓ+ 1)

n
. (26)

Note that, for N a Poisson variable with parameter λ, E((N −λ)4) = λ(1+3λ).
This implies

E

[
(C1 − Ĉ1,T )

4
]
=

1

T 4
E (C1T (1 + 3C1T )) =

s2
T 2
. (27)

Now, for some ξT ∈ (C1, Ĉ1,T ), using Lemma 6.1 and (27), we get

‖E(f̃ (T )
ℓ )− fℓ‖2 =

ℓ∑

j=0

[
E(ϕj(Ĉ1,T )− ϕj(C1))

]2
=

ℓ∑

j=0

[E((Ĉ1,T − C1)
2ϕ′′

j (ξT ))]
2

≤ E



(Ĉ1,T − C1)

4
ℓ∑

j=0

[ϕ′′
j (ξT )]

2



 ≤ 8

(ℓ+ 1)5

T 2
s2. (28)

Gathering (25), (26) and (28) yields the result.

6.8. Proof of Theorem 3.1

Let

τn(t) =
1

n

n∑

j=1

[t(Ĉj,T )− 〈t, f〉] := ν̃n(t) +R(t),

ν̃n(t) =
1

n

n∑

j=1

[t(Ĉj,T )− E(t(Ĉj,T ))], R(t) = E[t(Ĉ1,T )]− 〈t, f〉.

Let γ̃n(t) = ‖t‖2 − 2n−1
∑n

j=1 t(Ĉj,T ). Remark that f̃
(T )
ℓ = argmint∈Sℓ

γ̃n(t)

and γ̃n(f̃
(T )
ℓ ) = −‖f̃ (T )

ℓ ‖2. Moreover we have

γ̃n(t)− γ̃n(s) = ‖t− f‖2 − ‖s− f‖2 − 2τn(t− s)
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and by definition of the penalty, ∀ℓ ∈ Mn,T , γ̃n(f̃
(T )

ℓ̃
)+p̃en(ℓ̃) ≤ γ̃n(fℓ)+p̃en(ℓ).

Therefore

‖f̃ (T )

ℓ̃
− f‖2 ≤ ‖fℓ − f‖2 + p̃en(ℓ) + 2τn(f̃

(T )

ℓ̃
− fℓ)− p̃en(ℓ̃). (29)

Using that t 7→ τn(t) is linear and 2xy ≤ x2/4 + 4y2, we get

2τn(f̃
(T )

ℓ̃
− fℓ) ≤ 2‖f̃ (T )

ℓ̃
− fℓ‖ sup

t∈B
ℓ̃∨ℓ

|τn(t)| ≤
1

4
‖f̃ (T )

ℓ̃
− fℓ‖2 + 4 sup

t∈B
ℓ̃∨ℓ

|τn(t)|2,

whereBℓ = {t ∈ Sℓ, ‖t‖ = 1}. Plugging this in (29) and using that ‖f̃ (T )

ℓ̃
−fℓ‖2 ≤

2‖f̃ (T )

ℓ̃
− f‖2 + 2‖f − fℓ‖2, we get

‖f̃ (T )

ℓ̃
− f‖2 ≤ 3‖fℓ − f‖2 + 2p̃en(ℓ) + 8 sup

t∈B
ℓ̃∨ℓ

|τn(t)|2 − 2p̃en(ℓ̃)

≤ 3‖fℓ − f‖2 + 2p̃en(ℓ) + 16

(
sup

t∈B
ℓ̃∨ℓ

|ν̃n(t)|2 − p1(ℓ, ℓ̃)

)

+

+ 16

(
sup

t∈B
ℓ̃∨ℓ

|R(t)|2 − p2(ℓ, ℓ̃)

)

+

+ 16p1(ℓ, ℓ̃) + 16p2(ℓ, ℓ̃)− 2p̃en(ℓ̃).

We define pi(ℓ, ℓ
′) in the following results:

Proposition 6.2. Assume that E(C8
1 ) < +∞. Define p1(ℓ, ℓ

′) = 4(ℓ∨ ℓ′+1)/n,
p2(ℓ, ℓ

′) = 8ŝ2(ℓ ∨ ℓ′ + 1)5/T 2. Then

E

(
sup

t∈B
ℓ̃∨ℓ

|ν̃n(t)|2 − p1(ℓ, ℓ̃)

)

+

≤ c

n
, E

(
sup

t∈B
ℓ̃∨ℓ

|R(t)|2 − p2(ℓ, ℓ̃)

)

+

≤ c′

n

where c, c′ are positive constants.

The proof of Proposition 6.2 is given in Section 6.9. Now, the definitions of
p1, p2 and p̃en(.) imply that

8p1(ℓ, ℓ
′) + 8p2(ℓ, ℓ

′) ≤ p̃en(ℓ) + p̃en(ℓ′)

for κ̃1 ≥ 32 and κ̃2 ≥ 64, ∀ℓ, ℓ′ ∈ Mn,T . Therefore, we obtain

‖f̃ (T )

ℓ̃
− f‖2 ≤ 3‖fℓ − f‖2 + 4p̃en(ℓ) +

c′′

n

which ends the proof of Theorem 3.1.
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6.9. Proof of Proposition 6.2

First we study ν̃n(t) and apply the Talagrand Inequality. To do this, we evaluate
the bounds H2,M, v as defined in Lemma 8.1. Clearly

E

(
sup

t∈Bℓ′∨ℓ

|ν̃n(t)|2
)

≤
ℓ∨ℓ′∑

k=0

Var(ν̃n(ϕk)) =
1

n

ℓ∨ℓ′∑

k=0

Var(ϕ(Ĉ1,T ))

≤ 2(1 + ℓ ∨ ℓ′)
n

:= H2

by Lemma 6.1. Moreover, using (15), on Bℓ∨ℓ′ , ‖t‖∞ ≤
√
2(ℓ ∨ ℓ′ + 1) := M .

Next, to find v, we split in two parts:

sup
t∈Bℓ′∨ℓ

Var(t(Ĉ1,T )) ≤ 2(T1 + T2)

where

T1 := sup
t∈Bℓ′∨ℓ

E(t2(C1,T )) ≤ sup
t∈Bℓ′∨ℓ

‖t‖∞
(∫

t2
∫
f2

)1/2

≤
√
2(1 + ℓ ∨ ℓ′)‖f‖

and
T2 := sup

t∈Bℓ′∨ℓ

E[(t(Ĉ1,T )− t(C1,T ))
2].

We write that

(t(Ĉ1,T )− t(C1,T ))
2 = (Ĉ1,T )− C1,T )

2[t′(ξT )]
2 ≤ (Ĉ1,T )− C1,T )

2
ℓ∑

k=0

(ϕ′
k(ξT ))

2

where we apply the Taylor Formula and ξT ∈ (C1, Ĉ1,T ). Using Lemma 6.1
again, we get

T2 ≤ E[(Ĉ1,T )− C1,T )
2]8(1 + ℓ ∨ ℓ′)3.

To conclude we use that E[(Ĉ1,T ) − C1,T )
2] = E(C1)/T and that by definition

of Mn,T , (1 + ℓ ∨ ℓ′)2/T ≤
√
1 + ℓ ∨ ℓ′. Therefore, we obtain v = C

√
1 + ℓ ∨ ℓ′.

Now the Talagrand Inequality implies that there exist constants Ai, i = 1, 2, 3
such that

E

(
sup

t∈Bℓ′∨ℓ

|ν̃n(t)|2 −
8(1 + ℓ ∨ ℓ′)

n

)

+

≤ A1

n

(
(ℓ ∨ ℓ′)e−A2

√
ℓ∨ℓ′ +

ℓ ∨ ℓ′
n

e−A3
√
n

)

so that as

E

(
sup

t∈B
ℓ̃∨ℓ

|ν̃n(t)|2 − p1(ℓ, ℓ̃)

)

+

≤
∑

ℓ′∈Mn,T

E

(
sup

t∈Bℓ′∨ℓ

|ν̃n(t)|2 −
8(1 + ℓ ∨ ℓ′)

n

)

+

≤ c/n

which is the announced bound.
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Now we study R(t). Let D = (supt∈B
ℓ̃∨ℓ

|R(t)|2 − p2(ℓ, ℓ̃))+.

E(D) ≤
∑

ℓ′∈Mn,T

E

(
ℓ′∨ℓ∑

j=0

{
E[ϕj(Ĉ1,T )− ϕj(C1)]

}2

− 4
s2(1 + ℓ′ ∨ ℓ)5

T 2

)

+

+ E

(
8

(
s2
2

− ŝ2

)

+

(1 + ℓ̃ ∨ ℓ)5
T 2

)

By Inequality (28), the first rhs term is zero. To deal with the second term, let
Ω = {|ŝ2 − s2| ≤ s2/2} . Using the definition of Mn,T , we get

E(D) ≤ E

(
81Ωc

(
s2
2

− ŝ2

)

+

)
.

since (12s2 − ŝ2)+1Ω = 0. By the Markov inequality, we have P(Ωc) ≤
(2/s2)

4
E(|ŝ2 − s2|4) and we use the Rosenthal Inequality (see Hall and

Heyde (1980), p. 23, [12]) to get

E(|ŝ2 − s2|4) ≤ Cp(n
−3m4

4 + n−2m4
2)

where m4 is the fourth centered moment of Xj = 3Ĉ2
j,T − 2Ĉj,T /T and m2

2 the
variance of Xj. We write

Xj − E(Xj) = 3(Ĉj,T − Cj)
2 + 3(C2

j − E(C2
j )) + 6

(
Cj −

2

T

)
(Ĉj,T − Cj)

− 2

T
(Cj − E(Cj)) +

3

T
E(Cj).

After some elementary computations using the centered moments of a Poisson
distribution, we obtain that, if E(C8

j ) < +∞, then there exist constants c1, c2
such that m4

4 ≤ c1 and m2
2 ≤ c2. Finally E(D) ≤ c/n.

7. Sobolev-Laguerre spaces

7.1. Laguerre polynomials and associated regularity spaces: General

properties

For ρ : R+ → R
+ a Borel function, let

L
2(R+, ρ) =

{
g : R+ → R,

∫ +∞

0

g2(x)ρ(x)dx := ‖g‖2ρ < +∞
}
.

When ρ ≡ 1, we denote this space as usual by L
2(R+) with ‖g‖2 =

∫ +∞
0

g2(x)dx.
Obviously, g ∈ L

2(R+, ρ) is equivalent to g
√
ρ ∈ L

2(R+) and ‖g‖ρ = ‖g√ρ‖.
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For any orthonormal basis (φρk) of L2(R+, ρ), (
√
ρφρk) is an orthonormal basis

of L2(R+). We are especially interested in the weight functions

ρ(x) = xαe−x = wα(x), α ≥ 0 (30)

and the associated orthonormal bases of L2(R+, wα), namely the Laguerre poly-
nomials. Consider the second order differential equation:

Lαg = −kg, with Lαg = xg′′ + (α+ 1− x)g′. (31)

The solution is g(x) = Lα
k (x) the Laguerre polynomial with index α and or-

der k. The function Lα
k is a polynomial of degree k, and the sequence (Lα

k ) is
orthogonal with respect to the weight function wα. The orthogonality relations
are equivalent to:

∫ +∞

0

xℓLα
k (x)wα(x)dx = 0 for k > ℓ. (32)

We have

Lα
k (x) =

1

k!
exx−α dk

dxk
(
xk+αe−x

)
, (Lα

k (x))
′
= −Lα+1

k−1 (x). (33)

The following holds, for all integer k and α ≥ 0:

∫ +∞

0

(Lα
k (x))

2
wα(x)dx =

Γ(k + α+ 1)

k!
, ∀x, |Lα

k (x)| ≤
Γ(k + α+ 1)

k!Γ(α+ 1)
ex/2.

(34)
Setting

φαk (x) = Lα
k (x)

(
k!

Γ(k + α+ 1

)1/2

, (35)

the sequence (φαk ), k ≥ 0) constitutes an orthonormal basis of the space
L2((0,+∞), wα). In particular, φ0k(x) = L0

k(x) = Lk(x), k ≥ 0 constitute an
orthonormal basis of L2((0,+∞), w), with w(x) = w0(x) = e−x. Noting that(
xα+1e−x

)′
= xαe−x(α+ 1− x), we obtain, using (31) and (33),

d

dx

(
xα+1e−xLα+1

k−1(x)
)
= xαe−xkLα

k (x). (36)

For these formulas, see Abramowitz and Stegun (1964) [1].
We can now prove the following result.

Proposition 7.1. For s integer, w(x) = e−x and g : (0,+∞) → R, the follow-
ing two statements are equivalent:

(1) g admits derivatives up to order s− 1, g(s−1) is absolutely continuous and
for 0 ≤ m ≤ s, xm/2g(m) belongs to L2((0,+∞), w) (g(s) is the Radon-
Nikodym derivative of g(s−1)).
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(2) g belongs to L2((0,+∞), w) and

∑

k≥0

ksτ2k (g) < +∞, (37)

where τk(g) =
∫ +∞
0 g(x)Lk(x)w(x)dx is the k-th component of g on the

basis (Lk′ , k′ ≥ 0) of L2((0,+∞), w).

For all m = 0, . . . , s, ‖xm/2g(m)‖2w =
∑

k≥m k(k − 1) . . . (k −m+ 1)τ2k (g). If πℓ
denotes the orthogonal projection of g on the space spanned in L2((0,+∞), w)
by (Lk, k ≤ ℓ),

‖g − πℓg‖2w ≤ 1

ℓ(ℓ− 1) . . . (ℓ− s+ 1)
‖xs/2g(k)‖2w.

We can now define for s ≥ 0, the Sobolev-Laguerre space4 with weight func-
tion w by:

W s((0,+∞), w) =

{
g ∈ L2((0,+∞), w),

∑

k≥0

ksτ2k (g) < +∞
}
. (38)

Consider, for a > 0, the space L2(R+, w(a.)) corresponding to the weight
function w(ax) = e−ax. The sequence (

√
aLk(at)) is an orthonormal basis of

L2(R+, w(a.)). Setting ga(t) = (t/
√
a)g(t/a)),

τk,a(g) :=

∫ +∞

0

g(x)
√
aLn(ax)w(ax)dx = τk(ga).

So we can define

W s((0,+∞), w(a.)) =

{
g ∈ L2((0,+∞), w(a.)),

∑

k≥0

ksτ2k,a(g) < +∞
}
. (39)

For s integer, g ∈ W s((0,+∞), w(a.)) is equivalent to g ∈ L2((0,+∞), w(a.))
and g admits derivatives up to order s− 1, g(s−1) is absolutely continuous and
for 0 ≤ m ≤ s, xm/2g(m) belongs to L2((0,+∞), w(a.)).

Let us now interpret the result of Proposition 7.1 in terms of bases of
L
2((0,+∞)). The Laguerre functions are defined using the normalized Laguerre

polynomials by
Lα
k (x) = e−x/2xα/2φαk (x), (40)

where φαk is defined in (35). The sequence (Lα
k , k ≥ 0) is an orthonormal basis

of L2((0,+∞)). With Lα given in (31), we have

xα/2e−x/2Lα(e
x/2x−α/2f) = −Lαf+

α+ 1

2
f, with Lαf = −xf ′′−f ′+(

x

4
+
α2

4x
)f.

4Bongioanni and Torrea (2009) [7] introduce Sobolev-Laguerre spaces but do not establish
the link with the coefficients of a function on a Laguerre basis.
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Now,
f ∈ L

2((0,+∞)) ⇐⇒ g = fe(x/2) ∈ L
2((0,+∞), w)

and

τk(g) = θ0k(f) :=

∫ +∞

0

f(x)L0
k(x)dx.

We can thus set:

W s((0,+∞)) =

{
f ∈ L

2((0,+∞)),
∑

k≥0

ks(θ0k(f))
2 < +∞

}
. (41)

We have to deduce the properties ofW s((0,+∞)) from those ofW s((0,+∞), w).
Using that

f ∈ L
2((0,+∞)) ⇐⇒ gα ∈ L

2((0,+∞), wα), with gα = fx−α/2ex/2

and the fact that f is absolutely continuous if and only if gα is, a simple com-
putation yields,

g′αe
−x/2x(α+1)/2 = δαf where δαf =

√
xf ′ +

1

2

(√
x− α√

x

)
f. (42)

Observing that ταk (gα) =
∫ +∞
0 gα(x)φ

α
k (x)dx = θαk (f) =

∫ +∞
0 f(x)Lα

k (x)dx, we

get τα+1
k−1 (g

′
α) = θα+1

k−1 (δ
αf) and

g′α ∈ L
2((0,+∞), wα+1) ⇐⇒ x(α+1)/2g′α ∈ L

2((0,+∞), w)

⇐⇒ δαf ∈ L
2((0,+∞)).

We can state:

Proposition 7.2. For s integer, the following properties are equivalent:

(1) f ∈ W s((0,+∞)) ⇐⇒ g = fex/2 ∈W s((0,+∞), w),
(2) f ∈ L

2((0,+∞)), f ′, f ′′, . . . , f (s−1) exist, f (s−1) is absolutely continuous
and for m = 0, . . . , s− 1, δm ◦ · · · ◦ δ1 ◦ δ0f ∈ L

2((0,+∞)), where, with δα

given in (42), we have

δm ◦ · · · ◦ δ1 ◦ δ0f = x(m+1)/2g(m+1)e−x/2

and
∑

k≥m

k(k − 1) . . . (k −m+ 1)(θ0k(f))
2 = ‖δm−1 ◦ · · · ◦ δ0f‖2. (43)

The proof of the above proposition is simply deduced from Proposition 7.1
that is proved below. It remains to interpret also the results for the scale changed
bases (

√
aLk(ax)e

(−ax/2), k ≥ 0) of L2((0,+∞)). For all a > 0 and α ≥ 0,

f ∈ L
2((0,+∞)) ⇐⇒ gα,a ∈ L

2((0,+∞), xαe−ax), with gα,a = fx−α/2eax/2,
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and

x(α+1)/2e−ax/2g′α,a = δαa f, with δαa f =
√
xf ′ + f

(
a
√
x

2
− α

2
√
x

)
. (44)

Noting that with g = feax/2,

τ0k,a(g) =

∫ +∞

0

g(x)
√
aLk(ax)e

−axdx = θ0k,a(f)

=

∫ +∞

0

f(x)
√
aLk(ax)e

(−ax/2)dx,

we can set:

W s
a ((0,+∞)) =

{
f ∈ L

2((0,+∞)),
∑

k≥0

ks(θ0k,a(f))
2

}
. (45)

We have

f ∈W s
a ((0,+∞)) ⇐⇒ g = feax/2 ∈ W s((0,+∞), e−ax)

and the statement analogous to Proposition 7.2 holds with δαa instead of δα and
w(ax) = e−ax instead of w.

Let us state the analogous of Proposition 7.2 with the scaled-changed basis
corresponding to a = 2.

Proposition 7.3. For s integer, the following properties are equivalent:

(1) f ∈W s
2 ((0,+∞)) ⇐⇒ g = fex ∈ W s((0,+∞), w(2.)),

(2) f ∈ L
2((0,+∞)), f ′, f ′′, . . . , f (s−1) exist, f (s−1) is absolutely continuous

and for m = 0, . . . , s− 1, δm2 ◦ · · · ◦ δ12 ◦ δ02f ∈ L
2((0,+∞)), where, with δαa

given in (42), we have

δm2 ◦ · · · ◦ δ12 ◦ δ02f = x(m+1)/2(fex)(m+1)e−x = x(m+1)/2
m+1∑

j=0

(
m+ 1

j

)
f (j).

and
∑

k≥m

k(k − 1) . . . (k −m+ 1)(θ0k,2(f))
2 = ‖δm−1

2 ◦ · · · ◦ δ02f‖2. (46)

In the text, we have set θ0k,2(f) = θk(f) and ϕk(t) =
√
2Lk(2t)e

−t.

7.2. Proof of Proposition 7.1

Recall that, for a function g : (0,+∞) → R,

xm/2g ∈ L2((0,+∞), w) ⇐⇒ g ∈ L2((0,+∞), wm)

and ‖xm/2g‖2w =
∫ +∞
0

xmg2(x)w(x)dx = ‖g‖2wm
. We start by proving that

(1) ⇒ (2). For h ∈ L
2((0,+∞), wα), let ταk (h) =

∫ +∞
0 h(x)φαk (x)dx denote

the k-th component of h on the basis (φαk′ = Lk′ , k′ ≥ 0), and for α = 0,
τ0k (h) = τk(h). The proof relies on the following Lemma:
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Lemma 7.1. Let α ≥ 0. If g : (0,+∞) → R is absolutely continuous with
xα/2g ∈ L2((0,+∞), w) and x(α+1)/2g′ ∈ L2((0,+∞), w), then for all k ≥ 1,√
kταk (g) = −τα+1

k−1 (g
′).

Proof of Lemma 7.1. By the assumption, g is continuous on (0,+∞). For k ≥ 1,
using (36) yields

k

∫ +∞

0

g(x)Lα
k (x)x

αe−xdx =

∫ +∞

0

g(x)
d

dx

(
xα+1e−xLα+1

k−1 (x)
)
dx

=
[
g(x)xα+1e−xLα+1

k−1 (x)
]+∞
0

−
∫ +∞

0

g′(x)xα+1e−xLα+1
k−1 (x)dx

where the integrals are well-defined by assumption. We multiply both sides by
((k − 1)!/Γ(k + α + 1))1/2. On the left-hand side, appears

√
kφαk , on the right-

hand side, φα+1
k−1 . Hence, to get the result, it is enough to prove that [. . .]+∞

0 = 0.

Using that xa ≤ xa+1 for x ≥ 1, we get
∫ +∞
1

e−xg2(x)xα−1dx < +∞, and

(∫ +∞

1

|g(x)g′(x)|xαe−xdx

)2

≤
∫ +∞

1

g2(x)xαe−xdx

∫ +∞

1

(g′(x))2xαe−xdx

< +∞.

Thus,

∫ +∞

1

g2(x)xαe−xdx = −[g2(x)xαe−x]+∞
1

+

∫ +∞

1

e−x(2g(x)g′(x)xα + αg2(x)xα−1)dx.

The integrals in the left-hand side and right-hand side above are finite.
Therefore, the limit of g2(x)xαe−x as x tends to infinity exists. As∫ +∞
1 g2(x)xαe−xdx < +∞, this limit is necessarily equal to 0. This implies

limx→+∞ g(x)xα/2e−x/2 = 0. Therefore,

lim
x→+∞

g(x)xα+1e−xLα+1
k−1 (x) = 0.

The assumption on g implies
∫ +∞
0

|g(x)|xαe−xdx < +∞ and∫ +∞
0 |g′(x)|xα+1e−xdx < +∞. Thus,

∫ 1

0 |g(x)|xαdx < +∞ and∫ 1

0
|g′(x)|xα+1dx < +∞. We have:

∫ 1

0

g(x)xαdx =
1

α+ 1
[g(x)xα+1]10 −

1

α+ 1

∫ 1

0

g′(x)xα+1dx.

Therefore, the limit of g(x)xα+1 as x tends to 0+, exists and is finite. As∫ 1

0
xα|g(x)|dx < +∞, this limit is necessarily equal to 0. This implies

lim
x→0

g(x)xα+1e−xLα+1
k−1 (x) = 0.
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Now, let g satisfy (1). By the Lemma,
√
kτk(g) = −τ1k−1(g

′),
√
k − 1τ1k−1(g

′) =
−τ2k−2(g

′′) and so on. By elementary induction, we get for m = 0, 1, . . . , s and
k ≥ m,

(k(k − 1) . . . , (k −m+ 1))1/2τk(g) = (−1)mτmk−m(g(m)).

Therefore,

∑

k≥0

k(k − 1) . . . (k − s+ 1)τ2k (g) =
∑

k≥0

(
τsk (g

(s))
)2

= ‖g(s)‖2ws

= ‖x(s/2)g(s)‖w < +∞.

So we have (2). Moreover ‖g − πℓg‖2w ≤ [ℓ(ℓ− 1) . . . (ℓ− s+ 1)]−1‖x(s/2)g(s)‖w.
Let us prove that (2) ⇒ (1). We have an analogous lemma.

Lemma 7.2. Let α ≥ 0. Assume that g : (0,+∞) → R belongs to L2((0,+∞),
wα) and that

∑
k≥0 k (ταk (g))

2 < +∞. Then, g is absolutely continuous, g′

belongs to L2((0,+∞), wα+1) and for all k ≥ 1, τα+1
k−1 (g

′) = −
√
kταk (g).

Proof of Lemma 7.2. We have g =
∑

k≥0 τ
α
k (g)φ

α
k with φα0 a constant. Thus,

g(y)− g(x) =
∑

k≥1

ταk (g)

∫ y

x

(φαk (t))
′dt = −

∑

k≥1

√
kταk (g)

∫ y

x

φα+1
k−1 (t)dt.

The function h(t) =
∑

k≥1

√
kταk (g)φ

α+1
k−1 (t) is well-defined and moreover hN(t) =

∑N
k=1

√
kταk (g)φ

α+1
k−1 (t) converges to h in L

2((0,+∞), wα+1), thus in L
1((0,+∞),

wα+1) also. Consequently, for 0 < x ≤ y,

inf
u∈[x,y]

(uα+1e−u)

∫ y

x

|hN (t)− h(t)|dt ≤
∫ y

x

|hN (t)− h(t)|tα+1e−tdt→N→+∞ 0.

This implies g(y)−g(x) = −
∫ y

x
h(t)dt. Thus, g is absolutely continuous with g′ =

h and−τα+1
k−1 (g

′) =
√
kτkα(g). As

∑
k≥0 k(τ

α
k (g))

2 < +∞, g′∈L2((0,+∞), wα+1)

which is equivalent to t(α+1)/2g′∈L2((0,+∞), w).

Now, let g satisfy (2). Applying the lemma, we get that g is absolutely
continuous and that g′ = −

∑
k≥1

√
kτk(g)φ

1
k−1(t) belongs to L

2((0,+∞),
w1). Then, we have that g′ is absolutely continuous with g′′ =
(−1)2

∑
k≥2

√
k(k − 1)τk(g)φ

2
k−2(t) belonging to L

2((0,+∞), w2).

By induction, for m = 0, . . . , s, g(m) belongs to L
2((0,+∞), wm) with

g(m) = (−1)m
∑

k≥m

(k(k − 1) . . . (k −m+ 1))1/2τk(g)φ
m
k−m.

Thus, tm/2g(m) belongs to L
2((0,+∞), w) for m = 0, . . . , s. So the proof of the

proposition is complete.
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8. A useful inequality

We recall the Talagrand inequality. The result below follows from the Talagrand
concentration inequality given in Klein and Rio (2005) [15] and arguments in
Birgé and Massart (1998) [5] (see the proof of their Corollary 2 page 354).

Lemma 8.1 (Talagrand Inequality). Let Y1, . . . , Yn be independent random
variables, let νn,Y (f) = (1/n)

∑n
i=1[f(Yi) − E(f(Yi))] and let F be a countable

class of uniformly bounded measurable functions. Then for ǫ2 > 0

E

[
sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ǫ2)H2
]
+

≤ 4

K1

(
v2

n
e−K1ǫ

2 nH2

v2 +
98M2

K1n2C2(ǫ2)
e
− 2K1C(ǫ2)ǫ

7
√

2
nH
M

)
,

with C(ǫ2) =
√
1 + ǫ2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤M, E

[
sup
f∈F

|νn,Y (f)|
]
≤ H, sup

f∈F

1

n

n∑

k=1

Var(f(Yk)) ≤ v2.

By standard density arguments, this result can be extended to the case where
F is a unit ball of a linear normed space, after checking that f 7→ νn(f) is
continuous and F contains a countable dense family.
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