
New results for drift estimation in inhomogeneous stochastic differential
equations

Fabienne Comtea,∗, Valentine Genon-Catalotb
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Abstract

We consider N independent and identically distributed (i.i.d.) stochastic processes (X j(t), t ∈ [0,T ]), j ∈ {1, . . . ,N},
defined by a one-dimensional stochastic differential equation (SDE) with time-dependent drift and diffusion coeffi-
cient. In this context, the nonparametric estimation of a general drift function b(t, x) from a continuous observation of
the N sample paths on [0,T ] has never been investigated. Considering a set Iϵ = [ϵ,T ] × A, with ϵ ≥ 0 and A ⊂ R,
we build by a projection method an estimator of b on Iϵ . As the function is bivariate, this amounts to estimating a
matrix of projection coefficients instead of a vector for univariate functions. We make use of Kronecker products,
which simplifies the mathematical treatment of the problem. We study the risk of the estimator and distinguish the
case where ϵ = 0 and the case ϵ > 0 and A = [a, b] compact. In the latter case, we investigate rates of convergence and
prove a lower bound showing that our estimator is minimax. We propose a data-driven choice of the projection space
dimension leading to an adaptive estimator. Examples of models and numerical simulation results are proposed. The
method is easy to implement and works well, although computationally slower than for the estimation of a univariate
function.

Keywords: Adaptive estimator, Diffusion process, Kronecker product, Nonparametric estimation, Projection
method, Time-dependent coefficients.
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1. Introduction

Statistical inference for the coefficients of stochastic differential equations (SDEs) has a longstanding history and
a huge number of contributions deals with the subject. We can refer to the textbooks Kessler et al. [31], Höpfner [27],
Iacus [29], Kutoyants [33, 34] and the numerous references therein. In most papers, authors assume the observation
of one trajectory which may be continuously or discretely observed, on a time interval [0,T ]. To obtain statistical
results, an asymptotic framework is considered which is that, either T is fixed and the diffusion coefficient tends
to 0, or T tends to infinity. In the small variance asymptotics, Markov type diffusions, i.e. having space and time
dependent coefficients, may be considered (see e.g. Yoshida, N. [48], Sørensen and Uchida [42], Uchida [46], Gloter
and Sørensen [24], Guy et al. [25]). In the long time asymptotics, only homogeneous diffusions, i.e. with space
dependent coefficients, are studied under ergodicity assumptions. For what concerns more precisely nonparametric
inference, we refer to Hoffmann [26], Dalalyan [15], Dalalyan and Reiss [16, 17], Comte et al. [12], Strauch [43].
In relation with functional data analysis (see e.g. Ramsay and Silvermann [39], Wang et al. [47], Hsiao [28]), the
case of i.i.d. paths of stochastic differential equations has received recently considerable attention. Results concerning
nonparametric estimation in this setup have been published (see e.g. Comte and Genon-Catalot [9], Denis et al [19,
20], Marie and Rosier [37], see also Comte and Marie [14] for identically distributed diffusions with correlated
Brownian motions). These papers consider homogeneous diffusions, for which the drift and diffusion coefficients do
not depend on time but only on space. Recent papers concerned with interacting particle systems assume space-time
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dependent coefficients (see e.g. Della Maestra and Hoffmann [18], Comte and Genon-Catalot [10]; Belomestny et
al. [5], Amorino et al. [2]). When there is no interaction between particles, these models reduce to i.i.d. diffusion
processes.
In the foundational paper Della Maestra and Hoffmann [18], the authors study the pointwise risk of an estimator
defined as a ratio of two kernel estimators. This requires two bandwidth selection procedures, one for the numerator
and one for the denominator. In this paper, we consider a global estimator built by a projection method on sieves and
study a global risk.

More precisely, we consider N i.i.d. real-valued stochastic processes (Xi(t), t ≥ 0), i ∈ {1, . . . ,N}, with dynamics
ruled by:

dXi(t) = b(t, Xi(t))dt + σ(t, Xi(t))dWi(t), Xi(0) = x0, i ∈ {1, . . . ,N}, (1)

where x0 ∈ R is known and (W1, . . . ,WN) are independent standard Brownian motions. The functions b, σ : R+×R→
R are unknown and our aim is to study nonparametric estimation of the drift function b(t, x) from the continuous
observation of the N sample paths on a fixed time interval [0,T ]. We thus generalize the setting of Comte and Genon-
Catalot [11] where the drift has the form b(t, x) =

∑K
i=1 αi(t)gi(x) with gi(x) known functions and αi(t) unknown

functions.
We estimate the function b(t, x) on a set Iϵ = [ϵ,T ]× A with 0 ≤ ϵ < T and A ⊂ R without making any assumption on
a specific form for b as a bivariate function.

To this end, we define a collection of finite-dimensional subspaces of L2(Iϵ), (S m1 × Σm2 ,m1,m2 ≥ 0), where S m1

is spanned by an orthonormal basis (φ j, 0 ≤ j ≤ m1 − 1) of L2([ϵ,T ]) and Σm2 is spanned by an orthonormal basis
(ψk, 0 ≤ k ≤ m2 − 1) of L2(A). As usual for projection method, we estimate a projection of b1Iϵ on (S m1 × Σm2 ), for
m1 ≥ 1,m2 ≥ 1 which is a function of the form

bm(t, x) =
m1−1∑

j=0

m2−1∑
k=0

a j,kφ j ⊙ ψk(t, x), φ j ⊙ ψk(t, x) = φ j(t)ψk(x), 0 ≤ j ≤ m1 − 1, 0 ≤ k ≤ m2 − 1.

The specific challenge for estimation of bivariate functions is the fact that we have to estimate a matrix (a j,k) of
coefficients, instead of a vector for univariate functions. Therefore, the formulae quickly show intractable expressions
depending on hypermatrices. The original idea of this paper is to introduce vectorization of matrices which allows
to get nice expressions for estimators by means of Kronecker products. In econometrics, this is a usual way of
simplifying the mathematical treatment of models, see Kleffe [32], Magnus and Neudecker [36]. In particular, the
m1 ×m2 matrix Am = (a j,k), 0 ≤ j ≤ m1 − 1, 0 ≤ k ≤ m2 − 1, m = (m1,m2) is transformed into a m1m2 × 1 dimensional
vector vec(Am) by stacking the columns of the matrix Am. Then, the classical regression equation, defining the
estimator Âm = (̂a jk, 0 ≤ j ≤ m1 − 1, 0 ≤ k ≤ m2 − 1) of the matrix Am, looks like the usual one,

Θ̂m1,m2 vec(Âm) = vec(Ĉm).

where Θ̂m1,m2 is a m1m2 × m1m2 matrix and vec(Ĉm) is a m1m2 × 1 dimensional vector. Note that both Θ̂m1,m2 and
vec(Ĉm) are computed using the observations.

Let us stress a few points in order to highlight the novelties of our paper. First, we propose a new projection esti-
mator of the inhomogeneous drift, a case for which studies are rare and recent (see Della Maestra and Hoffmann [18]
in a more general context, but with kernels). Second, our estimator is globally adaptive with a simple and fast model
selection device, for which theoretical upper bounds are obtained. This is partly due to clever algebras tricks. Third,
our estimator is direct and not defined by a ratio, contrary to kernel drift estimators for diffusions. We prove its rate
optimality, when excluding the neighborhood of 0 in time. The setting is anisotropic, which means that the rates are
obtained with distinct regularity indexes in t and x.

In Section 2, we give the assumptions on the model. In Section 3, the projection contrast and the computation
of the projection estimator are detailed. In Section 4, we consider the case ϵ = 0. We prove an upper bound on the
risk of our estimator for fixed m (Theorem 1). Then, we propose a data-driven choice of m leading to an adaptive
estimator (Theorem 2). In Section 5, to investigate rate of convergence (Proposition 2) and lower bound (Theorem
3), we need to impose ϵ > 0 and A = [a, b] compact. The lower bound shows that our estimator is minimax optimal
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in this case. Section 6 is devoted to examples and numerical simulation results, Section 7 gives some concluding
remarks and Section 8 contains all proofs. The whole estimation procedure does not depend on σ(t, x) which may
thus be unknown, except in Theorem 2 where a rough upper bound for σ2(t, x) is involved in the penalty. In Section
9, some properties of Kronecker products are recalled together with a Chernoff matrix inequality. The definitions of
the Hermite and trigonometric bases are also recalled.

2. Assumptions

We consider the following assumptions.

• [H1-(i)] The coefficients b(t, x), σ(t, x) are continuous real-valued functions on R+ × R,

• [H1-(ii)] For all R, there exists KR > 0 such that, whenever |x| ≤ R, |y| ≤ R, 0 ≤ s ≤ R,

|b(s, x) − b(s, y)| ≤ KR|x − y|, |σ(s, x) − σ(s, y)| ≤ KR|x − y|,

• [H1-(iii)] For all T > 0, there exists CT > 0, such that, for 0 ≤ s ≤ T , for all x,

|b(s, x)| + |σ(s, x)| ≤ CT (1 + |x|).

• [H1-(iv)] For all T > 0, there exists σ0 > 0, σ1 > 0, such that 0 < σ2
0 ≤ σ2(t, x) ≤ σ2

1 < +∞ for all
(t, x) ∈ [0,T ] × R,

• [H1-(v)] The function b(t, x) is of class C1,1(R+ × R), the function σ(t, x) is of class C1,2(R+ × R).

Under Assumption [H1(i)-(iv)], equation (1) admits a unique strong solution process (Xi(t)) adapted to the filtration
(Ft = σ(Wi(s), s ≤ t, i ∈ {1, . . . ,N}), t ≥ 0) (see e.g. Rogers and Williams [41], Theorem 12.1). The process (Xi(t))
is of Markov type and admits a family of transition densities ps,t(x, y) defined for 0 ≤ s < t ≤ T, x, y ∈ R, where
ps,t(x, y) is equal to the density of Xi(t) given Xi(s) = x. These densities satisfy the Kolmogorov backward equation in
the backward variables (s, x) ∈ [0,T ] × R: for fixed (t, y), the function v(s, x) = ps,t(x, y) satisfies

−
∂v
∂s
=

1
2
σ2(s, x)

∂v
∂x2 + b(s, x)

∂v
∂x

and is of class C1,2([0, t) × R). Under the additional assumption [H1-(v)], the function w(t, y) = ps,t(x, y) satisfies the
Kolmogorov forward equation, for fixed (s, x), in the forward variables (t, y):

∂w
∂t
=

1
2
∂[σ2(t, y)w(t, y)]

∂y2 −
∂[b(t, y)w(t, y)]

∂y
.

The function w(t, y) is of class C1,2((t,T ]×R) (see e.g. Karatzas and Shreve, p.368-369 [30], Friedman [23], p.141-148
). In particular, as Xi(0) = x0,

p0,t(x0, y) := pt(y)

is the density of the random variable Xi(t). The function (t, y) → pt(y) is positive and continuous and the following
holds:

∀k ≥ 0,∀t ≥ 0, sup
0≤u≤t

E[X2k
i (u)] = sup

0≤u≤t

∫
y2k pu(y)dy < +∞. (2)

We also have
∀k ≥ 0,∀s, t ∈ [0,T ], E[(Xi(t) − Xi(s))2k] ≤ C|t − s|k, (3)

where C is a positive constant depending on k,T, x0 and the constant CT of [H1-(iii)] (see e.g., Karatzas and Shreve [30],
p.306). Consider the function

fT (y) =
1
T

∫ T

0
pu(y)du. (4)
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For h continuous and bounded, s→ E[h(X(s))] is continuous on R+ and therefore,

T−1
∫ T

0
E[h(X(s))]ds =

∫
h(y) fT (y)dy

is well defined so that the probability measure fT (y)dy is always well defined, and by (2), has moments of any order.
Note that, by Theorem 1.2 of Menozzi et al. [38], pu(y) ≤ Cu−1/2 so that fT (y) is finite under our set of assumptions.

3. Definition of projection estimators

Notations. Consider 0 ≤ ϵ < T and the set Iϵ := [ϵ,T ] × A for A ⊂ R. Let h ∈ L2(Iϵ , dtdx), we set ∥h∥2 =∫ T
ϵ

∫
A h2(t, x)dt dx. For h1 a function of t only, ∥h1∥

2
[ϵ,T ] =

∫ T
ϵ

h2
1(t)dt and for h2 a function of x only, ∥h2∥

2
A =

∫
A h2

2(x)dx.
For a matrix M, we denote by M⊤ the transpose of the matrix M and by M⊗N the Kronecker product of two matrices.
For M a m × n-matrix, we denote by vec(M) the vector of Rmn composed by stacking the columns of the matrix.
In Section 9, some useful properties of Kronecker products are recalled. For x a vector of Rq, we denote ∥x∥2,q its
Euclidean norm. For M a m × m matrice, Tr(M) denotes the trace of M, and ∥M∥2op = supx∈Rm ∥Mx∥22,m.

3.1. Projection spaces and estimators
To define nonparametric estimators of the drift function b, we proceed by a projection method. More precisely,

we estimate b on Iϵ , i.e., b1Iϵ .
Let (φ j, 0 ≤ j ≤ m1 − 1) be an orthonormal system of bounded piecewise continuous functions of L2([ϵ,T ], dt)

and (ψk, 0 ≤ k ≤ m2 − 1) an orthonormal system of bounded piecewise continuous functions of L2(A, dx). We define
(S m1×Σm2 ,m1,m2 ≥ 0) a family of finite-dimensional subspaces of L2(Iϵ), where S m1 is spanned by (φ j, 0 ≤ j ≤ m1−1)
and Σm2 is spanned by (ψk, 0 ≤ k ≤ m2 − 1). The bases of S m1 , Σm2 may depend on m1 or m2 but for simplicity, we
omit this dependence in the notations. For m1 ≥ 1,m2 ≥ 1, the functions

φ j ⊙ ψk(t, x) = φ j(t)ψk(x), 0 ≤ j ≤ m1 − 1, 0 ≤ k ≤ m2 − 1

constitute an orthonormal basis of S m1 × Σm2 .
For h : R+ × R→ R a function, we introduce the contrast inspired by the log-likelihood of the observations:

γN(h) =
1

NT

N∑
i=1

(∫ T

ϵ

h2(u, Xi(u))du − 2
∫ T

ϵ

h(u, Xi(u))dXi(u)
)
. (5)

For any bounded h, as E
∫ T
ϵ

h2(u, X1(u))σ2(u, X1(u))du < +∞,

EγN(h) =
1
T
E

∫ T

ϵ

(h(u, X1(u)) − b(u, X1(u)))2 du −
1
T
E

∫ T

ϵ

b2(u, X1(u))du

=
1
T

∫ T

ϵ

∫
(h(u, y) − b(u, y))2 pu(y)dydt −

1
T

∫ T

ϵ

∫
b2(u, y)pu(y)dydu,

which is minimum for h(u, y) ≡ b(u, y). This property justifies the definition of a collection of estimators b̂m,m =
(m1,m2),m1,m2 ≥ 0 of bIϵ := b1Iϵ by setting:

b̂m = arg min
h∈S m1×Σm2

γN(h). (6)

Thus, for each couple m = (m1,m2), we can write

b̂m(t, x) =
m1−1∑

j=0

m2−1∑
k=0

â j,kφ j ⊙ ψk(t, x) (7)

4



and must compute the matrix of coefficients:

Âm = (̂a j,k)0≤ j≤m1−1,0≤k≤m2−1. (8)

To this end, define the m1 × m2-matrix

Ĉm :=

 1
NT

N∑
i=1

∫ T

ϵ

φ j(u)ψk(Xi(u))dXi(u)


0≤ j≤m1−1,0≤k≤m2−1

(9)

and the respectively m1 × m1 and m2 × m2 matrices

Φm1 (t) :=
(
φ j(t)φ j′ (t)

)
1≤ j, j′≤m1−1

and Ψ̂m2 (t) :=

 1
N

N∑
i=1

ψk(Xi(t))ψk′ (Xi(t))


0≤k,k′≤m2−1

. (10)

We also define

Ψm2 (t) :=
(∫

ψk(x)ψk′ (x)pt(x)dx
)

0≤k,k′≤m2−1
= EΨ̂m2 (t). (11)

The matrices Φm1 (t), Ψ̂m2 (t) and Ψm2 (t) are symmetric nonnegative. For instance, for x = (x0, . . . , xm1−1), x⊤Φm1 (t)x =
(
∑m1−1

j=0 x jφ j(t))2 and analogously for the other matrices.

Lastly, define the m1m2 × m1m2 matrices

Θ̂m1,m2 :=
1
T

∫ T

ϵ

Ψ̂m2 (t) ⊗ Φm1 (t)dt, Θm1,m2 :=
1
T

∫ T

ϵ

Ψm2 (t) ⊗ Φm1 (t)dt, (12)

where clearly Θm1,m2 = EΘ̂m1,m2 . As for all t, the matrices Φm1 (t), Ψ̂m2 (t),Ψm2 (t) are symmetric, so is Ψ̂m2 (t) ⊗ Φm1 (t)
(see (39)). As a consequence, Θ̂m1,m2 and Θm1,m2 are also symmetric.

The following proposition provides an explicit formula for the matrix of coefficient Âm of our estimator.

Proposition 1. The matrix Âm satisfies:

1
T

∫ T

ϵ

Φm1 (t)ÂmΨ̂m2 (t)dt = Ĉm. (13)

Moreover (13) is equivalent to
Θ̂m1,m2 vec(Âm) = vec(Ĉm). (14)

Equation (14) allows us to compute explicitely the coefficients of the estimator b̂m and is obtained by vectorial-
ization of (13).

The vector of coefficients of the function b̂m defined by (7) contained in vec(Âm) is uniquely defined if Θ̂m1,m2 is
invertible and in this case,

vec(Âm) = Θ̂−1
m1,m2

vec(Ĉm). (15)

Below (see Lemma 1 and condition (18)), we prove that Θm1,m2 is invertible and give a condition ensuring that
Θ̂m1,m2 is invertible.

For further use, we introduce the empirical norm and scalar product associated with our observations. For
h(., .), ℓ(., .) two bounded functions, we set

∥h∥2N =
1

NT

N∑
i=1

∫ T

ϵ

h2(u, Xi(u))du, ⟨h, ℓ⟩N =
1

NT

N∑
i=1

∫ T

ϵ

h(u, Xi(u))ℓ(u, Xi(u))du. (16)
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We also set

νN(h) =
1

NT

N∑
i=1

∫ T

ϵ

h(u, Xi(u))σ(u, Xi(u))dWi(u). (17)

Therefore, E∥h∥2N = ∥h∥
2
p := 1

T

∫ T
ϵ

∫
R h2(u, y)pu(y)dy du,

E⟨h, ℓ⟩N = ⟨h, ℓ⟩p :=
1
T

∫ T

ϵ

∫
R

h(u, y)ℓ(u, y)pu(y)dy du

and EνN(h) = 0, Eν2
N(h) = ∥hσ∥2p/NT .

4. Estimation for ϵ = 0

In this section, we consider ϵ = 0 and set I0 = I. We keep everywhere the same notations but with ϵ = 0.

4.1. Identifiability constraint

The following Lemma clarifies the identifiability constraint introduced below and allows us to study the invertibil-
ity of Θm1,m2 and Θ̂m1,m2 .

Lemma 1. Let h =
∑m1−1

j=0
∑m2−1

k=0 h j,kφ j ⊙ ψk and denote by Hm = (h j,k)0≤ j≤m1−1,0≤k≤m2−1. We have

∥h∥2N =
1
T

∫ T

0
Tr

[
H⊤mΦm1 (t)HmΨ̂m2 (t)

]
dt = [vec(Hm)]⊤ Θ̂m1,m2 vec(Hm),

∥h∥2p = E
(

1
T

∫ T

0
Tr

[
H⊤mΦm1 (t)HmΨ̂m2 (t)

]
dt

)
= [vec(Hm)]⊤ Θm1,m2 vec(Hm),

where Θm1,m2 and Θ̂m1,m2 are defined in (12).

Lemma 1 implies that Θ̂m1,m2 and Θm1,m2 are nonnegative. Moreover, as pt(y) > 0, ∀t ∈]0,T ] and ∀y ∈ R,

∥h∥2p = 0⇒ h(t, y) = 0 a.e. on ]0,T ] × R

and thus h j,k = 0 for 0 ≤ j ≤ m1 − 1 and 0 ≤ k ≤ m2 − 1. Consequently, Θm1,m2 is positive definite. As Θ̂m1,m2 tends to
Θm1,m2 as N → +∞ a.s., Θ̂m1,m2 is invertible for N large enough.

Note that we have
∥h∥2N = 0⇒ ∀i, h(u, Xi(u)) = 0 a.s. and a.e. on [0,T ].

Therefore, Θ̂m1,m2 is invertible if:∀u ∈ [0,T ],∀i ∈ {1, . . . ,N},
m1−1∑

j=0

m2−1∑
k=0

h j,kφ j ⊙ ψk(u, Xi(u)) = 0 a.s. and a.e. on [0,T ]

 (18)

⇒
{
h j,k = 0,∀ j ∈ {0, . . . ,m1 − 1} and ∀k ∈ {0, . . . ,m2 − 1}

}
.

Condition (18) is an identifiability constraint linked with the choice of the bases. In Section 6, we use bases for which
(18) is fulfilled.
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4.2. Empirical risk of the estimator for fixed m
We define the risk of the estimator b̂m given by (7) as the expectation of the empirical square norm ∥.∥2N (with

ϵ = 0) which is naturally associated with our observations.
Next, we need to define key quantities related to the bases. Let us set:

Lφ(S m1 ) = sup
t∈[ϵ,T ]

m1−1∑
j=0

φ2
j (t), Lψ(Σm2 ) = sup

x∈A

m2∑
j=0

ψ2
j (x). (19)

These definitions were introduced by Birgé and Massart [6], who also remark that:

Lφ(S m1 ) = sup
h1∈S m1 ,∥h1∥[ϵ,T ]=1

sup
t∈[ϵ,T ]

h2
1(t), Lψ(Σm2 ) = sup

h2∈Σm2 ,∥h2∥A=1
sup
x∈A

h2
2(x).

Therefore, Lφ(S m1 ) and Lψ(Σm2 ) only depend on the subspaces and not on the bases chosen to define them. We consider
the following assumption:

• [H2] ∃cφ, cψ > 0 such that Lφ(S m1 ) ≤ c2
φm1, Lψ(Σm2 ) ≤ c2

ψm2.

Assumption [H2] holds for several classical bases, for instance, for the trigonometric basis on a compact subset of R
(see Section 5). If we take A = R and for (ψk)k the Hermite basis, it satisfies the weakened condition Lψ(Σm2 ) ≤ cm1/2

2
(see Comte and Lacour [13], Lemma 1, examples in Section 6 and Appendix).

The following condition restricts the possible choices of m1,m2 to ensure the stability of the minimum contrast
estimator (see e.g. Cohen et al. [7, 8]).

m1m2 ≤ NT, Lψ(m2)∥Θ−1
m1,m2
∥op ≤ cr

NT
log(NT )

, cr =
3 log(3/2) − 1

2 + 2r
. (20)

Under (20), the matrix Θm1,m2 is not only invertible but has all its eigenvalues bounded from below.
Condition (18) is not enough for our theory and we need to reinforce (20). For this, we define:

Λ̂m =

{
m1m2 ≤ NT, Lψ(m2)∥Θ̂−1

m1,m2
∥op ≤ 2cr

NT
log(NT )

}
. (21)

On the set Λ̂m, the matrix Θ̂m1,m2 is invertible and its eigenvalues are all bounded from below. Now we define the
truncated estimator that we study for fixed (m1,m2):

b̃m = b̂m1
Λ̂m
. (22)

Theorem 1. Under assumptions [H1], [H2] and condition (20) on m with r > 7 in (20)-(21), it holds

E(∥̃bm − bI∥
2
N) ≤ inf

h∈S m1×Σm2

∥h − bI∥
2
p +

2σ2
1m1m2

NT
+

C
NT

, (23)

where σ2
1 is the upper bound on σ2 defined in [H1]-(iv), and C is a positive constant.

The risk bound (23) is the sum of a squared bias term and a variance term of order m1m2/NT , the last term C/NT
being negligible.

The variance term is actually
2

NT
Tr

(
Θ−1

m1,m2
Θm1,m2,σ2

)
≤

2σ2
1m1m2

NT
,

where

Θm1,m2,σ2 =
1
T

∫ T

0
Ψm2,σ2 (t) ⊗ Φm1 (t)dt, Ψm2,σ2 (t) =

(∫
ψk(x)ψk′ (x)σ2(t, x)pt(x)dx

)
0≤k,k′≤m2−1

.
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4.3. Adaptive estimation

In this paragraph, we investigate the possible choice of a data-driven m which leads to an adaptive estimator
realizing automatically the bias-variance compromise.
Consider, for c a positive constant, the theoretical collection of models:

MN =

{
m ∈ N2,m1m2 ≤ NT, Lψ(m2)(∥Θm1,m2∥

2
op ∨ 1) ≤

c
2

NT

log2(NT )

}
and its emprirical counterpart:

M̂N =

{
m ∈ N2,m1m2 ≤ NT, Lψ(m2)(∥Θ̂m1,m2∥

2
op ∨ 1) ≤ 2c

NT

log2(NT )

}
.

Then define
m̂ = arg min

m∈M̂N

(
γN (̂bm) + pen(m)

)
, pen(m) = κσ2

1
m1m2

NT
, (24)

where κ is a numerical constant and σ2
1 is the upper bound on σ2 (see [H1-iv]). The following result holds:

Theorem 2. Under assumptions [H1], [H2], there exists a numerical constant κ0 such that for all κ ≥ κ0,

E(∥̂bm̂ − bIϵ ∥
2
N) ≤ C inf

m∈MN

 inf
h∈S m1×Σm2

∥h − bIϵ ∥
2 +

σ2
1m1m2

NT

 + C′

NT
,

where C and C′ are positive constants.

The proof is omitted as it follows closely the analogous result in Comte and Genon-Catalot [9]. It relies on the
standard decomposition, for h, h⋆ two functions of S m1 × Σm2 ,

γN(h) − γN(h⋆) = ∥h − h⋆∥2N + 2νN(h − h⋆)

where νN(h) is defined by (17). The other classical point is that NTνN(h) := MT is a martingale, with bracket

⟨M⟩T =
∫ T

ϵ

N∑
i=1

h2(u, Xi(u))σ2(u, Xi(u))du,

satisfying ⟨M⟩T ≤ σ2
1∥h∥

2
N . Therefore, the following Bernstein inequality for martingales (see e.g. Revuz and Yor [40])

holds

P(νN(h) ≥ δ, ⟨M⟩T ≤ v2) ≤ exp
− NTδ2

2σ2
1v2

 .
Using this and the chaining method described in Baraud et al. [4] gives the result.

5. Optimal rate for compact support estimation with ϵ > 0.

In this section, we study rates of estimation and their optimality, which requires to work in a setting where weighted
and standard L2-norms are equivalent: this can only be done on a compact set, and for ϵ > 0. The first constraint is
standard (see Baraud [3]’s first assumption p.130) and the second one specific to our setting.

Therefore here, we consider ϵ > 0 and A = [a, b], a < b, a compact interval of R. Then there exist two positive
constants c0(ϵ, A) and c1(ϵ, A) such that:

∀t ∈ [ϵ,T ],∀x ∈ A, 0 < c0(ϵ, A) ≤ pt(x) ≤ c1(ϵ, A) < +∞.
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5.1. Upper bound
The following Lemma allows to simplify the stability condition (20).

Lemma 2. Under [H1], ϵ > 0 and A compact, Θm1,m2 is invertible and ∥Θ−1
m1,m2
∥op ≤ 1/c0(ϵ, A). Moreover ∥h∥2p ≤

c1(ϵ, A)∥h∥2.

Now, reminding that c2
ψ is defined in [H2], the stability condition (20) holds if:

m2 ≤
crc0(ϵ, A)

c2
ψ

NT
log(NT )

.

As c0(ϵ, A) is unknown, we can make the choice of (m1,m2) within the set

M⋆
N =

{
(m1,m2) ∈ N2, m1m2 ≤ NT,m2 ≤ NT/ log2(NT )

}
. (25)

From Theorem 1 and Lemma 2, under assumption [H1], and for any m ∈ M⋆
N , we have

E(∥̃bm − bIϵ ∥
2
N) ≤ c1(ϵ, A) inf

h∈S m1×Σm2

∥h − bIϵ ∥
2 + 2

σ2
1m1m2

NT
+

C
NT

, (26)

where C is a positive constant.
Let us discuss the rate of convergence of the risk. For β = (β1, β2) ∈ R+ ×R+, and R = (R1,R2) ∈ R+ ×R+, define

the regularity space:

W∗(β,R) =

 f ∈ L2([ϵ,T ] × [a, b]), such that
∑
j,k≥0

c2
j,k j2β1 ≤ R2

1,
∑
j,k≥0

c2
j,kk2β2 ≤ R2

2

 ,
where c j,k = ⟨ f , φ j ⊙ ψk⟩.

Proposition 2. (upper bound) Under assumptions [H1], [H2], if bIϵ ∈ W∗(β,R), choosing

m⋆
1 ∝ (NT )β2/(β1+β2+2β1β2), m⋆

2 ∝ (NT )β1/(β1+β2+2β1β2)

we get

E(∥̃bm⋆ − bIϵ ∥
2
N) ≲ (NT )−

2β̄
2β̄+2 ,

1
β̄
=

1
2

(
1
β1
+

1
β2

)
.

The resulting rate is the classical nonparametric rate over anisotropic regularity spaces.

5.2. Lower bound
Define for β = (β1, β2) ∈ N2 and L = (L1, L2),

W(β,L) = { f ∈ L2([ϵ,T ] × [a, b]),
f derivable up to order β1 w.r.t. t, up to order β2 w.r.t. x,∫∫

(∂β1 f (t, x)/∂tβ1 )2dtdx ≤ L2
1,

∫∫
(∂β2 f (t, x)/∂xβ2 )2dtdx ≤ L2

2}.

Then we can prove:

Theorem 3. Under Assumption [H1], the following lower bound holds:

lim inf
N→+∞

inf
TN

sup
bIϵ ∈W(β,L)

EbIϵ
[N

2β̄
2β̄+2 ∥TN − bIϵ ∥

2] ≥ c,

where infTN denotes the infimum over all estimators and c is a constant depending on L and β.
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5.3. Case of the trigonometric basis
To illustrate and make more concrete the sets W(β,L) and W∗(β,R), let us consider trigonometric bases:

φ0(t) =
1

√
T − ϵ

1[ϵ,T ](t),

φ2 j−1(t) =
2

√
T − ϵ

cos(2π j
t − ϵ
T − ϵ

)1[ϵ,T ](t),

φ2 j(t) =
2

√
T − ϵ

sin(2π j
t − ϵ
T − ϵ

)1[ϵ,T ](t),



ψ0(x) =
1

√
b − a

1[a,b](t),

ψ2k−1(x) =
2

√
b − a

cos(2πk
x − a
b − a

)1[a,b](x),

ψ2k(x) =
2

√
b − a

sin(2πk
x − a
b − a

)1[a,b](x),

for j ≥ 1 and k ≥ 1.
Now, to take the boundary conditions into account, define the following set:

W (per)(β,L)) = { f ∈ W(β,L),∀x ∈ [a, b], (∂α1 f (t, x)/(∂tα1 )(ϵ, x) = (∂α1 f (t, x)/∂tα1 )(T, x),
∀t ∈ [ϵ,T ], (∂α2 f (t, x)/∂xα2 )(t, a) = (∂α2 f (t, x)/∂xα2 )(t, b), 0 ≤ αi ≤ βi − 1, i ∈ {1, 2}}.

We can prove the result.

Proposition 3. For integers β1 and β2, L = (L1, L2),R = (R1,R2)

f ∈ W (per)(β,L) ⇒ f ∈ W∗(β,R)

with R2
1 = L2

1(T − ϵ)2β1/π2β1 ,R2
2 = L2

2(b − a)2β2/π2β2 .

Theorem 3 holds also on W (per)(β,L) (see the proof of Theorem 3, where the propositions g j, hk belong to this
space). Therefore, the lower bound holds for this function space. By Proposition 3, these functions are in W∗(β,R)
and therefore, the upper bound holds. We conclude that the rates are minimax optimal on this set.

6. Examples and numerical simulation results
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Fig. 1: Smallest eigenvalue of Θ̂m1 ,m2 defined by (12) in function of m1 and m2 going from 1 to 20, on one sample with size N = 1000 and function
b1(t, x) = cos(πxt/2). Left: trigonometric basis T, right: Hermite basis H.

We implement the method on some examples. The data are generated by a basic Euler scheme with T = 2 and
n = 100 observations for each path (step ∆ = 2/100), with constant σ equal to 0.25 and functions

b1(t, x) = cos(πx t/2), b2(t, x) =
xt

√
1 + t2

√
1 + x2

, b3(t, x) = tanh(xt)

where tanh denotes the hyperbolic tangent. They are regular and bounded functions. The results below are given for
N = 1000.
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Fig. 2: Adaptive sstimation of (t, x) 7→ b1(t, x) = cos(πx t/2) (line 1), b2(t, x) = xt√
1+t2

√
1+x2

, (line 2), b3(t, x) = tanh(xt) (line 3). Left: True
function, Middle: estimated function with trigonometric basis T, Right: estimated function with Hermite basis H. On sample N = 1000 processes,
the selected couples of dimensions (m1,m2) are (6, 4), (3, 4), (4, 6) for T and (5, 9), (4, 10), (4, 14) for H, resp. for the estimators of b1, b2, b3.

We compute the estimators using either the half-trigonometric basis ((1,
√

2 cos(π jx), j ≥ 1)), denoted by T, or the
Hermite basis, denoted by H, which is not orthonormal on the compact domain which is considered here (see Section
9). Basis T requires the definition of the domain of estimation which is [1/n = ϵ, 2] × [a, b] where a is taken as the
5%-quantile of all the data and b as the 95%-quantile. This domain is also used for graphical representations.

The estimator is computed for the selected dimensions obtained from formula (24) with κT = 4 and κH = 6 for
the value of κ with basis T and H respectively. The term σ2

1 is equal to σ2 in the constant variance case, and the true
value is used (a residual least square estimator may be computed).

We plot in Fig. 1 the surface corresponding to the smallest eigenvalue of Θ̂m1,m2 for each basis and for function b1,
to show that it is decreasing when m1 or m2 increases, and this decrease is much faster for Hermite basis. A cutoff is
set in the program to compute the estimator only if the inverse of the eigenvalue is less than N4. The estimator is set
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to zero otherwise, so that the associated dimensions are not selected.
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Fig. 3: Estimation of function b3 = tanh(xt) for fixed values of t or x, N = 1000 paths. True b3 in full red line, Estimation with trigonometric basis
T in dotted blue, Estimation with Hermite basis H in dotted magenta. First line: fixed x, x ≃ 1 (left) and x ≃ −0.2 (right). Second line fixed t,
t = 1.5 (left) and t = 1 (right).

Fig. 2 gives the 3-D representation of the functions (t, x) 7→ bi(t, x) for i ∈ {1, 2, 3} and their estimates in the two
bases for the dimensions selected by the procedure. Clearly on these examples, the Hermite basis is better for b1 and
the trigonometric for the function b2. We present in Fig. 3 sections of the last surface corresponding to b3, for fixed
values of x or t (not too near of the boarders). The curves in this case are very good, but some shifts or side effects
can occur in other examples.

We can conclude that the method is easy to implement and works well, the main drawback is that it is computa-
tionally slower than for univariate estimation.

7. Concluding remarks

In this paper, we consider N independent and identically distributed (i.i.d.) stochastic processes (X j(t), t ∈ [0,T ]),
j = 1, . . . ,N, defined by a one-dimensional stochastic differential equation (SDE) with general time-dependent drift
and diffusion coefficient. Considering a set Iϵ = [ϵ,T ] × A, with ϵ ≥ 0 and A ⊂ R, we build by a projection method
an estimator of b on Iϵ . The introduction of Kronecker products simplifies and clarifies the mathematical treatment
of this estimation problem. We study the risk of the estimator first in the case where ϵ = 0, second in the case ϵ > 0
and A = [a, b] compact. In the latter case, we investigate rates of convergence and prove a lower bound showing that
our estimator is minimax. We propose a data-driven choice of the projection space dimension leading to an adaptive
estimator.

Extensions of this work is to consider discrete observations of the sample paths which would lead to an asymptotic
condition linking the discretisation step and the size N of the sample. Obviously, the problem of estimating σ(t, x) in
the context of discrete observations is worth of investigation.

The problem of studying the estimation of a drift b(t, x1, . . . , xd) in a d-dimensional diffusion model using i.i.d.
sample paths is of the utmost interest. Specifically, we would consider A ⊂ Rd instead of a subset of A ⊂ R. This is
indeed theoretically possible. For instance, this has been investigated in the case of multivariate regression models by
Dussap [21].The formalism is at first sight very similar, but it requires the definition of hypermatrices and associated
tools of algebra in this context. In that way, the theory could be extended to multidimensional diffusion models.
Nevertheless, implementation would be much more problematic.
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8. Proofs

Proof of Proposition 1. For h =
∑m1−1

j=0
∑m2−1

k=0 h j,kφ j ⊙ ψk, we note that

∂h2(u, Xi(u))
∂h j0,k0

= 2φ j0 (u)ψk0 (Xi(u))h(u, Xi(u)).

So, we have for j0 ∈ {0, . . . ,m1 − 1}, and k0 ∈ {0, . . . ,m2 − 1}

∂γN

∂h j0,k0

(h) =
2

NT

N∑
i=1

∫ T

ϵ

[
φ j0 (u)ψk0 (Xi(u))h(u, Xi(u))du − φ j0 (u)ψk0 (Xi(u))dXi(u)

]
.

Setting this to 0 for h = b̂m defines the coefficients â j,k as satisfying

1
T

∫ T

ϵ

m1−1∑
j=0

m2−1∑
k=0

φ j0 (u)φ j(u)︸       ︷︷       ︸
[Φm1 (u)] j0 , j

â j,k
1
N

N∑
i=1

ψk0 (Xi(u))ψk(Xi(u))︸                           ︷︷                           ︸
[Ψ̂m2 ]k,k0

du =
1

NT

N∑
i=1

∫ T

ϵ

φ j0 (u)ψk0 (Xi(u))dXi(u) = [Ĉm] j0,k0

for all for j0 =∈ {0, . . . ,m1 − 1}, k0 ∈ {0, . . . ,m2 − 1}. This can be summarized by (13).
To clarify further equation (13) defining Âm, we introduce the vectorization of matrices Âm, Ĉm. We vectorize

relation (13) and obtain:

vec(
1
T

∫ T

ϵ

Φm1 (t)ÂmΨ̂m2 (t)dt) =
1
T

∫ T

ϵ

vec(Φm1 (t)ÂmΨ̂m2 (t))dt = vec(Ĉm).

Now using the relation vec(ABC) = (C⊤⊗A)vec(B) (linking the three matrices A, B,C), we get, as Âm does not depend
on t,

1
T

∫ T

ϵ

vec(Φm1 (t)ÂmΨ̂m2 (t))dt =
1
T

∫ T

ϵ

Ψ̂m2 (t) ⊗ Φm1 (t)vec(Âm)dt = Θ̂m1,m2 vec(Âm).

This explains the second formula of Proposition 1. □

Proof of Lemma 1. The begining of the computation is straightforward.

∥h∥2N =
1
T

∑
0≤ j, j′≤m1−1

∑
0≤k,k′≤m2−1

h j,kh j′,k′

∫ T

0
[Φm1 (u)] j, j′ [Ψ̂m2 (u)]k,k′du

=
1
T

∫ T

0

m2−1∑
k=0


m1−1∑

j=0

[H⊤m]k, j

m2−1∑
k′=0

m1−1∑
j′=0

[Φm1 (u)] j, j′ [Hm] j′,k′

 [Ψ̂m2 (u)]k′,k


 du

=
1
T

∫ T

0

m2−1∑
k=0

[
H⊤mΦm1 (u)HmΨ̂m2 (u)

]
k,k

du =
1
T

∫ T

0
Tr

[
H⊤mΦm1 (u)HmΨ̂m2 (u)

]
du,

which is the first equality of the Lemma. We use equality (40) which yields

Tr
[
H⊤mΦm1 (u)HmΨ̂m2 (u)

]
= vec(Hm)⊤vec(Φm1 (u)HmΨ̂m2 (u)).

Now with (38), we obtain :
vec(Φm1 (u)HmΨ̂m2 (u)) = (Ψ̂m2 (u) ⊗ Φm1 (u))vec(Hm).

Integrating wrt u gives
∥h∥2N = [vec(Hm)]⊤ Θ̂m1,m2 vec(Hm).
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The last equality is obtained by taking expectation. □

Proof of Theorem 1. Let us define

Ωm :=

∣∣∣∣∣∣ ∥h∥2N∥h∥2p − 1

∣∣∣∣∣∣ ≤ 1
2
,∀h ∈ S m1 × Σm2

 . (27)

On Ωm, the empirical norm ∥.∥N and the p-norm are equivalent for elements of S m1 × Σm2 : (2/3)∥h∥2N ≤ ∥h∥
2
p ≤ 2∥h∥2N

and the following result holds.

Lemma 3. We have

Ωm =

{∥∥∥∥Θ−1/2
m1,m2
Θ̂m1,m2Θ

−1/2
m1,m2

− Idm1m2

∥∥∥∥
op
≤

1
2

}
, (28)

where IdK is the K × K identity matrix.
Moreover, under m1m2 ≤ NT and under (20), it holds that P(Ωc

m) ≤ C/(NT )r and P(Λ̂c
m) ≤ C/(NT )r.

Proof of Lemma 3. Let h =
∑m1−1

j=0
∑m2−1

k=0 h j,kφ j ⊙ ψk and denote by Hm = (h j,k)0≤ j≤m1−1,0≤k≤m2−1. We have

∥h∥2N = vec(Hm)⊤Θ̂m1,m2 vec(Hm) and ∥h∥2p = vec(Hm)⊤Θm1,m2 vec(Hm) so that

sup
h∈S m1×Σm2 ,∥h∥p=1

∣∣∣∥h∥2N − ∥h∥2p∣∣∣ = sup
vec(Hm) ∈ Rm1m2 ,

∥Θ
1/2
m1 ,m2 vec(Hm)∥2,m1m2 = 1

∣∣∣∣vec(Hm)⊤(Θ̂m1,m2 − Θm1,m2 )vec(Hm)
∣∣∣∣

= sup
u∈Rm1m2 ,∥u∥2,m1m2=1

∣∣∣∣u⊤Θ−1/2
m1,m2

(Θ̂m1,m2 − Θm1,m2 )Θ−1/2
m1,m2

u
∣∣∣∣ = ∥Θ−1/2

m1,m2
Θ̂m1,m2Θ

−1/2
m1,m2

− Idm1m2∥op.

Therefore, (28) holds.
Define ψ(x) = (ψ0(x), . . . , ψm2−1(x))⊤ and S ψ(x) = ψ(x)ψ(x)⊤ so that

Ψ̂m2 (t) =
1
N

N∑
i=1

S ψ(Xi(t)).

We intend to apply Tropp’s Inequality [44] (see Theorem 4 in Appendix) to G − Idm1m2 where

G =
1
N

N∑
i=1

Xi, Xi = Θ
−1/2
m1,m2

(
1
T

∫ T

0
S ψ(Xi(t)) ⊗ Φm1 (t)dt

)
Θ−1/2

m1,m2
.

Note that G = Θ−1/2
m1,m2Θ̂m1,m2Θ

−1/2
m1,m2 and E(G) = Idm1m2 . Therefore

P(Ωc
m) = P(∥G − Idm1m2∥op > 1/2).

The matrices Xi, i = 1, . . . ,N are i.i.d. and symmetric nonnegative with λmin(E(G)) = λmax(E(G)) = 1, thus if
λmax(Xi) ≤ R, then by Tropp’s Inequality

P(∥G − Idm1m2∥op > δ) ≤ 2m1m2e−Nc(δ)/R, c(δ) = (1 + δ) log(1 + δ) − δ,

as eδ/(1 + δ)1+δ ≥ e−δ/(1 − δ)1−δ, see Cohen et al. [7, 8].
It remains to compute the bound R.

λmax(Xi) = ∥Xi∥op = sup
x∈Rm1m2 ,∥x∥2,m1m2=1

x⊤Xix.

14



x⊤Xix = y⊤
(

1
T

∫ T

0
S ψ(Xi(t)) ⊗ Φm1 (t)dt

)
y

(
y = Θ−1/2

m1,m2
x, (y = vec(Y)

)
=

1
T

∫ T

0
Tr

[
Y⊤Φm1 (t)YS ψ(Xi(t))

]
dt =

1
T

∫ T

0

∑
0≤ j, j′≤m1−1

∑
0≤k,k′≤m2−1

Y j,kY j′,k′φ j(t)φ j′ (t)ψk(Xi(t))ψk′ (Xi(t))dt

=
1
T

∫ T

0

m2−1∑
k=0

ψk(Xi(t))

m1−1∑
j=0

Y j,kφ j(t)




2

dt ≤
1
T

∫ T

0

m2−1∑
k=0

ψ2
k(Xi(t))

 m2−1∑
k=0


m1−1∑

j=0

Y j,kφ j(t)


2 dt.

Therefore

x⊤Xix ≤ Lψ(m2)
m2−1∑
k=0

1
T

∫ T

0

m1−1∑
j=0

Y j,kφ j(t)


2

dt = Lψ(m2)∥y∥22,m1m2
/T.

Now it holds that ∥y∥22,m1m2
= ∥Θ

−1/2
m1,m2 x∥22,m1m2

≤ ∥Θ−1
m1,m2
∥op∥x∥22,m1m2

. Consequently

λmax(Xi) ≤ Lψ(m2)∥Θ−1
m1,m2
∥op/T := R.

We obtain

P(∥G − Idm1m2∥op > 1/2) ≤ 2m1m2 exp
(
−

Nc(1/2)T
Lψ(m2)∥Θ−1

m1,m2
∥op

)
.

For the proof of P(Λ̂c
m) ≤ C/(NT )r, we refer to the proof of Lemma 5 in Comte and Genon-Catalot [9]. □

Using equation (1), we split Ĉm into the sum of two random matrices:

Ĉm = Cm + εm, Cm :=
(
⟨φ j ⊙ ψk, b⟩N

)
0≤ j≤m1−1,0≤k≤m2−1

(29)

and set
εm :=

(
νN(φ j ⊙ ψk)

)
0≤ j≤m1−1,0≤k≤m2−1

. (30)

To study the risk of the estimator defined by E(∥̃bm − bI∥
2
N),we write

∥̃bm − bI∥
2
N = ∥̂bm − bI∥

2
N1
Λ̂m
+ ∥bI∥

2
N1
Λ̂c

m
.

We define the orthogonal projection of bI on S m1 × Σm2 wrt the empirical scalar product, denoted by Πmb. We find for

Πmb =
m1−1∑

j=0

m2−1∑
k=0

a j,kφ j ⊙ ψk, Am = (a j,k)0≤ j≤m1−1,0≤k≤m2−1

with
vec(Am) = Θ̂−1

m1,m2
vec(Cm)

where Cm defined by (29). Then we have by Pythagoras theorem

∥̂bm − bI∥
2
N = ∥̂bm − Πmb∥2N + ∥Πmb − bI∥

2
N .

Thus
∥̃bm − bI∥

2
N =

(
∥̂bm − Πmb∥2N + ∥Πmb − bI∥

2
N

)
1
Λ̂m
+ ∥bI∥

2
N1
Λ̂c

m
.

Then we have

E(∥̃bm − bI∥
2
N) = E

(
∥Πmb − bI∥

2
N1
Λ̂m

)
+ E

(
∥̂bm − Πmb∥2N1

Λ̂m∩Ωm

)
+ E

(
∥̂bm − Πmb∥2N1

Λ̂m∩Ω
c
m

)
+ E(∥bI∥

2
N1
Λ̂c

m
)

:= T1 + T2 + T3 + T4. (31)
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For the bias, we have

T1 = E(∥Πmb − bI∥
2
N1
Λ̂m

) = E
(

inf
h∈S m1×Σm2

∥h − bI∥
2
N1
Λ̂m

)
≤ inf

h∈S m1×Σm2

∥h − bI∥
2
p. (32)

By Lemma 1,

∥̂bm − Πmb∥2N =
1
T

∫ T

0
Tr

[
(Âm − Am)⊤Φm1 (t)(Âm − Am)Ψ̂m2 (t)

]
dt.

Now we use (13) and its analogous for Am and we get

∥̂bm − Πmb∥2N = Tr
[
(Âm − Am)⊤

1
T

∫ T

0
Φm1 (t)(Âm − Am)Ψ̂m2 (t)dt

]
= Tr

[
(Âm − Am)⊤(Ĉm −Cm)

]
= vec(Âm − Am)⊤vec(Ĉm −Cm) with Tr(M⊤N) = vec(M)⊤vec(N),
= vec(Ĉm −Cm)⊤Θ̂−1

m1,m2
vec(Ĉm −Cm) = vec(εm)⊤Θ̂−1

m1,m2
vec(εm). (33)

OnΩm, the eigenvalues ofΘ−1/2
m1,m2Θ̂m1,m2Θ

−1/2
m1,m2 all belong to [1/2, 3/2]. Therefore, the eigenvalues ofΘ1/2

m1,m2Θ̂
−1
m1,m2
Θ

1/2
m1,m2

all belong to [2/3, 2]. So we write

vec(εm)⊤Θ̂−1
m1,m2

vec(εm) = vec(εm)⊤Θ−1/2
m1,m2
Θ1/2

m1,m2
Θ̂−1

m1,m2
Θ1/2

m1,m2
Θ−1/2

m1,m2
vec(εm).

This yields
E(∥̂bm − Πmb∥2N1

Λ̂m∩Ωm
) ≤ 2E(vec(εm)⊤Θ−1

m1,m2
vec(εm)).

Now,

E(vec(εm)⊤Θ−1
m1,m2

vec(εm)) = E
[
Tr

(
vec(εm)⊤Θ−1

m1,m2
vec(εm)

)]
= E

[
Tr

(
Θ−1

m1,m2
vec(εm)vec(εm)⊤

)]
= Tr

(
Θ−1

m1,m2
E

[
vec(εm)vec(εm)⊤

])
=

1
NT

Tr
(
Θ−1

m1,m2
Θm1,m2,σ2

)
.

Thus, we get

T2 = E(∥̂bm − Πmb∥2N1
Λ̂m∩Ωm

) ≤
2

NT
Tr

(
Θ−1

m1,m2
Θm1,m2,σ2

)
. (34)

Now, using (33) and the definition of Λ̂m, we have:

T3 = E(∥̂bm − Πmb∥2N1
Λ̂m∩Ω

c
m

) ≤ 2cr
NT

Lψ(m2) log(NT )
E

[
vec(εm)⊤vec(εm)1

Λ̂m∩Ω
c
m

)
]

≤ 2cr
NT

Lψ(m2) log(NT )
E1/2

[(
vec(εm)⊤vec(εm)

)2
]
P1/2(Ωc

m).

Lemma 4. Under the assumptions of Theorem 1, we have

E
[(

vec(εm)⊤vec(εm)
)2
]
≲

m1m2

N2T 2 (Lφ(m1)Lψ(m2))2
(

1
T

∫ T

0

∫
σ4(u, x)pu(x)dx du

)
.

Applying Lemma 4, we get for r > 7, that

T3 = E(∥̂bm − Πmb∥2N1
Λ̂c

m∩Ω
c
m

) ≲
1
N
, (35)

using m1m2 ≤ NT , Lφ(m1) ≤ NT and P1/2(Ωc
m) ≤ C/Nr.

Lastly, we notice that

E
(
∥bI∥

4
N

)
≤

C4
T

T
E

∫ T

0
(1 + |Xi(u)|)4du
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and we get, using Lemma 3, that

T4 = E(∥bI∥
2
N1
Λ̂c

m
) ≤ C2

T

(
1
T
E

∫ T

0
(1 + |Xi(u)|)4du

)1/2

P1/2(Λ̂c
m) ≲

1
Nr/2 .

This means T4 = O(1/N) for r ≥ 2. Therefore, plugging this and (32)-(34)-(35) into (31) gives Inequality (23) of
Theorem 1.

Now, we use that σ is uniformly bounded on [0,T ] × R. We exploit the following trick.

Tr
(
Θ−1

m1,m2
Θm1,m2,σ2

)
= Tr

(
Θ−1/2

m1,m2
Θm1,m2,σ2Θ−1/2

m1,m2

)
= E

[
vec(Z)⊤Θ−1/2

m1,m2
Θm1,m2,σ2Θ−1/2

m1,m2
vec(Z)

]
where Z = (Zi, j) is a m1 × m2-matrix with i.i.d. entries Zi, j such that E(Zi, j) = 0 and E(Z2

i, j) = 1. Let Y = (Yi, j) be a
m1 × m2-matrix with i.i.d. entries Yi, j such that vec(Y)⊤ = vec(Z)⊤Θ−1/2

m1,m2 , and let us look at vec(Y)⊤Θm1,m2,σ2 vec(Y).
We have,

vec(Y)⊤Θm1,m2,σ2 vec(Y) =
1
T

∑
j,k, j′,k′

Y j,kY j′,k′

∫ T

0
du

∫
φ j(u)φ j′ (u)ψk(x)ψk′ (x)pu(x)σ2(u, x)dx

=
1
T

∫ T

0
du

∫ ∑
j,k

Y j,kφ j(u)ψk(x)

2

pu(x)σ2(u, x)dx ≤ σ2
1vec(Y)⊤Θm1,m2 vec(Y).

This yields

E
[
vec(Z)⊤Θ−1/2

m1,m2
Θm1,m2,σ2Θ−1/2

m1,m2
vec(Z)

]
≤ σ2

1E
[
vec(Z)⊤Θ−1/2

m1,m2
Θm1,m2,Θ

−1/2
m1,m2

vec(Z)
]

= σ2
1Tr(Θ−1/2

m1,m2
Θm1,m2Θ

−1/2
m1,m2

) = σ2
1m1m2.

This ends the proof of Theorem 1. □

Proof of Lemma 4 First we have that

vec(εm)⊤vec(εm) =
m1−1∑

j=0

m2−1∑
k=0

ν2
N(φ j ⊙ ψk).

Thus

E
[(

vec(εm)⊤vec(εm)
)2
]
≤ m1m2

m1−1∑
j=0

m2−1∑
k=0

E
(
ν4

N(φ j ⊙ ψk)
)
.

Now using the Burkholder-Davies-Gundy inequality, we get:

E
(
ν4

N(φ j ⊙ ψk)
)
=

1
(NT )4 E


∫ T

0

N∑
i=1

φ j ⊙ ψk(u, Xi(u))σ(u, Xi(u))dWi(u)

4
≲

1
(NT )4 E


∫ T

0

N∑
i=1

(
φ j ⊙ ψk(u, Xi(u))

)2
σ2(u, Xi(u))du

2
≲

1
N2T 2

1
T

∫ T

0
E

[(
φ j ⊙ ψk(u, X1(u))

)4
σ4(u, X1(u))du

]
.

Therefore as
∑m1−1

j=0 φ4
j (u) ≤ (Lφ(m1))2 and

∑m2−1
k=0 ψ4

k(x) ≤ (Lψ(m2))2

E
[(

vec(εm)⊤vec(εm)
)2
]
≤

m1m2(Lφ(m1)Lψ(m2))2

(NT )2

1
T
E

[∫ T

0
σ4(u, X1(u))du

]
.
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This is the announced result. □

Proof of Lemma 2. Let Hm = (h j,k)0≤ j≤m1−1,0≤k≤m2−1, then as by Lemma 1

[vec(Hm)]⊤ Θm1,m2 vec(Hm) =
1
T

∫ T

ϵ

∫
A

h2(t, u)pt(u)dudt

≥ c0(ϵ, A)
1
T

∫ T

ϵ

∫
A

h2(t, u)dudt = c0(ϵ, A)[vec(Hm)]⊤ vec(Hm)

where h(t, u) =
∑

j,k h j,kφ j(t)ψk(u). This proves that any eigenvalue of Θm1,m2 is larger than c0(ϵ, A). The upper bound
for ∥h∥2p is straightforward. This gives the result of Lemma 2. □

Proof of Proposition 2. In the bound (26), we look at the bias term:

inf
h∈S m1×Σm2

∥h − bIϵ ∥
2 = ∥bm − bIϵ ∥

2

where bm =
∑m1−1

j=0
∑m2−1

k=0 ⟨b, φ j ⊙ ψk⟩φ j ⊙ ψk is the L2-orthogonal projection of bIϵ on S m1 × Σm2 . Therefore, if
bIϵ ∈ W∗(β,R),

∥bm − bIϵ ∥
2 ≤ R2

1m−2β1
1 + R2

2m−2β2
2 .

Making the standard compromise with the variance term of order m1m2/(NT ) gives the rate. □

Proof of Theorem 3. We follow the scheme of Theorem 2.11 in Tsybakov [45]. Take g and h two regular functions
with support [0, 1], bounded by K f and Kg respectively, with g β1-times derivable and h β2 times derivable, with
square integrable derivatives. Define for j ∈ {0, . . . ,M1 − 1}, and k ∈ {0, . . . ,M2 − 1}, with A = [a, b], a < b,

g j(t) =

√
M1

T − ϵ
g
(
M1(

t − ϵ
T − ϵ

) − j
)
, hk(x) =

√
M2

b − a
h
(
M2(

x − a
b − a

) − k
)
.

Clearly, the g j have disjoint supports and g jg j′ = 0 for j , j′, and for the same reason hkhk′ = 0 for k , k′. Denote
by I j := [ϵ + j(T − ϵ)/M1, ϵ + ( j + 1)(T − ϵ)/M1] and Jk = [a + k(b − a)/M2, a + (k + 1)(b − a)/M2] the respective
supports of g j, hk. Let us define proposals: b0(t, x) = 0 and for θ = (θ j,k) j∈{0,...,M1−1},k∈{0,...,M2−1} with θ j,k ∈ {0, 1} for all
j ∈ {0, . . . ,M1 − 1}, k ∈ {0, . . . ,M2 − 1},

bθ(t, x) =
δ
√

NT

M1−1∑
j=0

M2−1∑
k=0

θ j,kg j ⊙ hk(t, x).

We choose M1 = (NT )β2/(β1+β2+2β1β2), M2 = (NT )β1/(β1+β2+2β1β2).
• As g is β1-times derivable and h is β2 times derivable, both with square integrable derivatives, we get that∫∫

(∂β1 bθ(t, x)/∂tβ1 )2dtdx + (∂β2 bθ(t, x)/∂xβ2 )2dtdx

=
δ2

NT

M1−1∑
j=0

M2−1∑
k=0

θ2
j,k

{( M1

T − ϵ

)2β1
∫

[g(β1)(t)]2dt
∫

h2
k(x)dx +

( M2

b − a

)2β2
∫

g2
j (t)dt

∫
[h(β2)(x)]2dx

}

≤
δ2

NT


∫

[g(β1)(t)]2dt
∫

h2(x)dx

(T − ϵ)2β1
M2β1+1

1 M2 +

∫
g2(t)dt

∫
[h(β2)(x)]2dx

(b − a)2β2
M1M2β2+1

2

 .
As M2β1+1

1 M2 = M1M2β2+1
2 = NT , we obtain that∫∫

(∂β1 bθ(t, x)/∂tβ1 )2dtdx + (∂β2 bθ(t, x)/∂xβ2 )2dtdx ≤ C2δ2 ≤ L2
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for δ ≤ L/C small enough, where

C =

∫
[g(β1)(t)]2dt

∫
h2(x)dx

(T − ϵ)2β1
+

∫
g2(t)dt

∫
[h(β2)(x)]2dx

(b − a)2β2
.

This implies that b0 and bθ belong to W(β,L) with L = (L, L).
•We have that:

∥bθ − bθ′∥2 =
δ2

NT

M1−1∑
j=0

M2−1∑
k=0

(θ j,k − θ
′
j,k)2

∫
g2

j (t)h
2
k(x)dtdx =

δ2

NT
ρ(θ, θ′)

∫
g2(t)dt

∫
h2(x)dx

where ρ(θ, θ′) =
∑

j,k 1(θ j,k,θ
′
j,k) is the Hamming distance between θ and θ′.

As a consequence, the Varshamov-Gilbert Lemma (see Lemma 2.9 in Tsybakov [45]) ensures that for M := M1M2 ≥

8, there exist Q ≥ 2M/8 elements say {θ0, . . . , θQ} of {0, 1}M such that ρ(θq, θq′ ) ≥ M/8 for all 0 ≤ q < q′ ≤ Q, with
θ0 = (0, . . . , 0). This leads to:

∥bθq − bθq′ ∥
2 ≥

δ2

NT
M
8
∥g∥2∥h∥2 = δ2∥g∥2∥h∥2N−

2β̄
2β̄+2 . (36)

• Lastly, let Pθ (resp P0) denotes the distribution of the process (1) when the drift is equal to bθ(t, x) (resp. is equal
to 0) and the diffusion coefficient to σ(t, x) on the space CT = C([0,T ]) of real valued continuous functions on [0,T ]
endowed with the canonical σ-field CT = σ(X(t), t ∈ [0,T ]) where X(t), t ∈ [0,T ] is the canonical process of CT , i.e.,
Xt(x) = x(t) for x ∈ CT . We bound

K(P⊗N
θ ,P⊗N

0 ) = NK(Pθ,P0).

where K(P,Q) = EP(log dP
dQ ) is the Kullback-Leibler divergence of P with respect to Q. Under [H1], Pθ and P0 are

equivalent and

log
dPθ
dP0
=

∫ T

0

bθ(t, X(t))
σ2(t, X(t))

dX(t) −
1
2

∫ T

0

b2
θ(t, X(t))
σ2(t, X(t))

dt.

(see e.g. Liptser and Shiryaev [35]). Under Pθ, dX(t) = bθ(t, X(t))dt + σ(t, X(t))dB(t) where (B(t), t ∈ [0,T ]) is a
standard Brownian motion. Therefore,

log
dPθ
dP0
=

1
2

∫ T

0

b2
θ(t, X(t))
σ2(t, X(t))

dt +
∫ T

0

bθ(t, X(t))
σ(t, X(t))

dB(t).

Thus,

K(Pθ,P0) = EPθ
1
2

∫ T

0

b2
θ(t, X(t))
σ2(t, X(t))

dt ≤
1

2σ2
0

∫ T

ϵ

∫
R

b2
θ(t, x)pθt (x)dxdt.

Then, we have ∫ T

ϵ

∫
R

b2
θ(t, x)pθt (x)dxdt =

δ2

NT

∫ T

ϵ

∫
R

M1−1∑
j=0

M2−1∑
k=1

θ2
j,kg2

j (t)h
2
k(x)pθt (x)dxdt

=
δ2M1M2

NT
1

(T − ϵ)(b − a)

∑
j,k

θ2
j,k

∫
I j

∫
Jk

g2
(
M1(

t − ϵ
T − ϵ

) − j
)

h2
(
M2(

x − a
b − a

) − k
)

pθt (x)dxdt

≤
δ2M1M2

NT

K2
f K2

g

(T − ϵ)(b − a)

∫ T

ϵ

∫ b

a
pθt (x)dxdt ≤

δ2M1M2

N

K2
f K2

g

(T − ϵ)(b − a)
,

as
∫

pθt (x)dx = 1 and (T − ϵ)/T ≤ 1. As a consequence, we get

K(Pθ,P0) ≤ Cδ2 M1M2

N
.
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Therefore

K(P⊗N
θ ,P⊗N

0 ) ≤ Cδ2M1M2 ≤
8Cδ2

log(2)
log(Q).

By choosing δ small enough, we obtain, for κ ∈ (0, 1
8 ),

1
Q

Q∑
q=1

K(P⊗N
θq ,P⊗N

0 ) ≤ κ log(Q). (37)

We apply Theorem 2.7 in Tsybakov [45] and (36) and (37) imply the lower bound result. □

8.1. Proof of Proposition 3.
Assume that f ∈ W (per)(β,L). Define for j1 = 1, . . . , β1, the Fourier coefficients of (∂ j1 f (t, x)/(∂t j1 )(t, x) with

respect to the trigonometric bases (φℓ, ψk):

sℓ,k( j1) =
∫ T

ϵ

∫ b

a
(∂ j1 f (t, x)/(∂t j1 )(t, x)φℓ(t)ψk(x)dtdx

and we set sℓ,k(0) = c jk.
We have

s0,k( j1) =
1

√
T − ϵ

∫ b

a
ψk(x)dx[(∂ j1−1 f (t, x)/(∂t j1−1)(ϵ, x) − (∂ j1−1 f (t, x)/(∂t j1−1)(T, x)] = 0.

Integrating by parts w.r.t. t under the integral, we get for ℓ ≥ 1

s2ℓ−1,k(β1) =
2

√
T − ϵ

∫ b

a
ψk(x)dx

∫ T

ϵ

∂β1−1 f (t, x)
∂tβ1−1 (t, x)

2πℓ
T − ϵ

sin(2πℓ
t − ϵ
T − ϵ

)dt

=
2πℓ

T − ϵ
s2ℓ,k(β1 − 1).

Analogously, s2ℓ,k(β1) = − 2πℓ
T−ϵ s2ℓ−1,k(β1 − 1). This yields:

s2
2ℓ−1,k(β1) + s2

2ℓ,k(β1) = [
2πℓ

T − ϵ
]2[s2

2ℓ−1,k(β1 − 1) + s2
2ℓ,k(β1 − 1)].

By induction, ∑
ℓ≥1

[
2πℓ

T − ϵ
]2β1 [s2

2ℓ−1,k(0) + s2
2ℓ,k(0)] = [

π

T − ϵ
]2β1

∑
ℓ≥1

a2
ℓ (β1)sℓ,k(0),

with aℓ(β1) = ℓβ1 if ℓ is even, and = (ℓ + 1)2β1 if ℓ is odd. We deduce∑
ℓ,k

∫ T

ϵ

∫ b

a

(
∂β1 f (t, x)/(∂tβ1 )(t, x)

)2
ψk(x)φℓ(t)dtdx = [

π

T − ϵ
]2β1

∑
ℓ,k

a2
ℓ (β1)s2

ℓ,k(0).

Hence, ∫ T

ϵ

∫ b

a

(
∂β1 f (t, x)/(∂tβ1 )(t, x)

)2
dtdx = [

π

T − ϵ
]2β1

∑
ℓ,k

a2
ℓ (β1)c2

ℓ,k.

Therefore, ∑
ℓ,k

ℓ2β1 c2
ℓ,k ≤ L2

1(T − ϵ)2β1/π2β1 = R1.

Analogously, ∑
ℓ,k

k2β2 c2
ℓ,k ≤ L2

2(T − ϵ)2β2/π2β2 = R2.

This implies that f ∈ W∗(β,R) as announced. □
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9. Appendix

9.1. Some properties of Kronecker products (see Magnus and Neudecker [36], chapter 2)
Recall that M⊤ denotes the transpose of the matrix M. The Kronecker product of two matrices M,N with respective

dimensions (m × n) and (p × q) is the (mp × nq) matrix defined, if M = (Mi, j)1≤i≤m,1≤ j≤n, by

M ⊗ N =


M1,1N . . . Mm,1N
M1,2N . . . Mm,2N
...

. . .
...

M1,nN . . . Mm,nN

 .
The Kronecker product has several nice properties when using vectorization of matrices. For a matrix M as above,
denote by vec(M) the vector of Rmn given by

vec(M) = (M1,1, . . .M1,n,M2,1, . . .M2,n, . . . ,Mm,1, . . .Mm,n)⊤.

The following relations hold for matrices M,N,R:

vec(MNR) = (R⊤ ⊗ M)vec(N) (38)

(M ⊗ N)⊤ = M⊤ ⊗ N⊤. (39)
If m = p and n = q, then the product M⊤N is well defined and is a square matrix n × n matrix and it holds:

Tr(M⊤ N) = vec(M)⊤vec(N). (40)

Lastly, M ⊗ N is invertible if and only if M and N are invertible and in this case,

(M ⊗ N)−1 = M−1 ⊗ N−1. (41)

9.2. Tropp’s inequality
We recall that for M a self-adjoint p× p matrix, the notation M ≽ 0 means that for all x ∈ Cp, x⊤Mx̄ ≥ 0 where x̄

is the conjugate of x.

Theorem 4. (Matrix Chernoff, Tropp [44]) Consider a finite sequence {Xk} of independent, random, self-adjoint
matrices with dimension d. Assume that each random matrix satisfies

Xk ≽ 0 λmax(Xk) ≤ R almost surely.

Define µmin := λmin(
∑

k E(Xk)) and µmax := λmax(
∑

k E(Xk)). (Here λmin, λmax denote the minimum and the maxi-
mum eigenvalue of the matrix). Then

P
λmin

∑
k

Xk

 ≤ (1 − δ)µmin

 ≤ d
[

e−δ

(1 − δ)1−δ

]µmin/R

for δ ∈ [0, 1]

P
λmax

∑
k

Xk

 ≥ (1 + δ)µmax

 ≤ d
[

eδ

(1 + δ)1+δ

]µmax/R

for δ ≥ 0.

9.3. The Hermite basis
The Hermite polynomial of order j is given, for j ≥ 0, by:

H j(x) = (−1) jex2 d j

dx j (e−x2
).

Hermite polynomials are orthogonal with respect to the weight function e−x2
and satisfy:∫

R
H j(x)Hℓ(x)e−x2

dx = 2 j j!
√
πδ j,ℓ

(see e.g. Abramowitz and Stegun [1]). The Hermite function of order j is given by:

h j(x) = c jH j(x)e−x2/2, c j =
(
2 j j!
√
π
)−1/2

. (42)

The sequence (h j, j ≥ 0) is an orthonormal basis of L2(R).
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9.4. The half-trigonometric basis

The trigonometric basis is well-fitted for functions satisfying boundary conditions as described in Wper. This
is why we rather used the so-called ”half-trigonometric” system, namely the cosine basis defined by φ0,T (x) =
√

1/T1[0,T ](t), φ j,T (t) =
√

2/T cos(π jt/T )1[0,T ](t), j = 1, . . . ,m − 1, see Efromovich [22], p.46. It is clearly an
orthonormal basis, which is easy to handle and still has good approximation properties, see Efromovich [22] p.32.
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